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Abstract

Flexible pipes are essential components in the subsea oil and gas industry, where

they are used to convey fluids under conditions of extreme external pressure and

(often) axial load, while retaining low bending stiffness. This is made possible

by their complex internal structure, consisting of unbonded components that are,

to a certain extent, free to move internally relative to each other. Due to the

product’s high value and high cost of testing facilities, much effort has been invested

in the development of analytical and numerical models for simulating flexible pipe

behaviour, which includes bulk response to various loading actions, calculation of

component stresses and use of this data for component fatigue calculations.

In this work, it is proposed that the multi-scale methods currently in widespread

use for the modelling of composite materials can be applied to the modelling of

flexible pipe. This allows the large-scale dynamics of an installed pipe (often several

kilometers in length) to be related to the behaviour of its internal components (with

characteristic lengths in millimeters). To do this, a formal framework is developed

for an extension of the computational homogenisation procedure that allows multi-

scale models to be constructed in which models at both the large and small scales

are composed of different structural elements. Within this framework, a large-scale

flexible pipe model is created, using a two-dimensional corotational beam formula-

tion with a constitutive model representative of flexible pipe bulk behaviour, which

was obtained by further development of a recently proposed formulation inspired by

the analogy between the flexible pipe structural behaviour and that of plastic mate-

rials with non-associative flow rules. A three-dimensional corotational formulation

is also developed. The model is shown to perform adequately for practical analyses.

Next, a detailed finite element (FE) model of a flexible pipe was created, using

shell finite elements, generalised periodic boundary conditions and an implicit solu-

tion method. This model is tested against two analytical flexible pipe models for

several basic load cases.

Finally, the two models are used to carry out a sequential multi-scale analysis,

in which a set of simulations using the detailed FE model is carried out in order to

find the most appropriate coefficients for the large-scale model.
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Chapter 1

Introduction

1.1 Flexible pipes: Structure, applications, capa-

bilities

In recent decades, the depletion of accessible oilfields and continued demand for

crude oil has led to the rapid development of the subsea oil and gas industry. Oil

prices have been sufficiently high to justify the capital expense required to install

production systems that profitably operate in waters now often exceeding 3000m

below sea-level. The development of physical systems and components capable of

functioning in such extreme conditions, combined with demanding operating re-

quirements and acceptable reliability and operating life has been the result of these

trends.

One key development has been the unbonded flexible pipe. Consisting of a

number of interlocking metal and polymer components, flexible pipes can fulfill

the requirement to be able to transport oil and gas at high internal and external

pressures for a wide range of applications, including production risers between the

seabed and surface, jumpers between FPSOs (Floating Production, Storage and

Offloading units), FSUs (Floating Storage units) and platforms, connections between

subsea wellheads and manifolds on the seabed, in conjunction with rigid pipelines.

Other uses include test lines and chemical injection lines. Advantages gained in

using flexible, rather than rigid, connectors include ease of installation, operational

1



1.1. Flexible pipes: Structure, applications, capabilities 2

flexibility (flowlines on the seabed are often repositioned as an oilfield is developed),

and suitability for dynamic applications , such as risers, where waves, currents and

FPSO drift would otherwise cause high and fluctuating stresses in the pipe. As the

cost of flexible pipes is five to six times the cost of an equivalent rigid pipe (though

they are cheaper and faster to lay), they are only installed where their advantages

are manifest (Palmer and King, 2008). Comprehensive modern reference works for

pipeline and riser engineering are given by Bai and Bai (2005) and Palmer and King

(2008).

The complex internal dynamics of a flexible pipe means that established stress

prediction and fatigue analysis tools are inadequate for accurate analysis. In re-

sponse, equipment designers have come to adopt a number of analysis tools, includ-

ing traditional finite element methods and analytical models based on established

structural theories.

Accurate modelling requires detailed knowledge of material and geometrical

properties of flexible pipe. A schematic of a typical flexible pipe assembly, including

layer profile shapes and layer designations, is shown in Figure 1.1. The components

of a typical flexible pipe include, but are not limited to, the following:

• A “carcass” consisting of a helically wound metal strip wound at an angle

approximately 85 degrees from the pipe axis. Adjacent turns interlock tightly

(see Figure 1.2 (bottom profile)). The primary purpose of the carcass is to

provide collapse resistance to external pressure. The carcass is not present in

all flexible pipe designs. The carcass is permeable to gas and liquid.

• A “pressure armour” layer consisting of interlocking z-shaped wires wound at

close to 90 degrees to the pipe axis. Its purpose is to withstand radial loads

from internal fluid pressure.

• “Tensile armour wires/tendons”, which are helically wound steel strips that

can be flat (rectangular), round or shaped. Wires are wound at lay angles

between 20 and 60 degrees to the pipe axis. These wires provide the dominant

part of the tensile strength and stiffness of the pipe.
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• “Anti-wear layers” consisting of polymer sheaths, which extend pipe lifespan

by protecting adjacent helical armour layers from rubbing together.

• “Internal(pressure)/external sheaths”, which are extruded polymer sheaths

that provide fluid integrity.

• “High strength tapes”, which provide resistance to bird-caging effects under

high axial compression or internal pressure. They induce a degree of initial

hoop stress in the outermost layer, as it is recommended that they are applied

with sufficient tightness to limit the gap between tensile armour and next

innermost layer to half the wire thickness (API, 1998).

Flexible pipes are connected to other components by integrated end fittings,

which secure the terminations of all layers such that forces are transmitted to the

end fitting flange or other interface and fluid integrity is maintained. An example

of a typical end-fitting design is shown in Figure 1.3.

The tensile armour wires, the anti-wear layers and the internal/external pressure

sheaths are used in all unbonded flexible pipes. Different flexible pipe designs use

different numbers of layers; additional layers may be used to reduce gas permeability,

provide thermal insulation or to increase flexibliity (by separating two steel layers

with a polymer layer). Pipe internal diameters for single-bore flexible range from 25

to 400mm with current manufacturing capabilities (Palmer and King, 2008). The

smallest pipes can withstand internal pressures of up to about 140 MPa and the

largest up to about 20 MPa. Multiple tensile armour layers are usually used (2 or 4

layers is typical). Alternate tensile armour layers are wound in opposite directions

to obtain torsional balance under load, and also to balance hoop and axial loads.

Pipe mass varies considerably for a given diameter: the empty mass varies from

about 11 to about 420 kg per metre length.

Material selection is influenced by the need for resistance to chemical corrosion

(more important for “sour service” applications), weldability and fatigue character-

istics. Carcass layers may be fabricated using carbon steel (with carbon content up

to AISI 4130), austentitic stainless steels up to AISI 304, 304L, 316, 316L, duplex

stainless steel up to UNS S31803. Polymer sheaths may be made of HDPE, XLPE
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Figure 1.1: Schematic of typical flexible riser cross-sections. Image courtesy Well-
stream International Limited

(a form of PE with cross-links between the polymer chains), polyamide (PA-11, PA-

12), Nylon 11, Fluorocarbon or PVDF, a thermoplastic fluoropolymer. This choice

is largely dependent on the operating temperature. Tensile armour wires are made

from high-strength carbon steels.

Typical causes of failure for unbonded flexible pipes are from fretting and wear

of internal components, corrosion failures and fatigue failures. The design life of a

flexible riser is typically 25 years.

Flexible pipe is a specialised product with three main manufacturers: Coflexip

(now part of Technip group), Wellstream and NKT Flexibles.

1.2 Objectives and scope of research

The objectives of this project were
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Figure 1.2: Pressure armour and carcass interlock profiles. Source: NKT Flexibles,
US Patent No. 06981526
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Figure 1.3: Example of an unbonded flexible pipe end fitting. Source: NKT Flexi-
bles, US Patent No. 06360781

1. To develop a theoretically justified numerical multiscale analysis procedure

suitable for the structural analysis of flexible pipes.

2. To develop and implement a robust beam-like finite element accounting for

large displacements and rotations suitable for large-scale analyses of flexible

pipes and to derive and implement an appropriate constitutive model for use

with this element.

3. To develop a detailed finite element model for the stress analysis of flexible

pipes, accounting for contact-friction interactions of internal components ac-

curately, and accurately representing the behaviour of internal components by

appropriate modelling choices.

4. To demonstrate the multiscale analysis procedure by using the beam-like finite

element model as the large-scale model and the detailed finite element model

as the small scale model.
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The scope of the work was restricted to the unbonded, single-bored flexible pipe.

The focus in on the nonlinear structural response; problems of characterising and

implementing external loading conditions, including vortex induced vibration (VIV)

effects and seabed interaction are not considered. Issues surrounding end fittings,

connectors and bend limiters are also not considered. Therefore, the predicted pipe

behaviour is considered accurate only at reasonable distances from such restrictions.

Boundary conditions are discussed in the context of scale-linking (see Section 3.1).

The focus of this work is the creation of models which can accurately predict

component stresses and displacements when the flexible pipe is subject to various

combined loading actions. However, the design and analysis of flexible pipes also

considers specific failure modes such as collapse and “bird-caging” (a phenomenon

in which armour wires lose stability under axial compression and develop excessive

radial or lateral displacements, see Section 2.2.1), which are associated with highly

nonlinear structural behavior of flexible pipes and their internal components. Anal-

ysis of these failure modes require that structural limit states can be determined.

Although the detailed finite element model developed in the current work is not de-

signed to be able to predict these failure modes, it is anticipated that such a model

will also be valuable for investigating these phenomena. This is because the model

developed is designed to represent all components and interlayer interactions, and

the implicit solution procedure allows the identification of limit states. The analysis

of such failure modes would require additional attention to the solution convergence

controls, contact enforcement methods and numerical damping.

In this work, multi-scale homogenisation techniques will be applied to the anal-

ysis of flexible pipes. It is noted that, in the context of this work, the term “large-

scale” refers to phenomena and analyses in which the characteristic length scale is

the length of an installed riser, which ranges from around 100m to 2-3 km, while

the term “small scale” refers to phenomena and analyses of the pipe and internal

components where characteristic length scales are around 0.1mm to 100mm. This

contrasts with standard usage in research multiscale modelling of materials, in which

the terms “small-scale” or “microscale” refer to phenomena occurring at length scales

invisible to the naked eye (∼1-100µm). Furthermore, it is necessary to distinguish
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sequential and nested homogenisation approaches. In sequential approaches, a suffi-

cient number of simulations are carried out on a detailed (or small-scale) model of a

structure such that the parameters of a large-scale homogenised representation of it

may be determined. Once these parameters have are known, large-scale simulations

may be carried out using a number of such homogenised elements, without further

reference to the detailed model being required to predict the large-scale behaviour.

In contrast, the nested homogenisation approach involves the solution of the large-

and small-scale problems in parallel. In this arrangement, real-time simulations are

carried out using the detailed model for points in the large-scale model as a more

accurate alternative to using a constitutive model relating stress, strain and history

variables. In this work, the application of homogenisation techniques to flexible

pipes will use the sequential approach, although the theoretical developments in

Chapter 3 apply to both approaches, and a nested homogenisation is demonstrated

in that Chapter.

1.3 Outline of thesis

A survey of the relevant literature is presented in Chapter 2, discussing analytical

and numerical approaches to flexible pipe modelling, and also covering homogenisa-

tion techniques used for a variety of engineering problems.

In Chapter 3, a formal framework for multi-scale analysis is developed, in which

computational homogenisation techniques are extended to deal with situations where

both the large-scale and small-scale models are comprised of structural elements, and

where different structural models are used at the different scales. In this Section, a

“control node” approach for applying boundary conditions and transferring quanti-

ties between scales is introduced. An application of the approach is demonstrated in

a fully-nested multi-scale analysis of a nonlinear periodic truss structure. Multi-scale

convergence of the method is shown for several situations.

In Chapter 4, the large-scale model used in the multi-scale method is described,

using a corotational beam element and a non-linear constitutive model. The consti-

tutive model relates generalised stresses and strains with a non-associative plasticity
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model with kinematic hardening that captures the hysteretic bending-moment cur-

vature behaviour displayed by flexible pipes and the influence of internal end external

pressure on this behaviour.

In Chapter 5, the detailed finite element model used for the small-scale analysis is

described. In distinction to earlier work on finite element modelling of flexible pipes

(Bahtui, 2008; Bahtui et al., 2009, 2010), in which an explicit dynamics approach

was used, all models used in this work are solved using a nonlinear implicit static

solution procedure. Special attention is paid to modifications used for modelling

contact (Section 5.2.1) and practical implementation of the “control node” method

(Section 5.2.2). In this Chapter, verification and parameter studies on this model

are described. Comparisons are presented for overall response to axial and pressure

loading (Section 5.3.1) and for component stresses when the pipe is subjected to load

cases of practical interest (Section 5.3.3), including axial loading, pressure loading

and bending. Qualitative comparisons of the stress and slip fields resulting from the

use of periodic and “fixed-in-plane” boundary conditions are also shown in Section

5.3.2.

A modification to the constitutive model of the large-scale model is developed in

Chapter 6 in order to account for the carcass separation phenomenon noted in the

results of the detailed model presented in Chapter 5.

Chapter 7 deals with the implementation of the scale-linking procedure in a

sequential multi-scale approach. The determination of large-scale model parame-

ters from simulations using the detailed model is described. In Chapter 8, overall

conclusions from this work are presented.



Chapter 2

Literature review

In this Chapter, a survey and critique of the relevant published literature is pre-

sented. The purpose of reviewing different modelling methods is to gain understand-

ing about the types of models currently used: their assumptions, level of complexity,

modelling procedures and predictive capability. Secondly, through modelling and ex-

periments, a great deal of understanding has been gained about the kinematic and

dynamic phenomena and behaviour exhibited by flexible pipes. Such understand-

ing is apparent in the literature in the modelling decisions and predictive scope as

revealed by verification testing. No attempt is made to fully evaluate and compare

all the work presented in this Chapter.

This Chapter begins with some definitions and explanations in Section 2.1, fol-

lowed by an overview of the few test data in the public domain in Section 2.2. In

Section 2.3, a description of various analytical models used for flexible pipes is pro-

vided, covering the basic formulation and solution of the models, commenting on

assumptions made and the mechanical phenomena incorporated. Such models are

characterised by varying descriptions or approximations of flexible pipe kinemat-

ics, which are then used to derive linear or non-linear equations which are solved

by computational techniques. Despite the name of this class of models, numerical

solution of these equations is often required in practice.

In Section 2.4, detailed modelling methods using finite element software are

reviewed. Such models avoid some of the explicit assumptions made by analytical

models, but require various modelling choices instead, such as element type and

10
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contact modelling techniques.

In Section 2.5, relevant publications on material and structural homogenisation

techniques are reviewed. These techniques are used to formulate and derive model

coefficients for “large scale” response models for materials and structures with com-

plex but predictable small-scale structures. These approaches are of particular in-

terest to this project, given the objective of developing multiscale models.

Finally, a survey of other notable models and modelling issues not falling into

the above categories is presented (Section 2.6).

Although the capability to predict fatigue endurance in flexible pipe components

is a key concern of the current work, the existing literature on flexible pipe fatigue

testing and modelling will not be reviewed here, other than to briefly describe the

types of structural model that are currently considered to have adequate stress-

prediction capabilities. The specific application of the model to the fatigue problem

(and empirical tools used in the industry) will not be covered. Similarly, coverage

of investigations into limit-state loading (such as birdcaging or collapse prediction)

will be restricted to coverage of the models used.

2.1 Common definitions and classifications

Before describing the models, some common definitions and model classifiers are

given in this Section.

2.1.1 Bird-caging

“Bird-caging” indicates a failure mode of flexible pipes characterised by local buck-

ling of the tensile armour wires such that the wires undergo significant radial expan-

sion. Bird-caging is usually caused by high axial compression. Bird-caging modes

can be predicted by linear elastic pre-buckling analysis using finite element software.

A finite element based study of wire instability modes is presented by Vaz and Rizzo

(2011).
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2.1.2 End-fittings

Flexible pipe end-fittings connect and secure the individual pipe components at their

termination for connecting the pipe to the end connector equipment, transmitting

loads and ensuring fluid integrity. End-fittings may be built into the pipe during

manufacture, or attached during installation. The presence of end-fitting introduces

complicated global and local structural effects. An important global effect is the

so-called end-cap effect, which occurs when internal pressure, acting on pipe termi-

nating surfaces in the cross-sectional plane, causes additional axial stress and strain

in the pipe.

2.1.3 Ovalisation

The term “ovalisation” indicates the out-of-roundness of the pipe, quantified by the

expression (Dmax−Dmin)/(Dmax +Dmin), where Dmax and Dmin are the maximum

and minimum pipe diameter respectively (API, 1998). Ovalisation causes stress

concentrations at points of high curvature and can lead to collapse of the carcass

and/or pressure armour at lower pressures that if it were not present. For this

reason, design recommendations require that ovalisation is taken into account when

analysing collapse resistance of a flexible pipe (API, 1998).

2.1.4 Single bore vs. multibore

A pipe with a single central core in which all layers are concentric is called single-

bore. Multi-bore pipes, also called umbilicals, include several core components with

different functions, including tubes supplying chemicals for injection into a flowline,

bundles of electrical conductors and hydraulic fluids.

2.1.5 Axisymmetric models vs. flexural models

Axisymmetric loading involves tension, internal/external pressure or torsional loads

on the pipe, or a combination of these. In general, axisymmetric modelling meth-

ods are fairly well established and reliable, whereas models capable of dealing with

bending are not. Popular approaches to detailed modelling (Witz and Tan, 1992a,b;
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Witz, 1996) derive axisymmetric and bending formulations separately and superim-

pose displacement and stress results. This modelling superposition is used because

combining axisymmetric and bending load causes complex three-dimensional defor-

mations that are very difficult to analyse.

2.1.6 Layer separation vs constant contact and interlayer

slip

For modelling multi-layer pipes, some models require that all layers have the same

radial deformation and are constantly in contact with each other with no tangential

slipping; others allow layer separation and differential radial displacements.

2.1.7 Interlayer slip

Interlayer slip is the phenomenon of relative motion between pipe internal compo-

nents, especially between helical armour wires and adjacent layers. This capability

is a key design feature of flexible pipes as it allows the pipe to assume large curvature

configurations as the outer layers can slide over the inner ones to relieve the high

bending stresses that would otherwise be induced.

2.1.8 Radial constriction with empirical coefficients vs. ra-

dial constriction in formulation

Some early methods for calculating the axial strength and axial and torsional stiff-

ness accounted for radial constriction by means of experimentally-determined values

or empirical formulae (Goto et al., 1987; de Oliveira et al., 1985). More precise ways

of representing interlaminar effects include one or more independent variables that

are solved for in the model. An example of the former option is the constitutive

model developed by Bahtui (2008). The latter is employed in multi-layer models

where each layer may take a different radial displacement.
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2.1.9 Serret-Frenet frame

The Serret-Frenet frame is a non-homogeneous (spatially varying) orthonormal frame

commonly used for describing parameterised space curves. For a given space curve,

the Serret-Frenet triad consists of 1) the tangent vector to the curve, 2) the normal

vector, defined as the rate of change of the tangent vector with respect to the curve

parameter, and 3) the binormal vector mutually perpendicular to the other two. The

curve may then be characterised by the coefficients of the matrix mapping the three

vectors to their derivatives with respect to the curve parameter. These coefficients

consist of two curvature parameters and a torsion parameter. This last parameter

is sometimes referred to as the mathematical torsion or tortuosity of the curve, to

emphasize that it is a geometrical measure that is not necessarily associated with

mechanical stress. This frame is often used for describing the geometry of deforma-

tion of the helical armour wires of a flexible pipe. In this context, the normal vector

(in the undeformed configuration) points towards the pipe’s central axis.

2.1.10 Bent helix slip assumption vs. geodesic slip assump-

tion

The problem of finding the final deformed configuration of an (initially helical)

flexible pipe armour wire that is in potential contact with, but is not bonded to an

underlying or enclosing layer, is difficult, if not impossible to solve, unless simplifying

assumptions are made (Out and von Morgen, 1997). For flexural analytical models,

the helical components are supposed to slip relative to internal or external layers

along their own axes. This means that the helix stretched such that it attempts

to fill the “groove” traced out by the helix in its undeformed configuration. This

is referred to as the bent helix assumption or loxodromic curve (see, for example,

Sævik (2010))

In contrast, the geodesic assumption assumes that the component will deform

to follow the shortest distance on the curved surface of a hypothetical underlying

cylinder, which deforms uniformly. This results in zero normal curvature1. In phys-

1Normal curvature acts against the wire thickness, rather than against its (radial) depth.
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Figure 2.1: Parameterisation of a bent cylindrical surface (Out and von Morgen,
1997)

ical terms, this condition is associated with high normal bending stiffnesses of the

armour wire; for this reason it is considered the most appropriate assumption to use

for wide tensile armour wires (Tan et al., 2005).

Given a cylinder bent with uniform curvature around one transverse axis (Figure

2.1.10), positions on the cylinder’s surface can be described by the coordinates θ,

the angular coordinate in the cylinder cross-section and ω, the angular coordinate

in the plane of the resulting torus. The position vector is

R =


x

y

z

 =


(ρ− r sin θ) sinκφ

ρ− (ρ− r sin θ) cosκφ

r cos θ

 (2.1.1)

where ρ is the radius of the toroid, r is the radius of the toroid cross-section, κ

is the toroid curvature and φ is the arc length such that κφ = ω. The length of

a line segment on the surface of infinitesimal length is dL =
√
dR · dR (Out and

von Morgen, 1997). A line drawn on this surface can be described as the function

θ = θ(φ), which has the total length between the two positions φ1 and φ2.
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s =

∫ φ2

φ1

L(φ, r) dφ (2.1.2)

The geodesic (the curve between two given points with minimum length) can be

found by solving the Euler-Lagrange equation associated with the minimisation

problem.

This can be solved numerically (von Morgen), or an approximate (linearised)

analytical solution can be found (Out and von Morgen, 1997). The slip predicted

using the geodesic slip assumption may be considered the upper-bound estimate

for the slip that occurs during pipe deformation, as it represents the lowest-energy

configuration of a stressed armour wire modelled using the wire bar assumption, if

zero friction is assumed.

2.1.11 Wire bar assumption vs. wire beam assumption vs.

wire shell assumption

A typical way of representing the helical armour wires is to consider them as simpli-

fied structural elements in the shape of a helix, so that established structural theories

can be used. When using the wire bar assumption, wires have only axial stiffness.

This assumption is less useful for predicting stress and fatigue of the armour wires

because bending stress resulting from changes in pipe curvature are important fac-

tors in assessing serviceable life of the wire (Out and von Morgen, 1997) and this is

not accounted for in the bar formulation.

As an alternative to the wire bar assumption, wires can be modelled as helical

beams that have axial stiffness and two bending stiffnesses. The appropriate equi-

librium equations for these elements are Love’s equations (see below). It is noted

that the basic beam formulation excludes the torsional, shear and transverse normal

stiffness components of the wire, which may influence the accuracy of the model’s

radial deformation predictions.

A third option is to model the wire as a helical shell strip, with the shell normals

aligned with the local radius. This method has the advantage that surface-to-surface
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contact discretisation may be used to compute the principal contact interactions i.e.

the interactions between the wire and the layers positioned radially outwards or

inwards. This is more accurate than the standard node-to-surface discretisation

that must be used if the wire is represented as a bar or beam because contact forces

are applied to the wire based on the averaged contact separation or penetration of

the wire surface, whose position is defined by several nodes, rather than one. This

minimises the contact overpenetration error that may occur and hence improves

the accuracy of radial displacement predictions. However, using this option is more

computationally expensive.

2.1.12 Love’s equations

Love’s equations are a set of 6 nonlinear differential equations describing the equilib-

rium of a beam with initial curvature in terms of section force and moment resultants

(Love, 1944, pp. 371–372). These equation are difficult to solve, and numerical pro-

cedures often leads to bifurcations or no solution (Tan et al., 2005).

dN

ds
− Sxχy + Syχx + qz = 0

dSx
ds

+Nχy − Syτ + qx = 0

dSy
ds
−Nχx + Sxτ + qy = 0

dMx

ds
−Myτ + Tχy − Sy +mx = 0

dMy

ds
+Mxτ − Tχx + Sx +my = 0

dT

ds
−Mxχy +Myχx + θ = 0 (2.1.3)

where s is the distance along the curve, χx and χy are the components of the final

curvature, τ is the final twist (tortuosity), qx, qy, qz, mx, my and θ are the component

of the force and couple-resultants per unit length along the curve and N , Sx, Sy,

Mx, My and T are the components of the force and couple-resultants acting on a

cross-section (Costello, 1977). Specifically, N is the axial force, Sx and Sy are the

shear force resultants, Mx and My are the bending moments and T is the torque
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couple.

2.1.13 Equivalent layer

An equivalent layer is a homogenous pipe layer that is used as a substitute for a

complex nonhomogenous layer. To ensure equivalence of the two layers, some form

of justified averaging or homogenisation procedure must be used. Such procedures

typically assume that no friction occurs between the components in the original

layer. An example of this procedure is described by Merino et al. (2010), who derive

the orthotropic material parameters of the carcass and pressure armour using an

analytical calculation assuming these layers could be considered as consisting of

helical beam with a modified moment of area. Alternatively, detailed finite element

models of these layers may be used to derive the properties of these layers.

2.1.14 Other model features

Other features to be be noted when classifying and evaluating models include the

number of degrees of freedom in the model and the extent to which coupling effects

are allowed or accounted for between loading and response types. An example of

a coupling effect would be an axial load that causes a twisting effect on the pipe.

A final factor could be whether the model accounts for residual stresses and strains

present in the pipe, although, to the best of the author’s knowledge, this is currently

not considered in any model due to the difficulty in obtaining the relevant data.

2.2 Test data

The utility of an engineering model intended for practical use, regardless of its

theoretical soundness, sophistication or explanatory power, lies in its ability to make

accurate predictions that can be verified by experiment. In the case of flexible pipe

modelling, desirable predictive capabilities include the ability to predict the response

of a pipe as a whole under a range of loading conditions including axial tension,

bending, torsion, internal and external pressure, and combinations of these loads.

This enables the global response of an installed pipeline to be calculated. Secondly,
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Figure 2.2: Experimental hysteresis curve for bending (Féret and Bournazel, 1987)

it is desirable to calculate the magnitude and range of stresses in pipe components,

in order that possible yield points may be identified and fatigue lifespan may be

estimated. Thirdly, given a knowledge of likely failure modes, a model can be used

to carry out parametric studies under a range of loading conditions to determine

the permissible operational envelope for each failure mode.

An obstacle to progress in the development of accurate models of flexible pipes

lies in the lack of experimental data in the public domain. Such data that do exist are

generally provided with pipe data insufficient to allow the creation of a comparable

analytical or numerical model. However, often experimental data provides useful

information on the qualitative behaviour of flexible pipes, challenging the analyst

to explain and reproduce new phenomena.

Féret and Bournazel (1987) present experimental bending moment-curvature

data for a 4 inch diameter flexible pipe designed for a working pressure of 69 MPa

under a three-point bending test. The results showing a hysteresis curve (Figure 2.2).

These data are reproduced in a report by the oil company Shell (Royal Dutch Shell

plc, 1976). It is notable that the hysteresis loop shows very high bending stiffness

just before the maximum curvature is obtained, which significantly increases the

maximum bending moment.

Leroy et al. (2010) present the results of a high-pressure (50 MPa), high curvature

(0.2 to 0.3 m-1) cyclic bending test on an 8m flexible pipe. In this test, a horizontal

flexible pipe is anchored at one end (with an end connection) while the other end
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is raised and lowered cyclically with a crane. This causes the pipe to experience

a curvature that varies along the pipe length and reaches up to 0.5 m-1 locally.

Strain gauges were attached along one helical wire, along the neutral axis of the

pipe and around the circumference of two pipe cross-sections. 10 loading cycles

were carried out and strain results were averaged over the cycles. This arrangement

seems more convenient than carrying out a four-point bending test, but the non-

constant curvature makes it difficult to replicate the conditions in some models.

Sævik (2010) describes a bending test with internal pressure carried out on a

300mm OD flexible pipe of 14.5m length. Full geometric data of the pipe are pro-

vided. In the bending test described, the pipe curvature is precisely controlled by a

bellmouth, a guide tube formed in a special shape that is used to restrict excessive

pipe curvature in operation. The imposed curvature varied linearly along the pipe

length. Strain sensors using fibre-optic technology were installed on both sides of

several helical wires in the pipe. The testing procedure involved imposing internal

pressure of 34 MPa, followed by axial tension of 750kN, followed by imposed cyclic

curvature.

Tan et al. (2007) make use of bending hysteresis test data from the SINTEF

report, ‘Structural Damping in a Wellstream Pipe”, FPS200/Flexible Risers and

Pipes, STF71 F91059, Dec. 20, 1991. The report provides bending moment-

curvature data for a 4 inch ID flexible pipe with internal pressures of 0.7, 10 and 20

MPa. The curves are reproduced by Tan et al. (2007) without numerical axis data.

Two articles compare experimental studies with analytical predictions from dif-

ferent models. The first, presented by Witz (1996), provides flexural and axial-

torsional results predicted by the cross-sectional models used by 10 different institu-

tions, including universities, manufacturers, consultancies and specialised research

institutes for a single 100mm internal diameter flexible pipe. Good agreement is

found between the models for axial-torsional response prediction; however, agree-

ment for flexural results is less good. This study is particularly interesting because

the simulations were carried out by the institutions themselves (including Well-

stream, Coflexip, SINTEF and Lloyd’s Register), and many of the models discussed

above were compared, including McIver (1992), Féret and Bournazel (1987), Witz



2.2. Test data 21

and Tan (1992a,b) and Løtveit and Often (1990). Data and parameters other than

material and geometrical quantities were chosen by the institutions; for example,

inter-layer friction coefficients were chosen by the institutions separately.

The second comparison article, by Ramos et al. (2008), presents an experimen-

tal study of the axial-torsional behaviour of a flexible riser, which is compared with

analytical results calculated by 10 different institutions using different software, in-

cluding software based on the models of McIver (1995) and Witz and Tan (1992a)

described earlier in this Chapter. Full geometric and material data is provided for

the 8-layer flexible pipe with 2.5 inch internal diameter, as well as simplified dia-

grams of the section profiles of the carcass and pressure armour layers. Test data

is presented for the axial reaction force resulting from imposed axial extension with

ends free to rotate, and for imposed axial extension with ends prevented from rotat-

ing, torque-torsion response with no axial force or pressure, and bending-moment

curvature data for zero internal pressure and 30 MPa internal pressure. Several com-

ments may be made concerning the experimental results. Firstly, hysteresis loops

were observed in the axial strain-axial force response; the axial reaction force is

lower on unloading. Secondly, a hysteresis loop is also evident in the torque-torsion

response. Thirdly, torsional stiffness is markedly different for torque loading in the

anticlockwise direction as compared to the clockwise direction. Finally, the hystere-

sis loop under flexural loading is much wider when internal pressure is present in

the pipe. Bending stiffness also appears to be lower in this condition.

For the purposes of the current work, the published experimental data provides

qualitative data on the nonlinear behaviour exhibited by flexible pipes. In particular,

the bending hysteresis data presented by Tan et al. (2007) were valuable in demon-

strating the dependence of bending behaviour on pipe internal pressure. In previous

work, (Bahtui, 2008), this phenomenon led to consideration of the local mechanism

responsible for this behaviour and formulation of the constitutive model, which is

used in this work.
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2.3 Analytical formulations for flexible pipes

In the analytical modelling of flexible pipes, a common approach uses a composite or

cross-sectional model. These models develop the global load-displacements relation

for pipes based on summing the contributions of the individual layers; i.e. interlam-

inar effects (contact, friction, radial contraction, delamination, etc.) are ignored.

In distinction, multi-layer formulations model the layers separately, with their own

degrees of freedom. Next, some stress-prediction models based on the analysis of a

single armour wire in a flexible pipe are considered.

Models can be focused on obtaining the response of the pipe in bulk, or also

involve the calculation of stress and strain in the constituent components of the

pipe. Accurate prediction of the latter puts higher demands on the accuracy, ap-

propriateness and sophistication of the analytical equations developed.

2.3.1 Cross-section models

One of the most straightforward, intuitively understandable and computationally

tractable approaches to flexible pipe modelling is to assume linearity of response, in

that the response of a pipe composed of many independent parts is predictable by

summing or superimposing the characteristic responses (“stiffnesses”) of the com-

ponent parts. Several authors apply this method to the analysis of steel cables and

similar structures, which share many characteristics and structural components with

flexible pipes with helical armour wires. The primary difference is that interwire con-

tact in flexible pipes generally does not occur, and as a result, there is no hoop stress

developed in helical armour layers. Secondly, component strands in such cables are

usually circular in section, whereas in flexible pipes they are typically rectangular

in section.

Cross-section models represent axial-torsional pipe behaviour by relationships

between stress resultants and generalised strain measures considered at a pipe lon-

gitudinal cross-section, where all sections are considered identical. It is frequently

assumed that plane sections remain plane throughout the analysis. Linear behaviour

(with coupling between the loading actions) is assumed, as frictional and contact
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phenomena are not revealed in the plane of the sections. These are models are used

in the inital stages of pipe design to size components. The sectional properties that

must be evaluated are:

• Axial stiffness (EA) [N]

• Bending stiffness (EI)[Nm2]

• Torsional stiffness under clockwise torsion (GJ) [Nm2]

• Torsional stiffness under anticlockwise clockwise torsion (GJ) [Nm2]

• Torsion resulting from tension[m]

• Clockwise torsion resulting from tension [m-1]

• Anticlockwise torsion resulting from tension [m-1]

An early example of this approach is given by Knapp (1979). In this work, a

derivation of a new stiffness matrix is given for helically armoured cables considering

tension and torsion of the cable. Expressions are developed for strain along wire

axes resulting from cable axial extension, twist, bending and radial contraction of the

layer, from which an internal strain energy expression can be calculated. The wire

bar assumption is used in these calculations. An expression for wire strain under

bending is taken from a solution of Love’s equations (Love, 1944) without derivation.

This analysis is limited by the fact that the radial contraction is given from an

independent analysis considering the underlying layer as an elastic thick cylinder,

and thus contact between components is not handled directly. The geometrical

restrictions on the method are that expressions are valid for initially straight wire

sections only. A linearised version of the equations is also presented that neglects

higher-order terms in the strain expressions.

A more extensive and discursive treatment of helically armoured cables is given

by Lanteigne (1985), in a formulation that includes bending. The work focusses on

aluminium conductor steel-reinforced (ACSR), in which the central core component

may be assumed to be rigid.
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The wire bar assumption is used to model component wires. Linearised expres-

sions for wire strain due to cable axial strain, twist and bending are developed.

The contribution from bending is derived using the assumption that plane sections

remain plane during bending. A global stiffness matrix is then assembled. The

author then extends the analysis of Knapp (1979) by considering cables comprised

of multiple layers of helically wound wires.

The bent helix assumption is used for wire deformation under bending. This is

considered appropriate for the application because the high fill-factor and associated

high frictional forces between wires prevent the wires from assuming the “natural”

geodesic configuration. The author discusses the case in which differing axial force

between adjacent layers may cause one layer to slide over the other, and derives an

expression predicting when this will occur, based on the radial force and a friction

coefficient. In the context of cables consisting of multiple layers of helically wound

wires, the axial force carried by layers when the conductor is bent will be greatest in

the outer layers. The author accounts for this by assuming that, if the slip condition

is met, the axial force carried by the outer layer is reduced to that carried by the

layer directly underneath it. Expressions are then developed for the radial force

exerted by each layer.

Unlike the development of Knapp (1979), the variation of the lay angle of a wire

after deformation is ignored in this analysis, as the author observes that this does

not influence results for torsional problems.

The discussion of the reduction of flexural stiffness with increasing cable cur-

vature is of interest for the purposes of this project because the same phenomena

occurs in flexible pipes, and due to the same mechanism: slippage of wires. The

author discusses the effects of radial stresses and cable tension in enabling frictional

forces to develop that resist wire slip, and develops an expression to predict the

onset of slip similar to that used by Kraincanic and Kebadze (2001), but, instead

of considering individual wires, the expression considers each layer in aggregate, in

terms of the axial loads carried by each layer. Calculations for radial forces are also

presented, but these are less applicable to flexible pipes.
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2.3.2 Multi-layer models

Flexible pipes are always constructed of multiple concentric layers. Capturing the

interactions between layers in terms of radial displacement constraints and normal

and friction forces is key to predicting behavior.

In a relatively straightforward approach to multi-layer modelling, Harte and Mc-

Namara (1989, 1993) and McNamara and Lane (1984) develop layer stiffness ma-

trices relating external actions on each layer (axial force, bending, torsion, internal

and external pressure) with deformation parameters (axial strain, curvature, torsion

and radial displacement of the inner and outer surfaces). The wire bar assumption

is used for helical armour layers. The layer matrices are then assembled into a

global stiffness matrix. Due to the presence of initially unknown interlaminar con-

tact pressures in the global load vector, a set of radial compatibility constraints are

introduced that force all layers to remain in contact. The equations are then solved

iteratively. In Harte and McNamara (1993), comparison is made with a axisymmet-

ric finite element model, perfectly bonded, using a layer of rebar elements (designed

for modelling reinforced concrete) to model the helical armour layers. Good agree-

ment between the methods is found, but no comparison with experimental results

is attempted. The simplicity of inter-layer interactions in this model means that

is can be considered almost as a cross-section model with the equations assembled

using a different approach. The limitations of such a model become clear when

large deformations are considered. Accurate modelling in these situations require

components to be able to deform nonlinearly and interact realistically.

An analytical model for the axisymmetric loading of unbonded umbilicals and

flexible pipes is presented by Custódio and Vaz (2002). This model incorporates

nonlinear material behaviour, computes the occurrence and effects of interlaminar

gaps and inter-wire contact. Instead of using Love’s equations to model the equi-

librium conditions of the helical wires, the simplified Clebsch-Kirchoff equations are

used, which assume the wires are structural bars rather than beams.

Féret and Bournazel (1987) develop a multi-layer model used for axisymmetrical

loading and bending predictions. This model includes variables for the change in

radius and thickness of each layer. The wire bar assumption is used. The full model
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is implemented in the program EFLEX; only simplified and approximate equations

are presented in this paper, using the assumption that all layers remain in contact.

Equations are presented for wire stresses, interlayer pressures and changes in radius

and pipe length.

The authors identify three distinct regions in the bending moment curvature

response: an initial very stiff section where a “frictional moment” prevents any sig-

nificant bending. The magnitude of the frictional moment is described as increasing

linearly with internal pressure. This is followed by an elastic section (approximated

as linear) in which the stiffness of the plastic sheaths are largely responsible for

determining the pipe bending stiffness, and the stiffness is only weakly dependent

on the pressure. The model predicts a much stiffer final interval in the bending

response, which is demarcated by a “contact radius” on the lower curvature side,

when armour wires within a layer come into contact with each other and are required

to change their lay angles in order to deform further, and a blocking radius on the

higher curvature side, where the bending stiffness increases sharply. The reason

for this is that the pressure armour is comprised of a single self-interlocking wire.

The interlock is fairly loose such that some motion between the adjacent “hoops” is

possible. When the pipe curvature is very high, the raised sections of the adjacent

“hoops” are foced into contact with each other, causing high resistance to further

bending. Finally, data is presented from a bending test that shows the pattern of

bending behaviour predicted by the authors’ model.

The initial stiff response is not reproduced by the works of other authors reviewed

here. Instead, a centred, symmetrical hysteresis curve is obtained in some articles

(see, for example, Kraincanic and Kebadze (2001) and Witz and Tan (1992b)). It

is notable that this response is obtained using a three-point bending test, which

would cause a linearly varying bending moment distribution along the pipe, with a

maximum at the midpoint. Other investigators (for example, Witz and Tan (1992b))

use a two-point rotary bending test, which produces a bending moment that is

constant along the pipe length. Also, relatively high curvatures are used (∼0.35m-1).

To model this, the geodesic slip assumption is used. Expressions are given for the

slip magnitudes of tendons according to this assumption, separated into components
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along the length of the tendon and perpendicular to it. Equations are also given for

calculation of the contact radius, post-slip bending stresses and post-slip frictional

stresses. Again, derivations are not presented in this article.

Out and von Morgen (1997) derive exact and approximate expressions for the de-

formed shape of an initially helical armour wire of a flexible pipe using the geodesic

slip assumption. The slip, normal curvature and binormal curvature are then cal-

culated by finding the difference between the geodesic solution and the bent helix

configuration. The aim of the analysis is to determine slip and curvature change in

the wire, described as important for fatigue assessment.

Kraincanic and Kebadze (2001) develop a model for predicting the onset of wire

slippage during bending. The model predicts a gradual, nonlinear transition region

between high stiffness (at small curvatures) and low stiffness (at large curvatures)

parts of the pipe’s bending moment-curvature response due to the fact that different

parts of the helical wires start to slip at different points. The model predicts that,

upon increasing pipe curvature, wire segments start to slip at the neutral axis of

the pipe. The zone of slippage increases gradually until all the wire segments on

the pipe cross-section are in this state. The authors develop expressions for the

curvature that will cause slippage in a single wire, expressions for the force that can

be carried by wires in the slipped and, by summing these forces, a model capable

of predicting the bending moment-curvature response of a complete flexible pipe.

Simulation results obtained using this model are shown to correspond closely to

experimental results.

Witz and Tan present pipe analyses for bending (Witz and Tan, 1992b) as well

as analyses for the axial-torsional case (Witz and Tan, 1992a), using the wire beam

assumption. The authors use analytical expressions for the axial strain, local change

of curvature and twist of a helical wire based on the deformation of the pipe as a

whole. Variation of stress and strain over the wire cross-section is ignored. A

reduced version of Love’s equilibrium equations for a helical element is employed,

using the assumption that all external forces and moments acting on the wire and

all the section force/moment resultants of the wire are constant along the strip.

It is assumed that the only distributed force is towards the pipe axis (interlayer
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pressure). The constitutive relation connecting stress resultants and curvatures

takes the geometric section properties of the wire as constants. The authors note

that local bending and twisting of the wire may be restricted due to friction of

structural restraint of the surrounding components. The mechanisms and onset of

axial and twisting slip of wires over the pipe is discussed. A combined equation is

written for each layer, whether cylindrical or composed of helical wires, that relates

interlayer contact pressures (constant over the surface) with a nonlinear function

of the layer’s change in radius and change of thickness. Interlayer compatibility

conditions are introduced that reduced the number of degrees of freedom. If negative

pressure (and hence layer separation) is detected at an interlayer interface, the model

is split into two substructures, which are solved for separately. Substituting for the

“change in thickness” variables leads to a single nonlinear equation for the pipe

which is solved using the Newton-Raphson method. Using this model, predictions

of the axial-torsional behaviour of an unbonded flexible pipe, an umbilical and a

marine cable are made and compared with test data (except in the case of the

flexible pipe). The model predicts a bilinear response to axial loading, with initially

compliant behaviour changing abruptly to a much stiffer response when the small gap

(0.25mm) included between inner armour layer and inner polymer layer is closed.

A linear response is predicted in torsion, with a different stiffness depending on

whether the applied torque is in the clockwise or anti-clockwise direction. The

authors highlight the sensitivity of response to the presence or absence of interlayer

gaps and note that if pipe ends are prevented from rotating in a tensile simulation,

or prevented from extending axially in a torsional simulation, the response will be

much stiffer. The authors note that this is also observed in tests and attribute the

proximate cause to the interlayer gap formation process.

From consideration of the axial strain in helical wires under bending, it is pre-

dicted that, under increasing bending curvature, slip will first occur at the pipe’s

neutral axis and, secondarily, on the inside of the pipe bend, on the plane of curva-

ture. The same expression for critical pipe curvature for slip onset at the neutral axis

as Kraincanic and Kebadze (2001) is presented. The contribution of the bending

and torsional stiffnesses of each individual wire to the bending stiffness of a heli-
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cal armour layer is calculated. From these theoretical considerations, 3 regions in

bending are predicted: an initial high stiffness region (with linear response), a tran-

sition region (with a nonlinear softening response) and a final lower stiffness region,

again with linear response. However, in bending tests of unpressurised pipes, the

transition points were not observed and it was found that slip onset occurs at very

small curvatures under these conditions. Experimental bending stiffnesses matched

well with analytical predictions, if expressions for post-slip behaviour are used. It is

stated that the contribution to pipe bending stiffness from the axial stiffness of the

wires is in many cases the main contribution.

In a later article (Witz and Tan, 1995), the analytical model is extended for

predicting the stresses and strains arising in the helical wires of a flexible pipe

under bending. This is achieved by differentiating the expressions developed for

the deformed configuration of the wires developed in the previous articles (Witz

and Tan, 1992a,b). In this model, the configuration of helical wires following slip

is derived using the bent helix assumption and uses a linearised expression for the

deformed configuration. The authors note that, when the ends of a flexible pipe are

constrained, the main direction of wire slip is in the lateral direction and the axial

strain in the wires following slip is in general nonzero. The model is compared with

rotary bending test of an umbilical. Close agreement in the final global configuration

of the umbilical is shown, but a comparison of stress data is not presented.

A very detailed analytical model for flexible pipes is presented by McIver (1995)

Distinguishing features of this model include modelling of armour wires as helical

beams with torsional stiffnesses and inclusion of interlaminar friction and separation.

Imposed deformations or applied forces may be used as input data. Equations of

equilibrium are based on Love’s equations. The accuracy of the model is based on the

accuracy of the kinematic description of the helical armour wires. Starting with the

Serret-Frenet equations relating the derivatives of the Serret-Frenel vectors to the

vectors themselves, a second pair of axes are introduced in the principal directions

of the wire section, passing through the wire shear centre. Together with the wire

tangent vector, these axes form the local (undeformed) basis. The curvature in the

Serret-Frenet relations is split into two components relative to these axes. This



2.3. Analytical formulations for flexible pipes 30

results in a set of equations, similar in form to the Serret-Frenet relations, that

describe the change in the local basis vectors with respect to the curve parameter,

valid for the initial undeformed helical configuration.

The next step is to express the wire displacement and rotation variables that

arise under a given deformation (which are functions of the wire parameter) using

the local basis vectors. The current basis vectors are related to the initial basis

vectors using a rotation matrix containing the rotation variables.

Expressions for axial strain, local curvature vector, and local torsion are written

as dot and cross products of the wire displacement vector, initial tangent vector,

the current basis vectors and derivatives thereof with respect to the wire parameter,

and expanded in terms of the initial basis vectors. From this, local expressions for

the wire axial strain, curvature and torsion can be written in terms of the local

displacement in the local system, with the parameters being the initial components

of curvature and initial geometrical torsion, and the variables being the three com-

ponents of displacement and axial twist. Thermal effects are also included in the

model.

McIver’s formulation is more sophisticated than the model of Witz and Tan

(1992a) chiefly due to consideration of the rotation of principle axes of the sec-

tions of the helical wires. Witz and Tan assumed that the principal axes maintain

their initial orientation with respect to the normal, binormal and tangent axes of

the deformed helix representing the wire centroidal axis, such that the normal and

binormal stiffnesses, as well as torsional rigidity of the wire is not affected by the

deformation of the centroidal axis. This would clearly not capture stresses induced

in helical wires due to, for example, twisting of the wire around its own centroidal

axis. This modification greatly increases the complexity of the governing equations.

Only a limited selection of results obtained using the proposed model are presented

in McIver’s article. It is interesting that his model predicts compression of the

carcass layer under combined axial tension and internal pressure loading, whereas

internal pressure alone causes the outer layers to separate from the carcass because

internal pressure is applied to the pressure sheath and not on the carcass. When

tested under tensile loads, the model predicts a much lower axial stiffness under
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compressive loads due to layer separation. In bending simulations, the response is

investigated using different values of static and dynamic friction. Again, a bilinear

moment-curvature results. Initial bending stiffness using a coefficient of friction of

0.2 is approximately double the stiffness of a model without friction. The author

suggests that friction coefficients should be varied depending on the degree of wear

accumulated by the polymer layers.

2.3.3 Single-wire analysis models

One interesting approach to flexible pipe modelling that has been developed in recent

years involves representing only a single helical armour wire, without necessarily

modelling other layers. This allows the effects of wire fatigue under cyclic loading

to be calculated efficiently, without the complications of determining interlaminar

contact pressures or deformation and equilibrium of other pipe components. This

strategy, developed and described by Féret et al. (1995), Leroy and Estrier (2001)

and Leroy et al. (2010), takes maximal advantage of the symmetry and structural

periodicity of the helical component. It is therefore highly efficient at obtaining

the wire stresses required for fatigue calculations, especially for bending, but is not

suitable for local or limit-state analyses, due to the assumption of identical conditions

in all armour wires and requirement of constant curvature.

The models based on this approach assume that the behaviour of all armour

wires of a given layer is the same. The geometrical description of a point on a de-

formed tensile armour wire is described with the Serret-Frenet relationships (here

referred to as Darboux-Ribeaucourt axes). The curvatures and (mathematical) tor-

sion parameters used in these relationships are found by parameterising the curve

with two coordinates, ϕ and θ (see Figure 2.3), and writing expressions for the po-

sition vector of a point on the wire in terms of these coordinates and the global

Cartesian unit vectors , as well as the pipe radius and curvature (assumed constant

in this formulation). An expression relating the rate of change of the ϕ coordinate

with the θ coordinate for points lying on the bent helix of the armour wire completes

the geometrical description of the wires and their deformation.

The equilibrium equations are developed for a single wire on each armour layer
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Figure 2.3: Idealised bent pipe geometry (Féret et al., 1995)

from this geometrical description assumes constant (but not uniform) interlaminar

friction vectors, described as forces per unit length of the tendon. Shear stresses in

the armour wire are neglected. Equations for interlaminar friction are developed.

Tangential and binormal slip rates are defined as rates of increase of the respective

slips with the pipe curvature. The assumption is made that the ratio between the

tangential and binormal slip rates is equal to the ratio of the respective friction

forces, that is, the friction is dynamically isotropic.

Solution of the equations proceeds in two steps: Firstly, the analysis is conducted

assuming any axial deformation caused by friction is zero (only effects due to pressure

are considered). This results in sinusoidally varying solutions for the slip. Secondly,

friction forces are calculated from the equilibrium equations. With this information,

axial stresses and strains in the wires can be calculated.

Further details of the finite-difference algorithm are given by Leroy and Estrier

(2001). It is noted that the model neglects torsion and provides stress predictions

only under conditions of constant pipe curvature. Periodicity in the displacement so-

lution is assumed, corresponding to the helical periodicity of the armour layer. This

model does not consider the global equilibrium of the pipe and does not compute
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interactions between the components, instead relying on the kinematic assumptions

of the wire deformation.

In a later publication (Leroy et al., 2010), three models for component stress

prediction in flexible pipes are compared. The three models considered are an single-

wire analytical model developed from the earlier model (Leroy and Estrier, 2001),

and two finite element models, referred to as a 3D periodic model and a 3D explicit

model. The 3D periodic model consisted of a single layer of helical wires, with all

internal and external layers represented by rigid kernels. The length of this model

was equal to the pitch length of the wires divided by the number of wires and periodic

boundary conditions were applied to the ends of the model. The 3D explicit model

was a detailed finite element model in which all layers were represented and a full

pitch length of the structure was modelled (see Section 2.4.2). This model used end

constraints such that all nodes on an end plane were linked to a reference node in

the centre of the plane by a kinematic coupling constraint.

The single-wire model used is an extended version of that presented by Leroy

and Estrier (2001), now including lateral contact between adjacent armour wires.

Computations are still carried out on a single wire, assuming that all wires behave

similarly. A contact detection and enforcement algorithm (penalty enforcement

method) is incorporated into the finite difference solver. Frictional effects between

the wires are ignored. The inclusion of inter-wire contact influences the transverse

curvature of the wire.

Cross-validation between the models was carried out for cyclic bending. Inter-

model comparisons of the variation of axial stress with circumferential angle showed

good correspondence for the inner armour layer and poorer for the external layer.

For the external layer, the stresses predicted by the 3D explicit model were greater

than those predicted by the other models, by an amount that was both significant

and roughly constant in magnitude over the pipe circumference. This difference was

attributed to the effects of the end constraint in the 3D explicit model, which is not

manifest in the inner armour layer because higher frictional loads localise this effect

such that they are closer to the end fittings.

Secondly, the variation of transverse curvature with the angle around the cir-
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cumference was plotted and compared between the models. The results are in fairly

close agreement. Two reasons advanced for the differences were the greater degree

of inter-wire contact within each layer present in the analytical model and, again,

the presence or absence of end-fitting effects.

The 3D explicit model was then compared to experimental results (see Section

2.2). The model predictions are good, but fairly conservative in terms of stresses.

The other two models were not compared because they were not able to simulate

the varying curvature and end-fitting effects present in the physical test.

Sævik (1993) developed a curved beam finite element base on the differential

geometry of thin curved beams and a wire-pipe interaction model. The element

displacement formulation uses the kinematic constraint that the wire upper and

lower surface conform to the bent cylindrical surfaces which the inner and outer

restraining sheaths are assumed to take. The wire-pipe interaction model applies

elasto-plastic springs to the wire nodes. Comparison of wire stresses at end restric-

tions were made with experimental data under conditions of high internal pressure

(25 MPa), tension and varying curvature. A good approximation to experimental

stresses was achieved, though results were less accurate for cases of large tension

and curvature.

2.3.4 Summary

Although the purpose of the current work was to develop finite element-based, rather

than analytical, models of flexible pipes, the examination of analytical models was

an important preliminary step to the development of the models described in later

Chapters. Examination of the capabilities, theoretical basis and validation status

of these models was highly useful in choosing element types to use in the detailed

finite element model and the contact-friction model. Examination of the limita-

tions of the models due to simplifying assumptions highlighted areas in which finite

element-based models could offer increased accuracy in local stress prediction and

estimating global response; however, the robustness and speed of computation of an-

alytical models provides a benchmark and challenge for developers of finite element

models. A significant area of discrepancy between recent analytical developments is
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determination of the deformed shape of the tensile armour wire under pipe bending.

To the best of the author’s knowledge, no experimental data has been published con-

firming or disproving the various assumptions made in different models, although

the bent helix and geodesic assumption provide theoretic upper and lower bounds for

the wires’ motion. As this deformation directly influences the local bending stresses

and fatigue life of components, accurate computation of this deformation has been

identified as a key capability in the detailed finite model developed in this work.

2.4 FE-based models for flexible pipes

2.4.1 Commercial software and line models

Routine design and analysis of flexible pipes and installations is carried out by con-

sultants and specialists using dedicated commercial software. A summary of com-

mercial software for flexible pipes, together with general capabilities and literature

references, is given in Table A.1 of the Appendix. Much of the power and convenience

of such packages lies in the automated application of a wide range of environment

effects and boundary conditions. In this Section, only the core structural models

used in such packages, and their predictive capabilities, will be discussed. Models

are designed to address questions of global configuration and mean section stress,

and therefore represent pipelines as parameterised curved lines in three-dimensional

space. For this reason, they are designated here as line models.

An early version of such types of model is described by Felippa and Chung

(1981), who present a formulation and algorithmic implementation of a geometrically

nonlinear beam model. Displacements and strains for each element are considered

in a “convected” coordinate system that moves with the element. Axial strain is

calculated using the formula εx = u,x +1/2(u,2x +v,2x +w,2x ) where (x, y, z) is the

convected coordinate system with the corresponding displacements denoted by (u,

v, w), indicating that an extensional component due to bending is considered when

calculating the axial strain. This geometric nonlinearity causes the element stiffness

matrix to have a complex form, which is dependent on the displacement. Simple

expressions for loading due to weight, external pressure and internal fluid flow.
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The leading commercial software package for dynamic analysis of offshore sys-

tems is Orcaflex, produced by Orcina Ltd. The core structural model of Orcaflex

avoids the difficulties of beam element representations of flexible pipes (in handling

large displacements and rotations and in applying distributed external loading and

weight and inertia loading consistently) in favour of a lumped mass and lumped

stiffness approach, effectively representing pipelines as linear assemblies of axial and

rotational springs, damper elements and lumped masses. Non-linear and hysteretic

relationships can be included by specifying the relevant curves. Additional packages

can extend functionality (Tan et al., 2007). Several verification studies have been

published2, comparing the predictions of Orcaflex with both competing software and

other formulations. Of particular interest are comparisons with the lumped mass

model of Low and Langley (2006) and the more complex model of da Silveira and de

Arruda Martins (2005) for touchdown modelling. The former comparison shows how

the core lumped model used in Orcaflex can be easily and accurately reproduced,

while the latter uses Orcaflex to benchmark a numerical method solving the differen-

tial equations describing a flexible pipe (with bending stiffness) in three-dimensional

space. Very little discrepancy was found when comparing results from both models

for a test case. These validation show the good predictive capabilities of Orcaflex

even compared to mathematically more sophisticated approaches.

The Flexcom package, produced by MCS Kenny, is a also a line-based flexible

pipe simulator, based on 3D hybrid beam-column elements with fully coupled ax-

ial, bending and torque forces incorporated into the formulation. The axial force

is treated as an independent solution variable, interpolated independently from the

axial strain. This modification avoids numerical difficulties caused by the axial stiff-

ness being much greater than the bending stiffness. The beam element used has 2

nodes and 14 degrees of freedom, including two Lagrange multipliers (Flexcom, 2011;

O’Brien et al., 1991). Nonlinear kinematic modelling capabilities include large dis-

placement, large rotations, but not large strains. Recent versions include frequency

domain analysis and a fatigue analysis postprocessor.

2Available at http://www.orcina.com/SoftwareProducts/Validation/index.php
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Tan et al. (2007) present and describe programs for three-dimensional time-

domain analysis of the bending hysteresis phenomenon. In this paper, two models

for nonlinear global analysis of flexible pipes are presented. Both programs are

implemented as add-ins to Orcaflex.

The first model, developed by Orcina Ltd. provides a means for Orcaflex to

apply appropriate 3D increments of bending moment to the inter-node rotational

springs for given curvature increments and curvatures, when the user can only supply

a moment-curvature relationship for single-plane bending (which is usual, because

obtaining data for combined bending is much more expensive). The model uses the

single-plane bending-moment curvature data (which must be supplied as input data)

to provide appropriate scalar stiffnesses to multiply three dimensional curvature in-

crements in the pipe model and obtain the associated bending moment increments.

Upon monotonic loading, the total curvature of an inter-nodal interval is represented

as the sum of curvature increments, each with an associated bending moment in-

crement, with each curvature increment that is added later being associated with a

progressively smaller increase in bending moment The model allows hysteresis be-

haviour to be simulated in any cycle of combined bending loading, because when

the curvature is reduced, curvature increments are removed in the same order they

were applied i.e. the ones associated with larger bending moment increments are

removed first.

The second model, developed by Wellstream International Ltd., calculates the

extent of the slip region in a pipe element using the current curvature data and

internal history variables recording the element’s previous curvature and slip states.

This enables section moments to be calculated and returned to the main model.

Stresses in individual tendon wires are calculated in a subsequent postprocessing

operation. Details of the relevant equations are not given in the article.

For both of the above-mentioned models, the authors present pipe bending test

data used for model calibration and a simple global dynamic analysis demonstration.
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2.4.2 Detailed finite element models

De Sousa (2010) and Merino et al. (2010) describe a model composed wholly of struc-

tural elements. Using the commercial FE package ANSYS, a model is constructed

with concentric solid layers discretised with thin-walled (shear-flexible), 4-noded

shells. Helical armour wires are modelled individually as three-dimensional beams.

The carcass and pressure armour layers are modelled as equivalent (cylindrical)

layers with orthotropic properties, for which analytical derivations are presented.

High-strength tapes may be included in the model by interpreting them as a layer of

shells that are unable to resist compressive membrane loads. Tendons are modelled

as Euler-Bernoulli beams, with principle axes (for moment calculations) in the pipe

radial direction.

The authors use a penalty method for contact constraint enforcement. Although

they do not provide details of the formula used to determine the penalty stiffness, it

will be shown later in Section 5.2.1 that the penalty value is chosen to correspond to

the physical normal stiffness of two plates in contact to compensate for the infinite

normal stiffness inherent in standard beam and shell elements.

A Ramberg-Osgood material model is used for the steel wires and linear hard-

ening plasticity is assumed for polymer layers. Derivation of the parameters of the

equivalent layers is included. The article also describes a simple method to back-

calculate stresses in individual components of equivalent layers once the analysis is

complete. When carrying out simulations, all nodes in the two end planes of the

pipe are constrained to move together.

A similar approach using a general-purpose FE program is adopted by Le Corre

and Probyn (2009), in this case using the FE package ABAQUS. In this model of

a single-core umbilical, three concentric sheaths are modelled as cylindrical shells.

The annulus between each pair of sheaths contains helically wound tubes, cables

and fillers, modelled as circular-section beams. Simulations are carried out using

the explicit solver, using the general contact algorithm with a friction coefficient

derived from tests. The discretisation of cylindrical layers is fairly coarse. When

beams interact with surfaces in the ABAQUS general contact algorithm, they are

assigned an effective contact surface in the form of a cylinder with the beam as
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its axis. This surface is used to implement the contact constraint. The beam has

then effectively a circular cross-sectional area (for the purpose of computing contact

interactions) equal in area to the assigned beam cross-section, regardless of the

actual shape of the beam cross section. The radius of the cylindrical contact surface

is referred to as the “contact radius”. The discretisation of beams is limited by

requirement for the contact radius to be less than 0.3 times the length of the beam

elements.

A detailed finite element model of an umbilical was created by Risa (2011) using

ABAQUS. This model consists of two layers of helical conductors wrapped around

a central core. The conductors are circular in cross-section and tightly packed.

The conductors are discretised using three-dimensional finite elements. The general

contact algorithm is used to compute contact interactions, and analysis are carried

out using the explicit dynamics approach. Kinematic constraints are used to enforce

fixed-in-plane conditions at the end sections. The model uses 261 000 elements and

was solved using 128 or 320 processors running in parallel. It is notable that the

contact causes “hot spots” in the conductor stress that are repeated periodically

along the conductor length, although the model geometry and loading are uniform

along the length. This pattern of stresses is very similar to that reported by Bahtui

(2008), who used a similar approach for modelling flexible pipes.

In the work by Sævik (2010), bending stresses generated in finite element models

of flexible pipes are compared with experimental results. Two different FE models

are used. The first is a cross-section stress-resultant method (moment-based model)

based on a similar approach as used by Kraincanic and Kebadze. Based on the

local friction conditions at different parts of the armour wires, the three regions of

possible slip states for a tensile armour layer identified by Kraincanic and Kebadze

(2001) are recognised. The critical conditions delimiting these states are formulated

in terms of local section curvature relative to a constant critical curvature that is a

function of the number, material and cross-sectional properties of the helical wires

and on the friction coefficient. This leads to expressions for the frictional moment

developed by each layer. It is recognised that different layers may have different

geometrical and material properties; for this reason, the section frictional moment
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is obtained by summing the contributions from each of the constituent layers.

The author then formulates a constitutive relation for each armour layer in terms

of the moment resultants and the wire slips. In this formulation, an associative

plasticity relation is developed using the two applied moments as generalised stresses,

the aforementioned friction moment as the slip-onset/yield surface and the elastic

and plastic “slip curvatures” as generalised strains. In summary, this is a plastic

beam model with coefficients derived from an analytical model, similar in principle

to the plastic beam described by Bahtui (2008) and the current work, where “friction

moments” correspond to the “generalised back-stresses (β)” for the moments.

The appropriate incremental form of the constitutive relation is also derived and

is equivalent to the “consistent tangent matrix” used in this work and discussed in

Section 4.3.1.

The second model considered by Sævik (2010) is a sandwich beam formulation:

this is a multi-layer finite element model in which all components and armour wires

are modelled separately, but in constant contact, such that the whole structure

forms a type of composite beam. The wires are allowed to deform along their own

axes (bent helix assumption). The potential energy of each tendon is assumed to

consist of a part resulting from strain along the helix path, and a part representing

the slip along the helix path. The latter is considered purely elastic, so the energy

contribution is ESlip = 1/2k(vs − vp)
2 where vs is the actual displacement along

the helix axis, and vp is the displacement that would result if plane sections of the

pipe remained plane during deformation. Thus, the stick-slip behaviour of the wires

is handled, not by a discontinuous Coulomb-type friction interaction governed by

interlaminar normal pressure, but by enforcing the stick condition using a weak

penalty spring with a constant stiffness (a chosen shear stiffness parameter).

The author explains the importance of evaluating high-cycle fatigue associated

with low-magnitude loading because, combined with corrosion effect, it can be the

cause of significant damage. End effects are dealt with in the model. Verification

tests were also performed, detecting wire stresses by lacing the test specimen with

fibre-optic sensors. The author finds good agreement between both models and test

data for low magnitude curvatures.
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Based on earlier work it is reported that, for multiple cycle analyses, transverse

slip sums to zero and, hence, the bent helix slip assumption can be used.

Tan et al. (2005) conduct a finite element study on the validity of the bent helix

and geodesic assumptions for slipped wires. The effects of wire thickness and height

on the appropriate choice of slip assumption to be used is also investigated by a

parametric study because, by assuming the deformed wire stays flat on the surface

on the underlying cylinder, the influence of the wire cross-section is neglected in

both assumptions. An analytical strain energy model and a finite element model

are used to evaluate these effects. The finite element model consists of a cylinder

and a helical wire modelled with 3D continuum elements. The wire is pinned at the

ends to the cylinder. Pressure is applied to force the parts together.

The description of the deformed wire state is expressed as a relationship between

the wire parameters θ and φ (see Figure 2.3). The authors show that if the exact

solutions for the deformed configurations of slipped wires are calculated for either

of the two assumptions, the result will be that the length of the helical wires (and

therefore the axial strain) will not be same before and after slip, and will in fact be

a function of the pipe length modelled. This result uses the assumption that end

restrictions do not allow the ends of the helical wires to move out of plane, so this is

consistent with experimental tests, but not necessarily with the condition of a flexible

pipe segment in operation, which may be kilometres distant from end connectors. It

is noted that the linearised approximation to the geodesic slip assumption introduces

spurious non-zero normal bending stresses as the final configuration no longer has

uniformly zero curvature in the wire normal direction.

In the same paper it is noted that using expressions for deformation without

simplification leads to axial-bending coupling, and the nature of the coupling is

shown by the higher-order effects. In this case, the geodesic slip assumption predicts

a contraction of the wire of 0.2% and a very slight increase in length for the bent helix

assumption. These observations are interesting when considering the appropriate

boundary conditions to apply to a detailed flexible pipe model (see also Section

5.2.2).

The authors also speculate that in a combined bending-tension case with con-
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stant tension, the tension stress in the wires drives them to follow the geodesic path

more closely.

Comparing the analytical and FE models used in this article, it can be seen

that the analytical model forces the wires to stay flat on the cylinder surface while

the FE model does not. This means that, in the analytical model, the wire normal

curvature cannot change to relieve stresses, forcing the binormal curvature to change

instead such that the normal bending stress is overestimated. This can also be true

for some multi-layer analytical models that allow layer separation.

Further examples of detailed finite element models can be found in the work of

Leroy et al. (2010). Two finite element models are employed in this work: a “3D

periodic model” of very short axial length and a larger “3D explicit model”. Both

models were implemented using the commercial FE code ABAQUS.

The 3D periodic model includes all the wires in a layer. The length of the model

was equal to the pitch length of the wires divided by the number of wires in the

layer. This is justified by the observation that the structure will appear the same this

distance along the pipe, even though the identity of wires that fill the positions will

be different at each periodic section. This is effectively an assumption that the local

wire behaviour is dependent on the position of the point in circumferential-axial

coordinates, rather than on the particular wire the point is on. This assumption is

weaker than the previously used assumption (in the analytical model) of equivalent

behaviour regardless of the circumferential placement of the wire. A 3D implicit

finite element model of this segment was built using linear reduced-integration con-

tinuum elements and the appropriate periodic boundary conditions applied in a

user subroutine written in FORTRAN code. Equivalent layers were used to model

the non-helical layers. All contact interactions between components were computed

(details not specified). Loads are imposed on a floating “control node” which is

attached to the rest of the model via the boundary condition constraints.

The 3D explicit model is a detailed finite element model using equivalent lay-

ers for the carcass and pressure armour layer, with all tendons being modelled as

seperate geometric components. 3D linear continuum elements were used through-

out. Flexible pipe lengths of up to 10m were simulated. Boundary conditions at
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the end of the pipe were enforced with kinematic coupling constraints, forcing all

nodes in the end planes to remain in plane during the analysis. Equivalent layers

and universal contact were used as for the 3D periodic model. This model was finely

discretised (4 elements were used across the width of the armour wire) resulting in a

model with approximately 2.5 billion degrees of freedom. This model was analysed

using explicit dynamics.

A similar explicit model was developed by Bahtui (2008) using the ABAQUS

package. This model was also comprised of 3D linear continuum elements, in this

case for all layers, helical or cylindrical. The carcass layer is modelled as a ho-

mogeneous equivalent layer with orthotropic material properties. The simulation

was carried out using explicit dynamics and a time increment of 5x10-7 s, on a 16

processor cluster. The model approximated the bending hysteresis curves produced

by analytical models well, but was less accurate at predicting stresses in individual

wires. The model has approximately 120 000 nodes.

2.4.3 Corotational formulations

Corotational formulations are frequently used in computational mechanics where

model parts undergo large rotations relative to the problem reference coordinate

systems, yet the displacement gradients remain small, such that small-strain con-

stitutive relations and tangent operators are applicable. As such they fill an in-

termediate role between small strain formulations and fully geometrically nonlinear

formulations. The formulation involves embedding a coordinate system either at

a point on the element or at the element’s integration points that rotate with the

material. Expressing stress and strain measures in these coordinate systems can

mean that geometrically linear strains (and hence, geometrically linear constitutive

relations) can be used in calculating the element’s response. This is particularly con-

venient for use with structural elements, where constitutive relations are expressed

relative to the geometrical features (planes, axes, etc) of the undeformed body. Sim-

ple demonstrations of the corotational approach are given in Belytschko et al. (2000,

Ch. 4.6).
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Crisfield (1997) describes a corotational framework suitable for use with any two-

noded, three-dimensional beam element with six degrees of freedom at each node,

whether linear or nonlinear. A direction triad attached to each of the beam’s nodes

is defined in the element’s initial configuration and updated as the nodes rotate.

A direction triad for the deformed element is established that represents the rigid-

body rototranslational part of the element deformation, such that the local 1-axis

points from the final position of the first node to the final position of the second

node. The other two axes are established by finding a rotation matrix that would

transform the first coordinate system into the second. This is computed by dividing

the pseudo-vector associated with this rotation matrix by two. Then the rotation

matrix equivalent to this pseudo-vector is found (using the Rodrigues formula).

Then the vectors of the first nodal triad are multiplied by this matrix to obtain unit

vectors “interpolated” between the nodal basis vectors.

A relation between variations of the global displacements and rotations and

the global forces is written in terms of the local stiffness matrix, the transformation

matrix that relates global and local coordinate systems, and an “initial stress” matrix

found by computing the variations of the transformation matrix.

In this formulation, local displacements are (arbitrarily) taken to be measured

relative to the displacement of the first node. As a consequence as the local trans-

lational displacements at the first node are always zero, and all translational local

displacements that are not in the direction of the local 1-axis at the second node

are also zero.

Other corotational formulations have been developed by Hsiao et al. (1987),

Crisfield and Moita (1996) and Urthaler and Reddy (2005).

2.4.4 Summary

Research carried out into finite element models in use and described in the pub-

lished literature has provided the starting point for developing the models described

in this work, for both large-scale representations of flexible pipes and detailed finite

element models. Investigations into commercial software and line models suggests

beam models or lumped-stiffness models are common numerical representations of
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flexible pipes, capable of simulating the range of applied loads and large displace-

ments experienced by flexible pipes in operation. However it is not clear that these

representations are sufficiently accurate for use as part of a multi-scale analysis in

which component stresses are to be determined. The large-scale finite element model

developed in Chapter 4 will be developed with these models in mind. Investigation

of the detailed finite element models revealed modelling techniques such as use of

orthotropic material models with homogeneous cylinders to represent the carcass

and pressure armour layer and insights into the benefits and limitations of using

explicit analysis methods for the finite element solution. Finally, as mentioned for

the research on analytical models, investigation into models focusing on pipe bend-

ing and slip of the tensile armour wire led to consideration of appropriate finite

element modelling choices, such as element type and contact algorithm, which were

incorporated into the detailed finite element mode developed in this work.

2.5 Linear and nonlinear homogenisation and mul-

tiscale analysis

2.5.1 Survey of homogenisation methods

Multi-scale methods are an increasingly used approach in a wide range of applica-

tions in computational mechanics thanks to the continuous increase in computer

memory, speed and power, the impressive advances of hardware, software and al-

gorithms for parallel computing and the further developments of the underlying

multi-scale homogenisation theories of the last decade, particularly for non-linear

problems.

Many basic multi-scale methods have found their earliest expression in com-

posites modelling and associated statistical averaging techniques (for a survey of

such techniques, see, for example, Hashin (1983)). Representative Volume Element

(RVE) -based methods, first proposed by Hill (1963), involve the creation of a sin-

gle representative model of a portion of a complex material or structure, chosen or

constructed such that its analysis yields accurate estimates of the large-scale stress-
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strain behavioural parameters in the vicinity of any given point in the large-scale

model. RVEs are required to be large enough that they incorporate the hetero-

geneities (inclusions, voids, etc.) on the scale at which they occur, but small enough

that the ‘coarse-graining’ of the material response does not lead to significant inac-

curacies in the predicted behaviour of the large-scale model.

A widely-used development from RVE techniques leads to computational ho-

mogenisation methods. In a finite-element-based parallel or nested computational

homogenisation procedure, strains resulting from an attempted displacement incre-

ment are calculated at each integration point in the large-scale model. Each set

of strains at each integration point is imposed on a separate RVE model and the

resulting stresses are averaged over the RVE and returned to the integration point

in the large-scale model for calculation of residuals. Such methods are conceptually

straightforward and can be applied to nonlinear problems (Matsui et al., 2004; Yuan

and Fish, 2007), though their efficiency in calculating local stresses is variable and

the computational expense of the nested solution procedure can be considerable.

The displacement field in the RVE is typically decomposed into a smooth part

and a locally fluctuating part. A key aspect of the formulation is that the smooth

part is directly linked to the macro-strain, while boundary conditions are applied

to the fluctuating part. Common boundary conditions choices include the so-called

Taylor assumption of zero fluctuations, uniform displacement, periodic displacement,

uniform traction and mixed traction-displacement boundary conditions (Perić et al.,

2011; Terada et al., 2000). For typical applications, it has been shown that periodic

boundary conditions are more accurate for predicting bulk material behaviour than

the uniform types (Amieur et al., 1995; Hazanov and Huet, 1994; Terada et al., 2000;

Van Der Sluis et al., 2000).

One of the first descriptions a nested computational homogenisation is given

byFeyel and Chaboche (2000), who use this approach (referred to an FE2 approach)

for the modelling of a periodic long-fibre composite material. For this application,

each RVE contains a single circular fibre section. Periodic boundary conditions

are used. To improve convergence of the large scale solver, the calculation of the

effective current tangent matrix for each RVE is suggested. This can be computed
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numerically using perturbations of the RVE model. The RVE uses nonlinear material

models (elastoviscoplastic with hardening) for the matrix, but fibre debonding is not

accounted for in the work presented in this article.

A nested computational homogenisation is a computationally expensive proce-

dure, a feature that is often aggravated by lack of convergence of the iterative proce-

dure used at the small-scale model, especially if the small-scale model incorporates

nonlinear behaviour. For this reason, a sub-stepping approach has been suggested

by Perić et al. (2009) to provide better estimates of the RVE configuration.

Applications of computational homogenisation in the literature mostly involve

transfer of field quantities between scales where continuum models are used. In the

so-called first-order framework, Cauchy models are used at all scales and averaging

principles are used to transfer field quantities from one scale to the other. In par-

ticular, the macro-strain and macro-stresses are assumed to be the average (on the

RVE) of the corresponding micro-strain and micro-stresses.

A limitation of the first-order computational homogenisation method lies in the

enforcement of a uniform macro-strain across the RVE which may not be an adequate

representation in situations where strain localisation or fracture occurs. To remedy

this, non-local continuum models such as Cosserat or strain-gradient models may

be used. Examples of such procedures are given in the papers by Geers et al.

(2002) and Kaczmarczyk et al. (2010), who use second-order macro-continua and

first-order micro-continua to investigate the effect of the micro-structure size, and

by Addessi et al. (2010) and Marfia and Sacco (2012) who analyse masonry walls

in the framework of transformation field analysis using two-dimensional Cosserat

continuum models for large-scale modelling, while the small-scale model of masonry

incorporates a nonlinear damage contact-friction model for the mortar joint.

In these cases, the models used at either scale are not the same. Hence, to relate

the deformation at the micro-scale to the first and second order strain measure

at the large scale, suitable extensions of the averaging principle are formulated by

Geers et al. (2002) and Kaczmarczyk et al. (2010) whereas Adessi and Sacco used

a least-square optimisation procedure to minimise the difference between macro-

displacement and the smooth field at the small scale. To recover the stress measures
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at the large scale, the Hill-Mandel condition, which states that the corresponding

micro- and macro- virtual works should be the same, is used. Since the models

at both scales are different but still both continuum, they are able to ultimately

compute the stress tensors at the macro-scale through integral expressions of the

micro-stress field, either over the RVE volume or on its boundary.

Examples of non-linear computational homogenisation in which a continuum

model is used at the small scale while a structural model is used at the large scale

are contributed by Geers et al. (2007) and Coenen et al. (2010) who develop a

formulation for heterogeneous thin sheets using continuum shell elements at the

macro-level and continuum elements at the micro-level. In this approach, a second

order approximation to the nonlinear deformation map is used, with components of

the deformation gradient and second deformation gradient identified as shell gener-

alised strain measures. Stress resultants are recovered from the detailed model by

integration of the continuum strains over the RVE transverse faces, equivalent to a

form of volumetric averaging.

Multi-scale techniques have been developed to bridge atomic- and microscopic-

scale representations of materials. This requires linking continuum and atomistic

models and therefore also represents an example in which different types of model

are used at different length scales. Computational homogenisation principles can

also be applied here. An example of this is demonstrated by Samadikhah et al.

(2012) in the modelling of graphene membranes. In this article, computational

homogenisation relations were used to express atomic displacements as a function

of the macro-scale displacement field and deformation gradient. A total potential

energy functional is calculated by summing interatomic potentials calculated using

the local displacement fluctuation field. The sum of energy-conjugated atomic forces

is used to calculate the microscopic stress, via the principle of equivalence of micro-

and atomic-scale internal work. This approach clearly can only be used for problems

where an energy functional exists.

An alternative approach to computational homogenisation, described by Oliveira

et al. (2009), Hassani and Hinton (1998), Guedes and Kikuchi (1990) and others, is

the asymptotic expansion method. The two-scale asymptotic method expresses the
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displacement field as a power series expansion with coefficients that are increasing

powers of the scaling parameter (a constant representing the ratio between char-

acteristic length scales of the microscopic and macroscopic problems), multiplying

component displacement functions that are periodic with a period equal to the RVE

length. This converts the original boundary value problem into a pair of closed-

form boundary value problems to be solved sequentially for the first-order solution.

Higher order periodic components of the displacement may be calculated up to an

arbitrary level of accuracy using higher order equation sets resulting from the origi-

nal BVP expansion. For linear problems (used by, for example, Guedes and Kikuchi

(1990)), only one boundary value problem needs to be solved at each scale (for a first

order approximation): a small-scale simulation to determine the homogenised elastic

operator which completely characterises its behaviour, and a large-scale simulation

to address the problem of interest. RVE geometries, as for other homogenisation

methods, are usually parallelepipeds, though Ghosh et al. (1995) adapts the tech-

nique to the Voronoi cell finite element method, which uses an irregular polygonal

tessellation of the plane, such that each macro-scale contains at most one single

secondary-phase inclusion.

The asymptotic expansion method has also been extended to solve nonlinear

problems. This requires a nested solution scheme. Fish and Shek (2000) present

a three-scale non-linear asymptotic method solved using a specialised multi-scale

Newton-Raphson solution algorithm, along with a derivation of the associated error

estimators.

Most of the work done on asymptotic expansion techniques expand the governing

(continuum) PDE(s) and express the resulting equation sets in continuum form. In

this way, as in the case of computational homogenisation, homogenisation between

the same continuum models, rather than different continuum or structural models, is

dominant. One extension using a large-scale structural model is the development for

general linear periodic beams in bending by Buannic and Cartraud (2001). Multi-

scale algorithms for general (linear and nonlinear) RVEs may also be developed

using variational formulations by using the concept of two-scale convergence. This

approach has been explored by Terada and Kikuchi (2001).
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Research into homogenisation methods described in the published literature was

important for the current project because it revealed the theoretical basis and im-

plementation procedures involved in computational homogenisation, one of the most

common methods used for multi-scale analysis of materials and structures, which

is a key part of the multi-scale procedure presented in this work. Futhermore, de-

velopments of computational homogenisation, such as second-order methods and

applications to non-continuum models such as shells and atomistic models, pro-

vided inspiration and motivation to develop the general homogenisation approach

described in Chapter 3. Investigation of the boundary condition choices used for

carrying out simulations on RVEs and their theoretical justification led to the for-

mulation of the boundary conditions used for the detailed model.

2.6 Other approaches and extensions

An alternative finite-element based approach to flexible pipe modelling used elbow

elements. Elbow elements are designed to model pipes undergoing large bending

deformations.

The use of elbow elements for flexible pipe modelling has been explored by Bathe

and Almeida (1980), Bathe et al. (1983), Hosseini-Khordkheili and Bahai (2008)

and Bahai and Hosseini-Khordkheili (2008). A four-noded elbow element with three

translational and three rotational degrees of freedom at each node is described by

Hosseini-Khordkheili and Bahai (2008) and Bahai and Hosseini-Khordkheili (2008),

who express displacements as cubic functions of nodal displacements and rotations.

Consistent force vectors for buoyancy, current and seabed interaction forces are

developed. This fully (geometrically) nonlinear formulation is shown to be of equiv-

alent or slightly improved accuracy when compared to the two-dimensional corota-

tional formulation used by Yazdchi and Crisfield (2002a). The element developed by

Hosseini-Khordkheili and Bahai was validated with a realistic test case for flexible

risers also used by Yazdchi and Crisfield (2002b).

Provasi and de Arruda Martins (2010), present a novel approach for the for-

mulation of equivalent layers. It is proposed that a single “macro-element”, or
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generalised finite element can represent an entire equivalent layer, or, for compu-

tations involving tensile armour, an entire helical wire. In this way, nonlinearities

due to contact, separation and friction can be “internalised” in the element formu-

lation. A formulation for a cylindrical macro element in presented in 2010, while a

later publication (Provasi and de Arruda Martins, 2011) gives the formulation for a

helical macro-element.

The basis of the finite element formulation is the expression of the displacement

fields as Fourier series in cylindrical coordinates. It is assumed that the fields so-

lutions permit variable separation; they can be expressed as sums of products of

functions in the axial-radial plane with functions of the cylindrical coordinate.

The authors show how such an element can be less computationally expensive

than a traditional finite-element discretisation of a thin cylinder under a range of

axisymmetric and non-axisymmetric loading conditions.

2.7 Concluding remarks

From the survey of techniques presented above, it can be seen that that there are

relatively few models that combine both global and local analysis. Examining the

issues addressed by the analytical methods show the standards that an accurate

model should achieve.

It seems that homogenisation techniques could provide a consistent, justified

procedure for dealing with flexible pipe complexity, and possible also provide a

framework for approaching the end-effects problem. This has inspired research work

recently conducted at the Brunel University. Bahtui et al. (2009) propose a se-

quential multiscale framework for flexible pipe modelling. A specialised constitutive

model is proposed to represent the large-scale behaviour of a flexible pipe, intended

for use with a representation of a flexible pipe composed of Euler-Bernoulli beam

elements. The form of the constitutive model is a generalised plasticity model based

on the analogy between interlaminar slip in a flexible pipe under bending and the

microscopic model of metal plasticity in which layers of atoms slip over each other,

which allows the hysteresis loops observed in tests to reproduced. The authors de-
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scribe a method for carrying out out a limited number of tests on a detailed finite

element model of the flexible pipe in order to determine the parameters of the con-

stitutive model. This procedure provides a consistent way for using the detailed

information provided by the detailed finite element model (which are obtained us-

ing almost no assumptions about the deformation of pipe components) for a simple

one-dimensional representation of a pipeline suitable for global dynamic analyses

of installed pipelines. Further development of the model (Bahtui et al., 2010) de-

scribes the formulation of an extended Euler-Bernoulli beam element to implement

the constitutive model and derive the consistent tangent matrix for the constitutive

model. Edmans et al., (2010a) use the same principle but introduces a new detailed

finite element model, as described in Chapter 5.

An important issue addressed by computational homogenisation theory concerns

the choice of boundary conditions to be applied to the RVE. The arguments concern-

ing boundary conditions in the literature on homogenisation have direct relevance

for the creation of finite element models of flexible pipes, if they are intended for

use in a multiscale analysis as described above. From the survey of analytical and

finite element models in this Chapter, it is notable that almost all models (with

the exception of one the finite element models described by Leroy et al. (2010))

use the assumption that all points on the end planes of a flexible pipe remain in

plane during the deformation. Stresses are typically evaluated at distances far from

the end in order to use these results for predicting stresses in a pipe in operational

situations. Although the use of this end restriction is a realistic representation of

the constraints induced by a flexible pipe end connection, it is the current author’s

contention that this method does not represent bending behaviour accurately, lo-

cally or globally, as interlaminar slip is prevented at the end sections. The findings

of researchers investigating computational homogenisation techniques (Section 2.5)

for nonlinear materials suggests that periodic displacement boundary conditions are

preferable for carrying out simulations on an RVE. For this reason, the detailed

finite element model described in Chapter 5 and Edmans et al., (2010b) implement

a form of periodic displacement boundary conditions.

However, direct application of the computational homogenisation procedure for
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flexible pipes is not possible, because the proposed detailed model uses structural,

rather than continuum finite elements. This requires the development of a general

computational homogenisation theory which extends the extant theory such that it

can deal with these cases. Such a development is presented in Chapter 3.



Chapter 3

Structural-to-structural

multi-scale analysis

In this Chapter a general theory is presented to extend the conventional multi-scale

homogenisation theory, developed for the case when the same, typically continuum,

models are used at either scale, to the general case when different and arbitrary

structural models are used at each scale.

This theory is necessary in order to construct a multi-scale analysis of flexible

pipes to ensure that the transfer of quantities at different length scales is valid. It is

desirable to use structural elements at both scales because of the relative slenderness

of flexible pipes at the large scale and the slenderness of its internal components.

Furthermore, as it is known that significant non-conservative forces are present at

the level of the internal components, the use of an energy potential to determine

response at the small scale is not realistic.

The proposed formulation provides a general framework which can be applied to

a wide range of cases, including, among others, the cases of 2D or 3D truss structures

that at a very large scale can be modelled as beams or shells, but also problems where

higher-order continua are used at the macro-scale and a Cauchy continuum model

is used at the micro-scale, such as for second-order computational homogenisation.

In all these cases, the conventional theory based on strain and stress averaging is

not applicable, at least, not directly, because its implicit requirement is that the

same formal model is used at both length scales, or, at least, that it is possible to

54
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compute some local value that represents the macro-generalised-strain or the macro-

stress resultants on the RVE, that can be integrated over the remaining dimensions

of the RVE.

It is emphasised that the approach presented in this Chapter does not propose a

fundamental modification to computational homogenisation procedures nor does it

enable multiscale analyses which would otherwise be impossible - the conventional

procedure could be used for flexible pipe analysis. However, use of the extension

presented here is more convenient for this application, due to the aspect ratios,

geometric complexity and contact nonlinearities involved.

The theoretical justification of how the micro-scale boundary value problem

(BVP) is defined starting from the macro-strain is also revisited. This is because

the conventional point of departure that the RVE average of the micro-strains has

to be equal to the macro-strain is not applicable.

An application of this extended theory is presented for the fully nested (FE2)

multi-scale non-linear analysis of a truss for which each member is treated as elasto-

plastic. The relative simplicity of this problem allows the fundamental theoretical

contributions of the paper to be highlighted and makes it possible to assess the

effectiveness of the proposed approach by comparison of the results of the multi-scale

method with those of direct numerical simulations. A similar problem has previously

been studied by Tollenaere (1998). An application of such a model could be in

modelling auxetic foams, where analytical calculations are often used to determine

unit cell behaviour (see e.g. Smith et al. (2000)), but a multi-scale approach could

bring benefits.

An outline of this Chapter is as follows: firstly, the theory of the first-order

computational homogenisation method is extended to a more general structural-

structural procedure in a general form (Section 3.1). This is followed in Section 3.2

by descriptions of the form of the large-scale (Section 3.2.1) and small-scale (Section

3.2.2) models chosen for our specific application, the latter including details of the

implementation of the homogenisation procedure derived from theoretical consid-

erations. Numerical results and the validation of the multi-scale model predictions

against the results of direct numerical simulations are reported and discussed in
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Section 3.3. Finally, summarising remarks on the method and its application are

made, with a view to future further developments.

3.1 Structural-structural homogenisation

3.1.1 Conventional computational homogenisation procedure

In this Section we review the conventional two-scale computational homogenisation

procedure developed for the case where the same continuum-based model is used at

both scales, using the same continuum stress and strain measures. We conclude the

Section by explaining why the formulation cannot be directly applied to the more

general case when different models are used at different scales, and by making a

number of remarks which suggest and justify the generalisation proposed in Section

3.1.2.

For simplicity, this review is limited to the case of the first-order homogenisation

and small strains and displacements. Higher-order and/or geometrically nonlinear

formulations can be obtained using similar arguments.

The starting point is the assumption of ‘separation of scales’, whereby at each

point xM of the macro-domain Ω under consideration a representative volume ele-

ment (RVE) is postulated to exist and to occupy a domain ΩRV E centred on xM ,

such that the RVEs associated with two points with arbitrary separation are treated

as independent (even if they overlap). The microscopic displacement um in the RVE

is expressed as the sum of a smooth component vm and a fluctuating component

wm:

um(xm, xM) = vm(xm, xM) + wm(xm, xM) (3.1.1)

where xm ∈ ΩRV E. The smooth component describes a displacement field in the

RVE which is linear in xm so that its associated strain is constant within ΩRV E and

is equal to the macroscopic strain εM(xM):
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εM(xM) = ∇svm(xM) (3.1.2)

where ∇s is the symmetric part of the gradient. Therefore, the microscopic strain

εm can also be decomposed as follows:

εm(xm, xM) = ∇svm(xM) +∇swm(xm, xM)

= εM(xM) +∇swm(xm, xM) (3.1.3)

The constitutive law and the equilibrium differential equations are then imposed on

the RVE: {
σm(xm, xM) = σm[εm(xm, xM)]

divσm(xm, xM) = 0
(3.1.4)

where for simplicity (and without loss of generality) the body forces are neglected.

The following assumption is then made:

εM(xM) = εm(xM) (3.1.5)

where the bar indicates the average over the RVE, defined such that:

(•)m(xM) =
1

ΩRV E

∫
ΩRV E

(•)m(xm, xM) dΩRV E (3.1.6)

Integrating the microscopic strain εm over the RVE and using Equations (3.1.3) and

(3.1.6) and the Green theorem, the following relation is obtained:

∮
∂ΩRV E

wm(xm, xM)⊗N(xm) d∂ΩRV E = 0 ∀xM ∈ Ω (3.1.7)

N denoting the normal to the boundary of the RVE.
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The above equations provide a method to determine a micro-displacement field

on the RVE starting from a known deformation at the macro-scale (so-called “down-

scaling” procedure (Kaczmarczyk et al., 2010)): Given a macro-strain field εM , a

micro-displacement field um can be determined by solving, in each RVE, the bound-

ary value problem (BVP) represented by Equations (3.1.1)-(3.1.4) and a suitable

set of boundary conditions respecting Equation (3.1.7). It has been shown that

boundary conditions which comply with Equation (3.1.7) include zero fluctuations

over the whole RVE (Taylor assumption), uniform displacement, uniform traction

and periodic boundary conditions (see, for example, Larsson et al. (2011) and Perić

et al. (2011)). The latter have been found to be the most effective for most cases

involving a periodic microstructure or when the microstructure is not periodic but

the RVE is sufficiently statistically representative ((Amieur et al., 1995) (Hazanov

and Amieur, 1995)).

Once the above BVP is solved for each RVE, the macro-stress field is recovered by

averaging the micro-stress field over the RVE (the so-called “up-scaling” procedure

described by Kaczmarczyk et al. (2010)):

σM(xM) = σm(xM) (3.1.8)

This stress-averaging procedure is related to Hill’s condition, which, in one of its

forms, states that the local macroscopic virtual work done by the macroscopic stress

for any macroscopic strain variation must be equal to the average over the RVE of

the microscopic virtual work done by the microscopic stress for the corresponding

microscopic strain variation (Geers et al., 2002; Michel et al., 1999):

σM · δεM = σm · δεm(δεM) ∀δεM (3.1.9)

where dependence on the local and global position will henceforth be omitted in

the notation for simplicity. The notation δεm(δεM) highlights that the microscopic

strain variation δεm is the variation of the solution to the BVP (given in terms of

the microscopic strain) corresponding to a variation δεM of the macroscopic strain
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εM . From Equations (3.1.2) and (3.1.3):

δεm(δεM) = δεmv + δεmw = δεM + δεmw (3.1.10)

where δεmv = δ∇svm and δεmw = δ∇swm(δεM). In the absence of body forces the

self-equilibrated microscopic stress field on the RVE is orthogonal to the field δεmw,

i.e. it results that

∫
ΩRV E

σm · δεmw dΩ = 0 (3.1.11)

which leads to:

σm · δεm(δεM) =
1

ΩRV E

∫
ΩRV E

σm dΩ · δεM =

= σm · δεM ∀δεM (3.1.12)

Hence, assuming that Relation (3.1.8) holds true, then from Equation (3.1.12), Hill’s

condition, i.e. Equation (3.1.9), is obtained. Vice versa, if it is assumed that Hill’s

condition holds true, the stress-averaging formula (3.1.8) is obtained.

The following remarks can be made:

1. Equations (3.1.5) and (3.1.8), i.e. the equality between macroscopic strain

or stress and the average on the RVE of the microscopic strain or stress do

not make sense when different models are used because the strain and stress

measures typically have different meaning and often even different dimensions

at the macroscale and the microscale.

2. Equation (3.1.2) is meaningless too, in the general case of two different mod-

els used at the two scales. This implies that the definition of the smooth

displacement field on the RVE is not necessarily a straightforward issue.

3. Relation (3.1.5) certainly applies when uniform boundary conditions are pre-
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scribed, see Michel et al. (1999). Otherwise it simply becomes an a priori

assumption which results in restriction (3.1.7) for the boundary conditions to

be applied on the fluctuating field w. To the authors’ knowledge no specific

physical or mathematical justification has ever been provided for such assump-

tion in a case different from uniform boundary conditions. However, such an

assumption is still not sufficient to fully define the BVP as it is still necessary

to make a choice among all possible boundary conditions which satisfy Equa-

tion (3.1.7), which is typically done on the basis of experience and engineering

judgment. Hence, the question arises whether assumption (3.1.5) is really nec-

essary to develop a computational homogenisation theory or it is possible to

use experience and engineering judgment directly to determine an effective set

of boundary conditions for the BVP on the RVE.

4. Unlike Equations (3.1.5) and (3.1.8), Equation (3.1.9) is also meaningful for

the general case in which two different models are used at the two scales.

This equation can be seen as a scale-bridging variational condition and, if

the equations governing the problem at the small scale are the stationary

conditions for an energy potential, it becomes a condition of energy equivalence

between the micro- and macro-models. On the other hand, Equation (3.1.3)

can be written also when a potential energy cannot be defined at the small

scale, and is therefore more general.

5. Hill’s condition (i.e. Equation 3.1.9) was originally derived in the case of

uniform displacement or uniform traction boundary conditions (Hill, 1963,

1972) (see also Michel et al. 1999) and later in the case of periodic boundary

conditions by Suquet et al. (1987). However, this equation is normally invoked

as an a priori assumption of energy equivalence.

These four remarks form a point of departure from which a more general theory in

the next Section is developed.
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3.1.2 A general framework for homogenisation

In this Section we develop a theory to provide and justify the extension of the

multi-scale procedure to the case where two different models are used at either scale

and no potential energy can be introduced at the small scale. We are particularly

interested in the analysis of unbonded flexible risers using the approach described in

Edmans et al., (2010a), in which a co-rotational beam model is used at the macro-

scale, while at the small-scale a geometrically linear multi-layered model is used in

which each layer is modelled with shell elements and adjacent layers are in potential

frictional contact. Therefore, here we consider a two-scale formulation in which a

geometrically nonlinear model is used at the macro-scale and a geometrically linear

model is adopted at the micro-scale. The extension to the case where geometric

nonlinear models are used at both scales is possible within the proposed generalised

framework, but it also requires addressing some nontrivial issues regarding the micro-

scale formulation, including how to apply and update the boundary conditions,

which we prefer to leave for future developments. We also make the hypothesis that

body forces are absent.

Apart from the above assumptions, we also wish to make the treatment general

enough to be applicable to any other case of computational two-scale homogenisa-

tion, when the models used at the two scales are not necessarily continuum models

and are generally different from each other. To this end, we use the abstract nota-

tion of operators, vector spaces and bilinear forms. In particular, we will indicate

the argument of a linear operator without parenthesis, while the argument of a non-

linear operator will be included in parentheses. For example, b = A(a) will be used

if operator A is nonlinear, while b = Aa will be used if A is linear. For a nonlinear

operator A, the symbol dA will indicate its derivative, which is always assumed to

be properly defined. Furthermore, the adjoint of an operator A will be denoted by

A∗.

We consider a macro-scale structural model defined by a vector space VM of

admissible macro-displacements, a vector space DM of admissible macro-strains,

and a macro-scale nonlinear strain operator BM : VM → DM . We then define
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a micro-scale structural model defined by vector spaces Vm and Dm of admissible

micro-displacements and micro-strains, respectively, and a linear strain operator

Bm : Vm → Dm. For the purposes of this work, there is no need to specify the func-

tional nature of VM , DM , Vm and Dm, because the determination of mathematical

conditions for the existence and uniqueness of the solution, as well as for finite-

element convergence and multi-scale convergence, are left for future developments.

It is therefore sufficient to assume the elements of VM and DM are displacement and

strain fields (uM , εM) defined in the macro-structural domain Ω, while the elements

of Vm and Dm are displacement and strain fields (um, εm) defined in Ω × ΩRDE,

where ΩRDE is the “representative domain element” independently associated with

each point of the macro domain due to the assumption of scale separation, that

is carried over into the generalised formulation. The change in terminology from

the conventional “Representative Volume Element” (RVE) to the “Representative

Domain Element” (RDE) is made to recognise the fact that the small-scale model

does not necessarily represent a physical volume, but instead it represents a general

domain, defined in a suitable space, where displacements, strains and stresses of the

small-scale structural model are defined. An example of an RDE that is not an RVE

is the truss structure described in Section 3.2.2 as part of the demonstration of the

proposed general framework for homogenisation. We also assume that the elements

of VM , DM , Vm and Dm and all the required derivatives are sufficiently regular.

Spaces VM ,Vm are associated with the dual spaces FM , Fm, whose elements are

external macro- and micro-forces, respectively. These pairs of spaces are related by

non-degenerate bilinear forms that have the physical meaning of macroscopic and

microscopic external virtual work. Analogously, spaces DM and Dm are associated

with dual spaces SM and Sm, whose elements represent the macro- and micro-

generalised stresses (or stress resultants), respectively. To simplify the notation, the

same symbol ((•, •)) will be used to denote the bilinear forms in FM ×VM , Fm×Vm,

SM ×DM and Sm×Dm, as the difference in meaning will be clear from the context.

A generally nonlinear constitutive law, σm = σm(εm), is defined for the micro-

scale structural model. In this context, for simplicity, we assume only that the law

is one-to-one and both itself and its derivative are sufficiently regular.
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To link the two scales we assume that a displacement-based formulation is used

at both scales. An appropriate operator P : DM → Vm is defined to map micro-

scopic displacements to macroscopic strains. The following restrictions apply to the

operator:

1. If um ∈ Ker(Bm) and um = P (εM) then εM = 0.

2. The compound operator BmP must map one (and only one) micro-strain εm

to each macro-strain εM .

The operator P , i.e. the down-scaling procedure, is defined by the solution to the

following problem:

Given εM ∈ DM , find um ∈ Vm such that:

um = P (εM) = vm + wm

vm = P εM

Qbcwm = 0

((σm(Bm um), Bm δwm)) = 0 ∀δwm : Qbc δwm = 0

(3.1.13)

Once um has been found, um = P (εM). In this system of equations P defines a

linear operator (normally, but not necessarily, in closed form) which “translates”

the macro-scale strain εM into a corresponding, “smooth” micro-displacement field

vm. Qbc is a suitably defined trace operator, such that Equation (3.1.13)3 represents

a suitably chosen set of linear boundary conditions for the fluctuating displacement

field wm.

Combining operators Bm, P and BM the compound “multi-scale” strain operator

BMS = Bm P BM is obtained, as described schematically in Figure 3.1. BMS is

generally nonlinear, because the constitutive law and operator BM are generally

nonlinear.

BMS and the constitutive law at the small scale fully define a multi-scale structural

model, in which VM is the vector space of displacements, Dm is the vector space

of strains and Sm and FM are the spaces of generalised stresses and external forces

associated with Dm and VM through the appropriate bilinear forms. In theory, the
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VM DM Vm Dm
BM BmP

Figure 3.1: Schematic description of the compound “multi-scale” strain operator
BMS.

details of the up-scaling procedure could be ignored because what matters is the

“multi-scale’‘ operator BMS, the bilinear forms defined in FM × VM and Sm × Dm
and the micro-scale constitutive law. Defined in this form, the multi-scale structural

model is schematised in Figure 3.2, where dB∗MS is the adjoint operator to dBMS.

VM Dm

SmFM

BMS

dB∗MS

Figure 3.2: Multi-scale model.

In practice, in many cases it is useful or necessary to consider the spaces DM
and SM explicitly and use an up-scaling procedure to determine the macro-stress

field σM of SM associated with the micro-stress field σm.

The up-scaling procedure can be formally obtained from the adjoint operators

to Bm and dP as follows:

σM = [dP (εM)]∗B∗m σm (3.1.14)

This is equivalent to the following variational definition of σM :

((σM , δεM)) = ((σm, Bm dP (εM) δεM)) ∀δεM ∈ DM (3.1.15)

which represents a generalised Hill’s condition (GHC). The up-scaling procedure is

schematised below in Figure 3.3.
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VM DM

FM SM

Vm

Fm

Dm

Sm

BM

dB∗M

Bm

B∗mdP ∗

P

GHC

Figure 3.3: Schematic description of the up-scaling procedure.

The differential dP (εM)dεM of P can be expressed with the aid of Equations (3.1.13)1−3

as:

dP (εM)dεM = P δεM + δwm (3.1.16)

where Qbc δwm = 0. Substituting into Equation (3.1.15) and noting that Equation

(3.1.13)4 holds for the variation of the displacement fluctuation field, the following

relation is obtained:

((σM , δεM)) =
((
σm, Bm P δεM

))
∀δεM ∈ DM (3.1.17)

Both Equations (3.1.15) and (3.1.17) define σM , but applying them in practice is

different: Equation (3.1.15) requires the linearisation of the operator P , i.e. of

the solution of the micro-problem in the RDE. When such solution is obtained

numerically, its linearisation can only be obtained through perturbations, which can

be computationally very expensive. Conversely, applying Equation (3.1.17) requires

only the operators Bm and P which are predefined and therefore leads to a direct

computation of σM .

Furthermore, if problem (3.1.13) is practically solved for each RDE using the

finite-element method and by introducing εM in the micro-problem in the form of

degrees of freedom of a dummy control node (see, for example, Michel et al. (1999)),

then Equation (3.1.17) is equivalent to recovering σM as the reaction of the constraint

imposed on this dummy control node.
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It is worth noting that the generalised Hill’s condition (3.1.15) and its simplified

form (3.1.17), which fully define σM and therefore the up-scaling procedure, are not

invoked as an a priori assumption of the theory. Instead, they are simply derived

from the definition of σM in terms of duality.

Solution of the micro-problem in terms of um

In the above formulation, the total micro-displacement field is found from the sum

of vm = P εM and the fluctuating field wm. From the practical point of view this

implies assuming wm as the field variable to be solved for. In a finite-element

implementation this implies assuming that the nodal degrees of freedom in the micro-

problem represent the nodal values of wm.

It may be practically convenient, for example when using commercial software

packages, to solve the problem directly in terms of um, so that in a finite-element

implementation the nodal degrees of freedom correspond to the nodal values of um.

To this end, substituting the relation wm = um−P εM into Equations (3.1.13), and

noting that, for a given εM , δwm = δum, the micro-problem can be rewritten as

follows:

Given εM ∈ DM , find um ∈ Vm such that


Qbc um = Qbc P εM

((σm(Bm um), Bm δum)) = 0

∀δum : Qbc δum = 0

(3.1.18)

As mentioned above, in practice dummy control nodes C can be introduced whose

degrees of freedom are the components of εM for each RDE. This is effectively

equivalent to having the micro-problem defined in the product space Vm×DM . Let

us denote by ηMC ∈ DM a vector containing the new degrees of freedom associated

with these control nodes, which may be unknown or prescribed. The problem can

then be restated as follows:

Given εM ∈ DM , find (um, ηMC) ∈ Vm ×DM such that:
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

Qbc um −Qbc P ηMC = 0

ηMC = εM

((σm(Bm um), Bm δum)) = 0

∀δum : Qbc δum = 0

(3.1.19)

The fact that the macro-scale stress σM is the reaction of the constraint on the

control node can be expressed in a variational way as follows:

((σM , δηMC)) = ((σm, Bm δum)) ∀δηMC ∈ DM

∀δum : Qbc δum = Qbc P δηMC

(3.1.20)

The choice of variation δum in the above equation is immaterial because, if δum1

and δum2 are two variations such that Qbc δum1 = Qbc P δηMC and Qbc δum2 =

Qbc P δηMC , then it results that Qbc δ(um2 − um1) = 0. From Equation (3.1.18) this

yields ((σm(Bm um), Bm δ(um2 − um1))) = 0, which finally leads to

((σm(Bm um), Bm δum1)) = ((σm(Bm um), Bm δum2)) (3.1.21)

In a finite-element implementation these considerations are purely theoretical, be-

cause from the practical point of view σM is provided simply by the reactions at the

control nodes C, which is typically given by the program as part of the standard

output.

3.2 Specialisation to a multi-scale analysis of a

truss structure

In this Section, an application of the extended multi-scale theory is demonstrated

and can be regarded as a template for the application of the extended theory to a

wider range of problems. A two-scale model of a slender periodic two-dimensional

truss structure is created, using one repeating truss unit as the RDE and employing

an Euler-Bernoulli beam model as the large-scale model.

This problem has been chosen to emphasize the generality of the derivation of

the extended multiscale homogenisation theory provided above in Section 3.1.2. In
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Figure 3.4: Beam-truss multi-scale model

particular, our formulation is not restricted to structural models obtainable from a

continuum model with some kinematic hypotheses. Although each member of a truss

structure is a rod and can be derived from a continuum model using some kinematic

assumptions, the truss unit forming the RDE used in numerical demonstrations in

the following Section, shown in Figure 3.4, is an assembly of rods and therefore

cannot be derived in any of the usual ways from a continuum model.

3.2.1 Large-scale model and definition of VM , DM and BM

Since, the large-scale model is a slender structure, its kinematic response is modelled

using the Euler-Bernoulli beam model. Thus the large-scale domain is

Ω := {x ∈ R : 0 ≤ x ≤ L}

where L is the model length. The structure is discretised with two-node beam

elements with two planar displacements and one rotation as the degrees of freedom

of each node. To describe how the extended theory of Section 3.1 specialises to

this specific example we prefer to refer directly to the discretised problem. Hence,

the space of displacements is defined as VM := R3NM , where NM is the number

of (macroscopic) nodes. Given a displacement uM ∈ VM , uiMj will denote the jth

component of the ith node. Axial strain and curvature are defined for each element,
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whereby the strain space is defined as DM := R2NgEM , where EM is the number of

macroscopic elements and Ng is the number of integration points per element. Given

a strain εM ∈ DM , εipMj will indicate the jth component of the pth integration point

of the ith element. The macroscopic strain-displacement operator BM : VM → DM
is the nonlinear mapping

εipMq = (B̂i
M)qh(ξp)v̂

i
h(Λ

i
knvn) i = 1, 2, . . . EM n = 1, 2, . . . 3NM

h, k = 1, 2, . . . 6 0 ≤ ξp ≤ 1

p = 1, 2, . . . Ng q = 1, 2

(3.2.22)

where vn is the vector of assembled global displacements such that, when n =

3(i − 1) + j, vn = uij (j = 1, 2, 3), Λikn is the incidence matrix and v̂ih is the hth

component of the local displacements for element i, which is a non-linear function of

the global element displacement components vik = Λiknvn. The non-linear mapping

v̂ih = v̂ih(v
i
k) is defined in the corotational formulation developed by Urthaler and

Reddy (2005) that is adopted here. Furthermore, B̂i
M is the strain-displacement

matrix

B̂i
M(ξ) =

1

l2i

−li 0 0 li 0 0

0 12ξ − 6 (6ξ − 4)li 0 −12ξ + 6 (6ξ − 2)li


where li is the length of beam element i. The incidence matrix is defined as

Λikn =

1 if global DOF n corresponds to element DOF k of element i

0 otherwise

,

noting that element DOFs represent the planar translational displacements and

rotation of the nodes of the element using the ordering (u1
1, u1

2, u1
3, u2

1, u2
2, u2

3), as
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ȳ

x̄l=
1.

0
l=1.0

0.
5

0.5

Figure 3.5: Geometry of the RDE (dimensions in m)

does the global displacement vector vn.

3.2.2 Small-scale model and definition of Vm, Dm and Bm

The small-scale model consists of 2-noded planar truss elements. Elastoplastic mate-

rial behaviour with linear kinematic hardening is chosen for the constitutive relation

of the members.

No finite-element approximation is required because the small-scale model is

already finite-dimensional in nature and consists of Nm nodes and Em elements.

The space of displacements is defined as Vm := R2NgEM2Nm . Focusing on a single

integration point, given a displacement um, uimj will denote the jth component of

the ith node. The space of strains is defined as Dm := R2NgEMEm . Focusing on a

single integration point, given a strain εm ∈ Dm, εim is the axial strain of the ith

element.

Bm : Vm → Dm is the linear mapping that, for each RDE, is defined as follows:

εim = B̂i
mhT

i
hkΛ

i
knvn i = 1, 2, . . . Em n = 1, 2, . . . 2Nm

h, k = 1, 2, . . . 4 (3.2.23)

where vn is the vector of assembled global displacements such that, when n =
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2(i− 1) + j, vn = uij (j = 1, 2), Λikn is the incidence matrix, li is the length of truss

element i and T ihk is the 2D coordinate transformation matrix for element i.

The strain-displacement matrix is:

B̂i
m =

1

li

[
−1 0 1 0

]
The incidence matrix is as defined in Section 3.2.1, noting that element DOFs

represent the planar translational displacements of the nodes of the element using

the ordering (u1
1, u1

2, u2
1, u2

2), as does the assembled displacement vector.

3.2.3 Scale bridging and definition of P̄ and Qbc

For these models, the operator P̄ : R2NgEM → R2NgEM2Nm is defined in accordance

with the Euler-Bernoulli kinematic assumptions as follows:

Given a node n of the small-scale truss model, the two components of the dis-

placement of node n in the local directions x̄ and ȳ (see Figure 3.5) are given by:

vnx̄ = αipM x̄n + χipM x̄nȳn

vnȳ = 0.5χipM x̄
2
n (3.2.24)

where x̄n and ȳn are the local coordinates of n, while αipM and χipM are the axial strain

and curvature at the corresponding integration point p of element i.

Denoting by Nb the number of nodes on the small-scale model’s left boundary,

which is equal to the number of nodes on the right boundary, the restriction Q∗bc :

R2Nm → R2Nb of operator Qbc in Equations (3.1.18), (3.1.19), (3.1.20) and (3.1.21)

to a single RDE is defined as follows:
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(Q∗bc)ij =



1 if degree of freedom j corresponds to degree of freedom i

on right boundary

−1 if degree of freedom j corresponds to degree of freedom i

on left boundary

0 otherwise

(3.2.25)

i = 1, 2, . . . 2Nb j = 1, 2, . . . 2Nm

We choose to apply the macroscopic strains to the microscopic model by means of

a dummy control node, as described in Equation (3.1.19).

3.2.4 Multi-scale implementation

The large-scale model was implemented in the finite-element package Abaqus using

user-defined elements to calculate the response of the small-scale model. The small-

scale model and the scale bridging procedure were implemented as the material

model used within the UEL subroutine. Three integration points were used for each

large-scale element. For each integration point three simulations were carried out

for each iteration of each increment of a full Newton-Raphson solution procedure.

The macro-strain was passed in the first simulation to compute the macro-stress

and perturbations of each of the two macro-strain components were passed in the

remaining two simulations to compute the associated macro-stress variation and

establish the consistent material tangent.

3.3 Numerical results

3.3.1 Test case

In this Section we numerically test convergence of the multi-scale procedure, or,

in short, multi-scale convergence. By multi-scale convergence, we mean that the
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difference between the multi-scale solution and direct numerical simulation (DNS)

results tends to zero as the ratio ε between the characteristic lengths of the unit cell

and the large-scale model tends to zero. This is investigated for the case of a truss

structure created using a periodic array (Figure 3.4) of the unit cell truss structure

shown in Figure 3.5. For the small-scale model the characteristic length is 1m. For

the large-scale model it is the total length of the structure L.

To separate multi-scale convergence from FE convergence, for each case analysed

we present results for increasing numbers of elements of the large-scale model. For

the small-scale model this is not necessary because it is already discrete in nature.

Model parameters (with reference to Section 3.2) are presented in Table 3.1.

Three cases were studied for this type of structure. For case 1, a cantilever truss

with an axial point load at the end of the structure was considered (Figure 3.6). For

case 2, a transverse point load was applied to the same cantilever truss (Figure 3.7).

For case 3, two unequal point loads were applied to a truss beam with three simple

supports (Figure 3.8).

Figures 3.6-3.8 show geometry and loading for the three cases, referring to the

multi-scale analysis, whereby the structure is modelled as a beam.

Each of these cases was modelled by both direct numerical simulation (DNS)

and the fully nested (FE2) multi-scale procedure. For the latter, the multi-scale

procedure described in Section 3.2 was used. For each case, four values of the length

L have been considered: 20, 60, 100 and 400m. Since the length of the RDE is

1m (Figure 3.5), the four different lengths correspond to four values of the scaling

parameter ε = l/L, equal to 0.05, 0.016667, 0.01 and 0.0025.

For each study, multi-scale convergence was evaluated by comparing the DNS

results with those of the multi-scale analysis for each value of ε. For each value

of ε, finite-element convergence of the multi-scale model with increasing number of

elements was also examined.

3.3.2 Results

Convergence results for case 1 are shown in Figures 3.9 and 3.10. Results for case

2 are shown in Figures 3.11 and 3.12. Results for the case 3 are shown in Figures
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Model parameters
Load magnitude F (for axial loading) 2 × 107 N
Load magnitude F (for transverse loading) 4 × 105 ×

(
L
20

)
N

Load magnitude for non-proportional load case F1 = 5× 106 ×
(
L
20

)
N

F2 = 2.5× 106 ×
(
L
20

)
N

Young’s modulus 200 × 109 Nm-2

Yield limit 400 × 106 Nm-2

Kinematic hardening constant 100 × 109 Nm-2

Member cross-sectional area 0.01 m2

Table 3.1: Material parameters

F

δ

L

CP

Figure 3.6: Case 1: Macro-geometry and loading. Comparison point (CP) located
at distance 0.5L from support.

F

δ

CP

Figure 3.7: Case 2: Macro-geometry and loading. Comparison point (CP) located
at distance 0.5L from support.

F1 F2

L/2 L/2
CP

Figure 3.8: Case 3: Macro-geometry and loading. Comparison point (CP) located
at distance 0.2L from pin joint; Applied loads located at distances 0.25L and 0.75L
from pin joint.
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3.13 and 3.14.

Displacement results were evaluated at the node corresponding to the comparison

point (shown in Figures 3.6-3.8). For the DNS, stress results were obtained by

averaging stresses in the two horizontal members on either side of the comparison

point on the underside of the truss. For the multi-scale simulations, the comparison

point is a node, and stress results are the average of the two integration points in

the large-scale model on either side of the comparison point. For each integration

point, the stresses in the horizontal truss members on the lower side of the RDE

were evaluated. Due to the symmetry of the RDE problem, both lower horizontal

members show the same stress.

Tolerances of 10-8, 10-5 and 10-5 for the relative residual norm error were used for

the DNS solver, the large-scale solver and the small-scale solver, respectively. The

minimum error that can be achieved in these simulations is closely linked with the

maximum tolerance used of 10-5.

For case 1, Figures 3.9 and 3.10 show that both displacement and stress in the

multi-scale model do not depend on the number of elements, whereby FE conver-

gence is not an issue. Displacement results become increasingly accurate as the

scaling parameter ε decreases, showing multi-scale convergence. Stress results do

not change as the error is already as low as the numerical tolerance will allow.

For case 2 (Figures 3.11 and 3.12) displacement results from the multi-scale anal-

ysis are not significantly affected by number of elements. FE convergence appears

to be achieved for L=60m and L=100m, which are more important to assess for

multi-scale convergence. With decreasing ε multi-scale convergence can be observed

for displacement results. For stresses the error for the multi-scale analysis is already

below 0.2% for L=20m and only slightly reduces from L=60m to L=100m because

the numerical tolerance has been reached. Increasing the number of elements does

not significantly reduce error if more than 40 elements are used, showing that finite

element convergence has occurred. For L=400, the Newton-Raphson procedure used

did not converge.

For case 3, which has non-proportional loading (Figures 3.13 and 3.14), neither

displacement nor stress results are significantly affected by the number of elements.
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Figure 3.9: Multi-scale and FE displacement convergence at the comparison point
for the axially loaded cantilever (case 1)

Both stress and displacement results converge as ε is decreased. The displacement

error for the multi-scale procedure decreases from about 9% for L=20m to less that

0.5% for L=100m.

Deformed figures for transverse loading and the non-proportional load cases are

shown in Figures 3.15, 3.16, 3.17 and 3.18, highlighting that the extent of plas-

tic zones is constant with varying model length. In these figures, the annotation

“plastic region” indicates regions in which the axial stress in some truss elements

has exceeded the material yield limit, that is, plastic strain is occurring within the

relevant RDEs. The truss elements where this is the case are coloured black instead

of grey.

3.4 Concluding remarks

In this Chapter, a theoretical framework for the development of multi-scale models

has been presented as an extension of the first-order computational homogenisation

technique to the case in which different structural models are used at different length

scales and where the lower-scale problem is not necessarily governed by an energy

potential. It has been shown that volumetric averaging principles, which in general
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Figure 3.10: Multi-scale and FE stress convergence at the comparison point for the
axially loaded cantilever (case 1)
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Figure 3.11: Multi-scale and FE displacement convergence at the comparison point
for the transversally loaded cantilever (case 2)
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Figure 3.12: Multi-scale and FE stress convergence at the comparison point for the
transversally loaded cantilever (case 2)
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Figure 3.13: Multi-scale and FE displacement convergence at the comparison point
for the non-proportional load case (case 3)
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Figure 3.14: Multi-scale and FE stress convergence at the comparison point for the
non-proportional load case (case 3)

Figure 3.15: Material state for transverse loading, L=20m. Elements with stress
greater than yield limit are black; elements with stress under yield limit are grey.
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Figure 3.16: Material state for transverse loading, L=100m. Elements with stress
greater than yield limit are black; elements with stress under yield limit are grey.

Figure 3.17: Material state for non-proportional load case, L=20m. Elements with
stress greater than yield limit are black; elements with stress under yield limit are
grey.
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Figure 3.18: Material state for non-proportional load case, L=100m. Elements with
stress greater than yield limit are black; elements with stress under yield limit are
grey.

cannot be extended to this more general case, are not necessary to construct this

extended theory, whereas engineering judgement in determining the scale-bridging

operator and the boundary conditions to be used at the small-scale are required not

only in this general case but also for the conventional first order theory. Instead of

using volumetric averaging to transfer quantities between small and large scales, the

small-scale model is augmented with additional degrees of freedom corresponding

to the large-scale strains, allowing both the imposition of strains and the recovery

of stresses via linear constraint equations. The up-scaling procedure used to recover

the stress field in the large-scale model hinges on a generalised Hill’s condition, which

is not invoked as an assumption but is obtained from general duality principles.

An application of the method to nonlinear truss structures is shown. Multi-scale

convergence of this model is discussed for three loading conditions.

The extension of computational homogenisation to structural-to-structural multi-

scale models enables new approaches to material and structural modelling prob-

lems bridging length scales to be implemented and could allow the rapid creation

of multi-scale models using combinations of simple structural elements such as

springs, dampers, frictional sliders and thermal expansion elements to represent lo-

cal behaviour. Where constitutive models are complex, such structural-to-structural

multi-scale could be significantly more efficient than continuum multi-scale models
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due to dimensional reduction.

We suggest that the computational homogenisation method outlined in this ar-

ticle could be a fruitful approach to modelling problems including marine flexible

risers, auxetic materials, honeycomb structures or other impact attenuation mate-

rials like foams. Work remains to determine the mathematical conditions for the

existence and uniqueness of the multi-scale solution and for multi-scale convergence.



Chapter 4

An enhanced Euler-Bernoulli

beam model suitable for

large-scale riser analysis

The theoretical work in Chapter 3 provides guidelines on how to carry out a mul-

tiscale analysis procedure using numerical models which, at both large and small

scale, may be developed using discrete or structural elements, rather than continuum

approaches. This work can be directly applied to the modelling of flexible pipes.

Flexible pipes are extremely long, slender structures that are most conveniently

modelled with beam-type elements at the large scale and have a local structure

made of multiple interacting components that is also less suitable for representation

using continuum models. In this Chapter, the development of a suitable beam-type

element and constitutive model for flexible pipes is described. In the following, atten-

tion is directed towards creating a model which can represent the complex nonlinear

large-scale behaviour documented for flexible pipes, together with consideration of

the small-scale mechanisms that are the ultimate cause of such behaviour.

4.1 Previous work

In his PhD work on modelling of flexible pipes, Ali Bahtui (2008, 2009, 2010) de-

veloped a constitutive model to represent the three dimensional nonlinear response

83
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of an unbonded flexible pipe. The general form of the model considers the pipe as

a slender structure, represents the state of a pipe section as a set of macroscopic

deformation measures, such as axial strain and curvature, and relates them to force

and moment resultants such as axial tension and bending moment. Deformation

measures are referred to as generalised strains and resultants as generalised stresses.

In this work, it was recognised that the primary cause of nonlinear behaviour

under normal operation is the sliding that occurs between the concentric layers of

the pipe, and that this is analogous to the slip that occurs between adjacent planes

of atoms when a metallic material undergoes plastic deformation. For this reason,

the constitutive law proposed is a form of rate-independent hardening plasticity.

The inter-layer slip is accompanied by friction, whereby a non-associative type of

plasticity was considered. It was considered that the criterion determining slip

onset is a function of axial force, the two bending moments and torsion. As it

was observed that high internal and/or internal pressures lead to larger hysteresis

loops, new generalised stress measures were introduced to isolate the component

of internal and external pressures contributing to interlayer contact pressure. This

stress resultant was included in the slip-onset function with a tendency to inhibit

sliding.

To determine the parameters of the model, a detailed FE model of a flexible pipe

was created using 3D continuum elements. This model was used to simulate cyclic

axial, bending and torsional loading using the commercial FE program Abaqus/Ex-

plicit. Comparisons of the calibrated model with the FE model for cyclic bending

are shown in Figure 4.1. Analysis of slip-initiation points occurring under combined

loading enables the correct form of the slip-onset function.

The constitutive model described above forms the basis for the large-scale model

to be used in the multi-scale approach proposed in this work. In this Chapter, the

existing model is described in detail in Section 4.2. Contributions of the current work

are presented in following Sections. A new, enhanced algorithmic implementation

achieving improved material convergence is described in Section 4.3. In order to

use the model in practical riser analysis, new corotational beam finite elements have

been developed. Formulations for two and three dimensional elements are presented
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Figure 4.1: Comparison of FE results and constitutive model (Bahtui, 2008)
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in Sections 4.4 and 4.5 respectively.

4.2 Large-scale constitutive model for flexible pipes

Development pf the constitutive law was based on the occurrence of hysteresis loops

for flexible pipes subjected to cyclic bending. This phenomenon has been noted

by many modellers (e.g. Kraincanic and Kebadze (2001); Tan et al. (2007); Witz

(1996)). Hysteresis loops are observed to be wider when pipes are under higher

pressure. The phenomena is explained by the ability of helical wires to slide rela-

tive to adjacent layers when a pipe is subjected to large curvatures,and this relative

motion is not fully reversed when the curvature is removed, due to the frictional

stick-slip mechanism. Due to the close analogy between the friction-restrained in-

terlaminar slip in a flexible pipe and the microscopic slip between adjacent planes

of atoms that is the mechanism for metal plasticity, it is hypothesized that this be-

haviour can be modelled as a rate-independent elasto-plastic relationship between

generalised strains and stresses. Furthermore, it is hypothesized that the conditions

at which slip commences involve the force measure that is work conjugate to the

interlaminar or radial strain, of which the latter is defined as

εr =
uINT − uEXT

t
[−] (4.2.1)

where uINT and uEXT are the radial displacements of the pressure sheath and of the

outermost layers of the flexible pipe and t is the pipe wall thickness. The pressure

sheath is the innermost layer of the pipe except for the carcass and is the layer on

which internal pressure is applied, because the carcass is permeable to fluids. The

complementary generalised strain measure required to characterise the pipe’s radial

behaviour is the mean radial displacement, defined as

ur =
uINT + uEXT

2
[m] (4.2.2)
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The following expression can be written for work done by internal and external

pressure per unit pipe length:

W = 2π(PINTuINTRINT − PEXTuEXTREXT ) (4.2.3)

where RINT and REXT are the radii of the pipe layers which carry internal and ex-

ternal pressure, respectively. Substituting expressions (4.2.1) and (4.2.2), Equation

(4.2.3) becomes

W = Puur + Pεεr (4.2.4)

Therefore, the internal work-conjugated force measures associated with these gen-

eralised strains are:

Pε = πt(PINTRINT + PEXTREXT ) [N]

Pu = 2π(PINTRINT − PEXTREXT ) [Nm−1] (4.2.5)

Hence, for a beam in three dimensions, the following generalised stress and strain

measures are defined:

σT = [N Mx My T Pu Pε] εT = [εa χx χy φ ur εr] (4.2.6)

where meaning and units of the components of the vectors are:

N Axial force [N]

Mx, My Bending moment [Nm]

T Torque [Nm]

Pu Radial displacement pressure term [Nm-1]

Pε Radial strain pressure term [N]
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εa Axial strain [-]

χx, χy Curvature [m-1]

φ Torsion [m-1]

ur Mean radial displacement [m]

εr Radial strain [-]

The following non-associative elasto-plastic constitutive relation is then assumed:



σ = D(ε− εs)

ε̇s = λ̇
dg

dσ

f(σ − β) ≤ 0, λ ≥ 0, λf(σ − β) = 0

β = Hεs

(4.2.7)

where εs represents the inelastic generalised strains associated with interlayer slip,

which will be referred to simply as slip strain, D denotes an elastic stiffness matrix,

β is the back stress vector, H is a matrix of kinematic hardening moduli, while the

slip-onset function f and slip potential g are defined as follows:

f(σ − β) =


b(N − β1)2 + c[(Mx − β2)2 + (My − β3)2]+

+d(T − β4)− (Pε − β6)− a if (N − β1) > 0

−(N − β1)− a if (N − β1) ≤ 0

(4.2.8)

g(σ − β) =


b(N − β1)2 + c[(Mx − β2)2 + (My − β3)2]+

d(T − β4) if (N − β1) > 0

−(N − β1)− a if (N − β1) ≤ 0

(4.2.9)
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The linear elastic stiffness matrix is defined as

D =



D11 0 0 0 D51 D61

D22 0 0 0 0

D22 0 0 0

D44 0 0

symm. D55 D56

D66


(4.2.10)

It is noted that some of the coupling terms are necessary zero on grounds of the

symmetries of a flexible pipe: for example, axisymmetric loading cannot cause cur-

vature. The assumption of zero axial-torsional coupling deserves special mention.

Due to the inclusion of helical components in flexible pipe structure, axial-torsional

coupling is a feature of the behaviour of isolated helical armour layers. However,

as this effect induces additional stresses in the wires, composite flexible pipes are

designed such that the coupling effects of pairs of contra-wound layers cancel each

other out. In the detailed finite element model used, some coupling effects were

observed because the requirement for a periodic segment of the structure to be

modelled lead to both helical armour layers being given the same pitch length, so

that the model length could be minimised. As the observed coupling is an artifact

of modelling choices, it will not be included in the constitutive model.

The linear kinematic hardening matrix is assumed not to display coupling be-

tween components and not to affect the pressure-related terms, resulting in the

following diagonal hardening matrix:
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H =



H11 0 0 0 0 0

H22 0 0 0 0

H22 0 0 0

H44 0 0

symm. 0 0

0


(4.2.11)

4.2.1 Model of slip onset and slip progression

The physical meaning of the criterion used for slip onset and rules for development of

slip in the constitutive model described in Section 4.2 can be made more transparent

with graphical representations.

The slip-onset criterion (Equation (4.2.9)) is expressed as a function of the gen-

eralised stresses. In the work of Bahtui (2008, 2009, 2010), four generalised stresses

were considered to contribute to this function: Axial force (N), two bending mo-

ments (Mx, My) and radial strain pressure (Pε). The projection of this hypersurface

onto M − Pε, N −M and N −M − Pε space are shown in Figures 4.2a, b and c,

respectively.

The chosen model is non-associative plasticity, which implies that the slip direc-

tion (m) is not equal to the normal of the slip-onset surface (n), or alternatively,

not in the direction which gives the fastest reduction in the slip-onset criterion. The

slip direction is the derivative of the flow potential function (Equation (4.2.9)) with

respect to stress. The flow potential function has no contribution from Pε. As Pε

is associated only with the radial strain measures in the elastic and hardening laws,

this represents the physical fact that a pipe slippage will never cause an increase in

layer radial deformation or cause layers to separate.

4.3 Finite-step algorithmic implementation

The governing equations of an inelastic material model do not permit a closed-form

solution to be found. The usual procedure for an elasto-plastic rate-independent
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Figure 4.2: a) Projection of slip-onset surface in M − Pε space b) Projection of
slip-onset surface in N − Pε space c) 3D slip-onset surface
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material model is a strain-driven return-mapping algorithm.

In this Section, such an algorithm is developed for the numerical integration of

a rate-independent non-associative plasticity material model, with kinematic hard-

ening such as that proposed in Section 4.2. The algorithm is an example of a back-

ward Euler return mapping algorithm, a common algorithm for the time-integration

of constitutive relations involving rate-independent inelastic behaviour. A return-

mapping algorithm is a two-step procedure used to compute the stresses, plastic

strains and internal variables at a material point given the values of these variables

at the start of the increment and the strain increment for the interval. The first

step (predictor step) involves fixing the values of plastic strain and internal variables

and calculating the stress increment as if the strain increment were purely elastic.

The stress thus calculated is referred to as the trial stress. The yield function is

computed using the trial stress (other variables being fixed at their initial state). If

the yield limit is not exceeded, the trial state is accepted as the material state at the

end of the increment; if not, a “plastic corrector” must be added to the trial state

variables to compute the final state (the second, or corrector step). This involves

integration of the plastic flow rate equation (as well as any hardening rate and inter-

nal variable evolution equations) and ensuring that the yield function for the final

state is exactly zero. Numerical integration uses a first-order Euler method, which

has explicit, implicit and mixed forms, depending on whether variables at the start,

end or a linear combination of the two are used to calculate the integral. In the

backward Euler return-mapping algorithms, the implicit method is used.

In distinction to standard methods, this method described here requires the so-

lution of two rather than one equations using an iterative loop. This required modi-

fying the algorithm previously developed by Bahtui (2008) and resulted in improved

convergence of the material under a range of load conditions. The convergence of

the material algorithm was tested under different trial stress states using an initially

unstrained material state. Different combinations of axial strain, curvature and ra-

dial strain pressure were selected for the strain increment. The generalised stresses

corresponding to these strains (using the model parameters determined by Bahtui

(2008)) are detailed in Table 4.1. In all cases, where a “high” value for axial force
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LOAD CASES
Case Radial strain Axial force Bending

pressure [N] [N] moment [Nm]
Low P case 1 3320 9962 0
Low P case 2 3551 112 730
Low P case 3 3320 9962 730
Zero P case 1 7 11244 0
Zero P case 2 42 132 730
Zero P case 3 0 11350 730
High P case 1 358920 108880 0
High P case 2 361477 130 7296
High P case 3 358920 108879 7296

YIELD STATES FOR LOAD CASES
(UNDER UNIAXIAL LOADING)

Case Axial force [N] Bending moment [Nm]
Low P case 1 5260 380
Low P case 2 5440 393
Low P case 3 5260 380
Zero P case 1 241 17
Zero P case 2 592 43
Zero P case 3 0 0
High P case 1 54690 3950
High P case 2 54885 3964
High P case 3 54690 3950

Table 4.1: Convergence test cases
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Figure 4.3: Convergence of material algorithm

or bending moment is used, the value used is much greater the value that would

cause slip onset under uniaxial loading (see Table 4.1). Low rather than zero val-

ues are used for the axial stress to avoid stress states involving axial compression.

Convergence with number of material iterations in terms of the norm ‖R(U)‖ (see

Equation (4.3.37)) for the nine generalised trial stresses is given in Figure 4.3.

Convergence was found to be rapid and robust, although poorer for cases with

low radial strain pressure. The details and derivation of the algorithm are presented

below.

Given a material state at pseudo-time t described by a vector of strains εt,

a vector of internal state variables (plastic strains in this case) εtp and a strain

increment vector ∆ε, a trial elastic state is calculated by holding the plastic strain

constant:

εt+1 = εt +∆ε

εt+1
s,TR = εts

βt+1
TR = Hεs,TR

σt+1
TR = E(εt+1 − εt+1

s,TR) (4.3.12)



4.3. Finite-step algorithmic implementation 95

If f(σt+1
TR − β

t+1
TR ) ≤ 0 then the trial state is admissible, that is, within the elastic

domain specified by the yield function f . If f(σt+1
TR − β

t+1
TR ) > 0 then the quantity of

plastic strain increment must be determined such that the final material state lies

just within the elastic region. This implies that

f(σt+1 − βt+1) = 0 (4.3.13)

The final stress state is expressed in terms of the trial stress state and the plastic

strain increment:

σt+1 = D(εt+1 − εt+1
s ) =

= D(εt+1 − εts)−D(εt+1
s − εts) =

= σt+1
TR −D∆εs (4.3.14)

where the t+ 1 superscript is henceforth dropped to simplify the notation.

The finite step evaluation of εs is obtained by approximating Equation (4.2.7b)

as follows:

∆εs = ∆λ
∂g

∂σ
(4.3.15)

Combining Equation (4.3.14) with the discrete non-associative plastic flow rule

(Equation (4.3.15)) gives

σ = σTR −∆λD
∂g

∂σ
(4.3.16)

Defining the relative stress τ as τ = σ − β, Equation (4.3.16) becomes
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τ + β = τTR + βTR −∆λD
∂g

∂σ
(4.3.17)

Including the hardening law (Equation 4.2.7) gives

τ = τTR +H∆εs −∆D
∂g

∂σ
= (4.3.18)

= τTR −H∆λD
∂g

∂σ
−∆λD∂g

∂σ
=

= τTR −∆λ(D +H)
∂g

∂τ
(4.3.19)

τ − τTR +∆λ(D +H)
∂g

∂τ
= 0 (4.3.20)

For convenience, both sides are premultiplied by the constant term (D + H)−1

and a residual vector q can be introduced:

q(∆λ, τ) = (D +H)−1(τ − τTR) +∆λ
∂g

∂τ
(4.3.21)

Solution of the constrained evolution problem consists of finding the solution to this

equation, subject to the yield function constraint (Equation (4.3.13)):

SOLVE SIMULTANEOUSLY

q(∆λ, τ) = (D +H)−1(τ − τTR) +∆λ
∂g

∂τ
= 0

f(τ) = 0

This can be solved by using a coupled Newton-Raphson process using the residual

vector R = [q f ]T and solution vector U = [τ ∆λ]T . The kth iteration provides

the following update formula

R(Uk+1) = 0 ≈ R(Uk) +
dR(Uk)

dU
(Uk+1 − Uk) = R(Uk) +Kk(Uk+1 − Uk) (4.3.22)

which leads to the linear system:
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Kk(Uk+1 − Uk) = −R(Uk) (4.3.23)

where the iteration matrix is given by

K =


dq

dτ

dq

d(∆λ)
df

dτ

df

d(∆λ)

 (4.3.24)

Denoting

n =
∂f

∂τ
(4.3.25)

m =
∂g

∂τ
(4.3.26)

DH = D +H (4.3.27)

the derivatives in Equation (4.3.24) are given by:

dq

dτ
= G−1

dq

d(∆λ)
=
∂g

∂τ
= m

df

dτ
= n

df

d(∆λ)
= 0 (4.3.28)

where it has been set that:

G = [(DH)−1 +∆λ
∂2g

∂τ 2
]−1 (4.3.29)

System (4.3.23) can therefore be written as follows:
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G−1 m

n 0

 dτ k

d∆λk

 = −

ek
fk

 (4.3.30)

where dτ k = τ k+1−τ k and d∆λk = ∆λk+1−∆λk. Writing the equations separately:

G−1dτ k +m · d∆λk = −ek

n · dτ k = −fk (4.3.31)

Therefore

dτ k = G(−ek −m · d∆λk) (4.3.32)

Substituting in the second equation gives

nG(−ek −m · d∆λk)− n ·Gek − n · (Gm)d∆λk = −fk (4.3.33)

leading to:

d∆λk =
fk − n ·Gek

n ·Gm
(4.3.34)

Therefore the two Newton-Raphson increments are found using the equations

dτ = G(−ek −m · d∆λk) (4.3.35)

d∆λk =
fk − n ·Gek

n ·Gm
(4.3.36)

giving the algorithm:
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INITIALISE:

k := 0

τ k=0 := τTR

∆λk=0 := 0

nk=0 := n(τTR)

mk=0 := m(τTR)

R(U0)→

(D +H)−1(τ 0 − τTR) +∆λ ∂g
∂τ

f(τ 0)

 (4.3.37)

DO WHILE ‖R(Uk)‖ < TOL

k → k + 1

f → f(τ k)

n→ n(τ k)

m→ m(τ k)

G→
(

(DH)−1 +∆λ
∂2g

∂τ 2

)−1

ek → (DH)−1(τ k − τTR) +∆λkm

FIND INCREMENTS

∆τ k = G(−ek −m · d∆λk)

d∆λk =
fk − n ·Gek

n ·Gm

UPDATE
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∆λk+1 = ∆λk + d∆λk

τ k+1 = τ k + dτ k

RECALCULATE RESIDUAL FOR NEXT STEP

R(Uk+1)→

(D +H)−1(τ k+1 − τTR) +∆λ ∂g
∂τ

f(τ k+1)


END DO

4.3.1 Calculation of the consistent tangent

Taking the elasticity relation evaluated at the end of the time increment:

σn+1 = D(εn+1 − εn+1,s) (4.3.38)

Differentiating this by the total strain at the end of the increment gives:

δσn+1 = D(δεn+1 −
dεn+1,s

dεn+1

δεn+1) (4.3.39)

The differential form of the slip rule is obtained using the chain rule:

δεs = δ∆λ
∂g

∂σ
+∆λδ

(
∂g

∂σ

)
= δ∆λ ·m+∆λ

∂2g

∂σ2
δσn+1 +∆λ

∂2g

∂σ∂β
δβn+1 (4.3.40)

The differential form of the hardening law is

δβn+1 = Hδεn+1,s (4.3.41)
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Noting that:

∂2g

∂σ∂β
= −∂

2g

∂σ2
(4.3.42)

Combining Equations (4.3.40) and (4.3.41), gives

H−1δβn+1 = δ∆λ ·m+∆λ
∂2g

∂σ2
δσn+1 +∆λ

∂2g

∂σ∂β
δβn+1 (4.3.43)

and, using Equation (4.3.42) and rearranging gives an equation incorporating the

slip rule and hardening relation:

−∆λ∂
2g

∂σ2
δσn+1 +

[
H−1 +∆λ

∂2g

∂σ2

]
δβn+1 = δ∆λ ·m (4.3.44)

Substituting Equation (4.3.40) into Equation (4.3.38) and premultiplying by D−1

results in a second equation combining the slip rule and the equilibrium equation:

D−1δσn+1 = δεn+1 − δ∆λm−∆λ
∂2g

∂σ2
δσn+1 −∆λ

∂2g

∂σ∂β
δβn+1 (4.3.45)

Rearranging Equation (4.3.45) gives:

[
D−1 +∆λ

∂2g

∂σ2

]
δσn+1 +∆λ

∂2g

∂σ∂β
δβn+1 = δεn+1 − δ∆λm (4.3.46)

Equations (4.3.46) and (4.3.44) can be expressed in matrix form as:

D−1 +∆λ
∂2g

∂σ2
−∆λ∂

2g

∂σ2

−∆λ∂
2g

∂σ2
H−1 +∆λ

∂2g

∂σ2


δσn+1

δβn+1

 =

δεn+1 − δ∆λm

δ∆λ ·m

 (4.3.47)



4.3. Finite-step algorithmic implementation 102

Inverting the above relation allow expressions for δσn+1 and δβn+1 to be written as:

δσn+1 = Dδεn+1 −∆λDQF−1D δεn+1 +∆λδ∆λDQF−1(D +H)m− δ∆λDm

δβn+1 = ∆λHQF−1Dδεn+1 −∆λδ∆λHQF−1(D +H)m+ δ∆λHm (4.3.48)

Where

Q =
∂2g

∂σ2

A final relation that relates the elastic stress and back-stress increments is the con-

sistency condition that requires that ḟ(σn+1, βn+1) = 0 at the end of the plastic

increment (Simo and Hughes, 1998). This implies that

(δσn+1 − δβn+1) · n = 0 (4.3.49)

The above relation, when applied to Equation 4.3.48, completed the formulation.

The slip parameter ∆λ can be determined as

∆λ =
(D −∆λ(D +H)QF−1D)dεn+1 · n

((D +H)−∆λ(D +H)QF−1(D +H))m · n
(4.3.50)

while the consistent tangent operator is

∂σn+1

∂εn+1

= (D −∆λDZD)−

((D −∆λDZ(D +H))m⊗ (D −∆λDZ(D +H))n

((D +H)−∆λ(D +H)Z(D +H))m · n
(4.3.51)



4.4. 2D corotational element formulation 103

4.4 2D corotational element formulation

Two implementations of the constitutive model described in Section 4.2 were carried

out, one in a two-dimensional beam element and the second in a three-dimensional

beam element.

The 2D element is a two-node Euler-Bernoulli planar beam element enhanced

with additional pressure-related generalised strains and stresses. The formulation

without these pressure-related terms has already been presented in Section 3.2.1.

Here we focus only on the modifications required to accommodate the pressure

terms.

A natural way to introduce the new generalised stresses and strains is by intro-

ducing new degrees of freedom at the element nodes. It was chosen to introduce one

degree of freedom representing the radial displacement of the outer layer and one

degree of freedom representing the radial displacement of the pressure sheath. These

degrees of freedom are work-conjugate with the internal and external pressures. This

method allows variation of external pressure to considered in the element response

and allows radial displacement boundary conditions to be imposed, reflecting the

constrictions present at end connections and bend limiters.

Recalling Equations (4.2.3) and (4.2.4), the work done by external and internal

pressure can now be expressed in two forms:

W = 2π(PINTuINTRINT − PEXTuEXTREXT ) (4.4.52)

and

W = Puur + Pεεr (4.4.53)

If the constitutive relation is formulated in terms of ur, εr, Pu and Pε, yet the element

degrees of freedom and forces are uINT , uEXT , PINT and PEXT then, firstly, ur and

εr must be computed from uINT and uEXT by introducing new shape functions for
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the element, and, secondly, element internal forces in terms of Pu and Pε must be

converted into PINT and PEXT such that equilibrium can be assessed by the global

solver.

The first modification is acheived by introducing the following linear shape func-

tions relating the radial degrees of freedom with the radial generalised strains present

in the constitutive model:

ur
εr

 = B∗(x) =
1

L

0.25(1− x) 0.25(1− x) 0.25x 0.25x

0.5(1− x)

t

0.5(1− x)

t
−0.5x

t
−0.5x

t



U1
INT

U1
EXT

U2
INT

U2
EXT

 (4.4.54)

where the superscript indicates the node number the degree of freedom is associated

with, L is the element length, x is the distance along the pipe axis and t is the pipe

thickness, defined as the difference between the radii of the pressure sheath and the

outer layer.

The second modification is achieved by equating the force terms in Equations

(4.4.52) and (4.4.53), resulting in the following equations:

Pu = 2π(PINTRINT − PEXTREXT ) (4.4.55)

Pε = πt(PINTRINT + PEXTREXT ) (4.4.56)

4.4.1 Element convergence study

A convergence study was carried out on the two dimensional pipe element. In

this study, a single element is tested. The element is initially straight, with one

node being pinned and the other being simply supported. The element is subjected

to combinations of pressure, axial force and bending moment. The parameters of

the constitutive model are the same as used in the constitutive convergence study

(Section 4.3). Axial force is applied by creating a point load on the simply supported

node. Bending moment is applied by creating two equal and opposite point moments
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LOAD CASES
Case Radial strain Radial displacement Axial force Bending

pressure [N] pressure [Nm-1 ] [N] Moment [Nm]
A1 0 0 300000 0
A2 0 0 0 20000
A3 0 0 300000 20000
B1 14560 0 300000 0
B2 14560 0 0 20000
B3 14560 0 300000 20000
C1 463930 0 300000 0
C2 463930 0 0 20000
C3 463930 0 300000 20000
D1 225466 1.656 × 107 300000 0
D2 225466 1.656 × 107 0 20000
D3 225466 1.656 × 107 300000 20000

Table 4.2: Load cases for 2D element convergence study

on the two nodes. For consistency with the riser simulation (Section 4.6), pressure

is applied in a separate, initial step. The magnitudes of the radial strain pressure

in load cases A1-3, B1-3 and C1-3 correspond to external pressures of 0, 1 and 30

MPa. The magnitude of the radial strain pressure and radial displacement pressure

for load cases D1-3 correspond to an external pressure of 30 MPa and an internal

pressure of 0.75 MPa, the same as used for the riser analysis in Section 4.6. The

combinations of loading investigated in this study are listed in Table 4.2.

Simulations were carried out using the Abaqus solver and the Fortran subroutine

implementing the two-dimensional pipe element. Element convergence in the second

load step only was in investigated, as convergence in the pressure loading step is

achieved after one iteration in all cases. The size of the initial load increment is

set to be equal to the total load in all cases, and cutbacks in increment size during

the analyses are not allowed. The change in the error norm with iteration number

for these load cases is shown in Figure 4.4. Error norm is defined as the ratio of

maximum residual force in the element to average residual force, or the ratio of

maximum residual moment to average moment, whichever is greater.

From Figure 4.4, the same general trends as for convergence of the constitutive

algorithm (Section 4.3) can be seen, in that convergence is faster when radial strain
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Figure 4.4: Convergence of 2D pipe element

pressure is higher (comparing cases B1-3 with cases C1-3) and that the addition of

significant radial displacement pressure (cases D1-3) further improves convergence.

The element did not converge at all for zero pressure load cases (cases A1-3), which

are not represented in Figure 4.4. Some tests with low radial strain pressures (not

presented) did converge, but required multiple cutbacks in the increment size. In

general, convergence is fairly slow - the straight lines shown in Figure4.4 indicate

that convergence is linear, not quadratic, as the ratio between residuals at successive

interations tends to a constant value. It is noted that convergence lines for cases

in which both axial force and bending moment are applied may be “jagged” (load

cases C3 and D3), which is a consequence of the requirement for the Abaqus solver to

resolve two field residuals simultaneously, which are associated with greatly different

stiffness values. For load cases involving pressure and bending only (cases B2, C2

and D2), the solution is either accepted after the first iteration (cases C2 and D2)

or fast (case B2), which is a consequence of the low bending stiffness.

From this study, it is concluded that the element is usable, but not robust at

low values of radial strain pressure. This study did not test the effectiveness of the

corotational formulation as the element investigated did not undergo large rigid-

body displacements or rotations. This is left for future developments.
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Figure 4.5: 3D corotional beam formulation: 2 configurations (initial and deformed),
3 coordinate systems (global, ei, initial, ei0 and local, êi) and 4 rotations (Ω1, Ω2,
Ω0 and ΩT ) are used in the formulation

4.5 3D corotational formulation

In this Section the formulation of a 3D corotational beam element enhanced with

pressure terms is described.

4.5.1 Geometry and coordinate systems

Finite deformation geometry

Two body configurations, initial and current, and three coordinate systems, global,

initial and local are used. The basis vectors of these are denoted as ei, ei0 and êi,

respectively. To transform between local and global coordinate systems, the 3x3

tensor T∗ is used, such that, if vector v has components vj in the global system, it

has components v′i in the local system given by v′i = T ∗ijvj. The components of T∗

are given by T ∗ij = êi · ej.
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It is noted that, when written in matrix form, any (passive1) transformation

matrix is the transpose of the matrix representation of the corresponding (active2)

rotation tensor. T∗ transforms a vector in the global system to the vector in the

local system, Ωr rotates a unit vector in the initial system to the corresponding

unit vector in the local system, Ω0 rotates a unit vector in the global system to the

corresponding unit vector in the initial system, and Ω∗ rotates a unit vector in the

global system to the corresponding unit vector in the local system. It then results

that T∗ = (Ω∗)T , Ω∗ = ΩrΩ0, and hence, T∗ = ΩT
0 ΩT

r .

The beam element presented in Edmans et al. (2009) is a two-noded Euler-

Bernoulli type element using Hermite shape functions. In addition to the standard

six rotational and translational degrees of freedom at each node, the displacements

of the internal and external pipe radii are also included. Nodal rotations in finite

element software are typically represented as “pseudo-vectors” at the nodes. Each

pseudovector represents a three-dimensional rotation with a single unit vector along

the axis around which the single equivalent rotation takes place, multiplied by the

magnitude of the rotation around this axis in radians. The following numbering

convention is used:

û1−3 Translational DOFs in the global system for node 1

û4−6 Components of pseudovector representing the rotation at node 1

û7−8 Radial displacement of pipe inner (7) and outer (8) surfaces at node 1

û9−11 Translational DOFs in the global system for node 2

û12−14 Components of pseudovector representing the rotation at node 2

û15−16 Radial displacement of pipe inner (7) and outer (8) surfaces at node 2

1For a vector v a passive transformation matrix T transforms the components of v with respect
to the orthonormal basis vector set ea

i into the components with respect to a second orthonormal
basis eb

i . This is referred to by some authors as an alias rotation.
2An active rotation tensor Ω premultiplying unit vector ea

i results in the corresponding rotated
vector eb

i . This is referred to by some authors as an alibi rotation.
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The radial degrees of freedom are decoupled geometrically but coupled in the

constitutive relation to the standard degrees of freedom. Details of the constitutive

model used with this element are given in Section 4.2.

Computing the initial and current local triads, ei0 and êi

The initial local 3-axis e30 is defined as parallel to (x2(0) − x1(0)); similarly, the

current local 3-axis is parallel to (x2(t)−x1(t)). The initial local 2-axis e20 is defined

as e3 × e30 when e3 6= e30. The initial local 1-axis e10 then follows as e20 × e30.

Expressions for the current local triad are written in terms of the nodal rotations,

which can be collected into two pseudo-vectors expressed in terms of the beam’s

degrees of freedom:

Φ1 =


u4

u5

u6

 Φ2 =


u12

u13

u14

 (4.5.57)

Using the standard Rodrigues formula (see, for example, Crisfield (1997)), these

can be expressed as direction cosine matrices Ω1(Φ1) and Ω2(Φ2). We assume an

initially straight beam, i.e. ei0 = e1
i0 = e2

i0. In addition to the three element vec-

tor triads already defined, we introduce two “nodal” triads at the beam nodes in

the deformed configuration, with vectors corresponding to the tangent to the beam

axis at that node (in the deformed configuration), and the associated normals and

binormals. The nodal triads in the current configuration are therefore the prod-

ucts Ω1(Φ1)ej0 and Ω2(Φ2)ej0, which give the six nodal vectors for the deformed

configuration: ê1
1, ê1

2 and ê1
3 at node 1, and ê2

1, ê2
2 and ê2

3 at node 2. To find the

component of the deformed vector ê2, the components of ê1
2 and ê2

2 that lie in the

plane to which ê3 is a normal, are calculated. ê2 is then the normalised sum of the

two resulting in-plane vectors. Given that ê3 is the normalised vector from the first

to the second node represented, as before, as
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ê3 =
x2 − x1 + u2 − u1

‖x2 − x1 + u2 − u1‖
(4.5.58)

then

ê2 =
(I− ê3 ⊗ ê3)(Ω1 + Ω2)e20

‖ · ‖
(4.5.59)

to ensure that the triad is orthonormal, we do not use a similar projection for ê1,

but rather define ê1 as the product ê1 = ê2 × ê3.

4.5.2 Calculating the local displacements

As shown in the figure, a general deformation can be decomposed into a rigid body

rototranslation, an axial stretch and a superimposed bending. In this example, the

local displacement û at node 2 is axial only. To obtain the local displacements, we

note that rigid body motions do not give rise to internal forces. Therefore we choose

the beam midpoint as the point of zero local diplacement and subtract the global

displacement of this point from the nodal displacements. This eliminates displace-

ments caused by rigid body translations. Secondly, we subtract the components

of the displacement that are caused solely by the rigid body rotation around the

midpoint. Finally, the resulting “local” displacements are transformed into the local

system.

Defining the positions of the nodes relative to the beam midpoint (in the global

system) as

x1
rel = x1 − xmid

x2
rel = x2 − xmid

the local displacements are
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U

Figure 4.6: A deformation composed of a rigid body rototranslation, an axial stretch
and a superimposed bending. In this example, the local displacement û at node 2
is axial only

û = u− umid − urot

This is shown schematically in Fig. 4.5.2.

The local displacement vector u′ expressed in the local system is therefore:

û′ = Tû = T(u− umid − urot) (4.5.60)

where
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umid = 0.5



u1 + u2

0

0

u1 + u2

0

0


= 0.5



I3 0 0 I3 0 0

0 0 0 0 0 0

0 0 0 0 0 0

I3 0 0 I3 0 0

0 0 0 0 0 0

0 0 0 0 0 0





u1

Φ1

w1

u2

Φ2

w2


= 0.5I0
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and



(urot)1−3 = Ωrx
1
rel − x1

rel = (Ωr − I)x1
rel

(urot)4−6 = Φr(Ωr)

(urot)9−11 = Ωrx
2
rel − x2

rel = (Ωr − I)x2
rel

(urot)12−14 = Φr(Ωr)

or, in detail,
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

T∗ 0 0 0 0 0

0 T∗ 0 0 0 0
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0 0 0 0 0 I2
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− 0.5I0
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−
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(Ωr − I)xrel
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0
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0
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
(4.5.62)

4.5.3 Formulation

From the definition of local displacements, we next develop the equations of equilib-

rium, resulting in the global external force vector Fext and global tangent stiffness
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matrix K, as required for the finite element solution procedure.

Using Equation (4.5.60) and taking the variation of û′:

δû′ = δ(Tû) = Tδû + δT û = TAδu + Hû δu =

= (TA + Hû)δu = Θ δu (4.5.63)

where the third-order tensor H is such that δT = H δu, and the second order tensor

A is such that δû = A δu.

The weak form of the equation of equilibrium is

δWint − δWint = 0

The internal virtual internal work δWint is found by defining a convenient strain

measure defined in terms of the local displacements in the local system ε̂ = ε̂(û′):

δWint =

∫ l

0

σ̂′ · δε̂′(û′) dl

noting that all quantites in the integrand are both “local” and “in the local co-

ordinate system”. The small strain formulation implies local geometrical linearity,

hence

δWint =

∫ l

0

σ̂′ · δ(B̂û′) dl =

∫ l

0

σ̂′ · B̂ δû′ dl =

∫ l

0

(B̂T σ̂′) · δû′ dl

=

∫ l

0

(B̂T σ̂′) dl · δû′

where B is a mapping represented by a 6x16 matrix containing terms linear (for

bending and radial strains) and independent (axial and torsional strains) of the

distance along the beam. Using the following definition of local forces,
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F̂′int =

∫ l

0

(B̂T σ̂′)dl

then the internal work is:

δWint = F̂′int · δû′ = Fint · δu (4.5.64)

Virtual external work is given by

δWext = F̂′ext · δû′ = Fext · δu (4.5.65)

Using Equation (4.5.63), this becomes:

δWext = F̂′ext ·Θ δu

= ΘT F̂′ext · δu

where the full expression for Θ is reported in Appendix B. Thus, the global external

and internal force vectors are:

Fext = ΘT F̂′ext Fint = ΘT F̂′int (4.5.66)

These equations show how the global internal and external forces required for the

global FE solution procedure can be calculated from the local forces. The tangent

stiffness matrix is found by taking the variation of the internal force vector:
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δFint = δΘT F̂′int + ΘT δF̂′int

= δ[(TA + Hû)T ]F̂′int + ΘT K̂δû′

= [δTA + TδA + Hδû + δHû]F̂′int + ΘT K̂Θδu (4.5.67)

Evaluation this requires the higher order tensors T, A and H to be found, full

expressions for which are reported in Appendix B.

4.5.4 Comments

This derivation is similar in many respects to that presented by Crisfield (1997) and

described in Section 2.4.3, though the developed form of the equations are different.

One difference is that the deformed element triad in this development is derived

from the mean of projection of the deformed nodal triads, rather than a curvilinear

interpolation. This is in fact suggested by Crisfield as a permissible simplification

for low curvatures (Crisfield, 1997, p. 225).

Secondly, this derivation takes local displacements to be measured from the

midpoint of the line connecting the deformed positions of the two nodes.

4.6 Results from large-scale modelling

The capabilities of the model to perform practical large-scale analysis were tested

by simulating a flexible pipe used as a riser to transport fluids between the seabed

and a floating vessel. Realistic dimensions and displacements are used, and the

riser is subjected to typical loadings and boundary conditions. Parameters used for

the model were taken from the work of Bahtui (2008), which were obtained from

calibration with FE model. The purpose of this test is to demonstrate the capability

of the new element to be used in an analysis with large displacements and rotations

and to show the effects of nonlinearities in the model formulation.

The analysis presented in this Section is two-dimensional, using two-dimensional

modified beam elements (using the two-dimensional corotational formulation de-
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D11 2.5 x 108 N D13 1.28 x 108 N
D14 -5.88 x 106 Nm-1 D22 6.08 x 105 Nm2

D33 4.38 x 109 Nm-2 D34 -1.36 x 108 Nm-1

D44 1.52 x 107N H11 7.3 x 107 N
H22 2.5 x 105 Nm2 a 0
b 1.2 x 10-4 c 2.3 x 10-2 m-1

Inner diameter 96 mm
Outer diameter 116 mm
Pipe weight 490 N/m
(inc. buoyancy)

Table 4.3: Large-scale model parameters

scribed by Urthaler and Reddy (2005) and a version of the constitutive model in

which out-of-plane curvature and pipe torsion are ignored). This was done because

a similar simulation carried out with three-dimensional elements failed to converge

when used in the analysis described below. This is discussed in Section 4.6.2.

4.6.1 Quasi-static riser analysis

A simple test case was simulated, consisting of a riser in catenary configuration

subject to imposed periodic vertical and lateral displacement at the top node, rep-

resenting wave action on the vessel. Seabed interaction is handled by preventing

vertical motion of nodes on the seabed. A constant 30 MPa internal pressure was

considered. For the external pressure an average constant value of 0.75 MPa was

considered. The analysis chosen is static (inertia-free). 12 elements were used to

model the riser. Parameters used for the beam elements are given in Table 4.3.

The initial configuration of the riser and imposed displacement loading is shown

in Figures 4.7 and 4.8. The analysis procedure comprised of a pressurisation step

followed by a weight application step. This was followed by a full cycle of combined

lateral and vertical imposed displacement. As shown in Figure 4.6, the displacement

of the top node starts at zero, increases in the positive horizontal direction during

pressure loading and progresses in a full anti-clockwise elliptical cycle in the cyclic

loading step. Vertical and horizontal displacement are applied as sinusoidal func-

tions, rather than ramp functions of step time to impose a more realistic displace-

ment cycle on the top node. The amplitude of vertical and horizontal displacement
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Figure 4.7: Catenary configuration

BOUNDARY CONDITIONS
Final node: Pinned
Seabed nodes: Vertical motion constrained
Top node: Pinned/imposed vertical and horizontal displacement

Table 4.4: Model constraints

cycles was 3m and 9m, respectively, with the horizontal displacement cycle leading

by 8 degrees. Selected results are shown in Figures 4.9, 4.10 and 4.11. Figure 4.9

shows the bending-moment curvature relationship in the final element before the

touchdown point. It can be seen that high values of bending curvature are achieved

and the element’s behaviour shows a clear hysteresis loop that appears to be stable.

Figures 4.10 shows the variation of vertical reaction force with vertical displacement

at the top node. Negative values of the reaction force indicate that the effect of

the riser is to tend to pull the support down. The mean value of the reaction force

is negative due to the riser’s weight. Figure 4.11 shows the variation of horizontal

reaction force with horizontal displacement at the top node. Positive values of the

horizontal reaction force indicate that the effect of the riser is to attempt to pull the

support right (with reference to Figure 4.6). It can be seen that both the vertical

and horizontal reaction forces are at a minimum when the top node is at its most

extreme positive vertical and horizontal displacement. This can be attributed to

the reduction of tension in the riser due to the large horizontal displacement at this

point as the riser is closer to its minimum energy configuration i.e. vertical.
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LOAD STEP LOAD
1 a) Application of external pressure (0.75 MPa).

b) Application of internal pressure (30 MPa).
2 Application of weight
3 a) Application of imposed vertical

displacement at function of step time:
uz = 3.0 sin(2πt).
b) Application of imposed horizontal
displacement at function of step time:
uz = 1.2 cos(2πt) + 8.8 sin(2πt)
(see Figure 4.8). Horizontal displacement leads.

Table 4.5: Loading
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Figure 4.8: Applied displacement cycle
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Figure 4.9: Variation of bending moment with curvature at last element before
touchdown point over displacement cycle
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Figure 4.10: Force-displacement plot for vertical motion at top node
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Figure 4.11: Force-displacement plot for horizontal motion at top node

4.6.2 Convergence problems

It was not possible to use three-dimensional beam elements in the constitutive model

as convergence could not be achieved when used in the test case described above,

although convergence was achieved if smaller values of displacement were imposed

on the top node. The cause of this failure does not seem to be the constitutive

algorithm, which was found to give good convergence properties when investigated

using the load combinations used in the test case (axial force, bending and radial

strain pressure) as shown in Figure 4.3. Instead, it seems likely, because convergence

was achieved when small total displacements were applied to the element, that lack

of convergence is due to an error in the “geometric” part of tangent matrix developed

for the element in the corotational formulation. This could be addressed by review

of the derivations in Section 4.5 and Appendix B as well as checking the coding in

the Fortran implementation.

For this reason, the two-dimensional beam element was used instead. Conver-

gence properties for this element are demonstrated in Section 4.4.1



Chapter 5

Detailed finite-element model

In this Chapter, the development of a general-purpose finite element model for pre-

diction of component stresses and overall behavioural response for flexible pipes is

presented. The general modelling approach is based on previous work by Bahtui (2008),

which is summarised in Section 5.1, in which a detailed three-dimensional finite el-

ement model was created using continuum elements. For this project, a new model

was created using shell finite elements. The new model and its implementation

are described (Section 5.2), including details on contact modelling (Section 5.2.1),

boundary conditions (Section 5.2.2) and simulation options (Section 5.2.3). Nu-

merical results obtained using this model are then reported in Section 5.3. In this

section, a sensitivity study is carried out on the contact modelling method (Section

5.3.1) and the effect of boundary conditions on bending simulations is demonstrated

(Section 5.3.2). The results of a verification study for stresses under axisymmetric

loading is presented (Section 5.3.3). Stress results for this study for the internal

pressure load case are shown in Figure 5.1. Finally, plots describing the pipe re-

sponse under various load combinations are given (Section 5.4). By providing the

relations between the six generalised stress and strain measures employed for the

large scale model described in Chapter 4, these results provide the information used

in Chapter 7 to determine the parameters of the large-scale model in the context of

the proposed sequential multi-scale analysis.

121
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5.1 Previous work

The finite element model developed by Bahtui (2008) described in Section 2.4.2

showed that useful results on the mechanical response of flexible pipes can be ob-

tained using finite-element-based modelling methods. The advantage of using such

models is that the behaviour can be investigated without introducing unnecessary

assumptions about the kinematics or deformation of internal components which may

not be possible to justify with available test data. However, several aspects of the

model implementation and results limited its utility as an analysis or verification

tool. The use of an explicit time-stepping method meant that is it not guaranteed

that equilibrium is satisfied in solutions. The model used 3D continuum elements

throughout which are prone to display shear-locking effects.

Results presented for the model Bahtui (2008, Figs. 5.3, 5.4, 5.6, 5.11) showed

that the contact pressure between layers was uneven and concentrated in bands

spaced regularly along the pipe axis. Consequently, the stress field in components

was not uniform under axisymmetric loading, which is not physically realistic.

Futhermore, a form of boundary conditions were used that forced all nodes on

the end section to remain in the same plane during deformation. This leads to

boundary effects such as increased local stresses at the model end sections due to

the increased local curvatures (aggravated by any element locking effects). This is

not an accurate representation of what happens in practice, because at arbitrarily

located flexible pipe sections far from end connections, the tensile armour wires are

free to slide relative to underlying components. Also, as was discussed in Chapter 3,

uniform boundary conditions are generally ineffective in multiscale homogenisation

while periodic boundary conditions are recommended. However, it should be noted

that use of uniform displacement boundary condition can be more effective than

periodic boundary conditions in the vicinity of the real boundaries of the large-

scale model where (macro-) displacements are prescribed and, as a result, stress

concentrations can occur. Furthermore, the use of periodic boundary conditions

in three-dimensional structural computational homogenisation has been shown to

require considerably more solution time than solving the same problem with uniform

displacement boundary conditions, a result which was found to be independent of
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Figure 5.1: Von Mises stress resulting from internal pressure load case

the solution method used (Fritzen and Böhlke, 2010).

5.2 Detailed model

The detailed model was created using the finite element package ABAQUS 6.9. All

physically distinct layers of the pipe and the armour wires were considered as sepa-

rate entities. Unlike previous work (Alfano et al., 2009; Bahtui, 2008) where linear

3D solid elements had been used, in this work all components were modelled with

linear shell elements with surface-to-surface frictional contact between all compo-

nents. The pressure armour and carcass layers of a flexible pipe are self-interlocking

strips with complex sections; for this reason, these layers were modelled as equiva-

lent, orthotropic homogenous cylinders with appropriate constants. Details of the

material, dimensions and arrangement of constituent layers are given in Table 5.1.

Material properties are reported in Table 5.2. Figure 5.2 shows part of the finite-

element model in which the elements of the outer layer and some of the outer tensile

armour wires have been removed.

The length of the modelled pipe section is equal to one pitch length of the

helical armour wires (0.868). As described in Chapter 3, in a homogenisation anal-

ysis, only one small scale model (RVE) is analysed to characterise the behaviour at

many points in the large-scale model. When analysing periodic structures or media
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Figure 5.2: Detailed finite element model (outer layer and some wires removed)

with homogenisation methods, specifying an RVE corresponding to one periodically

repeating cell of the real structure gives the most accurate results, as the RVE re-

ferred to by material points in the large-scale model corresponds exactly to the real

structure at that point, if material points in the large-scale model are arranged in

a periodic array with the appropriate spacing. This is the case in the multi-scale

model proposed here. It is noted that, in real flexible pipes, the pitch length of

armour wires in different layers is often designed to be different in order to minimize

axial-torsional coupling behaviour. The use of equal pitch lengths for both layers

is a simplification that greatly reduces the length of the repeating section to be

modelled in the proposed multi-scale analysis.

Frictional contact interactions were implemented between all radially adjacent

components, using a surface-to-surface method. Lateral contact interactions be-

tween adjacent helical armour wires were not accounted for as they do not occur

in usual situations, as noted by McIver (1995). As for the contact formulation, a

“hard” pressure-overclosure relation was used, enforced by a penalty method. A

constant Coulomb friction coefficient of 0.16 was used throughout. The model used

a total of 32 000 nodes. A total of 508 000 equations were required to be solved

in the model, including 314 000 equations introduced by the Lagrange multiplier
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Layer Inner radius Thickness Material Material

(mm) (mm) model

Carcass 95.9 1.4 3D Equivalent

Orthotropic Layer

Pressure sheath(1) 97.3 2 Isotropic Polyethylene

Tensile armour(2) 99.3 4 Isotropic Carbon Steel

Anti-wear layer 103.3 1.75 Isotropic Polylethylene

Tensile armour(3) 105.05 4 Isotropic Carbon Steel

External sheath 109.05 7.15 Isotropic Polyethylene
(1)For deep water applications, a pressure armour layer, consisting of a self-

interlocking metal strip is typically also included.

This was omitted from the model for ease of comparison.
(2)Inner armour wires: number=46, wire width=12.5mm.
(3)Outer armour wires: number=48, wire width=12.2mm.

Table 5.1: Dimensions and materials of components of detailed flexible pipe model.
The modelled length of pipe was 868mm.

Material Stiffness Poisson’s Ratio

(GPa)

Equivalent layer E1=150 (hoop) ν12=0.3

E2=12.4 (axial) ν13=0.0

E3=10 ν23=0.0

G12=10

G13=10

G23=10

Carbon Steel E=210 ν=0.3

Polyethylene E=0.35 ν=0.4

Table 5.2: Material properties
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Figure 5.3: Detailed model cross-section

required to implement the contact constraints.

Unlike previous work (Alfano et al., 2009; Bahtui, 2008), in which an explicit

dynamics solution scheme was used, the model was executed using an implicit static

solver, ensuring that equilibrium was achieved after each load increment.

5.2.1 Modelling pipe radial behaviour

Modelling pipe components with standard shell-type finite elements assuming zero

through-thickness strain in their formulation was found to result in the model dis-

playing axial and radial stiffness values that deviated significantly from those pre-

dicted by the reference analytical model in cases with negligible inter-layer slip.

Furthermore, these stiffness values were also sensitive to the initial contact over-

closure/separation distance. This can be explained by the fact that absence of an

accurate representation of the through-thickness shell stiffness and inter-layer inter-

face stiffness leads to inaccuracies in predicted displacements, not only in the radial

but also in the axial direction due to the static indeterminacy of the problem in

the radial direction. The problem is statically indeterminate in the radial direction

because knowledge of the internal and external pressure is not sufficient to deter-

mine the displacements and stresses in the pipe components because components
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are unbonded and the inequalities that describe the normal contact interactions

between components do not give explicit force-displacement relations, requiring it-

erative methods to solve. For both helical and cylindrical components, axial and

radial behaviour is coupled, and thus the structure is statically indeterminate in

the axial direction as well. Radial displacement determines the hoop stress in a

cylindrical layer or axial stress in a helical wire that develops in response to loading,

which are fundamental to how the structure carries the load.

This can be remedied by enforcing the no-penetration condition using a penalty

method in which the penalty stiffness approximately accounts for the true radial

stiffness of the layers. In this way, the penalty stiffness value compensates for the

zero compliance of the shell in the out-of-thickness direction.

In fact, de Sousa et al. (2010) use a method to determine the contact stiffness

kC which, when implemented in a surface-to-surface contact formulation, results in

the following expression:

kC =
k1k2

k1 + k2

=
2E1E2

(E1h2 + E2h1)
[Nm−3] (5.2.1)

where subscripts 1 and 2 stand for the two layers on either side of the contact

interface, Ei is the Young’s Modulus of the material in the ith layer, hi is the

thickness of the ith layer and ki is defined as

ki =
P

∆un
=

2Ei
hi

[Nm−3] (5.2.2)

where P is the inter-layer pressure and ∆un is the normal (i.e. radial) interpene-

tration. In the reference, de Sousa et al. (2010), do not provide details of how their

expression is derived, but their procedure is in fact consistent with the previously

mentioned idea of transferring the radial compliance of pipe components to the en-

forcement of the contact conditions if Ei is considered as an approximate value for

the material stiffness En in the normal direction. However, selection of the appro-

priate normal stiffness is dependent on an assessment of the kinematic restrictions
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present at the material surfaces in contact (Figure 5.4). The limiting cases of no

constraint and full constraint on the strain in the tangential direction are considered

below, for a linear elastic isotropic material.

Considering first the case where the material at the interface surface is free to

expand in the two tangential directions, using the reference system of Figure 5.4,

the generalised plane stress condition σxx = σyy = σxy = 0 holds, and the normal

stiffness can be expressed as En = σzz/εzz = E, where E is the Young’s Modulus

of the material. In the second case, where lateral expansion is restricted near the

point of contact, the generalised plane strain condition εxx = εyy = εxy = 0 holds,

and it is easy to verify that

En =
σzz
εzz

=
E(1− ν)

(1 + ν)(1− 2ν)
(5.2.3)

The difference between the normal stiffness in the two limiting conditions is a func-

tion of the Poisson’s ratio only. Using the Poisson’s ratio for steel, 0.3, the appro-

priate normal stiffness for the generalised plane stress condition is 74.3% the value

required to model the normal stiffness in the generalised plane strain condition; in

the case of the polymer layers with ratio 0.4, this proportion drops to 46.7%. As each

interface involves the interaction between a stiff material and a compliant material,

the Possion’s ratio of the more compliant layer has a greater influence on the normal

stiffness. The normal stiffness parameter strongly influences the accuracy of pres-

sure and axial loading simulations because of the significant static indeterminancy

in the radial direction.

It is suggested that an intermediate value between the two extreme cases is

chosen for modelling. Numerical results showing the sensitivity of the model to this

contact stiffness are reported in Section 5.3.1.

5.2.2 Boundary conditions

In order for the detailed finite element model to be used as part of a consistent

multi-scale procedure, simulations must be carried out in accordance with the theo-
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Figure 5.4: Transverse stress/strain conditions at contact region

retical framework of computational homogenisation. In Section 3.1, the formulation

of the conventional computational homogenisation problem was presented, and it

was shown that, when macroscopic equivalent stresses and strains were defined as

the volumetric averages of the corresponding measures, Equation (3.1.7) describes a

condition that the boundary displacements on the RVE must satisfy. In order that

the stress and strain representations in the large-scale flexible pipe model are un-

biased averages of small-scale stresses and strains, this restriction will be respected

when carrying out simulations on the detailed finite element model, despite the use

of different measures at the different scales. The restriction on boundary conditions

represented by this condition does not fully specify the boundary conditions to be

applied when solving the microscopic problem; standard choices include uniform

displacement (zero fluctuation field on boundaries), periodic and uniform traction.

It has been shown by several authors (Hazanov and Huet (1994), Perić et al.

(2011)) that use of uniform displacement boundary conditions will result in “stiffer”

local material response than use of periodic boundary conditions, which will in turn

give a stiffer response than uniform traction boundary conditions.

In this work, both uniform displacement and periodic boundary conditions have

been implemented for the part of the displacement field directly associated with the

first four components of the generalised strain vector in Equation (3.1.7). Traction
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boundary conditions were applied for the pressure related terms.

Regarding uniform displacement boundary conditions, flexible pipe simulations

are often carried out using the restriction that all points on a pipe end section

must remain in plane throughout the analysis (referred to hereafter as fixed-in-

plane boundary conditions, or FIP in abbreviation) (Alfano et al., 2009; Bahtui,

2008; de Sousa et al., 2010). This condition is straightforward to implement, but is

inherently limited in its accuracy, as relative motions between adjacent components

at the boundary sections is set to zero. This leads to a locally overstiff response and

high stress concentrations towards the pipe ends. Furthermore, as the nonlinear

response of the pipe occurs due to the mechanism of interlaminar slip, restricting

slip at the boundary will not correctly model the relative motion unless a long section

of pipe is modelled, which is computationally expensive.

To apply periodic boundary conditions, it is required that each of the generalised

strains computed in the macroscopic model can be imposed on the detailed model

in an average sense, without causing nonphysical bias in the stress and strain fields

due to location of constraints, while maintaining periodicity of displacement between

the two end sections in a sense appropriate to the applied action. To achieve this,

the following set of linear constraint equations was generated relating the degrees

of freedom of each pair of nodes on the end planes having the same position on

the cross-section. The equations link the nodes to a dummy node with degrees of

freedom (Ux
n,d, U

y
n,d, U

z
n,d, Φ

x
n,d, Φ

y
n,d, Φ

z
n,d), see Figure 5.5 and Equation (5.2.4):



Ux
n,left − Ux

n,right = Ux
n,d

Uy
n,left − U

y
n,right = Uy

n,d

U z
n,left − U z

n,right = U z
n,d

Φxn,left − Φxn,right = Φxn,d

Φyn,left − Φ
y
n,right = Φyn,d

Φzn,left − Φzn,right = Φzn,d

∀ end nodes n (5.2.4)

One dummy node per each pair of end nodes is placed on a dummy cross-section

separated from the physical model. The degrees of freedom of the dummy nodes are
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then rigidly constrained to those of a control node C located at their centre using

the following rigid body constraint (Equation 5.2.5)

Un,d = Uc + R(Φc)(xn,d − xc)

Φn,d = Φc

∀ dummy nodes n (5.2.5)

where R(ΦC) is the rotation matrix corresponding to the control node rotation

pseudovector ΦC , and xn,d and xC denote the position vectors of the dummy and

control nodes, respectively. This constraint forces the dummy nodes to remain in

the dummy plane and follow the displacement and rotations of the control node.

Imposing displacements and rotations on the control node allows the generalised

strains of the macroscopic model to be imposed, using the relations

uxC = 0 uyC = 0 uzC = εzl

ΦxC = χxl ΦyC = χyl ΦzC = χzl

As discussed in Section 3.1.2 of Chapter 3, macroscopic generalised stresses can be

recovered from the model from the reaction forces and moment at the control node.

These equations are incorporated into the solution procedure by degree-of-freedom

elimination in the global stiffness matrix.

5.2.3 Viscous stabilisation of relative rigid body modes

A further computational problem is that the model is comprised of multiple separate

parts, held together only by friction, which can only develop once contact is estab-

lished. This leads to the presence of rigid body modes in the solution. In practical

simulations, external and/or internal pressure will often be applied, which presses

the layers into contact. However, convergence is greatly assisted by the inclusion of

viscous damping in the contact interactions, applied to both normal and tangential

motion at the surfaces. The damping value was generated automatically be the pro-

gram, then scaled down by a factor of 10. it was subsequently shown that varying

this scaling factor does not influence the results.
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Figure 5.5: Periodic boundary conditions

5.2.4 Computation time

Using contact methods within a nonlinear finite element procedure is often com-

putationally expensive, because contact forces and their distribution are dependent

on the deformed configuration of the interacting surfaces and vice versa, which re-

quires that several iterations are required to achieve convergence at the contact

surface. In this process, contact conditions (whether the surfaces are in contact or

not, whether the surfaces are sliding tangentially) change in discrete jumps, leading

to step changes in the model’s global stiffness matrix. This causes difficulties for

gradient-based solvers (such as the Newton-Raphson method) that are used to solve

the system of equations of the model. In this model, this is particularly onerous

because of the multiple layers of double-sided contact present.

For this model, all simulations were carried out in parallel on a computer cluster.

each simulation used two dual-core 1.8 GHz processors (4 processors in total) using

8MB of RAM.

Some representative run times are presented in Table 5.2.4. It is evident that

the use of periodic boundary conditions in bending simulations greatly increases the

simulation time required.

A higher degree of parallelisation could have be used to reduce run-times; how-
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Loading Amplitude Boundary Condition Run-time
Axial extension 0.1% f.i.p. 1h 30m
Axial extension 0.1% Periodic 1 h
Pressurised bending, monotonic 0.23 m-1 f.i.p. 6.2h
Pressurised bending, half-cycle ±0.23 m-1 Periodic 164.6h
Pressurised bending ,full-cycle ±0.23 m-1 Periodic 174.2h

Table 5.3: Representative run-times

ever, achieving this was not a priority of the investigation.

5.3 Numerical results and verification

5.3.1 Effect of interface stiffness for axisymmetric loading

To investigate the influence of the interface stiffness, models were tested under two

conditions: internal pressure P of 3 MPa and imposed axial strain εz of 0.1%, under

periodic boundary conditions. The resulting axial reaction force N and mean radial

displacement ur were recorded for each condition, enabling the calculation of four

stiffness coefficients from ratios of loading and response measures. Models were run

using a “hard” pressure-overclosure relationship enforced by a penalty method with

(1) the default penalty stiffness chosen by the program and (2) using penalty stiffness

calculated for each pair of interacting surfaces using Equation (5.2.1), adopting for

En either the value E or that given by Equation (5.2.3) to investigate the effects of

using different kinematic assumptions to calculate the normal stiffness, as discussed

in Section 5.2.1.

Although validation of the model via comparison of its results with those of ex-

perimental tests would be most reliable, detailed experimental results in terms of

global stiffness and local stresses are not generally available in the published litera-

ture. Therefore, in order to appreciate the significance of using appropriate values

for the interface stiffness coefficients used in the contact formulation, comparisons

were made with the linear analytical model presented by Bahtui (2008). The essen-

tial aspects of this model that are relevant for such a comparison are that inter-layer

slippage or separation are not included, and that the effect of the Poisson’s ratio
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coupling radial and axial deformation is accounted for in the polymer layers, where it

is most influential on radial behaviour. As the analytical model used fixed-in-plane

boundary conditions, the FE models were analysed under fixed-in-plane conditions

too.

Differences in results between the finite-element model and the analytical model

are expected, but for relatively small values of applied axial strain or pressure rea-

sonably close agreement is expected. Denoting by cFE and can the generic stiffness

coefficients determined with the FE model and Bahtui’s analytical formulation, re-

spectively, the differences ∆c reported in percentages in the tables below are calcu-

lated as ∆c = 100 (cFE − can)/cFE.

In Table 5.4 the differences between the results of the FE and the analytical

model in terms of stiffness are reported, showing that using the default penalty

stiffness for the contact formulation leads to highly inaccurate results. This fact

supports the arguments presented in Section 5.2.1 that the static indeterminacy of

the problem in the radial direction makes the correct representation of the element

and inter-layer radial stiffness values crucial to the accuracy of the results and that,

consequently, the lack of though-thickness stiffness in the shell elements must be

compensated by the stiffness used in the contact formulation.

Tables 5.5 and 5.6 confirm that by using values of the interface stiffness deter-

mined vie Equations (5.2.1) and (5.2.2), and assuming for En the value given by

Equation (5.2.3) (i.e. the transversally constrained case), the numerical results are

much closer to the analytical ones, as expected. All stiffness coefficients except those

relating axial response to pressure are smaller than those predicted by the analytical

model, with a maximum difference of 22%. This can be explained by the additional

compliance in the FE model due to the small but non-negligible inter-layer slip.

Simulations were also run to investigate the influence of the assumption of lat-

eral constraints when calculating the appropriate normal stiffness for interlaminar

contact. To this end, each model was run using in one case the in-plane constraint

assumption (IPC), i.e. determining En via Equation (5.2.3), and in another case

the in-plane unconstrained assumption (IPU) leading to En = E. From the results

shown in Tables 5.7 and 5.8 it can be seen that the constrained assumption leads to
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Stiffness measure Definition Difference
Axial stiffness N/εz +843%
Radial response to axial N/ur +1660%
Axial response to pressure P/εz +2657%
Radial stiffness P/ur +2488%

Table 5.4: Differences in stiffness coefficients as compared with analytical model
(described in Bahtui (2008)), without stiffness correction. All stiffness coefficients
are evaluated in situations where the model ends are free to move axially.

Stiffness measure Unit ε = 0.01% ε = 0.02% ε = 0.1%
Axial stiffness MN 247.9 248.1 249.0
Radial response to axial MNm-1 -2341.9 -2353.6 -2384.2

P = 0.3 MPa P = 0.6 MPa P =3 MPa
Axial response to pressure MNm-2 -5131.7 -5146.7 -5221.9
Radial stiffness GNm-3 21.4 21.5 21.7

Table 5.5: Stiffness values, with stiffness correction, using the value of En from
Equation (5.2.3).

stiffer behaviour, as expected, except for the axial response to pressure.

5.3.2 Effect of boundary conditions on bending behaviour

The effectiveness of the detailed shell model may be evaluated by considering end

effects, stress and slip distributions. The models were tested under bending by

applying internal pressure of 3 MPa and external pressure of 2.34 MPa, followed

by an imposed curvature of 0.234 m-1. When fixed-in-plane boundary conditions

are used, the nodes on each end plane of the model were forced to rotate around

the plane centre using rigid body constraints, ensuring that all end nodes remain

Stiffness measure ε = 0.01% ε = 0.02% ε = 0.1%
Axial stiffness -22.0% -21.9% -21.5%
Radial response to axial -18.8% -18.2% -16.7%

P = 0.3 MPa P = 0.6 MPa P =3 MPa
Axial response to pressure +0.2% +0.5% +2.0%
Radial stiffness -7.7% -7.3% -6.3%

Table 5.6: Differences in stiffness coefficients as compared with analytical model
(described in Bahtui (2008)), with stiffness correction, using the value of En from
Equation (5.2.3).
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Stiffness measure Unit Value Value Difference
(IPC) (IPU) (IPC-IPU)/IPU

Axial stiffness MN 249.0 240.9 +3.3%
Radial response to axial MNm-1 -2384.2 -2289 +4.0%
Axial response to pressure MNm-2 -5221.9 -5221.9 0.0%
Radial stiffness GNm-3 21.7 20.891 +3.7%

Table 5.7: Difference in stiffness coefficients using penalty stiffness values calcu-
lated using in-plane constrained (IPC) (Equation (5.2.3)) and in-plane unconstrained
(IPU).

Stiffness measure Difference (IPC) Difference (IPU)
Axial stiffness -21.5 % -25.5%
Radial response to axial -16.7% -21.5%
Axial response to pressure +2.0% +2.0%
Radial stiffness -6.3% -10.5%

Table 5.8: Difference in stiffness coefficients compared to analytical model, IPC and
IPU conditions compared

in plane throughout the bending. When periodic boundary conditions are used, a

rotation is applied to the control node only, in accordance with Equations (5.2.5)

and (5.2.4).

The following results show the differences between models using periodic and

fixed-in-plane boundary conditions for otherwise identical 0.868m pipe models un-

dergoing bending. Comparisons are made for the global bending moment-curvature

relationship (Figures 5.6 and 5.7), the stress distributions (Figures 5.8-5.12) and the

slip fields (Figures 5.13, 5.14). Comparisons are also made for the axial stresses

occurring at specific points on one armour wire over a bending cycle (Figures 5.15

and 5.16). Axial stress in these plots are reported for the inner (Figure 5.15) and

outer (Figure 5.15) surfaces of a wire. The circumferential location of the evaluation

point was as the extrados of the bend, and the axial location was one quarter of the

pipe length from the end section, removing the influence of end effects.

Figure 5.6 shows that use of both periodic and fixed-in-plane boundary condi-

tions leads to almost bilinear behaviour in bending. In the initial part the response

is effectively linear and characterised by negligible inter-layer slip. After the onset of

slipping, the stiffness rapidly decreases, quickly reaching an asymptotic value. How-
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ever, use of fixed-in-plane boundary conditions gave a much stiffer initial response.

Increasing curvature beyond 0.03 m-1 causes a sharp reduction to the less stiff re-

sponse. When periodic boundary conditions are used, this transition occurs later

and is less marked. It is noted that at large curvatures, the values of the tangent

bending stiffness of the two models are almost the same (the model with periodic

boundary conditions is 6.5% less stiff). Figure 5.8 shows that lower and more uni-

form stresses are predicted for the carcass layer when periodic boundary conditions

are used. Figures 5.9 and 5.11 show generally lower stresses in the helical wires

developing when using periodic boundary conditions, for the same imposed curva-

ture. Figures 5.10 and 5.12 show more uniform stress fields and less pronounced

end effects in the middle and outer polymer layer when using periodic boundary

conditions.

Evaluating axial slip fields shows that significant slip occurs between the carcass

and pressure sheath if fixed-in-plane boundary conditions are used, but not if peri-

odic boundary conditions are used (Figure 5.13), in which case the slip is uniformly

zero. The influence of end-effects on slippage between the inner helical armour layer

is apparent in Figure 5.14, with all significant slip concentrated in the central 50%

of the model. This effect is reversed when periodic boundary conditions are used,

showing increased slip at the pipe ends. It was noted that this was accompanied

by variation in the pipe section ovalisation during bending1 from 0.000577 at the

midsection to 0.0378 at the end sections.

Summarising, the results show that use of periodic boundary conditions for test-

ing a finite element-based flexible pipe model undergoing bending gives a more cor-

rect description of the relative movement of internal components, specifically more

even slip distributions and significantly less pronounced end effects. This clearly

suggests the use of such a model is more appropriate for an analysis of local stresses.

Using periodic boundary conditions rather than fixed-in-plane boundary conditions

improves results significantly.

The stress data from Figures 5.15 and 5.16 seem to indicates that stress on

1Defined as (Dmax − Dmin)/(Dmax + Dmin), where Dmax and Dmin are the maximum and
minimum pipe diameters (API, 1998).
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Figure 5.6: Bending moment-curvature relationship for two identical 0.868m models
run with fixed-in-plane and periodic boundary conditions. Initial tangent calculated
from first data point of each model.
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Figure 5.7: Bending hysteresis using a) Periodic boundary conditions and b) Fixed-
in-plane boundary conditions
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Figure 5.8: Axial stress on carcass layer using (a) Fixed-in-plane BCs, (b) Periodic
BCs

Figure 5.9: Maximum principal stress on inner helical armour wires using (a) Fixed-
in-plane BCs, (b) Periodic BCs

Figure 5.10: Axial stress on middle layer using (a) Fixed-in-plane BCs, (b) Periodic
BCs
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Figure 5.11: Maximum principal stress on outer helical armour wires using (a)
Fixed-in-plane BCs, (b) Periodic BCs

Figure 5.12: Axial stress on outer layer using (a) Fixed-in-plane BCs, (b) Periodic
BCs

Figure 5.13: Axial slip between carcass layer and pressure sheath using (a) Fixed-
in-plane BCs, (b) Periodic BCs
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Figure 5.14: Axial slip between inner helical armour and middle anti-wear layer
using (a) Fixed-in-plane BCs, (b) Periodic BCs
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Figure 5.15: Variation of stress on outer tensile armour along wire (inner surface of
wire)
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Figure 5.16: Variation of stress on outer tensile armour along wire (outer surface of
wire)

the outer surface of the wire has a greater magnitude at the evaluation point and

stress on the inner surface has a smaller magnitude when using periodic boundary

conditions.

5.3.3 Detailed stress results and verification

A further set of simulations were carried out using the detailed model. These load

cases represented axisymmetric loading situations with various types of boundary

conditions applied to the pipe ends.

Comparisons were carried out for the following load cases:

1. Axial strain (ε=0.205%). Axial strain is imposed on the model by applying

an imposed displacement to the control node (for the finite element model) or

by fixing one end and imposing a displacement on the other end (comparison

model). No pressure load were applied. A plot of von Mises stress is shown in

Figure 5.17, and results are compared in Table 5.9.

2. Internal pressure (PINT=3.45 MPa). Pressure loading is applied to the pres-

sure sheath, while the model is restrained from contracting axially. A plot of

von Mises stress is shown in Figure 5.18, and results are compared in Table
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5.10.

3. External pressure (PEXT=6.41 MPa). Pressure is applied to the outer sheath,

while the model is restrained from contracting axially. A plot of von Mises

stress is shown in Figure 5.19, and results are compared in Table 5.11.

The stress results in the components of the detailed model were recorded and

compared to those calculated using analytical models. For these simulation, a second

analytical model, developed by Richards and Andronicou (1997) is used to generate

results for comparison. This model has the capability to simulate bonded and un-

bonded pipes; for these comparisons, the unbonded option was used. All comparison

simulations were carried out using a model with an identical geometrical description

of pipe components and identical material properties. The data presented in Tables

5.9, 5.10 and 5.11 show firstly the absolute values of stresses in the finite element

and comparison models and, secondly, the relative differences between the finite

element model and the two reference models, differences being reported relative to

the finite element model, as in Section 5.3.1. It should be noted that neither of

the comparison models calculated the bending stress in helical wires. In order to

extract data suitable for comparison, stresses presented for the finite element model

are averages of the stresses on the interior and exterior surfaces of the wires, at the

point of comparison. This eliminated any local bending component from the finite

element results.

In Tables 5.9, 5.10 and 5.11, “Ref. model 1” is an abbreviation for the model

described by Bahtui (2008) and “Ref. model 2” denoted the model described by

Richards and Andronicou (1997).

5.4 Full behavioural response

In this Section, the axial, flexural and torsional response of the detailed model is pre-

sented in graphical form. Periodic boundary conditions are used for all simulations.

As the influence of internal and external pressure is of particular interest, results

are presented for combined bending/pressure loading (Section 5.4.1 and combined

axial/pressure loading (Section 5.4.2). Instead of investigating the effects of internal
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a)
Layer (Stress component) Values (MPa)

FEA Ref. model 1 Ref. model 2
Inner Tensile Armour (Axial) 142 158 154
Outer Tensile Armour (Axial) 124 146 131
Carcass (Axial) 19 19 n/a
Carcass (Hoop) -241 -250 -250
Layer (Stress component) Differences

Ref. model 1 Ref. model 2
Inner Tensile Armour (Axial) 11% 8%
Outer Tensile Armour (Axial) 17% 6%
Carcass (Axial) 0% n/a
Carcass (Hoop) 4% 4%
b)
K1= 247 MNm-1 9% 2%
K2=2347 MNm-1 19% 0%

Table 5.9: Axial tension load case: a) Component stresses b) Pipe stiffness results

Figure 5.17: Von Mises stress resulting from axial tension load case
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a)
Layer (Stress component) Values (MPa)

FEA Ref. model 1 Ref. model 2
Inner Tensile Armour (Axial) 131 139 131
Outer Tensile Armour (Axial) 126 141 136
Layer (Stress component) Differences

Ref. model 1 Ref. model 1
Inner Tensile Armour (Axial) 6% 0
Outer Tensile Armour (Axial) 12% 8%
b)
K3=21.7 GNm-3 23% 17%

Table 5.10: Burst/internal pressure load case: a) Component stresses b) Pipe stiff-
ness results

Figure 5.18: Von Mises stress resulting from internal pressure load case

Figure 5.19: Von Mises stress resulting from external pressure load case
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a)
Layer (Stress component) Values (MPa)

FEA Ref. model 1 Ref. model 2
Inner Tensile Armour (Axial) -126 -109 -126
Outer Tensile Armour (Axial) -148 -111 -142
Carcass (Axial) -6.3 -6.3 n/a
Carcass (Hoop) -252 -254 -256
Layer (Stress component) Differences

Ref. model 1 Ref. model 2
Inner Tensile Armour (Axial) 13% 0
Outer Tensile Armour (Axial) 25% 4%
Carcass (Axial) 0 n/a
Carcass (Hoop) 1% 2%
b)
K3=33.0 GNm-3 19% 5%

Table 5.11: Radial external pressure load case: a) Component stresses b) Pipe
stiffness results

and external pressure separately, the equivalent pressures Pε and Pu are defined as

the actions which cause radial strain and mean radial expansion, respectively (full

explanation is provided in Chapter 4), and it is the effect of these actions which is

investigated below. The measures ur and εr refer to mean radial displacement and

radial strain, respectively.

5.4.1 Bending simulations

In the bending simulations, the model was subject to both imposed curvature and

radial strain pressure (Pε), in a two step simulation. In the first step, a combina-

tion of internal and external pressure was applied to the pipe such that the radial

displacement pressure (Pu) was zero. In the second step, a prescribed rotation was

imposed on the control node, which enforced relative rotation of the end planes of

the pipe via the periodic boundary conditions, as described in Section 5.2.2. In both

steps, the pipe was not restrained in the axial direction, thus ensuring that the net

axial force in the pipe section was zero.

Figure 5.20 shows that increasing Pε increases the initial bending stiffness of

the pipe; however, the slip initiation point or final stiffness is not systematically

affected. The pressure-dependence of the initial stiffness cannot be accounted for
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Figure 5.20: Bending moment vs. bending curvature for different initially applied
Pε. My = 0 throughout.

by the linear model My = D22χx assumed in the beam constitutive model. Neither

can the phenomenon be accounted for by the addition of pressure coupling terms

as was proposed for the axial response because this would predict increase in Mx

that is uniform for all values of curvature2. A plausible conclusion for these findings

is that the bending behaviour is better represented by an elasto-plastic material

model with zero yield limit and a nonlinear harding law. This would represent the

condition that the tensile armour wires in the pipe slip even at very low curvatures

and are not effectively prevented from slipping by radial contact interations. The

implementation of this modification is left to future work.

The flexible pipe model was not in torsional balance, due to the requirement the

the pitch length of all helical wires equal the length of the model. Torque reaction

was therefore observed (Figure 5.21).

Radial strain was discovered to increase with pipe curvature (Figure 5.22. To

obtain representative values of radial strain for the model, differences in radial dis-

placement between nodes of the pressure sheath and corresponding nodes of the

outer layer were divided by their initial separation. This was calculated for four

pairs of nodes (equally spaced around the circumference) and then averaged. The

2Assuming that εr is not a function of curvature. This is true for the curvature in the initial
region that is relevant for initial stiffness calculations (see later graph).
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Figure 5.21: Torque-bending coupling for different initially applied Pε
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Figure 5.23: Axial force vs. axial strain for different initially applied Pε

node pairs chosen for evaluation were located in the central cross-sectional plane of

the pipe, in order that the radial displacement recorded (defined in a fixed cylindri-

cal coordinate system) does not differ from radial displacement defined relative to

the axis of the bent pipe. It is noted that radial strain development under bending

in opposite in sign for pairs of points located at the intrados and extrados of the

bend, but the averaged trend is an increase in radial strain with pipe bending. This

may be associated with the increasing ovalisation of the pipe section that is evident

at higher curvatures, which may cause pipe layers to squeeze more tightly together,

in regions of the pipe distant from the lines of extrados and intrados.

As for all radial response results, results were averaged from results at four

equally spaced points around the pipe circumference, at the cross-sectional plane

halfway along the pipe length.

5.4.2 Axial simulations

In these simulations, pressure loading was applied first while the pipe was allowed to

contract axially. Following this, the axial extension was imposed. The model showed

the phenomenon of the separation of the carcass from the other layers under high Pε,

causing axial stiffness to be reduced until sufficient axial extension had been imposed

to bring the carcass back into contact again (Figure 5.23). This phenomenon is not
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Figure 5.24: Radial strain vs. axial strain for different initially applied Pε

represented in the large-scale pipe model, and therefore additional modifications to

the model are proposed to incorporate it in the existing framework (Section 6).

This result is similar to that obtained by McIver (1995, Fig. 9), who noted that

the results from his analytical model predicted a much lower axial stiffness if the

pipe was in compression because two layers (the pressure armour and first helical

armour layer in this case) separated from each other in this condition.

The radial response to axial extension (Figures 5.24, 5.25) shows that radial

strain increases with pressure, but is then not altered by the application of axial

load. As the nodes in the end planes are able to contract radially without constraint

there are no barrelling-type end effects. It should be noted that the accuracy of the

results may be limited by the lack of a transverse Possion effect in the layers of the

model because of the shell elements and contact implementation used. In a physical

pipe, this effect would causes reduction in the radial thickness of components in

response to axial strain.

In a further set of axial simulations, internal pressure instead of Pε was applied

(Figure 5.27). It is noted that, in terms of Pu and Pε these simulations applied low to

moderate Pε, but high Pu. The lack of a pressure armour layer in the pipe model lead

to very high axial strains being displayed in the pressure load step. In the second

step, in which prescribed axial displacement was imposed on the control node, large
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values of axial force were obtained as the axial reaction force. In most cases positive

axial strain could not be reached as the simulations did not complete. Comparing

results to those in Figure 5.23, where radial strain pressure was applied, it can be

seen that, in both simulations, axial stiffness is not affected by pressure, but axial

force is. In distinction to the results in Figure 5.23, axial stiffness under internal

pressure loading is roughly 10 times higher. Furthermore, a carcass reattachment

effect may also be present for PINT=5 MPa. This does not become manifest until

positive axial strain is attained.

5.4.3 Pressure simulations

Application of radial strain pressure (Figure 5.29) and radial displacement pressure

(Figure 5.30) alone show that there is a positive linear relationship between each

generalised stress and its associated generalised strain and a negative linear coupling

effect with the other pressure-related term.

The data from Figure 5.30 show the axial reaction force resulting from appli-

cation of radial displacement pressure to a pipe model with ends restrained from

translating axially. These data allow the axial-pressure coupling in the flexible pipe

to be determined.

Due to the axial-torsional coupling introduced by making the pitch length of
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both tensile armour wires equal, the application of radial displacement pressure also

results in a torque reaction (Figure 5.31). This result does not occur in real flexible

pipes as pipes are designed to be torsional balanced by selection of the wire lay

angles.

5.4.4 Torsion simulations

To determine the torsional response of the model, simulations were carried out in

which radial strain pressure was applied in the first load step, allowing the ends to

expand axially, before applying a rotation to the control node in the second step.

Application of torsion to the model (Figures 5.32, 5.33, 5.34 and 5.35) shows that

torque tends to separate the layers. Torque was applied in only one direction in this

simulation. Torsion in flexible pipes is avoided if possible because it is known to

cause either layer separation or inter-layer squeezing, depending on the direction of

the applied torque, because the alternating direction of winding of the tensile wires

causes them to respond in opposite directions. Layer separation is of concern because

it can lead to birdcaging and squeezing is avoided because it causes additional stress

in components.
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5.5 Discussion of results

In this Chapter, a finite element model of a flexible pipe has been described. Simu-

lations carried out on this model were carried out and the model’s predictions of the

pipe response have been presented and compared to the predictions of two analytical

models used for flexible pipes.

Several valuable results have been obtained from simulations carried out using

the model. Firstly, when subjected to tension, internal and external pressure loads,

the axial and radial displacement response of the model is fairly close to that pre-

dicted by analytical models (Sections 5.2.1 and 5.2.3). Secondly, in the process of

model verification, an important improvement was made to the model by softening

the pressure-overclosure relationship used to compute radial contact between lay-

ers, and by deriving physically appropriate values of contact stiffness to use such

that the normal compliance of components is re-introduced into the model (Sec-

tions 5.1.1 and 5.2.1). Thirdly, the influence of the boundary conditions used on the

model ends for bending simulations was investigated and it was found that using

periodic boundary conditions (as described in Section 5.1.2) significantly reduced

the bending stiffness predicted by the pipe. Examination of the stresses occurring

in pipe components showed that use of periodic boundary conditions significantly
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reduced (but did not entirely eliminate spurious end effects, suggesting that use of

such boundary conditions gives more accurate stress predictions for bending simu-

lations. However, it is not clear whether use of such boundary boundary will lead to

lower predictions of stress in the tensile armour wires, considered over a full cycle of

bending (Figures 5.15 and 5.16). Finally, a range of investigations have been carried

out on the model, applying axial displacement, curvature, torsion, internal and ex-

ternal pressure, corresponding to the generalised stresses defined for the constitutive

model described in Chapter 4.1. The resulting load-response plots (Figures 5.20 to

5.35) have allowed the effect of carcass separation to be identified (Figure 5.23). The

effects of of radial strain pressure on the pipe’s bending moment-curvature response

(Figure 5.21) shows that bending stiffness is indeed increased by radial strain pres-

sure, as assumed in the constitutive model, but shows a saturation effect at high

values of radial strain pressure which the constitutive model cannot account for.

Other load-response plots are broadly inline with physical intuition, but validation

against test data has not been shown.

Results obtained from these simulations have highlighted several important issues

involved in the finite element modelling of flexible pipes and progress has been made

in incorporating experience gained into an improved model. However, the accuracy

of the model has not yet been satisfactorily shown by comparison with test data.

Two important issues, the physical realism of the boundary condition choice and the

ability of the mode to accurately predict the deformed shape of tensile armour wires

in bending (both of which are important for accurate fatigue analysis of flexible

risers) remain unresolved and would benefit from further attention in any future

work.

Several aspects of the verification procedure described limit the extent to which

this finite element model can be considered verified; firstly, the comparisons were

made with analytical models that are simpler in terms of the number of degrees of

freedom included in the model and more restricted in the deformation phenomena

that can be represented (such as ovalisation of cylindrical layers, frictional sliding of

tensile armour wires and rotation of armour wires around their own axes). Secondly,

it was not possible to compare stress results resulting from pipe bending as the ref-
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erence analytical models do not analyse pipe bending. Clearly, it would be desirable

to compare the model response and component stresses with full scale instrumented

tests, but this was not possible within the project scope and budget limitations.

Instead, validation against the analytical models was suggested by the project spon-

sor, Lloyd’s Register, given that these models have previously given good results

when compared with data from manufacturers.



Chapter 6

Modification for carcass modelling

The results from the detailed model presented in Chapter 5 give a more reliable

and precise description of flexible pipe behavior than the finite element model used

previously, compared with the results obtained by Bahtui (2008). Inspection of the

plots generated for the pipe’s behavioural response seems to show that much of the

pipe’s behaviour can be captured by a linear coupled model as proposed in Chapter

4. However, one major discrepancy is the axial response to axial loading is nonlinear

(Figure 5.23), which is associated with separation of the carcass from the other pipe

layers. It is believed that this phenomenon could occur in practice under certain

combinations of pressure and axial loading, but this effect cannot be reproduced

using the large-scale model describe in Chapter 4. Hence, in this Chapter, to

improve large-scale flexible pipe modelling, a new modification to the constitutive

model used in the large-scale model will be developed in which carcass detachment

is accounted for.

6.1 Carcass modification

As a consequence of the analysis of axial results described in Section 5.4.2, a new

method is proposed for modelling the carcass separation phenomenon in the consti-

tutive model. It is assumed that the constitutive model represents the behaviour of

the pipe without the carcass, i.e. in the condition where the carcass has separated

from the other layers and does not affect the behaviour of the remainder of the pipe.

160
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The effect of the carcass is reduced to an internal pressure applied to the pressure

sheath, in addition to hydrostatic pressure, representing the contact force exerted

by the carcass. This contact force is only applied if the radial displacement of the

pressure sheath is negative. If the displacement is negative, the ultimate effect of

this contact pressure is to increase the stiffness of the pipe, as is demonstrated in

the following developments. In this Section, the appropriate modification to the

stiffness matrix for this case will be derived. The contribution of the carcass to the

axial stiffness is also accounted for in the derivation.

The radial displacement of the pressure sheath can be described using the gen-

eralised strains of the constitutive model as

ui = ur + εr
t

2
(6.1.1)

where t is the wall thickness of the composite pipe, defined as the difference between

the mean radius of the pressure sheath and the mean radius of the outer layer. If

the carcass and pressure sheath are in contact, the carcass will also experience a

radial deformation equal to ui. If this radial displacement is imposed on the carcass

(modelled as an orthotropic linear elastic cylinder), the contact force exerted by

the cylinder back onto the pressure sheath can be calculated from equilibrium of a

cylindrical segment of the carcass.

The constitutive equations for the pipe, excluding the carcass layer, and omitting

the bending terms (i.e. limiting the analysis to axisymmetric loading) are as follows:


D11εa +D15ur +D16εr = N

D51εa +D55ur +D56εr = Pu

D61εa +D65ur +D66εr = Pε

(6.1.2)

The constitutive equations for the carcass alone can be expressed as
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 D̃11ε̃+ D̃12ũrc = Ñ

D̃21ε̃+ D̃22ũrc = P̃
(6.1.3)

where P̃ is a generalised radial stress that is work conjugate to the carcass radial

displacement ũrc. In the following, a tilde ( ˜ ) is used to identify quantities relating

to the carcass layer alone, whereby Ñ is the axial force acting on the carcass, while

ε̃ and ũrc are the axial strain and radial displacement of the carcass, respectively.

It is noted that the work per unit length of pipe performed by the resultants Ñ

and P̃ acting on the carcass layer alone, for the virtual displacements (δε, δurc) is

δW = Ñδε+ P̃ δurc. This implies that the dimensions of P̃ are FL-1.

The contact pressure Pc is defined as the pressure that the carcass exerts on

the rest of the pipe, and conversely, the pressure the rest of the pipe exerts on the

carcass. Its sign is positive if the carcass and rest of the pipe are in contact and zero

otherwise. P̃ is related to the contact pressure using the following relation:

P̃ = −Pc2πRc (6.1.4)

where Rc is the radius of the carcass. The negative sign indicates that Pc (as

experienced by the carcass) acts radially inwards. In the equations in this Section,

only the instance of Pc which acts on the carcass will be considered, and hence it

will always be considered as the magnitude of a force acting radially inwards. If

the carcass if attached (i.e. the condition ur + t
2
< 0 is satisfied) then the following

conditions apply for the composite structure:


ε = ε̃ (Compatibility)

NTOT = N + Ñ

P TOT
INT = P F

INT + Pc

 (Equilibrium)
(6.1.5)

where P F
INT is the internal fluid pressure while P TOT

EXT and P TOT
INT are the total pressure

acting externally and internally on the pipe without the carcass. The following
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condition holds for radial displacements:

ũrc = ur +
t

2
εr +

Pc
k

= ur +
t

2
εr −

P̃

2πRINTk
(6.1.6)

so that, setting C = 1/(2πRINTk), one has

ũrc = ur +
t

2
εr − CP̃ (6.1.7)

where k is the penalty stiffness used to implement the contact interaction between

the carcass and pressure sheath. This modification is necessary for consistency

with the contact model used in the detailed model, as described in Section 5. The

generalised stresses Pu and Pε in the pipe, as defined in Equation 4.2.5 of Section 4.2

(replacing PINT with P INT
TOT ), are a function of the internal and external pressures

applied to the pressure sheath (the innermost layer, excluding the carcass) and the

outer sheath. The radial equilibrium equation above expresses the fact that the

effective internal pressure acting on the pressure sheath is the sum of the internal

fluid pressure and the contact pressure exerted by the carcass. This is because the

carcass is permeable to the internal fluid.

Notice also that the fluid pressure does not strictly act on the entire surface of

the pressure sheath, as the actual contact area between the carcass and pressure

sheath (which can be defined and in principle determined in a micromechanical

description of contact) should be excluded. However, we assume this area to be

negligible with respect to the total area using the same assumption made in soil

mechanics to define “effective stresses”. Also, this is consistent with the small-scale

FE analysis conducted in Chapter 5.

Hence, when the carcass is separated, the pressure-related stress resultants in

the constitutive model are calculated from the internal and external pressures as

follows:
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Pu = 2π(P F
INTRINT − PEXTREXT )

Pε = πt(P F
INTRINT + PEXTREXT ) (6.1.8)

With the increase in internal pressure from the carcass contact pressure, the equa-

tions become:

Pu = 2π((P F
INT + Pc)RINT − PEXTREXT )

= 2π(P F
INTRINT + PcRINT − PEXTREXT )

= 2π(P F
INTRINT − PEXTREXT ) + 2πPcRINT (6.1.9a)

Pε = πt((P F
INT + Pc)RINT + PEXTREXT )

= πt(P F
INTRINT + PcRINT + PEXTREXT )

= πt(P F
INTRINT + PEXTREXT ) + πtPcRINT (6.1.9b)

which can be expressed in more compact form as

Pu = P F
u + P̃u

Pε = P F
ε + P̃ε

(6.1.10)

where the superscript F indicted the contribution from internal fluid pressure rather

than carcass pressure and

P̃u = −P̃

P̃ε = − t
2
P̃ (6.1.11)

using the expression for P̃ from Equation 6.1.4. Combining Equations 6.1.3 and

6.1.7 and rearranging such that all P̃ terms are on the left side gives
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1 CD̃12

0 1 + CD̃22

Ñ
P̃

 =

D̃11 D̃12
t
2
D̃12

D̃21 D̃22
t
2
D̃22



ε̃

ur

εr

 (6.1.12)

By premultiplying both sides by the inverse of the first matrix on the left hand side,

the following explicit relation is obtained relating the loads on the carcass to the

generalised strains of the model without the carcass:

Ñ
P̃

 =

D̃11 + γD̃21 D̃12 + γD̃22
t
2
(D̃12 + γD̃22)

βD̃21 βD̃22
t
2
βD̃22



ε̃

ur

εr

 (6.1.13)

noting that ε̃ = ε and the factors β and γ are defined by

β =
1

1 + CD̃22

γ = − CD̃12

1 + CD̃22

(6.1.14)

Since, from Equation 6.1.13, P̃ can also be expressed in terms of the generalised

strains of the pipe as

P̃ = βD̃21ε+ βD̃22ur +
t

2
βD̃22εr (6.1.15)

then

P̃u = −βD̃21ε− βD̃22ur −
t

2
βD̃22εr (6.1.16)

P̃ε = − t
2
βD̃21 −

t

2
βD̃22ur −

t2

4
βD̃22εr (6.1.17)

This allows the equilibrium equations of the composite structure (Equation 6.1.5)

to be expressed in terms of NTOT , P F
u and P F

ε :
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
NTOT = N + Ñ

P F
u = Pu − P̃u

P F
ε = Pε − P̃ε

(6.1.18)

Substituting Equations 6.1.2, 6.1.13 and 6.1.17 into Equation 6.1.18 allows the stiff-

ness matrix of the composite structure to be written as


N

P F
u

P F
ε

 =


∣∣∣∣∣∣∣∣∣
D11 D15 D16

D51 D55 D56

D61 D65 D66

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
D̃11 + γD̃21 D̃12 + γD̃22

t
2
(D̃12 + γD̃22)

βD̃21 βD̃22
t
2
βD̃22

t
2
βD̃21

t
2
βD̃22

t2

4
βD̃22

∣∣∣∣∣∣∣∣∣


(6.1.19)

where the first part of the stiffness matrix represents the contribution of all layers

except the carcass and the second part represents the contribution of the carcass,

modified by the interlaminar penalty stiffness. Using the definitions of β and γ it

can be shown that the stiffness is symmetric.

The coefficients D̃11, D̃12 and D̃22 are derived using the material properties of

the orthotropic carcass layer. The plane stress relations between stress and strain

in a plane stress orthotropic material are

εa
εh

 =

 1
Ea

−νah
Eh

−νha
Ea

1
Eh

σa
σh

 (6.1.20)

where the subscripts a and h denote components in the axial and hoop directions,

respectively. The stresses are derived from consideration of equilibrium with external

forces:

σa =
Ñ

2πRINT tc
and σh = −RINTPc

tc
=

P̃

2πtc
(6.1.21)
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where tc is the thickness of the carcass.

Substituting Equation (6.1.21) into Equation (6.1.20) leads to

ε̃ = εa =
1

2πRINT tcEa
Ñ − νah

2πtcEh
P̃

ũrc = εhRINT = − νha
2πtcEa

Ñ +
RINT

2πtcEh
P̃ (6.1.22)

Expressed in matrix form, this becomes

 ε̃

ũrc

 =
1

2πRINT tc

 1
Ea

−νah
Eh
RINT

−νha
Ea
RINT

R2
INT

Eh

Ñ
P̃

 (6.1.23)

Inverting this relation gives:

Ñ
P̃

 =
2πtc

RINT (1− νhaνah)

 EaR
2
INT EaνahRINT

EhνhaRINT Eh

 ε̃

ũrc

 (6.1.24)

Equation (6.1.24) is formally identical to Equation (6.1.3), which allows the coeffi-

cients D̃11, D̃12 and D̃22 to be identified as

D̃11 =
2πRINT tcEa
(1− νhaνah)

D̃12 =
2πtcEaνah

(1− νhaνah)

D̃21 =
2πtcEhνha

(1− νhaνah)

D̃22 =
2πtcEh

RINT (1− νhaνah)
(6.1.25)

It is noted that the following relation holds for the orthotropic material parameters:
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νah
Eh

=
νha
Ea

(6.1.26)

This implies that D̃12 = D̃21.

In the case in which the carcass is separated, the following conditions apply



ε̃ = εa (Compatibility)

P̃ = 0 (Carcass unaffected by fluid pressure)

P TOT
INT = P F

INT

P TOT
EXT = P F

EXT

NTOT = N + Ñ (Axial equilibrium)

Thus the proposed model changes the initial elastic stiffness as follows

D∗ =


D11 0 D15 D16

0 D22 0 0

D51 0 D55 D56

D61 0 D65 D66

+ h(−(ur +
t

2
εr))


D̃11 + γD̃21 0 βD̃21

t
2
βD̃21

0 0 0 0

βD̃21 0 βD̃22
t
2
βD̃22

t
2
βD̃21 0 t

2
βD̃22

t2

4
βD̃22


(6.1.27)

where h(·) is the Heaviside step function:

h(x) =

0 x < 0

1 x ≥ 0

(6.1.28)

The stress becomes
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σ = D∗(ε− εp) (6.1.29)

6.2 Concluding remarks

In this Chapter, the phenomenon of carcass separation observed in results obtained

when applying axial tension to the detailed finite element model (Section 5.3.2), is

incorporated into the constitutive model developed for the beam element (Section

4.2) by introducing a conditional modification to the elastic stiffness matrix. This

modification is derived using expressions for the compatibility and equilibrium of

two concentric cylinders, alternatively in or out of contact together with definitions

of the radial generalised stresses and strain (Section 4.2). For consistency with

the finite element model, the modification takes into account the softened pressure-

overclosure relationship used to compute contact interactions described in Section

5.1.1. The modification developed has the advantage that no additional parameters

need be included in the constitutive model.

In the following chapter, the results of simulations carried out on the small-scale

finite element model shall be used to determine the parameters of the constitutive

model that best represent the behaviour of the flexible pipe under consideration.

To enable the constitutive model to better represent the behaviour of the flexible

pipe, the only simulations in which carcass separation does not occur shall be used

to determine the parameters; once this is complete, the stiffness modification will

be computed and the modifed constitutive model shall be used to predict the axial

force-displacement behaviour of the pipe, the results of which shall then be checked

against those from the finite element model.



Chapter 7

Parameter identification for a

sequential multi-scale analysis

The final part of the sequential computational homogenisation procedure presented

in this work is the determination of the parameters of the large-scale model from

results data obtained from a large set of simulations carried out on the small-scale

model. In this Chapter, calculations used to obtain these parameters will be de-

scribed, and all parameters determined will be listed.

Using the simulation results obtained for the finite element model (Section 5.4),

it becomes possible to obtain estimates of the most appropriate values for the param-

eters of the large-scale model (Chapter 5). The use of periodic boundary conditions

and use of the control node method for obtaining stress resultants ensures that this

procedure implements a sequential structural-to-structural multi-scale analysis as

described in Chapter 3.

In accordance with the constitutive model used in the large-scale model, three

sets of parameters need to be determined. The parameters of the initial elastic

stiffness matrix are derived in Section 7.1. The parameters a, b and c used in the

slip onset function are obtained by determining slip onset points in Section 7.2.

The linear hardening coefficients used to describe post-slip behaviour are derived

in Section 7.3. Parameters are derived for the flexible pipe in the state in which

the carcass is separated from the other layers. In order to correct for the increase

in axial stiffness due to carcass reattachment, the model described in Chapter 6 is

170
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used. Parameters for this model are calculated in Section 7.4.

7.1 Identification of elastic moduli

In this Section, the simulation data shall be used to determine the initial stiffness

matrix. As the aim is to fit the data to a symmetric, linear elastic model, data from

simulations where layer separation occurs will be disregarded, with the exception of

the situation where the carcass layer separates under axial-pressure loading. With

regard to this situation, the initial stiffness coefficients will be determined for the

case where the carcass is separated. This requires that carcass separation occurs in

all the simulation data used for parameter determination.

For a first simulation, where P 1
u and P 1

ε are applied and axial strain εa is pre-

scribed to be zero, the following two equations apply:

D55u
1
r +D56ε

1
r = P 1

u (7.1.1a)

D65u
1
r +D66ε

2
r = P 1

ε (7.1.1b)

where u1
r and ε1

r are the mean radial displacement and radial strain obtained in the

small-scale FE analysis under the loads P 1
u and P 1

ε .

A second simulation is carried out with P 2
u and P 2

ε applied:

D55u
2
r +D56ε

2
r = P 2

u (7.1.2a)

D65u
2
r +D66ε

2
r = P 2

ε (7.1.2b)

The coefficients may be found by solving the system of equations
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Loading ur (mm) εr (-)

P 1
u = 2.638MNm-1, P 1

ε = 69.58 kN 0.2135 9.362 × 10-3

P 2
u = 3.088MNm-1, P 2

ε = 22.12 kN 0.2740 2.059 × 10-3

Table 7.1: Simulations to obtain pressure coefficients


u1
r ε1

r 0 0

0 0 u1
r ε1

r

u2
r ε2

r 0 0

0 0 u2
r ε2

r




D55

D56

D65

D66

 =


P 1
u

P 1
ε

P 2
u

P 2
ε

 (7.1.3)

whose solution provides D55, D56, D65 and D66. Applying P 1
u = 2.638 MNm-1,

P 1
ε = 69.58 kN, P 2

u = 3.088 MNm-1 and P 2
ε = 22.12 kN, the radial displacements

and strains obtained in the small-scale FE analysis are reported in Table 7.1 and

result in the following values:

D55 = 1.0972× 1010 Nm-2

D56 = 2.9692× 107 Nm-1

D65 = 2.9359× 107 Nm-1

D66 = 6.7408× 106 N

Due to the assumed symmetry of the elasticity matrix, the coefficients D56 and D65

are set to

D56 = D65 =
2.9692 + 2.9359

2
× 107 = 2.95255× 107Nm-1

The coefficients D15 and D16 may be determined by considering the axial reaction

force in the above simulations. As the axial strain εa is zero, the following equations
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apply:

D15u
1
r +D16ε

1
r = N1

D15u
2
r +D16ε

2
r = N2 (7.1.4)

Therefore, the coefficients may be found by solving the following set of equations

u1
r ε1

r

u2
r ε2

r

D15

D16

 =

N1

N2

 (7.1.5)

The computed reactions in the small-scale simulations were N1 = 473.1 kN and

N2 = 551.2 kN, which results in the following coefficients:

D15 = D51 = 1.9715× 109 Nm-1

D16 = D61 = 5.6367× 106 N

In accordance with the symmetry of the proposed elastic model, it will be assumed

that D51 = D15 and D61 = D16.

To determine D11, a third simulation is conducted with P 3
u = P 2

u , P 3
ε = P 2

ε and

with the ends free to contract (i.e. N = 0 while εa 6= 0). In this situation, the

following equation for the axial force applies:

D11ε
3
a +D15u

3
r +D16ε

3
r = N = 0 (7.1.6)

which allows D11 to be calculated as follows:

D11 = −(D15ur +D16εr)/εz (7.1.7)
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Figure 7.1: Axial force vs. axial strain for different initially applied Pε (plot repro-
duced from Section 5.3.2).

The resulting values from the simulation were ε3
a = 4.221%, u3

r = 7.793 mm and

ε3
r = 3.895× 10−3 , which results in

D11 = 3.7353× 108 N (7.1.8)

For reasons of symmetry, pressure loading does not cause bending moments and

D25 and D26 (and by symmetry of the elastic stiffness matrix, D52 and D62) are

thus equal to zero. Therefore D22 can be obtained from the data in Figure 5.20 by

using values of bending moment and curvature after the first increment of bending

only. The size of the initial curvature increment is equal in all of these bending

simulations.

7.2 Identification of the parameters of the slip on-

set function

From Figure 5.23 no slip point is found and the slip function is proposed to be a

function of bending moment and curvature alone, and thus the coefficient b is set to

zero. The tangent bending stiffness values as a function of curvature (derived from
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Figure 7.2: Tangent bending stiffness

Figure 5.20) are presented in Figure 7.2.

It can be determined from Figure 7.2 that slip occurs at a roughly constant

curvature in all cases. There is a noticeable transition region where bending stiffness

decreases at a decreasing rate until the final bending stiffness is attained. The

coefficient c can be determined from the slip-onset function cM2−Pε = 0. Averaging

results for the four pressures simulations, this results in a value of c of 5.392 × 10-3

N-1m-2. It is also noted that, for the simulation with Pε = 530.9kN , bending stiffness

decreases to zero and the simulation terminates immediately before the curvature

step is completed. This indicates loss of structural stability under bending. From

inspection of the final deformed shape, it can be seen that this failure is associated

with high section ovalisation which tends to cause axisymmetric collapse of the pipe.

It is further noted that the hypothesis of a constant pre- and post-slip bending

stiffness appears to be approximately valid, apart from the cases Pε= 530.9 kN

(where the model showed difficulty converging at large curvatures) and Pε= 61.19

kN.
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7.3 Identification of the kinematic hardening co-

efficients

As no slip point can be found in axial simulations, H11 is set to zero.

From taking the average of the post-slip gradients in the bending moment-

curvature gradients presented in Figure 5.20, the hardening parameter H22 can be

estimated using the following relation for the tangent stiffness in linear hardening

elasticity:

dM

dχ
=

D22H22

D22 +H22

=⇒ H22 =

dM
dχ
D22

D22 − dM
dχ

Averaging the hardening coefficients for all curves in Figure 5.20 gives H22=8.06 ×

105 Nm2.

7.4 Modification for attached or detached carcass

It is recalled from the axial force simulations (results shown in Figures 5.23 and

7.1 and Section 5.3.2), that the axial stiffness of the model abruptly changes at

points which were found correspond to the separation of carcass layer from the

remaining layers of the FE model. In Chapter 6, a modification of the constitutive

model is proposed based on an analytical derivation of the critical conditions and

consequences for the axial stiffness of the model of such a separation. In this

Section, the modification to the axial stiffness due to the effects of the carcass

is calculated using parameters of the constitutive model identified earlier in this

Chapter, according to the derivation presented in Chapter 6.

The stiffness coefficients of the carcass layer are:
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D̃11 =
2πRtcEa

(1− νhaνah)
= 1.0606× 107

D̃12 =
2πtcEaνah

(1− νhaνah)
= 3.2968× 107

D̃21 =
2πtcEhνha

(1− νhaνah)
= 3.2968× 107

D̃22 =
2πtcEh

(1− νhaνah)
= 1.3294× 109

The parameters C, β and γ are

C =
1

2πRINTk
= 4.8227× 10−12

β =
1

1 + CD̃22

= 0.99363

γ = − CD̃12

1 + CD̃22

= −1.5798× 10−4

The addition to the stiffness matrix is then

DWITHC =


1.0601 0 3.2758 0.0022931

0 0 0 0

3.2758 0 132.09 0.093058

0.0022931 0 0.093058 0.000064726

× 107

Predictions of axial behaviour for Pε = 61.18 kN using the modified stiffness

matrix and the detailed FE model are shown in Figure 7.3.

These results show that the linear model predicts axial forces well up to the

point the carcass meets the other layers. However, even using the modification to

account for carcass separation the linear model does not predict axial stresses past

this point well. This requires that the carcass separation model be re-examined and

the FE model further investigated to discover the cause and mechanism of the large

increase in axial stiffness.
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Figure 7.3: Predictions of axial force from generalised strain data

7.5 Summary of model parameters

The model coefficients determined are presented in full in Table 7.4:
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Parameter Value Parameter Value

D11 3.7353× 108 N H11 0.0× 100 Nm2

D22 1.1528× 105 Nm-2 .

D15 1.9715× 109 Nm-1 H22 8.06× 105 Nm2

D16 5.6367× 106 N .

D55 1.0972× 1010 Nm-2 .

D56 2.9526× 107 Nm-1 RINT 9.73× 10−2 m

D66 6.7408× 106 N REXT 1.162× 10−2 m

b 0.0 Rc 9.94× 10−2 m

c 5.392 N-1m-2 .

Figure 7.4: Model parameters



Chapter 8

Conclusions

8.1 Key findings

In this work, a multi-scale method for the mechanical simulation of flexible pipes is

presented, drawing on existing large- and small-scale modelling techniques used for

flexible pipes, and on multi-scale techniques in computational mechanics.

A general framework is developed for computational homogenisation where mod-

els at both scales are comprised of structural elements (Chapter 3). By using general,

abstract spaces of displacement, strain, stress and forces and duality principles, it is

shown how the concepts and procedures of the first-order computational homogeni-

sation method may be generalised including that of the Hill-Mandel principle of

macro-homogeneity and method for imposing and recovering generalised stresses

and strains from the small-scale model. The solution of a nonlinear truss problem is

demonstrated using a coupled homogenisation approach based on these principles.

Good multi-scale convergence results are shown. This framework is novel, of general

applicability and allows the creation of a wider range of multi-scale models than was

previously possible using spatial averaging techniques.

Using the above methods, a sequential multi-scale analysis of flexible pipes is

proposed and carried out, which requires definition of a large-scale model and a

small-scale model, and determination of the parameters of the large-scale model

using simulation data from the small-scale model.

For the large-scale model, the nonlinear constitutive model developed by Bahtui

180
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(2008) is implemented in a user-defined element subroutine (coded in FORTRAN)

such that it can be used with the commercial finite element program Abaqus (Chap-

ter 4). A robust constitutive solver for this plasticity model was developed (Section

4.3) and the algorithm was shown to have good convergence properties for process-

ing various combined generalised stress states in the pipe. To enable the formulation

to be used in a beam where large displacements occur, an existing two-dimensional

corotational formulation is included in the coding. A new three-dimensional corota-

tional formulation was also developed (Section 4.5 and Appendix B), which makes

possible the use of beam elements in a three-dimensional riser simulations so that

multiaxial loading and torsion may be analysed.

A detailed finite element model of a flexible pipe has been developed (Chap-

ter 5). This model is based on shell elements and computes contact interactions

between all components in the pipe. The model incorporates recent developments

in contact modelling that reduce some of the limitations in using shell elements

by using a penalty method for enforcing normal contact constraints that represent

the true layer compliance. The model uses an implicit solution procedure. The

main innovation is the use of periodic boundary conditions imposed with a “control

node” and linear constraint equations. This follows standard practice in compos-

ites modelling. To enable the rapid creation of parameterised flexible pipe models

of arbitrary component dimensions and internal arrangement, a Python script was

written that automates the model creation steps in Abaqus/CAE.

The model is validated against two flexible pipe analytical models for axial,

internal pressure and external pressure and found to give fairly close results in terms

of bulk response and component stresses. Bending results using this technique show

reduced end effects (which are an artificial result of an over-constrained model) due

to the use of periodic boundary conditions. It is shown that boundary condition

choice affects not only component stresses but also initial bending stiffness and

energy loss through hysteresis. Contour plots of component stress, contact pressure

and tangential slip between components are shown to be significantly smoother than

results from previous finite element models of flexible pipes. A full set of results are

obtained using the model for a pipe under axial, bending, torsion and pressure
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loading. Radial displacement and radial strain results show that the model captures

the radial response of a pipe in a qualitatively realistic way.

It was discovered that, under combined pressure and axial loading, a sudden

and significant increase in the axial stiffness was observed to occur at axial strain

levels that varied with the pressure. The physical mechanism for this increase was

discovered to be due to the carcass separating from the other layers in the initial

pressurisation step. The carcass then re-attaches to the other layers when sufficient

axial loading is applied to the pipe, a phenomenon which may occur in practice in

operating regimes of high internal pressure, low external pressure and low tension.

In Chapter 6, an analytical derivation of this increase in axial stiffness is presented.

In Chapter 7, data from simulations using the detailed model are used to derive

parameters of the large scale model. In distinction to the work of Bahtui (2008),

no reduction in axial stiffness is observed at high axial strain and thus axial loading

is concluded not to cause interlaminar sliding. It is likely that this difference in

results is a consequence in the different boundary conditions used. The bending

response appears to indicate that initial bending stiffness of a flexible pipe varies

with the effective pressure. It is suggested that a better way to represent the pipe

response would be to use a purely plastic material model, in which yielding occurs

even for very small curvatures, and to model the hardening response as a nonlinear

relationship dependent on the pressure.

8.2 Future work

Several avenues for future investigation arising from this work can be identified.

Potential applications of the structural-to-structural computational homogenisation

procedure include the creation of multi-scale models of auxetic materials and honey-

comb structures. A further possibility is the creation of intuitive multi-scale models

for materials and structures consisting of a variety of structural elements (such as

springs, dampers and frictional sliders) at the small scale. This framework would

allow such models to be quickly investigated and modified.

For further work of finite-element-based modelling of flexible pipe, suggestions
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can be made regarding both the large and small-scale models.

The large-scale model could be made more complete by the addition of a mass

matrix. It is proposed that the corotational beam element could be used with the

buoyancy and external load relations developed by Yazdchi and Crisfield (2005).

Use of a mixed finite element method (as used in Flexcom) to improve convergence

is of theoretical and practical interest.

The results of the detailed finite element analyses in this work suggest that there

is scope for improvement in the constitutive models used in large-scale models of

flexible pipes. Formulation of new constitutive models should make full use of all

available test data to understand the phenomena and mechanisms that occur in

practice.

Regarding the detailed FE model, as an alternative to the use of shell elements

to model helical wires, the use of beam elements (as used by de Sousa et al. (2010))

could be investigated. In this case, attention would need to be paid to accurate rep-

resentation of the wire cross-section when computing contact interactions. Such ele-

ments would not “lie flat” on the supporting cylindrical surface, and this inaccuracy

in discretisation could lead to anomalies and inaccuracies. However, computations

may be faster and, depending on the wire’s cross-sectional aspect ratio, this may be

a better structural model of the wire. It is the author’s contention that implicit FE

methods, despite causing convergence difficulties, are more promising than explicit

methods for investigating the component stresses arising in a flexible pipe.

The multi-scale procedure may also be carried out as a nested analysis, in which

generalised stresses and the material tangent are obtained by direct simulation us-

ing the detailed model, for each integration point, for each iteration in the analysis.

The computational cost could be minimised by storing the last converged deformed

configuration of the detailed model in restart files, meaning that the latest strain in-

crements can be applied to the detailed model instead of the entire strain. Similarly,

the use of very short FE models (as used by Leroy et al. (2010)) in this context can

be investigated. Efforts could be made to reduce run times for the detailed model

by using reduced integration shell elements and improved parallelisation.

No convergence study was carried out on the mesh used for the detailed finite
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element model, as the initially proposed discretisation caused simulations to have

fairly long run-times and refining the mesh further was not practically feasible.

However with increased computing power and a more effective FE model this could

be done. It seems likely that the most critical feature that could require improved

discretisation to model accurately is the bending stresses and lateral displacements

of the tensile armour wires under pipe bending.

Finally, it should be noted that comparison with test results is essential to val-

idate the multi-scale model such that it can be used as a reliable tool for pipeline

analysis. Test data used for comparison would need to include results for the stresses

in the tensile wires, and if possible, the local bending stresses in the wires, as well

as bending moment-curvature data under different values of internal pressure.

In summary, the approach presented in this work seems promising though there

remains considerable scope for analysts and experimental investigators to develop

and calibrate reliable multi-scale finite element models for flexible pipes.
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Appendix A

Software for flexible pipe analysis

Coflexip, NKT Engineering, Wellstream

Relevant industry standards:

• API RP 17B, “Recommended Practice for Flexible Pipe”, 1988.

• Bureau Veritas, “Non-Bonded Flexible Steel Pipes used as Flow-Lines”.

• Veritec, “Guidelines for Flexible Pipes”, 1987.

• Det Norske Veritas, “Rules for Certification of Flexible Risers and Pipes”,

1994.

• MCS International, “Specification for Unbonded Flexible Pipe”, JIP Doc. No:

5-4-012/SP01, Rev. 5, January, 1996.

• MCS International, “Recommended Practice for Unbonded Flexible Pipe”,

JIP Doc. No: 5-4-029/RP01, Rev. 2, October, 1995.
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Appendix B

Tangent matrix derivation for 3D

corotational formulation

In this Appendix, the tangent matrix for the 3D corotational formulation described

in Section 4.5 is derived. Nomenclature follows that used in the above Section.

The tangent stiffness matrix is found by taking the variation of the internal force

vector:

δFint = δΘT F̂′int + ΘT δF̂′int

= δ[(TA + Hû)T ]F̂′int + ΘT K̂δû′

= [δTA + TδA + Hδû + δHû]F̂′int + ΘT K̂Θδu (B.0.1)

Next, the following derivatives are introduced:

H =
∂T

∂u
⇒ δT = H δu (B.0.2a)

Λ =
∂A

∂u
⇒ δA = Λ δu (B.0.2b)

Γ =
∂H

∂u
⇒ δH = Γ δu (B.0.2c)

It is noted that H and Λ are third-order tensors, and Γ is a fourth-order tensor.

Therefore,
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δFint = [(Hδu)A + T(Λδu) + H(Aδu) + (Γδu)û]F̂′int + ΘT K̂Θδu (B.0.3)

To manipulate this expression algebraically, we express the left hand side terms in

indical notation:

[(Hδu)A]ij = HiklδulAkj = (HiklAkj)δul (B.0.4a)

[T(Λδu)]ij = TikΛkjlδul = (TikΛkjl)δul (B.0.4b)

[H(Aδu)]ij = Hijk(Aklδul) = (HijkAkl)δul (B.0.4c)

[(Γδu)û]ij = Γijlkδukûl = (Γijlkûl)δuk (B.0.4d)

We now define the operations for tensors X and Y such that:

(X�Y)ijk
def
= XikjYk for O(X) = 3, O(Y) = 1 (B.0.5a)

(X⊕Y)ijk
def
= XilkYlj for O(X) = 3, O(Y) = 2 (B.0.5b)

(X�Y)ijk
def
= XijlkYl for O(X) = 4, O(Y) = 1 (B.0.5c)

(XY)12···(n−1)(n+1)···z
def
= X12···nYn···z for O(X) > 1, O(Y) > 1 (B.0.5d)

This allows the terms to expressed more compactly as:

(HiklAkj)δul = (H⊕A)ijl δul = (H⊕A)δu (B.0.6a)

(TikΛkjl)δul = (TΛ)ijlδul = (TΛ)δu (B.0.6b)

(HijkAkl)δul = (HA)ijlδul = (HA)δu (B.0.6c)

(Γijlkûl)δuk = (Γ� û)ijk δuk = (Γ� û)δu (B.0.6d)

The internal force vector then becomes:
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δFint = [(H⊕A + TΛ + HA + Γ� û)δu]T F̂′int + ΘT K̂Θ δu

= [Bδu]T F̂′int + ΘT K̂Θ δu (B.0.7)

Defining the transpose of a third-order tensor as

(A)Tijk
def
= Ajik

then

[(Bδu)T ]ij = (Bδu)ji = Bjikδuk = BT δu

[(Bδu)T F̂′int]i = Bjikδuk(F̂
′
int)j = (Bjik(F̂

′
int)j)δuk

δFint = (BT � F̂′int)δuk + ΘT K̂Θ δu

K =
∂Fint

∂u
= (BT � F̂′int) + ΘT K̂Θ (B.0.8)

K = ((H⊕A + TΛ + HA + Γ� û)T � F̂′int) + ΘT K̂Θ (B.0.9)

Therefore, in the following, we will develop expressions for the tensors T, A, H, Λ

and Γ .

B.1 Incremental displacement matrix A = QMAT

The matrix A is defined by the relation δû = Aδu. Using Equation (4.5.60) and

taking the variation of û,

δûk = δ(u− umid − urot)k = δuk − (δumid)k − (δurot)k (B.1.10)
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From Equation (4.5.62) follows:

δ(umid)k = 0.5(I0)kjδuj (B.1.11a)

δ(urot)k =



δ((Ωr − I)(x1 − xmid))

δ(Φr(Ωr))

0

δ((Ωr − I)(x2 − xmid))

δ(Φr(Ωr))

0


=



δΩrxrel

δΦr(Ωr)

0

δΩrxrel

δΦr(Ωr)

0


= DUROT δu (B.1.11b)

where Φr is the elemental rotation pseudo-vector associated with the rotation from

the initial to the current configuration; Ωr being the corresponding direction cosine

matrix for the rotation. The variations of the quantities Ωr = Ωr(û) and Φr =

Φr(Ωr(û)) are evaluated using the chain rule

δΩr =
∑
m

∂Ωr

∂êm

∂êm
∂u

δu
∂Ωr

∂u
= DOMU = INTER · INTER2

δΦr =
∑
m

∂Φr

∂Ωr

∂Ωr

∂êm

∂êm
∂u

δuj
∂Φ

∂u
= DPHI

or, in component form:

δΩ =
∂Ωkl

∂(êm)n

∂(êm)n
∂uj

δuj (B.1.12)

δΦ =
∂Φi

∂Ωkl

∂Ωr

∂(êm)n

∂(êm)n
∂uj

δuj (B.1.13)

B.1.1 Partial derivative of ê by u

Expressing the vectors êi as components in the global system and computing the

derivative:
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∂(êm · en)

∂uj
=
∂Tmn

∂uj
= Hmnj (B.1.14)

B.1.2 Partial derivative of Ωr by ê

Once the local triad has been determined, the rotation matrix can then be found

using (Ωr)ij = (êj · ei0). It is noted that this matrix is in the initial system. The

elemental rotation vector Φr(Ωr) is calculated using the equations for θ and n listed

in section 4. To compute the partial derivative with repect to the local triad (whose

components are given in the global system), the Ωr matrix is first converted into

the global system, then differentiated.

Ωkl = (ek · eh0)(êm · eh0)(el · em0)

δΩkl = (ek · eh0)((êm + δêm) · eh0)(el · em0)− (ek · eh0)(êm · eh0)(el · em0)

= (ek · eh0)(δêm · eh0)(el · em0)

= [(ek · eh0)(el · em0)eh0] · δêm

so

∂Ωkl

∂êm
= (ek · eh0)(el · em0)eh0

or, in component form:

(
∂Ωkl

∂êm

)
n

= ((ek · eh0)(el · em0)eh0) · en

= (ek · eh0)(el · em0)(eh0 · en) (B.1.15)

B.1.3 Partial derivative of Φr by Ωr

This partial derivative is derived by normalising the rotation vector Φi = θni and

the standard formulae for converting the “Euler axis and angle”’ representation of

a rotation to the direction cosine matrix:
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∂Φi

∂Ωkl

=
∂θ

∂Ωkl

ni +
∂ni
∂Ωkl

θ = G1 · ni + G2 · TWIST (B.1.16)

and, from the Rodrigues relationships,

θ = acos ((0.5(Ω11 + Ω22 + Ω33 − 1)) = TWIST (B.1.17)

ni = − εiklΩkl

2 sin θ
(B.1.18)

so

∂ni
∂Ωkl

=
(2 sin θ)(εikl) + εipqΩpq 2 cos θ ∂θ

∂Ωkl

4 sin2 θ

∂ni
∂Ωkl

=
−εikl sin θ + εipqΩpq cos θ ∂θ

∂Ωkl

2 sin2 θ
= G2 (B.1.19)

while

∂θ

∂Ωkl

=
−0.5 δkl√

1− ( tr(Ω)−1
2

)2

= G1 (B.1.20)

If the element rotations are zero, these equations become singular. In this case, the

derivative ∂Φi

∂Ωkl
is calcuated using the small rotation approximation to the rotation

matrix

Ωr(Φr) = I + S(Φr)

Φi = 0.5εkilΩkl (B.1.21)

where S(·) is the skew-symmetric matrix formed from the vector argument.

This results in
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∂Φi

∂Ωkl

= 0.5εkil = −0.5εikl (B.1.22)

Rearranging 5.1,5.2 for the code, we have:

INTER = (ek0 · eh)(eh0 · en)

INTER2 = (el0 · em)Hmnj

QMAT = I− 0.5I0 − DUROT

DUROT =



DOMU · XX1

DPHI

0

DOMU · XX2

DPHI

0


B.2 Evaluation of T, H, H∗ and H∗∗

Noting that the “degrees of freedom” 16x16 transformation matrix T is composed

of the “coordinate” transformation matrix T∗, the derivative of T can be found by

calculating the reduced 3x3x16 H∗ tensor:

H∗ =
∂T∗

∂u
H∗ijk =

∂(ê3 · ej)
∂uk

(B.2.23)

and then assembling. Recalling the definitions of the vectors êi from Equation

(4.5.58),
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ê3 =
x2 − x1 + u2 − u1

‖x2 − x1 + u2 − u1‖

(ê3 · ej) =
x2
j − x1

j + u2
j − u1

j

‖x2 − x1 + u2 − u1‖
=

x̃j(u)

‖ x̃(u) ‖

H∗3jk =
∂(ê3 · ej)
∂uk

=
‖ x̃ ‖ x̃j,k − x̃j ‖ x̃ ‖,k

‖ x̃ ‖2
(B.2.24)

∂x̃j
∂uk

=


−δjk k = 1, 2, 3

+δj(k−7) k = 9, 10, 11

0 otherwise

∂ ‖ x̃ ‖
∂uk

=


−x̃k
‖x̃‖ k = 1, 2, 3

+x̃k
‖x̃‖ k = 9, 10, 11

0 otherwise

(B.2.25)

H∗3jk =


−δjk
ELEN +

x̃j x̃k
ELEN3 k = 1, 2, 3

+δjk
ELEN −

x̃j x̃k
ELEN3 k = 9, 10, 11

H∗3jk =


−δjk
ELEN +

(ê3)j(ê3)k
ELEN k = 1, 2, 3

+δjk
ELEN −

(ê3)j(ê3)k
ELEN k = 9, 10, 11

(B.2.26)

For the second basis vector, using Equation. (4.5.59):

ê2 =
(I− ê3 ⊗ ê3)(Ω1 + Ω2)e20

‖ · ‖

(ê2)j =
(δjl − (ê3)j(ê3)l)((Ω1)lm + (Ω2)lm)(e20)m

‖ · ‖
(B.2.27)

Noting that the derivative of a unit vector v
‖v‖ is given by

∂

∂uk

(
vj
‖v‖

)
=
‖v‖2 ∂vj

∂uk
− vjvp ∂vp∂uk

‖v‖3
(B.2.28)

then, if the corresponding unnormed vector is the numerator of Equation (B.2.27),
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v = (δjl − (ê3)j(ê3)l)((Ω1)lm + (Ω2)lm)(e20)m (B.2.29)

and the derivative of the unnormed vector is

∂vj
∂uk

= (e20)m

[
∂(I− ê3 ⊗ ê3)jl

∂uk
(Ω1 + Ω2)lm + (I− ê3 ⊗ ê3)jl(

∂(Ω1)lm
∂uk

+
∂(Ω2)lm
∂uk

)

]
(B.2.30)

Then H∗2jk is equal to Equation (B.2.28) with the substitutions from Equations

(B.2.29) and (B.2.30).

The derivative of the nodal rotation matrix Ω1 is:

∂(Ω1)lm
∂uk

=
∂(Ω1)lm
∂(Φ1)s

∂(Φ1)s
∂uk

(B.2.31)

∂Ω1

∂Φ1

=
∂

∂Φ1

(I +
sin θ1

θ1

S(Φ1) +
1− cos θ1

θ2
1

S(Φ1)S(Φ1)) =
∂

∂Φ1

(I + ΩA
1 + ΩB

1 )

(B.2.32)

The derivatives comprising Equation (B.2.32) are given by

∂ΩA
1

∂(Φ1)i
=
θ1 cos θ1

∂θ1
∂(Φ1)i

− sin θ1
∂θ1

∂(Φ1)i

θ2
1

S(Φ1) +
sin θ1

θ1

∂S(Φ1)

∂Φ1

= DOM1A

(B.2.33)

∂θ1

∂(Φ1)i
=

(Φ1)i
θ1

(B.2.34)

∂Sik(Φ1)

∂(Φ1)l
= −εikl (B.2.35)

and
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∂ΩB
1

∂Φ1

=
θ2

1 sin θ1
∂θ
∂Φ1
− 2θ1(1− cos θ) ∂θ1

∂Φ1

θ4
1

S(Φ1)S(Φ1)+

1− cos θ1

θ2
1

∂

∂Φ1

(S(Φ1)S(Φ1)) = DOM1B (B.2.36)

Using the definition

Zijlm = εijkεklm = det


δik δil δim

δjk δjl δjm

δkk δkl δkm

 (B.2.37)

then

∂

∂(Φ1)n
(S(Φ1)ikS(Φ1)km) = εijk(Φ1)jεklm(Φ1)l

=
∂

∂(Φ1)n
((εijkεklm)(Φ1)j(Φ1)l) = Zijlm

∂

∂(Φ1)n
[(Φ1)j(Φ1)l]

= Zijlm [(Φ1)lδjn + (Φ1)jδln] (B.2.38)

Finally,

∂(Φ1)l
∂uk

=

δk(l+3) k = 4, 5, 6

0 otherwise

∂(Φ2)l
∂uk

=

δk(l+11) k = 12, 13, 14

0 otherwise

(B.2.39)

For the case of zero rotation, the derivative ∂Ω1

∂Φ1
is evaluated using the small rotation

approximation for the rotation matrix

Ω1(Φ1) = I + S(Φ1) (B.2.40)

leading to
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∂Ωij

∂Φk

= εikj = −εijk (B.2.41)

By replacing the subscript “1’ ’with “2” on Ω, Equations (B.2.31)-(B.2.41) can also

be used for calculating ∂(Ω2)lm
∂uk

.

The derivative of the projector matrix (I− ê3 ⊗ ê3) is1 :

∂(I− ê3 ⊗ ê3)jl
∂uk

= −∂((ê3)j(ê3))l
∂uk

= −(ê3)j
∂uk

(ê3)l − (ê3)j
(ê3)l
∂uk

=

−H∗3jk(ê3)l − (ê3)jH
∗
3lk (B.2.42)

For the third basis vector:

ê1 = ê2 × ê3

∂(ê1)i
∂un

= εijk
∂(ê2)j
∂un

(ê3)k + εipq(ê2)p
∂(ê3)q
∂un

= εijkH
∗
2jn(ê3)k + εipq(ê2)pH

∗
3qn

(B.2.43)

Considering how the coordinate transformation matrix T∗ is derived, it can be seen

that it is dependent on the translational degrees of freedom only.

The full 16x16x16 tensor H is

1This derivative makes use of the Rodrigues formula for Ω1(Φ1), where θ1 =‖ Φ1 ‖ and S(Φ1)
is the skew-symmetric matrix with components Sik = εilkΦl
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H1:16,1:16,k =



H∗1:3,1:3,k 0 0 0 0 0

0 H∗1:3,1:3,k 0 0 0 0

0 0 02x2 0 0 0

0 0 0 H∗1:3,1:3,k 0 0

0 0 0 0 H∗1:3,1:3,k 0

0 0 0 0 0 02x2


k

(B.2.44)

B.3 Derivation of geometric tangent matrix

Correct evaluation of the global external force vector requires knowledge of the

tensor Λijk =
∂Aij

∂uk
(Equation (B.0.2b)). Also, for optimal convergence, the correct

nonlinear corotational tangent stiffness matrix (Equation (B.0.9) ) should be used.

If Equation (4.5.62), (B.1.10), (B.1.11a), (B.1.11b), (B.1.12) and (B.1.13) are used

to write A as

Akj = I− 0.5I0 −



∂Ωr

∂ê
∂ê
∂u

(x1 − xmid)

∂Φr

∂Ωr

∂Ωr

∂ê
∂ê
∂u

0

∂Ωr

∂ê
∂ê
∂u

(x2 − xmid)

∂Φr

∂Ωr

∂Ωr

∂ê
∂ê
∂u

0


(B.3.45)

then
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∂Akj

un
=

∂

un



∂Ωr

∂ê
∂ê
∂u

(x1 − xmid)

∂Φr

∂Ωr

∂Ωr

∂ê
∂ê
∂u

0

∂Ωr

∂ê
∂ê
∂u

(x2 − xmid)

∂Φr

∂Ωr

∂Ωr

∂ê
∂ê
∂u

0


(B.3.46)

The first row of this matrix is

∂

∂u
(
∂Ωr

∂ê

∂ê

∂u
)(x1 − xmid) =

∂Ωkl

∂(êp)q

∂

∂un
(
∂(êp)q
∂um

)((x1)m − (xmid)m)

=
∂Ωkl

∂(êp)q
Γpqmn((x1)m − (xmid)m) (B.3.47)

Similarly, the fourth row of Equation (B.3.46) becomes

∂Ωkl

∂(êp)q
Γpqmn((x2)m − (xmid)m) (B.3.48)

The derivatives of the second and fifth row are

∂

∂un
(
∂Φi

∂Ωkl

∂Ωkl

∂(êp)q

∂(êp)q
∂um

) =
∂Ωkl

∂(êp)q

[
∂

∂un
(
∂Φi

∂Ωkl

)
∂(êp)q
∂um

+
∂Φi

∂Ωkl

Γpqmn

]
(B.3.49)

where

∂

∂un
(
∂Φi

∂Ωkl

) =
∂

∂un
(
∂θ

∂Ωkl

ni +
∂ni
∂Ωkl

θ)

=
∂

∂un
(
∂θ

∂Ωkl

)ni +
∂θ

∂Ωkl

∂ni
∂un

+
∂

∂un
(
∂ni
∂Ωkl

)θ +
∂ni
∂Ωkl

∂θ

∂un

= Wni +
∂θ

∂Ωkl

X + Yθ +
∂ni
∂Ωkl

Z (B.3.50)
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With W, X, Y and Z being given by

W =
∂

∂un
(
∂θ

∂Ωkl

) = −0.5δkl
∂

∂un

[1−
(
tr(Ωkl)− 1

2

)2
]−0.5


= 0.25δkl

[
1−

(
tr(Ωkl)− 1

2

)2
]−1.5

(tr(Ωkl)− 1)
∂(tr(Ωkl))

∂un
(B.3.51)

∂(tr(Ωkl))

∂un
= δkl

∂Ωkl

∂un
= δkl

∂Ωkl

∂(êp)q

∂(êp)q
∂un

(B.3.52)

X =
∂ni
∂un

=
∂ni
∂Ωpq

∂Ωpq

∂(êr)s

∂(êr)s
∂un

(B.3.53)

Z =
∂θ

∂un
=

∂θ

∂Ωpq

∂Ωpq

∂(êr)s

∂(êr)s
∂un

(B.3.54)

The unknown terms in the above equations for (B.3.49) are ∂ni

∂Ωkl
and ∂

∂un

(
∂ni

∂Ωkl

)
.

∂ni
∂Ωkl

=
−εikl sin θ + εipqΩpq cos θ ∂θ

∂Ωkl

2 sin2 θ
(B.3.55)

Y =
∂

∂un

(
∂ni
∂Ωkl

)
=
−εikl cos θ ∂θ

∂un

2 sin2 θ
+
εipq

∂Ωpq

∂un
cos θ ∂θ

∂Ωkl

2 sin2 θ

−
εipqΩpq sin θ ∂θ

∂un
∂θ
∂Ωkl

2 sin2 θ
+
εipqΩpq cos θ ∂

∂un

(
∂θ
∂Ωkl

)
2 sin2 θ

+

(
εikl sin θ − εipqΩpq cos θ ∂θ

∂Ωkl

)
∂θ
∂ul

sin2 θ tan θ

=
−εikl cos θ Z(n)

2 sin2 θ
+
εipq

∂Ωpq

∂(êy)z
H∗yzn cos θ ∂θ

∂Ωkl

2 sin2 θ

−
εipqΩpq sin θ Z(n) ∂θ

∂Ωkl

2 sin2 θ
+
εipqΩpq cos θ W(k, l, n)

2 sin2 θ

+

(
εikl sin θ − εipqΩpq cos θ ∂θ

∂Ωkl

)
Z(l)

sin2 θ tan θ
(B.3.56)

The only remaining unknown that is required to calculate Λ is Γ.
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B.3.1 Evaluating Γ3jkl

Γ =
∂H

∂u

Recognising the only nonzero elements of H are contained within H∗, only the

3x3x16x16 sub-tensor

Γ∗ =
∂H∗

∂u
(B.3.57)

must be calculated; the full tensor will be assembled afterwards. From Equation

(B.2.24),

H∗3jk =
∂(ê3 · ej)
∂uk

=
‖ x̃ ‖ x̃j,k − x̃j ‖ x̃ ‖,k

‖ x̃ ‖2

Γ∗3jkl =
∂H∗∗3jk
∂ul

Γ∗3jkl =
‖x̃‖2 ∂N

∂ul
−N(2‖x̃‖∂‖x̃‖

∂ul
)

‖x̃‖4

=



∂N
∂ul

‖x̃‖2 −
2Nx̃l
‖x̃‖4 l = 1, 2, 3

∂N
∂ul

‖x̃‖2 + 2Nx̃l
‖x̃‖4 l = 9, 10, 11

0 otherwise

(B.3.58)

where N is the numerator of Equation (B.2.24)

N = ‖x̃‖x̃j,k − x̃j‖x̃‖,k (B.3.59)

∂N

∂ul
=
∂‖x̃‖
∂ul

x̃j,k + ‖x̃‖ ∂
∂ul

(x̃j,k)−
∂x̃j
∂ul
‖x̃‖,k − x̃j

∂

∂ul
(‖x̃‖,k) (B.3.60)

the only unknown terms in the final equation are:
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∂

∂ul
(x̃j,k) = 0 (B.3.61)

∂

∂ul
(‖x̃‖,k) =


∂
∂ul

(
−x̃k
‖x̃‖

)
k = 1, 2, 3

∂
∂ul

(
x̃k
‖x̃‖

)
k = 7, 8, 9

0 otherwise

=


H∗3kl k = 1, 2, 3

−H∗3kl k = 9, 10, 11

0 otherwise

(B.3.62)

B.3.2 Evaluating Γ2jkl

Letting v be the numerator of the normed vector expression of (ê2)j (Equation

(B.2.27)),

v = (δjk − (ê3)j(ê3)k)((Ω1)kl + (Ω2)kl)(e20)l (B.3.63)

along with its derivative (Equation (B.2.30)) and the expression for the derivative

of its norm (Equation (B.2.28)), then
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Γ∗2jkl =
∂H∗∗2jk
∂ul

=
∂

∂ul

(
∂

∂uk

(
vj
‖v‖

))
=

∂

∂ul

(
∂

∂uk

(
(δjl − (ê3)j(ê3)l)((Ω1)lm + (Ω2)lm)(e20)m

‖ · ‖

))
=

∂

∂ul

(
‖v‖2 ∂vj

∂uk
− vjvp ∂vp∂uk

‖v‖3

)

=
‖v‖3 ∂

∂ul
(‖v‖2 ∂vj

∂uk
− vjvp ∂vp∂uk

)− 3‖v‖2 ∂‖v‖
∂ul

(‖v‖2 ∂vj
∂uk
− vjvp ∂vp∂uk

)

‖v‖6

=
‖v‖(2‖v‖∂‖v‖

∂ul

∂vj
∂uk

+ ‖v‖2 ∂2vj
∂ul∂uk

− ∂vj
∂ul
vp

∂vp
∂uk
− vj ∂vp∂ul

∂vp
∂uk
− vjvp ∂2vp

∂uk∂ul
)

‖v‖4

−
3∂‖v‖
∂ul

(‖v‖2 ∂vj
∂uk
− vjvp ∂vp∂uk

)

‖v‖4

(B.3.64)

=

‖v‖
[
2‖v‖

(
vz

∂vz
∂un

‖v‖

)
∂vj
∂uk

+ ‖v‖2 ∂2vj
∂ul∂uk

− ∂vj
∂ul
vp

∂vp
∂uk
− vj ∂vp∂ul

∂vp
∂uk
− vjvp ∂2vp

∂uk∂ul

]
‖v‖4

−
3

(
vz

∂vz
∂ul

‖v‖

)
(‖v‖2 ∂vj

∂uk
− vjvp ∂vp∂uk

)

‖v‖4

=
2 vz

∂vz
∂un

∂vj
∂uk

+ ‖v‖2 ∂2vj
∂ul∂uk

− ∂vj
∂ul
vp

∂vp
∂uk
− vj ∂vp∂ul

∂vp
∂uk
− vjvp ∂2vp

∂uk∂ul

‖v‖3

−
3vz

∂vz
∂ul

(
‖v‖2 ∂vj

∂uk
− vjvp ∂vp∂uk

)
‖v‖5

Noting that

∂‖v‖
∂un

=
vz

∂vz
∂un

‖v‖
(B.3.65)
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∂2vj
∂uk∂un

= (e20)m

[
∂2(I− ê3 ⊗ ê3)jl

∂uk ∂un
(Ω1 + Ω2)lm

]
+ (e20)m

[
∂(I− ê3 ⊗ ê3)jl

∂uk

(
∂(Ω1)lm
∂un

+
∂(Ω2)lm
∂un

)]
+

(e20)m

[
∂(I− ê3 ⊗ ê3)jl

∂un

(
∂(Ω1)lm
∂uk

+
∂(Ω2)lm
∂uk

)
+ (I− ê3 ⊗ ê3)jl

(
∂2(Ω1)lm
∂uk∂un

+
∂2(Ω2)lm
∂uk∂un

)]
(B.3.66)

where

∂2(I− ê3 ⊗ ê3)jl
∂uk ∂un

=
∂

∂un
(H∗3jk(ê3)l − (ê3)jH

∗
3lk)

= Γ∗3jkn(ê3)l + H∗3jkH
∗
3ln −H∗3jnH

∗
3lk − Γ∗3lkn(ê3)j (B.3.67)

and

∂2(Ω1)lm
∂uk∂un

=
∂2(Ω1)lm
∂(Φ1)s ∂un

∂(Φ1)s
∂uk

=
∂

∂un

(
∂ΩA

1

∂(Φ1)s
+

∂ΩB
1

∂(Φ1)s

)
∂(Φ1)s
∂uk

=
∂

∂(Φ1)z

(
∂ΩA

1

∂(Φ1)s
+

∂ΩB
1

∂(Φ1)s

)
∂(Φ1)z
∂un

∂(Φ1)s
∂uk

(B.3.68)

with the component
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∂2(ΩA
1 )lm

∂(Φ1)i∂(Φ1)z
=
θ1 cos θ1

∂θ1
∂(Φ1)i

− sin θ1
∂θ1

∂(Φ1)i

θ2
1

∂Slm(Φ1)

∂(Φ1)z
+ . . .

+ Slm(Φ1)

(
θ2

1P1 − 2θ1
∂θ1

∂(Φ1)z
(θ1 cos θ1

∂θ1
∂(Φ1)i

− sin θ1
∂θ1

∂(Φ1)i
)

θ4
1

)
+ . . .

+

(
θ1 cos θ1

∂θ1
∂(Φ1)z

− sin θ1
∂θ1

∂(Φ1)z

θ2
1

)
∂Slm(Φ1)

∂(Φ1)i

= −εlmz
(

(Φ1)i(θ1 cos θ1 − sin θ1)

θ3
1

)
+

(
θ3

1P1 − 2(Φ1)z(Φ1)i(θ1 cos θ1 − sin θ1)

θ5
1

)
Slm(Φ1)

− εlmi
(

(Φ1)z(θ1 cos θ1 − sin θ1)

θ3
1

)
+

sin θ1

θ1

∂2Slm(Φ1)

∂(Φ1)i∂(Φ1)z
(B.3.69)

noting that

∂2Slm(Φ1)

∂(Φ1)i∂(Φ1)z
= 0

and

P1 =
∂θ1

∂(Φ1)z
cos θ1

∂θ1

∂(Φ1)i
− θ1

∂θ1

∂(Φ1)i
sin θ1

∂θ1

∂(Φ1)z
+ θ1 cos θ1

∂2θ1

∂(Φ1)i∂(Φ1)z
− . . .

− cos θ1
∂θ1

∂(Φ1)z

∂θ1

∂(Φ1)i
− sin θ1

∂2θ1

∂(Φ1)z∂(Φ1)i

= −θ1
∂θ1

∂(Φ1)i
sin θ1

∂θ1

∂(Φ1)z
+ (θ1 cos θ1 − sin θ1)

∂2θ1

∂(Φ1)z∂(Φ1)i

(B.3.70)

which contains the term

∂2θ1

∂(Φ1)i∂(Φ2)z
=

∂

∂(Φ)z

(
(Φ1)i
θ1

)
=
θ2

1δiz − (Φ1)i(Φ1)z
θ3

1

(B.3.71)

The second component of Equation (B.3.68) is
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∂2(ΩB
1 )lm

∂(Φ)i∂(Φ)z
= P2Sly(Φ1)Sym(Φ1)+

2
∂θ1

∂(Φ1)i

(
θ2

1 sin θ1 − 2θ1(1− cos θ1)

θ4
1

)
∂Sly(Φ1)

∂(Φ1)z
Sym(Φ1)+

+

(
1− cos θ1

θ2
1

)
∂2

∂(Φ1)i∂(Φ1)z
(Sly(Φ1)Sym(Φ1))+

+
∂θ1

∂(Φ1)z

(
θ2

1 sin θ1 − 2θ1(1− cos θ1)

θ4
1

)
∂

∂(Φ1)i
(Sly(Φ1)Sym(Φ1)) (B.3.72)

= P2Sly(Φ1)Sym(Φ1)

− 2εlyz(Φ1)i

(
θ1 sin θ1 − 2(1− cos θ1)

θ4
1

)
Sym(Φ1)+

+

(
1− cos θ1

θ2
1

)
(εlyiεymz + εlyzεymi) +

− (Φ1)z

(
θ1 sin θ1 − 2(1− cos θ1)

θ4
1

)
(εlyiSym(Φ1) + εymiSly(Φ1)) (B.3.73)

containing the term

P2 =
θ4

1P3 − 4θ3
1

∂θ1
∂(Φ1)z

(θ2
1 sin θ1

∂θ1
∂(Φ1)i

− 2θ1(1− cos θ1) ∂θ1
∂(Φ1)i

)

θ8
1

=
θ2

1P3 − 4(Φ1)z(Φ1)i(θ1 sin θ1 − 2 + 2 cos θ1)

θ6
1

(B.3.74)

which itself contains the term
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P3 = 2θ1
∂θ1

∂(Φ1)z
sin θ1

∂θ1

∂(Φ1)i
+ θ2

1 cos θ1
∂θ1

∂(Φ1)z

∂θ1

∂(Φ1)i
+

θ2
1 sin θ1

∂2θ1

∂(Φ1)z∂(Φ1)i
− (2− 2(cos θ1 − θ1 sin θ1))

∂θ1

∂(Φ1)z

∂θ1

∂(Φ1)i
−

2θ1(1− cos θ1)
∂2θ1

∂(Φ1)i∂(Φ1)z

=
∂θ1

∂(Φ1)z

∂θ1

∂(Φ1)i

[
2θ1 sin θ1 + θ2

1 cos θ1 − (2− 2(cos θ1 − θ1 sin θ1))
]

+
∂2θ1

∂(Φ1)z∂(Φ1)i

[
θ2

1 sin θ1 − 2θ1(1− cos θ1)
]

=
∂θ1

∂(Φ1)z

∂θ1

∂(Φ1)i

[
θ2

1 cos θ1 + 2 cos θ1 − 2
]

+
∂2θ1

∂(Φ1)z∂(Φ1)i

[
θ2

1 sin θ1 − 2θ1 + 2θ1 cos θ1

]
(B.3.75)

The final part of the second component of Equation (B.3.68) is given by

∂2(Sly(Φ1)Sym(Φ1))

∂(Φ1)i(Φ1)z
=

∂

∂(Φ1)z

[
∂Sly(Φ1)

∂(Φ1)i
Sym(Φ1) + Sly(Φ1)

∂Sym(Φ1)

∂(Φ1)i

]
=

∂

∂(Φ1)z
[−εlyiSym(Φ1)− Sly(Φ1)εymi]

= εlyiεymz + εlyzεymi (B.3.76)

In the case of zero rotation, then, instead of equations (B.3.68)-(B.3.76), equation

(B.2.41) is substituted into (∂
2(Ω1)lm
∂uk∂un

), giving:

∂2(Ω2)lm
∂uk∂un

=
∂

∂un

(
∂Ωlm

∂(Φ1)s

)
∂(Φ1)s
∂uk

=
∂

∂un
(−εlms)

∂(Φ1)s
∂uk

= 0

The second derivatives of the rotations at the second node (∂
2(Ω2)lm
∂uk∂un

) are calculated

in a similar manner.
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B.3.3 Evaluation of Γ1jkl

Γ∗1jkl =
∂H∗∗1jk
∂ul

=
∂

∂ul
(
∂(ê1)i
∂un

)

=
∂

∂ul
(εijkH

∗
2jn(ê3)k + εipq(ê2)pH

∗
3qn)

= εijk(Γ
∗
2jnl(ê3)k + H∗2jnH

∗
3kl) + εipq(H

∗
2plH

∗
3qn + (ê2)pΓ

∗
3qnl) (B.3.77)

The full 16x16x16x16 tensor Γ is

Γijkl = Γ(i+3)(j+3)kl = Γ(i+8)(j+8)kl = Γ(i+11)(j+11)kl = Γ∗ijkl

Γij(k+8)l = Γ(i+3)(j+3)(k+8)l = Γ(i+8)(j+8)(k+8)l = Γ(i+11)(j+11)(k+8)l = Γ∗ijkl

for i, j, k = 1, 2, 3, l = 1, 2, · · · 16 (B.3.78)



Appendix C

Model generator script

Introduction

The following provides usage instructions and partial code listing for the Python

script used to generate flexible pipe models in the Abaqus/CAE environment. This

code allows the creation of a multi-layer flexible pipe with arbitrary dimensions, layer

order, layer type and materials. The code was created using the Abaqus Python

Developer Environment (PDE)1. The script is used with the menu path File–>Run

Script. . . and selecting the script file. Once the model has been generated, a new

job must be created and executed as usual. To use the file to create different flexible

pipe models, the script file must be edited as described in Section C.

Partial code listing

The following shows the modifiable part of the script file used to generate the stan-

dard flexible pipe model used in this project.

1Accessed with menu path File–>Abaqus PDE. . .

220
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1 #################################################
# SHELL−BASED FLEXIBLE PIPE MODEL GENERATOR
#################################################
#
# Version 1.0
# Created by Ben Edmans at Brunel Univers i t y , London , UK
# 16/02/2012
#
#################################################
from part import ∗

11 from mate r i a l import ∗
from s e c t i o n import ∗
from assembly import ∗
from s tep import ∗
from i n t e r a c t i o n import ∗
from load import ∗
from mesh import ∗
from job import ∗
from sketch import ∗
from v i s u a l i z a t i o n import ∗

21 from connectorBehavior import ∗
#
#################################################
# MODIFY CODE IN THIS SECTION ONLY
#################################################
#
# MODEL PARAMETERS
modelname=’ Model−1 ’
jobname=’ Job−1 ’
#

31 # MASTER LAYER LIST (INSIDE LAYER FIRST)
i nn rad iu s =[0.0959 e0 , 0 . 0 9 7 3 e0 , 0 . 0 9 9 3 e0 , 0 . 1 0 3 3 e0 , 0 . 1 0 5 5 e0 ,

0 .1095 e0 ]
thck = [ 0 . 0 0 1 4 , 0 . 0 0 2 , 0 . 0 0 4 , 0 . 0 0 1 7 5 , 0 . 0 0 4 , 0 . 0 0 7 1 5 ]
norm=[1e10 , 3 . 5 e8 , 2 e11 , 2 e11 , 2 e11 , 2 e11 ]
type =[ ’C ’ , ’ S ’ , ’W’ , ’S ’ , ’W’ , ’S ’ ]
mat=[ ’ Carcass ’ , ’HDPE’ , ’ S t e e l ’ , ’HDPE’ , ’ S t e e l ’ , ’HDPE’ ]
width = [ 0 , 0 , 0 . 0 1 25 , 0 , 0 . 0 12 , 0 ]
l ay =[0 ,0 ,1 ,0 ,−1 ,0 ]
number =[0 ,0 , 46 , 0 , 48 , 0 ]

41 p ipe l ength =0.868
#
#
# FRICTION
f r i c t i o n =0.16
#
# MESH PARAMETERS
ne lc i rcum=60
n e l l e n g t h =30
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n e l w i r e s =60
51 #

# MATERIAL PARAMETERS − POLYMER AND STEEL
#
epolymer=3e8
nupolymer =0.4
e s t e e l =2e11
n u s t e e l =0.3
#
# MATERIAL PARAMETERS − CARCASS
E1=150e9

61 E2=12.4 e9
E3=1e10
nu12=0.3
nu13=0.0
nu23=0.0
G12=1e10
G13=1e10
G23=1e10
#
# BOUNDARY CONDITION CHOICE (P=Periodic , FIP=Fixed−in−p lane )

71 bcc=’P ’
#
#
# LOADING
#
PINT=30e6
PEXT=23.4 e6
#
# DOF CONSTRAINTS ON CONTROL NODE
#

81 dof1 =[ ’FIXED ’ , 0 ]
dof2 =[ ’FIXED ’ , 0 ]
dof3 =[ ’FIXED ’ , 0 ]
dof4 =[ ’FIXED ’ , 0 ]
dof5 =[ ’FIXED ’ , 0 ]
dof6 =[ ’FIXED ’ , 0 ]
#
#
# FORCES/MOMENTS ON CONTROL NODE
fm1=0

91 fm2=0
fm3=0
fm4=0
fm5=0
fm6=0
#
####################################################
. . .
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[FURTHER CODING]

Code beyond this point should not be modified (unless there are problems in exe-

cution, see Section C).

Modifying the code

Fundamental layer data are entered in the section marked “Master layer list”. Each

entry in the following list gives a value or type designator for a layer. The first value

in each list provides data for the innermost layer. Each list must have a number

of entries equal to the number of layers in the pipe. Layer dimensions are defined

in terms of layer inner radii and layer thicknesses, allowing for initial gaps to be

specified. The list “norm” supplies the radial stiffnesses for the layers which is used

to calculate penalty stiffnesses for contact interactions, as described elsewhere. The

entries in the list “type” must be either “C”, designating the layer is the carcass

layer, “W”, designating the layer as comprised of helical wires, or “S”, specifying

that the layer is a solid cylindrical sheath.

Three preset material models are supplied, designated “Carcass”, “Steel” and

“HDPE”. “Carcass” is a 3D orthotropic linear elastic material; “Steel” and “HDPE”

are linear elastic materials. The values used can be easily changed, but the use of

new material models requires modification of the code outwith the “control panel”

presented above.

The list “width” refers to the chord width of helical wires ( measured in the plane

of the pipe cross-section). Values are not meaningful for other layers. the list “lay”

refers to the lay angle of layers comprised of helical wires. It may take the value 1

or -1. Values for other layers are not meaningful. The list “number” refers to the

number of helical wires in the layer. Values for other layers are not meaningful.

Control of discretisation is achieved with the parameters “nelcircum”, the num-

ber of elements around the circumference of carcass and solid layers, “nellength”, the

number of elements used alond the length of carcass and solid layers and“nelwires”,

the number of elements used along the length of helical wires.

This script automatically creates pressure loads on the second layer (“PINT”)
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and on the outer layer (“PEXT”) and well as forces and moments (“fm”) on the

control node. In the numbering convention for fm, fm3 is axial force, fm6 is torsion,

fm4 and fm5 are bending moments and fm2 and fm3 are transverse shear loading.

Boundary conditions may be applied to the control node. The numbering of the

dof lists corresponds to the numbering of the fm parameters. The first entry in the

lists must be either “FIXED”, if the boundary condition is prescribed, or “FREE”

if it is left free. The second entry is the magnitude of the imposed displacement/ro-

tation, which is not meaningful if the first entry is “FREE”.

Important notes

Python is an object-orientated language whose commands mirror the operations

that may be carried out using the graphical user interface of the Abaqus/CAE

environment. Repeated operations can be automated in loops in Python. Using

Python scripts is a more convenient but also more limited way of creating models

as many low-level operations that can be specified using keywords (in manually

generated input files) are not available as Abaqus/CAE operations. Specifically, the

options available for specifying nodes are limited. Some nodes in this script are

selected using viewport-based getSequenceFromMask commands which are known

to cause minor stability problems when running the script on different platforms. If

this occurs, the author’s advice is to perform the missing operations in Abaqus/CAE

and copy the new keys (e.g. ‘[#3 ]’) to the script file.

Loops and conditional statements in Python are controlled by indentation of the

code lines: lines with the same indentation are executed at the same level in the

nesting hierarchy. Thus, it is important to remove or alter the spaces at the start

of each line.

If fixed-in-plane boundary conditions rather than periodic boundary conditions

are required, this may be achieved by changing bcc=“P” to bcc=“FIP” in the above

code. However, this will not create the kinematic constraints on the end planes or

loads or boundary conditions on control nodes. Currently, these features must be

added manually.

The objects created are named in a logical manner. These can be changed by
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changing the relevant key (e.g [‘Part-1’]) to the desired name wherever it occurs in

the code.
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