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Abstract  

Financial markets, particularly capital and stock markets, play an important role in 

mobilizing and canalising the idle savings of individuals and institutions to the investment 

options where they are really required for productive purposes. The prediction of stock 

prices and returns is carried out in order to enhance the quality of investment decisions in 

stock markets, but it is considered to be tricky and complicates tasks as these prices behave 

in a random fashion and vary with time. Owing to the potential of returns and inherent risk 

factors in stock market returns. Various stock market prediction models and decision 

support systems such as Capital asset pricing model, the arbitrage pricing theory of Ross, the 

inter-temporal capital asset pricing model of Merton ,Fama and French five-factor model, 

and zero beta model to provide investors with an optimal forecast of stock prices and 

returns. In this research thesis, a stock market prediction model consisting of two parts is 

presented and discussed. The first is the three factors of the Fama and French model (FF) at 

the micro level to forecast the return of the portfolios on the Saudi Arabian Stock Exchange 

(SASE) and the second is a Value Based Management (VBM) model of decision-making. The 

latter is based on the expectations of shareholders and portfolio investors about taking 

investment decisions, and on the behaviour of stock prices using an accurate modern 

nonlinear technique in forecasting, known as Artificial Neural Networks (ANN).  

This study examined monthly data relating to common stocks from the listed companies of 

the Saudi Arabian Stock Exchange from January 2007 to December 2011. The stock returns 

were predicted using the linear form of asset pricing models (capital asset pricing model as 

well as Fama and French three factor model). In addition, non-linear models were also 

estimated by using various artificial neural network techniques, and adaptive neural fuzzy 

inference systems. Six portfolios of stock predictors are combined using: average, weighted 

average, and genetic algorithm optimized weighted average. Moreover, value-based 

management models were applied to the investment decision-making process in 

combination with stock prediction model results for both the shareholders’ perspective and 

the share prices’ perspective. The results from this study indicate that the ANN technique 

can be used to predict stock portfolio returns; the investment decisions and the behaviour 

of stock prices, optimized by the genetic algorithm weighted average, provided better 
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results in terms of error and prediction accuracy compared to the simple linear form of 

stock price prediction models. The Fama and French model of stock prediction is better 

suited to Saudi Arabian Stock Exchange investment activities in comparison to the 

conventional capital assets pricing model. Moreover, the multi-stage type1 model, which is 

a combination of Fama and French predicted stock returns and a value-based management 

model, gives more accurate results for the stock market decision-making process for 

investment or divestment decisions, as well as for observing variation in and the behaviour 

of stock prices on the Saudi stock market. Furthermore, the study also designed a graphic 

user interface in order to simplify the decision-making process based upon Fama and French 

and value-based management, which might help Saudi investors to make investment 

decisions quickly and with greater precision. Finally, the study also gives some practical 

implications for investors and regulators, along with proposing future research in this area.  
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T  corporate tax rate 

Tadawul  Saudi Stock Exchange 

TASI  Tadawul All Share Index, the general share price index of the  Saudi stock 
market 

VBM  Value Based Management Model 

VST  Value of Shares Traded 

WA  Weighted Average 

WACC  Weighted Average Cost of Capital 

Wd  weight of debt 

Wp  weight of preferred stock 

Ws  weight of equity 
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1.1 Introduction  

Financial markets are considered a significant ingredient of a better financial system in any 

country, as the role of financial markets in the economic development of a country cannot 

be ignored. Financial markets, particularly capital and stock markets, play an important role 

in mobilizing and canalising the idle savings of individuals and institutions to the investment 

options where they are really required for productive purposes. This efficient allocation of 

savings to the real sector and businesses depends heavily on the efficiency of stock markets 

in pricing various stocks being listed at the stock exchange. Different classical and modern 

financial theories highlighted that certain inherent factors in stocks (such as sources of risk) 

are responsible for returns on individual stocks on the stock market (Rao and Radjeswari, 

2000). Hence some researchers in finance literature have proposed different models to 

accurately forecast the stock prices and returns, which better enable an investor to make 

appropriate profits on his investments in capital markets (Al-Zubi and Salameh, 2009).  

The prediction of stock prices and returns is normally considered to be tricky and 

complicates task as these prices behave in a random fashion and vary with time (Tay and 

Cao, 2002; Zhou and Sornette, 2005). Owing to the potential of returns and inherent risk 

factors in stock market returns, researchers have proposed various stock market prediction 

models and decision support systems to provide investors with an optimal forecast of stock 

prices and returns. These include most notably the Capital Asset Pricing Model (CAPM) and 

the Fama and French three-factor model, which have been validated using time series 

analysis techniques (such as “mixed auto regression moving average [ARMA]” as well as 

multiple regression models (Kendall, 1990). However, the prevalence of complexity in stock 

market prices made intelligent prediction paradigms highly significant, as well as forecasting 

stock prices using the conventional prediction models of CAPM and Fama and French 

(Huang et al., 2004; Wichard et al., 2004).   

The stock pricing model was initially proposed by Markowitz in 1952 and was followed by 

many other proposed models to predict the stock market prices and investigate the 

relationship between excess returns on stock portfolios and market portfolios. Most popular 

among all of them, CAPM was based upon the work of Sharpe (1964) and Lintner (1965). 

CAPM is one of the oldest and most conventional models used by various researchers to 
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explain the cross-sectional variation in stock market returns behaviour. As noted by Fama 

and French (2004), CAPM is still popular even forty years after its introduction in different 

financial applications, such as evaluation of managed portfolios’ performance, as well as the 

cost of capital estimations by firms, and the identification of over and undervalued 

securities in any stock market. CAPM argues that just one factor (risk-adjusted excess 

market returns) explains the variations in the required rate of returns on a particular stock. 

The basic underlying assumption of the capital asset pricing model is its linear function of a 

security’s returns and the relative risk of the market. A major implication of this model is 

that the relative risk of the security (β) is alone sufficient to explain the variability of its 

expected returns. Al-Zubi and Salameh (2009) have stated that the capital asset pricing 

model helps all the countries in the world to enhance the savings of firms and to accept the 

challenge of rivalry between firms in the corporate sector of the economy, as this model is 

helpful in accurately forecasting stock prices in most of the world’s stock exchanges. 

However, Fama and French (1992) provided empirical evidence that covariance of market 

and portfolio returns (a fundamental factor of CAPM) does not explain the variations in 

excess returns on portfolio which makes the CAPM less reliable. Keeping in view this poor 

and less reliable performance of CAPM, they developed another prediction model, later 

known as the Fama and French three-factor model, by introducing two more determining 

factors of portfolio returns. The three factors which explain the cross-sectional variation in 

stock returns are “excess market returns, the difference between the excess return on a 

portfolio of small stocks and the excess return on a portfolio of big stocks (SMB, small minus 

big); and the difference between the excess return on a portfolio of high-book-to-market 

stocks and the excess return on a portfolio of low-book-to-market stocks (HML, high minus 

low)”.  

The two additional factors introduced by Fama and French (1992) to the traditional model 

of CAPM are more capable of explaining the variations in stock returns over time and deal 

with anomalies inherent in the CAPM. As noted by Fama and French (1996), the three-factor 

Fama and French model soaks up many of the anomalies that have inundated CAPM and it 

explains most of the cross-sectional variations in average stock returns in the capital market. 

Their study further argued that the better predictive power of the Fama and French three- 
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factor model suggests that this could be called an ‘equilibrium pricing model’ which is a 

modified and three-factor edition of the inter-temporal capital asset pricing model of 

Merton (1973) or the arbitrage pricing theory of Ross (1976). Chawarit (1996) also favours 

this argument of Fama and French (1996), as the arbitrage pricing theory of Ross better 

explains the stock market returns on the Thai stock market, compared to the conventional 

capital asset pricing model. This notion was further confirmed by Fama and French (1998), 

who stated that inclusion of the size and value factor in CAPM is useful and explains cross-

sectional variations in stock returns in many of the stock markets around the globe. 

While comparing CAPM and the three-factor model, Fama and French (2004) stated that 

although CAPM is an attractive stock price prediction model which offers “powerful and 

intuitively pleasing” predictions to estimate risk-return relationships, empirical support 

negates its prediction power. For instance, CAPM assumes that stock risk should be 

measured in comparison to a “comprehensive market portfolio” which is realistically not 

legitimate as this market portfolio might include not only traded financial assets (stocks and 

bonds) on the stock market but also human capital, real estate or consumer goods etc. 

Theoretically and empirically, the CAPM lacks real unbiased estimation of stock market 

returns in comparison to the three-factor model, not only in US capital markets but in the 

financial markets of the rest of the world.  

As discussed earlier, the capital asset pricing model and the three factor model of Fama and 

French have been validated using time series analysis techniques of regression (Kendall, 

1990), as both of these models assume that there is a linear relationship between stock 

returns and predicting factors of the model (i.e. excess market returns, size factor, value 

factor). However, several researchers have argued that relaxing the basic assumption of 

linearity in stock price prediction models may enhance the prediction accuracy, and this 

could be done by applying Artificial Neural Network (ANN) models as well as other fuzzy 

models, which are formulated to impersonate the organizational and knowledge 

acquisitions skills of the human brain (Bergerson and Wunsch, 1991; Sharda and Patil, 1992). 

Particularly, ANN models try to confine the nonlinearity, the different linking of various 

information points in the human brain, and its information network parallel structure 

(Haykin, 1998). These models estimate weights of coefficients by using an iterative process 
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of sample input data and predict different output states and after that adjust the coefficient 

weights in order to enhance the robustness of estimated and actual return values. 

According to Cao et al. (2011), ANN models’ training processes are helpful in accumulating, 

storing, and recognising samples of knowledge and then adjusting those samples of 

knowledge according to changes in the environment.  

Along with the conventional methods of stock market forecasting, academic researchers 

have been using computer-based information systems to predict stock prices and indices in 

recent years with the development of the information technology era. Artificial neural 

networks are not only being successfully applied to stock price prediction in capital markets, 

but these techniques are also being used in different fields of management sciences such as 

marketing (Papatla et al., 2002), operations management (Kaparthi and Suresh, 1994), 

finance (Etheridge et al., 2000), economics (Hu et al., 1999), accounting (Lenard et al., 1995), 

and management information systems (Zhu et al., 2001). Empirically, ANN models have 

been found to outperform traditional quantitative forecasting models, such as regression 

analysis and discriminate analysis, on a consistent basis as reported by many earlier studies 

(Desai and Bharati 1998; Bhattacharyya and Pendharkar 1998; Jiang et al. 2000). More 

recently, other artificial intelligence methods such as genetic algorithms and adaptive neural 

fuzzy inference systems (ANFIS), in addition to ANN, are being utilized in estimating stock 

market returns in comparison to conventional linear quantitative regression techniques. 

However, very few studies have used these techniques and methodologies for stock price 

prediction in emerging markets (Cao et al., 2011), such as Saudi Arabia.   

In order to analyse the investment activity in the financial markets, a relatively newer 

technique of value-based management is being used. The value-based management model 

focuses on the portfolio investors and actual/potential shareholders. The basic objective of 

applying this management model to stock market activities is to enhance and improvise the 

operational and strategic decision-making as a whole. In the words of Copeland et al. 

(2000), “a manager with value as a principle is as interested in the subtleties of the 

organizational behaviour, as in using the evaluation as a measure of performance and as a 

decision tool.” The basic focus area of the value-based management model is the reason for 

the existence of corporations, and its ultimate goal is the maximisation of the wealth of the 
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shareholders, while also considering the interests of all the stakeholders involved. Hence, 

the value-based management model focuses on four dimensions: Required Return on 

Invested Capital (Rreq ), Expected Investment Return (Rexp), Actual Return of Investments 

(Ract) and Weighted Average Cost of Capital (WACC). Output generated from the stock 

returns prediction models of CAPM and Fama and French is used as the input for making 

decisions in the value-based management model.   

1.2 Scope of the Study 

The scope of the present thesis is limited to the analysis and application of stock price 

prediction models (i.e. CAPM and Fama and French) through different artificial neural 

network techniques and other computer-based artificial intelligence techniques (such as 

adaptive neural fuzzy inference systems and genetic algorithm etc.) in the Saudi Arabian 

Stock Exchange (SASE). In this regard, training will also be performed for neural network 

techniques for the investors and on the basis of the obtained results, the present study will 

apply a value-based management model to perform investment activity in SASE. Finally, an 

easy-to-use graphic user interface application will be designed which will help investors to 

purchase and sell the stocks on the basis of the best model chosen from the best prediction 

model and neural network techniques.   

1.3 Aim and Objectives  

The main aim of the present study is to predict the stock market returns, and based on that 

prediction, to make the investment decision to determine whether the predictive power of 

stock prices can be improved on the Saudi Arabian Stock Exchange (SASE) by using the 

various Artificial Neural Networks techniques (ANN). Therefore, this research develops an 

appropriate investment prediction model of an emerging stock market (Saudi Arabia) which 

has special features due to its religion, culture and tradition. In this regard, the CAPM and 

Fama and French three-factor pricing models are applied to check which one is more 

appropriate for use in Saudi Arabia. Moreover, this study explores the efficiency of the Saudi 

Arabian Stock Exchange by comparing the real return with the returns predicted using the 

CAPM and Fama and French prediction models. If the attempts to improve the prediction 

power of stock prices on the SASE using the ANN technique made the market inefficient, 
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then there are two possibilities. This inefficiency may be due to the fact that it is an 

emerging market or there are market anomalies. Alternatively, the predicting power of 

stock returns in the SASE cannot be improved by using this specific technique (ANN). This is 

the first study that uses the same approach of Fama and French in measuring the 

dependent and independent variables. It will add evidence as to which of these risk factors 

affects the stock return. 

In order to achieve the objectives of this study, the following objectives were set:  

 Determining the accuracy of computer-based information systems based on artificial 

neural techniques in predicting stock prices movement for companies listed on the 

Saudi Arabian Stock Exchange;  

 Specifying a model that may predict the stock return on SASE by applying the Fama 

and French (FF) three-factor model at the micro level and CAPM using ANN; 

 Making a comparative analysis of predictive power of CAPM and Fama and French 

models to predict stock market returns;  

 Validating whether the stock market returns prediction power of the CAPM and 

Fama and French models improves after the usage of computer-based ANN 

techniques; and 

 Testing the Value Based Management (VBM) model of decision-making on the basis 

of expectations of shareholders and portfolio investors in SASE. 

 

When we compare the Saudi stock market to the rest of the Arab world’s stock markets, we 

see that it is the largest stock market in the region in terms of US$. In 2012, the market 

capitalization of the Saudi stock market was around 340 billion US$ whereas the average 

Arab world stock market capitalization was only 58 billion US$ for the participants of the 

Arab Monetary Fund Index (AMFI). The level of activity in the stock market is also greater in 

Saudi Arabia as compared to its Arab counterparts. As a result the Saudi stoke market needs 

more research to consider that as one of most important stock market in Arabic world. 

Therefore the aim and objective of this study is to investigate pricing models in this 

emerging market and build an investment model help investor to take correct designs 
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because two price collapses (2006) and (2008) happen to this emerging market since its 

development. 

1.4 Contributions to the Knowledge  

The underlying research thesis is of significant value in its nature. It makes contribution to 

the existing body of knowledge in the field of financial markets, particularly stock returns 

prediction. Firstly, it applies the computer-based artificial neural techniques in training and 

testing for the investors in the emerging market of Saudi Arabia where capital markets are 

growing at a good pace. Moreover, it compares the most influential stock market prediction 

models (i.e. CAPM and Fama and French) and compares the returns obtained from both the 

models which are further used to investigate whether the stock market prediction power 

has been increased by the use of ANN techniques. Secondly, value-based management 

models are applied to the investment decision-making process in combination with stock 

prediction models results for both the shareholders’ perspective and share prices’ 

perspective. Moreover, it develops an easy-to-use graphic user interface of a computer 

application based on the best results achieved for the Saudi stock market investor which will 

be beneficial for small investors in forecasting stock prices, and thus help them in the 

decision-making process in the purchase or sale of stocks. Moreover, it is the first study 

which uses ANN techniques along with ANFIS for CAPM and Fama and French models in 

emerging markets, particularly Saudi Arabia. It is therefore expected that the present study 

will contribute significantly to the existing literature on financial markets and people who 

interesting in stock market such as universities, banks, National Economy ministry , 

Commerce ministry , Finance ministry ,Capital Market Authority (CMA) ,The Saudi Arabian 

Monetary Agency (SAMA),Investors, Saudi Arabia Stock Exchange , Mutual Funds , other PhD 

students and foreign investors. 

1.5 Thesis Contents 

The rest of the thesis has been organized as follows: 

 Chapter two reviews the relevant literature on stock returns prediction models of the 

Capital Asset Pricing Models and Fama and French three-factor model, as well as value- 
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based management and various computer-based techniques such as artificial neural 

networks, ANFIS, GA etc.  

 Chapter three overviews the history of Saudi stock market development divided in three 

phases of preliminary stage, established stage and modernized phase, followed by 

different indicators of performance of the Saudi Arabian Stock Exchange.  

 Chapter 4 presents the methodological framework in which the calculation of different 

dependent and independent study variables has been given and estimation equations 

have been formulated for methods used in the study.  

 Chapters 5 and 6 present and discuss the results obtained by applying different 

techniques of model forecasting and multi-stage type 1 and 2 models, respectively.  

 Lastly, chapter 7 summarizes the findings and proposes some future research directions. 
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2.1 Introduction  

Forecasting stock prices in capital markets is significant and of great interest because 

attractive benefits may be achieved by successful prediction of stock prices. However, this 

prediction is very difficult and highly complicated. During the last few years, prediction and 

forecasting of stock prices have remained an important issue in financial and capital market 

research. Sharp (1964), Ross and Roll (1975), Fama and French (1992) & (1993), Banz (1981), 

Danial and Titman (1997) and others have used and proposed various techniques in order to 

predict future stock prices in different capital markets and make investment decisions. 

Among the techniques used are conventional capital asset pricing model (CAPM) and an 

improved version of CAPM, the Fama and French three factor model. However, in recent 

years, academic researchers have started utilizing computer based information systems to 

predict stock prices. These information system based techniques involve the concept of 

neural networks. These neural network based information systems, named Artificial Neural 

Networks (ANN), are considered to be able to forecast and predict stock prices with great 

predictive power. Artificial Neural Networks are not only being successfully applied to stock 

price prediction in capital markets, but are also being used in other fields of management 

sciences such as marketing (Papatla, Zahedi, & Zekic‐Susac, 2002), operations management 

(Kaparthi & Suresh, 1994), finance (Etheridge, Sriram, & Hsu, 2000), economics ( Hu, Zhang, 

Jiang, & Patuwo, 1999), accounting (Lenard, Alam, & Madey, 1995), and management 

information systems (Zhu, Premkumar, Zhang, & Chu, 2001).     

This section of the literature review on stock price prediction models is categorized mainly 

into three sections. The first deals with the comparison and analysis of predictive power or 

conventional capital asset pricing models, and the Fama & French three factors model for 

stock price forecasting. The second section deals with Artificial Intelligent techniques and 

their usage in stock price prediction as used in earlier research studies. Finally deals with 

Value-based management model. It is used to analyse investment activity and make 

decisions based upon that analysis. 

2.2 Forecasting Price Modelling 

Traditionally, stock market behaviour is forecasted using conventional methods such as 

capital asset pricing models and/or the Fama and French three factor model. Sharp (1964), 

Ross and Roll (1975), Fama and French (1992) & (1993), Banz (1981), Danial and Titman 
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(1997) and others have either used one of these models to predict stock market behaviour 

in isolation, or compared the predictive power of both models for forecasting accuracy and 

performance.  

2.2.1 Capital Asset Pricing Model  

The Capital Asset Pricing Model (CAPM) is one of the oldest and most conventional models 

used by Sharp (1964), Ross and Roll (1975), Fama and French (1992) & (1993), Banz (1981), 

Danial and Titman (1997) and others to explain the cross-sectional variation in stock market 

behaviour. This model is proposed by Sharpe (1964) and Lintner (1965) in their separate 

studies. The basic underlying assumption of CAPM is the linear function of a security’s 

returns and the relative risk of the market. A major implication of this model is that the 

relative risk of the security (β) is alone sufficient to explain the variability of all its expected 

returns. 

Further, Hu (2007) argued that the cost of capital ca)n be measured and estimated using 

various models as authentic sources of estimation, while the best practice of previous 

historical studies has been estimated using the proxy of the premium factors. The study 

suggested a unique methodology for the estimation of the premium factors and Hu utilized 

several types of variables from the business cycle. He used trade strategy based on the 

sample results and concluded that his results were better than the maximum previous 

estimations where many researchers had used the general practices of the Fama and French 

three factor model in developing economies. This study found that the Fama and French 

model was better than CAPM when the results were interpreted in the short run. However, 

in the long run, the model of asset-pricing, in which researchers use an estimation method, 

was found to perform well from the perspective of firms in the corporate sector of a 

developing economy. At the end it is recommended that for the estimation of capital 

budgeting decisions in the corporate sector, for short term planning, the Fama and French 

three factor model is one of the best methods for business organisations. 

Al-Zubi and Salameh (2009) have stated that the capital asset pricing model helps all the 

countries in the world to enhance the savings of firms and to accept the challenges of 

competition between firms in the corporate sector of the economies. The main purpose of 

their paper is to specifically analyse and predict the return on stock for industrial firms on 
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the Amman Stock Exchange (ASE). The main objective is to implement this model in a 

developed economy so that the cross-sectional variations on the returns of stock can be 

verified and analysed in firms relevant to the industrial sector in the Amman Stock Exchange 

(ASE). The study used the new technique and method of Generalized Methods of Moments 

(GMM). By regressing these two models (Fama and French and CAPM), their output (results) 

indicated that the Fama and French model, with just two or three factors, showed variations 

which were found to be common as cross-sectional variations in the return of the stock, and 

did so comparatively better than CAPM. 

2.2.2 Fama and French Model 

Alternatively, the model proposed by Fama and French (1992, 1993) is a modified version of 

this capital asset pricing model which assumes that cross-sectional variation in the expected 

returns of a security is a function of three factors: market risk, size of the firm and its book-

to-market ratio. This is known as the Fama and French three factor model of forecasting 

volatility in stock market behaviour. Many academic researchers and economists have 

applied these models to the US and non-US equity market and concluded that, in emerging 

economies, the returns on individual stocks are a decreasing function of its size and an 

increasing function of its book-to- market ratio (Barry, Goldreyer, Lockwood, & Rodriguez, 

2002; Drew & Veeraraghavan, 2001; Fama & French, 1998). 

Fama and French (1992) used two variables together to check the effect of the firm’s size 

and the value of the book-to-market equity ratio. Their aim was to see how they would 

impact the variation by using the cross section in average returns on the stock of the various 

material which was kept in the different firms as inventory. They used the values of the β for 

the variables of relative risk of security, and another value for the variables of price to 

earnings ratios. On the other hand, when statistical analysis is done to check the effect of 

the variations in β, which are not related to the firm’s size, and the association among the 

market value of the β, it is found that the average return on these variables are flat, when 

the value of the β is just used as an explanatory variable.   

Fama and French (1993) also applied the Fama and French three factor model along with 

two additional risk and return factors which may forecast and explain the possible variation 

in stock and bonds returns. The additional factors included in the Fama and French three 
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factor model are maturity and the market-related default risk of bonds. The results 

demonstrated that stock market related variables like book-to-market and firm size 

successfully forecasted the returns variations in the stock/equity portfolio. However, this 

Fama and French three factor model is successful in capturing the bond returns variation, 

except that this is only so for low graded firms which have a higher default risk. The final 

conclusion is that five factors are required, two in addition to the Fama and French three 

factor model, or four in addition to the traditional capital asset pricing model. These are 

essential for explaining the variation in capital market returns and for forecasting the capital 

market’s behaviour.  

Fama (1998) stated that market efficiency depends upon the survival of different challenges 

based on the literature of various authors on a long-term return basis on long-term unique 

methods. These results were consistent with the hypothesis related to efficiency, and found 

that such results are unique and traced rarely in the literature due to uncertainty. Such 

reactions are found that clear information regarding over reaction is common. Fama found 

that there is a total difference in market efficiency in long-term return unique patterns 

during under reaction events as well as after the events occur. He suggested that these are 

common results with respect to financial decisions taken over a long period of time, but that 

this is not true for short-term analysis of firms’ investing patterns. The logic behind this is 

that during short-term analysis, financial behaviour cannot be treated in an efficient way to 

get the results. Fama concluded that the methodology is changed then it can the results 

mostly in long term anomalies in capital markets trends that they tend to not appear 

properly due to reasonable changes in the tools and techniques used.  

China, as one of the major emerging economies, has also provided support for these 

conventional forecasting models. In the Shanghai and Shenzhen stock market, the random 

walk hypotheseis is applicable (Liu, Song, & Romilly, 1997), whereas a link between returns 

and lagged interests rates can also be found in foreign markets (Su & Fleisher, 1998). Drew 

et al. (2003) found that both the firm related factors of the Fama and French model (book-

to-market ratio and firm size) have a negative impact on stock price variations, however 

many others have found a positive sign between stock price and book-to-market ratio. In 

this regard, Wang and Di Iorio (2007) used the data set of 1994-2002 and concluded that 

beta is not an important predictor of stock returns; however, the other two factors of the 
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Fama and French model have significant explanatory power in cross-sectional variation of 

stock returns. In addition, Wong et al. (2006) also found similar findings to the Fama and 

French model by adding two other variables of average returns in the preceeding six 

months, and floating equity. Moreover, Chen et al. (2007) provided evidence on data from 

1998 to 2007 that there is a non-linea inverted U-shaped relationship between stock returns 

and book-to-market ratio for smaller firms.  

Homsud et al. (2009) indicated the importance of the Fama and French three factor model 

in the stock exchange of Thailand for the five years from 2002 to 2007. The data of the 421 

firms from the developed economy of Thailand were divided into six major groups, and 

these groups were labelled as follows: big high (BH), big medum (BM), big low (BL), small 

high (SH), small medum (SM), and small low (SL). B and S were taken to mean the mean size 

impact by measuring the trends of the capitalization of the market in all companies in this 

study. They found that the H, M and L values have significant impact on the measurement of 

the book- to-market values of firms in the developing economy of Thailand. Their research 

was able to add two significant variables of firms’ specific factors (the firms’ size and book-

to-market value ratios) on the basis of the capital asset pricing model. This was done by 

following Fama and French model’s explanation and inducing the risk factor and return on 

assets in the Thailand stock exchange in the BH, SH, BM, and SL groups in the mixed 

economy of Thailand. It was concluded that the Fama and French three factors model 

verified the variations, explaining risk factors in the form of the returns of the stock, which 

was found to be a better option compared to the traditional model of the capital asset 

pricing model in four groups (SH, BH, BM, SL).  

Along with this, Hamid et al. (2012) investigated and evaluated the efficiency of the Fama 

and French three factors model by using the variable asset of  pricing, and one other 

variable which is the expected returns on the portfolio for various corporate stocks in the 

financial corporate sector of Pakistan, using data on various firms from the Karachi stock 

exchange. In their research they used the various six firms having portfolios in their 

corporate sector by using multivariate regression analysis on the basis of the size and the 

book value to market value. They used the monthly data from the financial sectors, i.e. 

banks from developing economy of Pakistan, from 2006 to 2010. Results indicated that 
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majority of firms in Pakistan which are using the Fama and French three factors model have 

a lot of variation in their returns.  

Similarly, Bhatnagar and Ramlogan (2012) stated that the work done by Fama and French at 

various time periods using the three factor model helped firms to apply the CAPM theorem 

and it contained the capability to explain the returns on stock. This study used premium 

values for the calculation of the CAPM model used in the United State of America. Their 

work provided a special perspective from the previous work of Fama and French by using 

multiple regressions for the comparison of the performance and evaluation of CAPM done 

in the developed economy of the United Kingdom. 

Recently, Eraslan (2013) checked the validity of the Fama and French three factor asset 

pricing model by analysing monthly data from the Istanbul Stock Exchange from the period 

2003-2010. Using firm size, it was found that large firms have more excess of expected 

return on average, compared to small firms where both small and large firms have 

portfolios in their corporate structure and policies. Generally speaking, firms which have low 

book-to-market ratios in portfolio management perform much better than those firms 

which have higher book-to-market ratios. Further, it is reported that there is strong effect of 

the factor of risk on the portfolios of small firms, while large firms do not have a variation of 

portfolios, and medium sized firms have the strong impact on the Istanbul Stock Exchange. 

The book-to-market ratio factor is found to have significant impact on the portfolios of firms 

with high book-to-market ratios from the perspective of portfolio management. Shaker & 

Elgiziry (2014) compared the applicability of some of pricing models in the Egyptian stock 

market:, the Fama-French three factor model, the CAPM, the liquidity-augmented four 

factor model, the Cahart four factor model and the five factor model (liquidity and 

momentum-augmented Fama-French three factor model). The sample was divided into 6 

portfolios sorted on book-to-market rate and size o. The results based on the GRS (1989) 

test show evidence that the Fama and French model is the best and the other models are 

rejected. From their side, Shams, Abshari, Kordlouie, Naghshineh & Gholipour (2014) 

studied the influence of information value about liquidity risk and risk of market on non-

ordinary returns in the Fama and French three factor model at the Tehran Stock market. The 

results show that the impact of SMB and HML of the Fama-French three model factor was 

eliminated. Furthermore, corporate properties and the stock market are considered as 
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market risk variables and liquidity risks. Also, outcomes show that the model is satisfactory. 

Finally, Khalafalla (2014) examined the power of the CAPM model, the arbitrage pricing 

theory APT, and the Fama and French three factor model on the Khartoum Stock market. 

Outcomes showed that volatility computed via TARCH shows the effect of bad news at the 

conditional is double that of good news; furthermore to the preference of generalized least 

squares over a covariate model as an estimation technique. Results are against the CAPM 

because the CAPM’s prediction that the intercept must equal 0 has not been achieved, and 

its main assumption that the stock market is effective is violated. The APT presented no 

response to news from macroeconomic variables. However APT out-performed the CAPM 

and the Fama-French three factor model. However, there are not study that applies Fama 

and French three factor model or CAPM in Saudi Arabia stock market which is useful to 

attempt apply FF and CAPM models. 

2.3 Artificial Intelligence (forecasting stock prices) 

2.3.1 Artificial Neural Network  

Alongside conventional methods of stock market forecasting, academic researchers have 

begun using computer based information systems to predict stock prices and indices in 

recent years with the development of the information technology era. These information 

systems are based on techniques involving the concept of neural networks such as Artificial 

Neural Networks (ANN), which are considered to be able to forecast and predict stock prices 

with great predictive power. The conventional methods of stock market forecasting, such as 

CAPM and the Fama-French three factor models, assume linearity between the stock prices 

and the predicting variables. However, Artificial Neural Networks relax the assumption of 

linearity and these techniques imitate the expert skills of human brains and knowledge-

acquisition (Bergerson & Wunsch, 1991; Sharda & Patil, 1992). These ANN networks are 

based upon the non-linear strucutrue of the information network of human brains and the 

links between informational nodes (Haykin, 2010). 

Research on the usage of ANNs to solve complex financial problems has taken place in 

recent years. In this regard, Chen et al. (2003) used a probabilistic neural network to predict 

the returns on the Taiwanese Stock Exchange index. The objective was to compare the 

forecast accuracy of the probabilistic neural network with that of conventional methods by 
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using a linear technique of generalized methods of moments. The study reported that the 

probabilistic neural network had a better predictive power of stock market forecasts, 

compared to the linear generalized method of moments. Similarly, Diler (2003) also utilized 

various technical-based ANNs to predict the Istanbul Stock Market 100 Index returns. The 

study confirmed a 61% accuracy rate of prediction of the stock market index of the Istanbul 

Stock Exchange if the investors are using artificial neural networks to predict this value. On 

the same lines, Altay and Satman (2005) compared the forecasting performance of ANNs 

with ordinary least square for stock market behaviour forecasts of the same Turkish stock 

market. The results of this study also confirmed that ANN models predict the daily and 

monthly index values more accurately, however, these models failed to outperform the 

linear regression model.  

Cao et al. (2011) investigated the forecasting capability of conventional forecasting models, 

such as the capital asset pricing model and the Fama and French three factor model, along 

with a three layer feedforward artificial neural network to predict the stock market 

behaviour of Chinese stock markets. The predictor variables used for both types of models 

were the same. However, the conventional models were run with an assumption of 

linearity. Contrary to expectations, no significant differences were found in the forecasting 

accuracy of conventional models and artificial neural network models. The results may be 

attributed to the emerging nature of Chinese capital markets. However, ANN models 

outperformed the traditional linear prediction models which are a clear indication of the 

usefulness of ANNs for stock market forecasting in emerging markets. Similarly, Kara et al. 

(2011) attempted to develop two prediction models for stock price movements and 

compared their performance in the daily Istanbul Stock Exchange National 100 Index. The 

models included support vector machines and artificial neural networks. Input variables 

were based upon 10 technical indicators of stock price volatility. The results found that the 

three layer feedforward artificial neural network outperformed the support vector machine 

models for stock market prediction.  

Olatunji et al. (2013) presented an ANN based model for predicting the Saudi Arabian stock 

market. The proposed model was tested on three different companies selected as the major 

determinants of the Saudi stock market. The results indicated that the proposed ANN model 

predicts the next day closing price stock market value with a very low RMSE down to 1.8174, 
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very low MAD down to 18.2835, very low MAPE down to 1.6476, and a very high correlation 

coefficient of up to 99.9% for the test set. On the other hand, Al-Zubi et al. (2010) applied 

the Fama and French model (with generalized method of moments) and ANN to predict the 

stock returns on the Amman Stock Exchange. The results documented that adding more 

variables to the Fama and French model improved its predictive power; however the same 

was not true for feed forward ANN. Hence it was concluded that feed forward artificial 

neural network based forecasting modes are proven to be less fruitful in forecasting stock 

returns on the Amman stock exchange which is an indicator of the stock market efficiency of 

Jordan.  

Along with feed forward ANN, some researchers have used other types of ANNs. Huang et 

al. (2005) used a support vector machine to measure the financial variability in the Nikkei 

225 Index of Japan. In order to evaluate the predictive power of the support vector 

machine, the performance of the Elman back propagation neural network model was 

compared to quadratic discriminant analysis and linear discriminate analysis. The 

experimental findings have concluded that support vector machines are successful in 

outperforming the other methods of forecasting. However, the proposed model, based 

upon the integration of the support vector machine and the Elman back propagation neural 

network model, has outperformed all other forecasting techniques. In addition, Naeini et al. 

(2010) used two kinds of neural networks, a feed forward multilayer perception (MLP) and 

an Elman recurrent network, to predict a company’s stock value based on its stock share 

value history. The empirical findings indicated that multilayer perception neural networks 

are more capable of predicting stock market behaviour compared to both linear regression 

models and the Elman recurrent network. Moreover, the accuracy level of the Elman 

recurrent network model and the linear model were better than the multi-layer perception 

neural network model.  

Hodnett and Hsieh (2012) evaluated the predicting capacity of ANNs in the selection of 

stocks for mutual funds. In doing so, the authors used two artificial neural network 

forecasting models namely “cascade – correlation algorithm of Fahlman and Lebiere 

(1990/1991)” which is embedded with “back propagation learning rule with extended 

Kalman filter” to predict the Dow Jones global equity returns. The results were in support of 

the capability of artificial neural networks to better forecast financial values and for use in 
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active portfolio management. Moreover, the results of a risk-adjusted return performance 

matrix and fractile analysis evidenced that the Kalman filter rule trained model of an 

artificial neural network has a greater capacity to identify the outperformers in the global 

equity market compared to the back propagation learning rule trained model. However, 

there is not much significant difference between the performances of both artificial neural 

network models. The study further recommended the implication of the “extended Kalman 

filter rule” in training ANNs for financial data prediction.    

Shen et al. (2011) applied a radial basis neural network forecasting model to train data and 

predict the market index of the Shanghai stock exchange. They used the “artificial fish 

swarm algorithm” to achieve the optimal radial basis function. Moreover, in order to 

increase the efficiency of the prediction process, AFSA – optimized mean -k clustering 

algorithm – is used in the learning process of radial basis function neural network 

forecasting. Then the study compares the ANN based forecasting model results (radial basis 

function optimized by AFSA, particle swarm optimization, and genetic algorithm) with the 

findings of autoregressive moving averages, support vector machine, and BP. The 

experimental results indicated that the radial basis function, which was optimized with 

AFSA, is much easier to use and provides much improved accuracy. All of the models 

combined that experimented in the study, including BIAS6 + MA5 +ASY4, were optimal with 

least level of errors.       

Sutheebanjard and Premchaiswadi (2010) predicted the index movements of the stock 

exchange of Thailand. There are two stock markets operational in Thailand; “the market for 

alternative investment (MAI) and the stock exchange of Thailand (SET)”. Their study focused 

on the movements of the Stock Exchange of Thailand (SET), using back propagation neural 

network (BPNN) technology to forecast the index value of the Thailand Stock Exchange. By 

deploying the data of 124 trading days, the experiment was conducted to forecast the index 

value. There were two sub samples of the data i.e. 53 days for the training of the back 

propagation neural network (BPNN) and 71 days for the testing of this artificial neural 

network model. The findings reported that the back propagation neural network (BPNN) 

successfully predicted the Stock Exchange of Thailand Index with more than 98% accuracy. 

The back propagation neural network (BPNN) model also achieved less forecasting error 
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when compared to the adaptive evolution strategy, but a higher prediction error when 

compared to the (1+1) evolution strategy.  

With respect to time delay neural networks, Saad et al. (1998) compared three ANNs and 

evaluated their performance against the conventional method of stock market forecasting. 

The ANNs included a time delay neural network, a recurrent neural network, and a 

probabilistic neural network using conjugate inclined and multi-stream extended Kalman 

filter training for the time delay neural network and the recurrent neural network. The core 

objective of forecasting was to reduce the false alarms in the stock market, particularly with 

respect to options trading. The paper also discusses various forecasting analysis methods 

and performed these analyses based upon daily price data. The findings proved again that 

all the artificial neural network based forecasting models were capable of accurately 

forecasting the stock market behaviour on a convenient basis.  

2.3.2 Adaptive Neural Fuzzy Inference Systems  

The Fuzzy Inference System (FIS) is one of the most commonly used frameworks for 

obtaining the solutions to complex problems which use fuzzy reasoning, fuzzy if-then rules, 

and fuzzy set theory concepts. The Adaptive Neural Fuzzy Inference System is the 

integration of Artificial Neural Networks and Fuzzy Inference Systems, hence called Adaptive 

Neural Fuzzy Inference Systems (ANFIS) Jang (1992). Many earlier studies have used this 

integrated technique of ANFIS to solve complex financial problems such as prediction of 

stock prices in capital markets (Abraham, 2001, 2002; Abraham & Nath, 2001; Abraham, 

Nath, & Mahanti, 2001; Bouqata, Bensaid, Palliam, & Gomez Skarmeta, 2000; Lapedes & 

Farber, 1988; Pantazopoulos, Tsoukalas, & Houstis, 1997).  

In this regards, Cheng et al. (2007) utilized Adaptive Neural Fuzzy Inference Systems and a 

Neuro-Fuzzy network to predict the stock prices for investors in the United States capital 

market. They concluded that ANFIS is very effective at forecasting capital markets and stock 

price behaviour in the US Stock Exchange. Similarly, Trinkle (2005) investigated stock price 

movements by applying ANFIS and neural networks to measure the excess returns for 

publicly listed companies on an annual basis. The core objective of the study was to 

compare and contrast the predictive power of these two neural network based models with 

Autoregressive Moving Average (ARIMA) model. The results indicated that the predictive 
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power of ANFIS and ANNs is much greater than that of the ARIMA model, and ANFIS can 

predict stock returns with greater accuracy. 

In the Malaysian capital market, Yunos et al., (2008) used a hybrid Neuro-Fuzzy along with 

Adaptive Neural Fuzzy Inference Systems for forecasting stock prices on a daily basis on the 

Kuala Lumpur Composite Index (KLCI). The study analysed the daily price data of KLCI. The 

results indicated that the indices are moving in an unstable manner which makes the 

prediction process relatively difficult. The Hybrid Neurofuzzy integrated with ANFIS is 

suggested to forecast the index behaviour on the KL capital market. Using four technical 

indicators for data analysis and two experiments, the study found that ANFIS is a better 

forecasting technique to predict the index prices on KL’s capital markets, compared to 

ANNs.   

The case study by Abbasi and Abouec (2008) designed a model to track trends in the stock 

price of an Iranian Corporation, the Iran Khodro Corporation, listed on the Tehran Stock 

Exchange. They applied ANFIS to predict the stock price movements of underlying stock. 

They use both short term and long term prediction models. In the long term, a neuro-fuzzy 

with dual membership functions and four independent variables (price to earnings ratio, 

dividend per share, stock volume and closing price) are used as an optimal model for 

measuring stock price fluctuations. Whereas in the short term, quarterly data was used to 

apply a neuro-fuzzy model with different membership functions in each quarter along with 

independent variables of stock volume, closing prices and price-to-earnings ratio. The 

findings of the research were twofold. It was reported that stock prices can be forecasted 

with fewer errors on the stock market of Iran using the ANFIS based prediction model. 

Secondly, the price movements of the Iran Khodro Corporation follow a non-linear 

behaviour on the Tehran Stock Exchange and the fuzzy models are also based upon non-

linear concepts. So, stock prices can be predicted on the Tehran stock exchange using these 

fuzzy models, with more accuracy and less chances of estimation errors.  

Similarly, Atsalakis and Valavanis (2009) used ANFIS to estimate stock prices, and concluded 

that Adaptive Neuro-Fuzzy Inference Systems are more capable of estimating the next day’s 

stock price in capital markets. Boyacioglu and Avci (2010) also applied ANFIS to forecast 

stock prices and to explore whether an ANFIS algorithm could predict stock prices more 
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accurately. Data from the Istanbul Stock Exchange index was obtained and ANFIS was 

applied on that data to predict the return on stock price index. In order to obtain the 

predictive results, three indices of the stock market and six macro-economic variables were 

used as input variables. The results indicated that the ANFIS model’s predictive power and 

forecasting ability has an accuracy rate of 98.3% for a monthly return forecast of the 

Istanbul Stock Exchange National 100 Index. Hence, ANFIS can be used successfully as an 

alternative model for forecasting stock market behaviour and it can be proven as a valuable 

technique for practitioners and researchers in economics who are working in capital market 

forecasting.   

With a different perspective, Giovanis (2011) explored the impact of interest rate 

fluctuations on the returns of common stocks of banking firms in Greece. Two alternative 

models for measuring this volatility had been applied by the research, namely Generalized 

Autoregressive Heteroskedasticity (GARCH) and ANFIS. The results suggested that interest 

rate fluctuations have not been found to significantly impact the stock price returns during 

the sample period using the GARCH model. However, when ANFIS was adopted, the results 

were based upon positive/negative effects along with trading rules which are not possible to 

obtain by applying conventional econometric models. Moreover, it was concluded that 

ANFIS is a better measure to forecast volatility in stock returns compared to the GARCH 

model for both of the sample periods used in the study.   

Recently, Svalina (2013) applied an adaptive neuro-fuzzy inference system model to predict 

the closing prices of the Crobex Index of Zagreb Stock Exchange in Croatia. An individual 

fuzzy inference system was generated for each day by applying ANFIS, however separate 

fuzzy system subsets were used and input variables were created in a different way. The 

results suggested that ANFIS is a better technique to predict the index closing price of the 

Crobex Index of Zagreb Stock Exchange within its limits. The research studies on the ANFIS 

application suggested that it is a relatively better technique to forecast stock behaviour 

compared to conventional models of forecasting, as well as ANN techniques. However, 

there are not study that apply new techniques like Artificial Intelligence in Saudi Arabia 

stock market which is improve the obtain results with high accuracy . 
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2.3.3 Genetic Algorithm  

Another information system based technique used in stock price forecasting is genetic 

algorithms (GA) which is an algorithm used for obtaining solutions to complex problems. 

These algorithms actually work in genetic operators through which the desired outcome is 

achieved by modifying the artificial structure population in an iterative manner. The 

application of these genetic algorithms is also being applied to solving financial problems, 

particularly stock market behaviour forecasts. In this regard, Kim and Han (2000) utilized a 

modified ANN along with GA to forecast the index value of the stock exchange. The results 

reported that the genetic algorithm approach is better compared to other conventional 

methods of stock market behaviour forecasting, as it can predict the index values with more 

accuracy and less volume of errors. 

On the same lines, Kuo et al. (2001) developed a genetic algorithm along with a fuzzy neural 

network (GFNN) in order to measure the qualitative impact of the stock market. Moreover, 

ANN is used to integrate this effect with technical indexes. The data was obtained from the 

Taiwan Stock Exchange for this purpose on a case study basis to evaluate the effectiveness 

of this proposed artificial intelligence system. The results indicated that ANFIS, which 

considers both qualitative and quantitative factors, enhanced the performance of neural 

networks for buying-selling points and performance. The proposed GFNN uses fuzzy 

inferences based upon experts’ knowledge and the qualitative factors of the stock market 

and hence is very useful in predicting stock market returns.  

In addition, Grosan et al. (2005) used a genetic programming technique to forecast the 

NASDAQ-100 index of the NASDAQ stock market, as well as the S&P CNX Nifty stock index. 

This genetic algorithm technique was called Multi-Expression programming (MEP). The 

performance of this multi-expression programming algorithm was compared with an 

artificial network with the algorithm of Levenberg-Marquardt that supports vector 

machines, different boosting neural networks and the Takagi-Sugeno neuro-fuzzy inference 

system. The obtained results pointed out that multi-expression programming developed by 

the researchers is a new analytical technique to solve complex financial and stock market 

problems, and it is very promising in its nature. Moreover, the multi-expression 

programming technique also yields the lowest MAP values for both the stock indices of 

NASDAQ -100 and the S&P CNX Nifty index.  
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Recently, Abbasi et al. (2014) combined the fuzzy genetic algorithm and ANN techniques to 

predict the financial trends in the stock market index of the Tehran stock exchange. Initially, 

their study used a neural network to predict the market index. Afterwards, a genetic 

algorithm was used, based upon the output weights of the optimal neural network, to 

predict the index values. Consistent with the results of earlier studies which confirmed that 

non-linear models were superior to their counterparts, the present study also offered an 

integrated model of fuzzy genetic and neural networks. The empirical results also confirm 

the notion that this integrated model is superior in predicting the index value of the Tehran 

stock market. However, the study also pointed out that further investigation and research is 

required to find out more optimal models and solutions to complex financial problems such 

as forecasting stock market behaviour.    

2.3.4 Hybrid Methods 

Along with the above-discussed ANNs and its modified versions, researchers have also used 

some other related techniques based upon artificial intelligent information systems for 

predicting and forecasting stock market behaviour. Among these, Yamashita et al. (2005) 

applied a multi- branch artificial neural network (MBNN) to financial market applications. 

After investigating the predictive accuracy of the TOPIX index of the Tokyo Stock market 

using MBNN, the results evidenced that these multi-branch neural networks based on 

artificial intelligence might be more capable of generating greater generalization and 

representation, compared to simple conventional neural networks. Using the index value of 

TOPIX, multi-branch neural networks are better at predicting the next day TPOIX values. 

After various simulations were conducted to compare the multi-branch neural networks 

with other conventional neural networks, it was concluded that investors and economists 

can achieve a higher accuracy of forecasting with the proposed MBNN model.  

Moreover, Afolabi and Olatoyosiuse (2007) used the “Kohonen Self Organising Map (SOM) 

and hybrid Kohonen SOM” prediction of stock prices. The empirical results demonstrated 

that the hybrid Kohonen self-organizing map (SOM) has greater predictive power for 

forecasting stock prices, compared to other techniques, performing with better accuracy 

and fewer errors. In addition to this, Chang and Liu (2008) also developed a Takagi – Sugeno 

– Kang type fuzzy rule based information system to predict the variation and deviation in 

the Taiwan Stock Exchange stock price values. The results also reported that this proposed 
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model is capable of successfully predicting stock price variations with an accuracy rate of 

97.6% on the Taiwan Stock Exchange and with an accuracy rate of 98.08% in MediaTek. 

Recently, Wei et al. (2014) argued that linear models are easier to understand and apply to 

predict stock market behaviour. On the contrary, non-linear artificial intelligence based 

neural network forecasting models are complex and hard to understand. Keeping in view 

this issue, they proposed a hybrid prediction model which uses a linear model and a moving 

average technical index (MATI) which further employs fuzzy logics (fuzzy inference systems) 

and a refined adaptive neural network. A ten year data set was utilized from the Taiwan 

stock market to verify the predictive ability of the proposed model on the criterion of root 

mean square error. The empirical results indicated that the proposed model is superior 

compared to other forecasting models such as Chen’s model and Yu’s model in terms of 

root mean square error.  

2.4 Decision Making 

 2.4.1 Value-Based Management Model 

Value-based management is a relatively newer methodology, and it is used to analyse 

investment activity and make decisions based upon that analysis. This model is based upon 

the expectation of portfolio investors and the firm’s actual and potential shareholders. 

Value-based management aims “to improve the process of making strategic and operational 

decisions in the organisation as a whole”. Moreover, a cultural change of the organisation is 

the basic focus of this model. As is mentioned by Copeland et al. (2000), “a manager with 

value as a principle is as interested in the subtleties of the organisational behaviour, as in 

using the evaluation as a measure of performance and as a decision tool.” Corporate and 

joint stock companies exist to fulfil the mutual benefits of all the stakeholders and to 

enhance the total value of firm. The role of management in these companies is to act as an 

agent of the shareholders to achieve this value enhancing objective, as this objective is 

really essential for the company. Value-based management focuses on four sections such as 

the required return on invested capital, expected investment return, actual return of 

investments, and weighted average cost of capital.  

In this regard, Assaf and Araujo (2005) argued that value-based management practices of 

creating value for stakeholders can be applied to not-for-profit organisations, called “The 
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Third Sector.” Using economic value added as a tool for value-based management and value 

creation for all stakeholders (not only shareholders) and the case study of a hospital, this 

study dealt with the adequacy of value-based management for the third sector and its 

ability to create societal value and to achieve the socio-economic goals of organisations. 

Copeland and Dolgoff (2006) emphasised the importance of expectation-based 

management as a tool to create value for the stakeholders by criticizing the already 

established performance measurement techniques. Expectation-based management is 

often used as a term for value-based management because both use the same tools and 

techniques as performance metrics. The authors defined expectation- based management 

as the difference between actual and expected economic profit, economic value added, 

both of which terms are used interchangeably by them. The study concluded that changes in 

expectations are highly correlated with returns to shareholders. This correlation is much 

stronger than the correlation of returns to shareholders with other measures such EVA 

growth, earnings growth or earnings etc. They argued that expectation-based management 

might help the management to refocus on corporate strategy, and help management by 

guiding them on how to communicate with potential investors and set internal performance 

and value creation parameters.  

Grubisic (2007) conducted a survey of thirty top companies regarding the application of 

value-based management practices in different business segments. The results of the 

questionnaire survey indicated that the practices of value-based management are partially 

present in certain orbs of companies’ operations; however, the companies are making great 

efforts to create value or concern about value management practices. Moreover, companies 

with a well-defined shareholder structure and institutional shareholder activism have 

greater impact on value-based management presence. The statistical results suggest that 

management focus and investment budget allocation can provide a quick overview about 

the value orientation of the company. 

Moreover, Fourie (2010) tried to explore the applicability of value-based management 

performance metrics to measure the share price movements of the listed banking 

institutions of South Africa. At the first stage, linear regression models were applied to the 

individual share prices of sample banks in order to see whether the results of specified 

performance metrics of value-based management have any impact on share prices or not. In 
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the second stage, pooled regression analysis was conducted to explore any possible 

differences in the combined integrated effect on share prices. Primarily, four performance 

metrics of value-based management were selected, namely: economic value added, 

economic profit, cash flow returns on investment and shareholder value analysis. The 

findings indicated that almost all of the value-based performance measures were not useful 

in determining the share price movements of selected sample banks, rather the price to 

earnings ratio and net operating profit after taxes predict the variations in share prices of 

banks in a more positive manner. The study suggested that although results are not 

favourable for value-based management and other techniques are more relevant to share 

price movements, firms should still concentrate on shareholders’ value creation and should 

not ignore value-based management. 

Furthermore, Sherstneva and Kostyhin (2012) focused on Russian companies which have 

initiated the use of value-based management in recent years. This paper is based upon the 

concept of expectation-based management given by Copeland and Dolgoff (2011). In their 

book they argued that there is little or no relationship between economic value added and 

returns to shareholders; however, expectation-based management has a strong relationship 

with the returns to shareholders. Sherstneva and Kostyhin (2012) stated that management 

is making investment/ disinvestment decisions or dividend payouts on the basis of 

expectation of shareholders (i.e. required rate of return) and hence these decisions will lead 

to either an increase or decrease in the share price of the stock, which will ultimately lead to 

enhanced economic value added. The proposed model of Sherstneva and Kostyhin (2012) is 

based upon the balance of four factors: WACC, (Ract), (Rexp) and (Rreq ) by shareholders and 

portfolio managers.  

2.5 Summary  

Capital Asset Pricing Model was the first ever technique introduced to forecast the expected 

returns of stock market securities in the early 1960s. However, this method of forecasting 

was modified by the notable work of Fama and French who introduced two additional 

factors into the traditional capital asset pricing model. This forecasting model became very 

popular under the name of ‘Fama and French three factor model’ and was heavily used in 

academic research, as well as by economists to predict and forecast stock market behaviour. 

Afterwards, with the development of the information technology era, several technology-
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based solutions to complex financial problems were introduced. One common technique 

with multiple variations is the usage of neural networks to forecast the capital market 

behaviour. These are artificial neural networks (ANN) which use different methods to 

forecast stock markets such as feed-forward network, Elman network, cascade-forward 

network, radial basis function, and back propagation networks etc. Along with these ANNs, 

the researchers also applied fuzzy logics such as adapted neural fuzzy inference system and 

genetic algorithms. 

The empirical research on forecasting stock markets has proved that the Fama and French 

model was more successful in predicting the capital market securities’ behaviour, compared 

to the simple capital asset pricing model which was considering only one factor (i.e. market 

risk) to explain the cross-sectional variation in expected returns on securities. The Fama and 

French three factor model is still commonly used today in capital market research. However, 

various researchers, discussed in the above literature review, have proved that artificial 

neural network based forecasting models are more capable of predicting and forecasting 

stock market behaviour, compared to conventional methods of capital asset pricing models, 

as well as the Fama and French three factor model. Hence the present study also focuses on 

the application of artificial neural network models to predict the stock market behaviour of 

the Saudi Stock Exchange (Tadawul). Based upon expectations and the required/expected 

rates of return from investment, managers may apply the value-based management model 

to make investment/disinvestment or dividend payout decisions, which will affect the share 

price and ultimately impact the economic value added of the business entity.  
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3.1 Introduction 

In the current chapter of the study, the operational, structural and regulatory 

development of the stock market in Saudi Arabia will be reviewed with respect to the 

historical development stages from 1935 to the present date. This development is 

supported with facts and figures and interpretative statistical analysis regarding the Saudi 

Stock Market for the period of 1993 to 2012.  The rest of this chapter is organized as 

follows: section two describes the Saudi Stock Market from a progressive historical 

perspective; section three discusses the performance of the Saudi Stock Market; Section 

four presents the rank of the Saudi Stock Market in the Arab world; and finally the last 

section provides a summary. 

 

3.2 Saudi Stock Market: A Progressive Historical Perspective   

If we explore the history of stock market operations in Saudi Arabia, ‘Arab 

Automobiles’ is considered to be the first ever Saudi joint stock company, and it 

commenced its operations in the mid-1930s (SAMA Annual Report, 1997). Hence, the 

present study categorizes the lifeline of the Saudi Stock Market into three main historical 

stages of development: operational, structural and regulatory. The first era includes the 

time period of its earlier development, which starts from its inception in 1935, and 

continues until 1982. In 1935, the stock market initiated its preliminary operations with the 

first ever publically listed joint stock company ‘Arab Automobiles’ and its shares were 

offered to the general public. This first era concludes in 1982, when a committee of 

Ministers consisting of the National Economy, Commerce , Finance and The Saudi Arabian 

Monetary Agency (SAMA) were charged with the responsibility of supervising the stock 

market operations of the first capital market of Saudi Arabia (SAMA Annual Report, 1997). 

This stage of development continues until 2002 in the new millennium, and is also known as 

the establishment stage of the Saudi Stock Market. It is characterized as a time period when 

the committee of ministers initiated regulation of stock market operations in a more 

sophisticated manner. This stage ended in 2002 when, under the Royal Decree # M / 30 

dated 31 July 2003, the new Capital Market Law (CML) was issued. Finally, the third stage in 

the historical development of the Saudi capital market is 2003 to the current date, when the 
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Capital Market Authority began its operations to govern the stock market. The text below 

gives some important elements of each of these development periods. 

 

3.2.1 The Preliminary Stage (1935 - 1982) 

 During the preliminary stage from 1935 to 1982, the Saudi government and 

regulatory authorities were least concerned with the development of the capital market in 

Saudi Arabia, which meant that the stock market of Saudi Arabia had a more primitive and 

informal nature. During this long phase of almost 50 years, two important factors can be 

identified which stalled the development of the stock market. First is the economic 

condition of Saudi Arabia which was experiencing its early development during this time 

period. The focus of the regulatory bodies and government of Saudi Arabia was on the 

development of the infrastructure for the country, the production of a skilled workforce, 

and efforts to enhance the living standards of the citizens of Saudi Arabia. This different 

focus delayed the development of the stock market. The second most important factor in 

this regard is that the country was blessed with a great deal of oil wealth within a very short 

span of time. The Saudi government, being the sole claimant of the ownership of these 

massive oil reserves, made available to the corporate sector many institutional channels of 

interest- free loans. Hence, the stock market was not the major source of finance for the 

corporate sector within Saudi Arabia, and stock market development was not a prioritized 

government activity (Molivor and Abbondante, 1980).  

 Researchers have also focused on this late development of the stock market in Saudi 

Arabia and have identified some important features of this early phase of stock market 

history. Abdeen and Shook (1984) argued that the proposed stock market was not backed 

by any single regulatory framework which could govern the stock market in an organized 

way. In its place were three legal government agents leading the stock market – the Ministry 

of Finance , the Ministry of National Economy, the Ministry of Commerce, and the Saudi 

Arabian Monetary Agency (SAMA). So the lack of an organized legal framework, and official 

policies to govern and regulate the activities of the stock market, led to its under-

development in Saudi Arabia. In addition, shares were dealt in the stock market by 

unlicensed and unprofessional brokers which led to a less controlled share ownership. 
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Moreover, the founding and/or board members owned a greater fraction of companies’ 

shares, and this disturbed the market equilibrium, allowing them to control the market in 

the way they wished, regardless of the best interest of the general public and common 

investors in the stock market. With a lack of awareness and knowledge about stock trading 

and the operations of the stock market, Saudi citizens were unable to trade and participate 

in the stock market as they did not have access to any rational investing approach or 

fundamental technical analysis (Abdeen and Shook, 1984, Al-Dukheil, 2002). 

 Along with these identified factors causing the slow development of the stock 

market in Saudi Arabia, the lack of investment opportunities and the small number of 

investment channels in domestic financial markets triggered speculative behaviour because 

of the excess cash available for investment by citizens (Abdeen and Shook, 1984). The lack 

of investment options and alternatives in the stock market discouraged the general public 

from participating in the stock market because there were only 14 joint stock companies 

listed on the Saudi stock market till 1975. However, the number of listed companies on the 

stock market increased to 38 in 1983 because of the massive oil reserve exploration in the 

1970s, the Saudizaion program of the government under which foreign investment of 

foreign commercial banks in Saudi Arabia and privatization of government companies 

(Molivor and Abbondante, 1980, Abdeen and Shook, 1984). 

 

3.2.2 The Established Stage (1984 - 2003)  

 In the 1970s, the Saudi government shifted its focus on the sole source of national 

income – oil wealth. The policy of 5-year development plans was adopted and the 

government tried to diversify the Saudi economy base. The initial three 5-year development 

plans of the government, starting from 1970, focused on improving the national 

infrastructure, developing a skilled workforce, and raising the living standards of citizens. 

After the third 5-year development plan, the government encouraged the private sector to 

contribute to the national economy, and foreign direct investment began by private-public 

ventures in 1986 (Niblock and Malik, 2007). 

 With this strategy of economic development, the Saudi capital market entered into 

the second phase of its development, classified as the established phase. Regularization and 
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modernization had been the focus point of the government’s policy of stock market 

development. In this phase, a three party alliance of legal agents was formed to govern and 

supervise the stock market in 1983. This three party governing body consisted of the 

Ministry of Finance and National Economy, the Ministry of Commerce, and the Saudi 

Arabian Monetary Agency. Among these three legal bodies, the initial public offering and 

the regulation of the joint stock companies in the Saudi capital market was the prime 

responsibility of the Ministry of Commerce. The Saudi Arabian Monetary Agency was 

charged with the responsibility of the daily operational activities of the stock market, and 

the supervision and regulation of the stock market. The Ministry of Finance and National 

Economy was the overall supervisory body for stock market development (Dukheil, 2002). 

 In this second phase of the stock market from 1983 to 2003, noteworthy 

development was witnessed in all aspects of the stock market, such as regulation, 

operations and market structure. According to the SAMA annual report of 1997, Ramady 

(2005), and Al-Dukheil (2002), some of the developments and progress included:  

 Only twelve commercial banks were authorized to perform intermediation services 

and the maximum limit of the service charges was restricted to 1%. 

 These twelve intermediaries set up a central “Saudi Share Registration Company 

(SSRC)” in 1984 for the registration of listed firms and to settle the share 

transactions. This body was moved to an automated system for stock market 

transactions in 1989.  

 “The National Centre for Financial and Economic Information (NCFEI)” initiated in 

1989 the general index of shares to estimate the stock market’s performance. The 

index was named as the NCFEI index. This was initiated with the base value of 100 

points based upon a value-weighted index with the initial date of 28th February 1985. 

One more stock market index, “Consulting Centre for Finance and Investment Index 

(CCFI)” was also formed in 1995 by a Riyadh-based private consultancy firm (Al-

Dukheil, 2002). 

  SAMA went for an electronic share information system (ESIS) in 1990 which enabled 

investors in different locations to trade in the stock market simultaneously. This gave 

the floorless market concept to the Saudi stock exchange.  
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 In the new millennium, the name of the electronic share information system (ESIS) 

was replaced with the “Tadawul All Share Index (TASI)” in October 2001. Contrary to 

ESIS, the TASI introduced a T + 0 (same day transaction settlement) with a 

comprehensive system of deposits, trading, and settlements. Online trading is an 

integral part of the Tadawul system, which is also capable of handling more e-trading 

and includes more financial instruments such as treasury bonds, investment 

companies’ units, and corporate bonds and debentures. The operational structure 

was also enhanced and enlarged by introducing corporate announcements and 

financial information disclosures on the stock market website for the participants of 

the stock market (Tadawul Annual Report, 2002). 

 Lastly, foreign investors were also allowed to participate in the Saudi stock exchange 

in 1997 which was restricted in the first phase of stock market for Saudi citizens 

As the outcome of this regulatory transformation, the stock market of Saudi Arabia 

experienced significant development and growth compared to its previous era. Technology 

was adopted for the improvement of stock market operations and the regulatory regime 

was improved. However, there was still a lack of an independent authority to regulate the 

stock market (Al-Dukheil, 2002). The three party based governing system was not 

considered to be as successful as it should have been. That may have been because of a lack 

of communication between the three regulatory bodies. Moreover, the level of activity and 

participation by investors in the stock market was relatively lower (28.9% in 2002) as 

measured by the turnover of stock market (Al-Dukheil, 2002). Still there were only 68 joint 

stock companies listed on the stock market in 2002 which may be attributed to the 

weakness of the stock market development. The government, along with some big families, 

was the majority shareholder in the listed companies which left few free floating shares to 

be a part of stock market activity; another important reason for the slow development of 

the Saudi stock market (Niblock and Malik, 2007). In this era, there was less focus on the 

accountability and transparency in disclosures of financial information by the companies. 

The joint stock listed companies were required to report their earning results in every 

quarter; however, they were not penalized if they failed to do so (Niblock and Malik, 2007). 

Only a minimum of the required information was therefore disclosed, and there was no 

concept of voluntary disclosure in Saudi companies in this period. Inside trading was very 

common and the informed traders were moulding the market equilibrium in the direction 
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they wished (Niblock and Malik, 2007). Finally, there was a lack of independent professional 

trading brokers as the trading intermediaries were only the twelve commercial banks in the 

Saudi stock market.  

 

3.2.3 The Modernized Phase (2003 - date) 

The government realized the weaknesses and flaws in the stock market development 

program as discussed above, therefore the 5-year plans of the Saudi government have 

continued to support the development of the stock market. The Royal Decree # M / 30 of 

31st July, 2003 introduced the ‘Capital Market Law’ which initiated a new era of 

development in the history of the Saudi stock market. This phase was named as the 

modernized era of the stock market. Under this capital market law, the ‘Capital Market 

Authority (CMA)’ was formed in 2003. This is an autonomous governmental institution 

which regulates the stock market and reports directly to the honourable Saudi Prime 

Minister. It is the complete authoritative institute of the Saudi capital market and the 

enforcement agency of the CML (CMA Annual Report, 2009). The core functions of the 

Capital Market Authority, as described in the Capital Market Law and reported on the 

website of CMA, are defined in the following words: 

 Regulate and develop the Exchange, seek to develop and improve the systems of 

entities trading in securities, and develop procedures that would reduce the risks 

related to securities transactions. 

 Regulate the issuance of securities and monitor and deal securities. 

 Regulate and monitor the works and activities of parties subject to the control and 

supervision of the Authority. 

 Protect citizens and investors in securities from unfair and unsound practices or 

practices involving fraud, deceit, cheating, or manipulation. 

 Seek to achieve fairness, efficiency, and transparency in securities transactions. 

 Regulate and monitor the full disclosure of information regarding securities and their 

issuers, regulate and monitor the dealings of informed persons and major 

shareholders and investors, and determine information which participants in the 

market should provide and disclose to shareholders and the public. 
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 Regulate proxy and purchase requests and public offers of shares. 

After its incorporation, the main function and focus of the CMA has remained on the 

development of the different facets of the Saudi stock market. One of these functions also 

includes the support, implementation and enforcement of a Saudi privatization program as 

a part of the diversification policy of the government with respect to the economic position 

of Saudi Arabia. Some of the significant improvements which have been observed in this 

third phase of stock market development are:   

1. The establishment of the Saudi Stock Exchange (SSE) in 2007. The SSE was charged 

with the sole responsibility of conducting financial transactions in investment 

instruments based in the Kingdom. The SSE was called Tadawul and was an 

autonomous joint stock firm with a capital base of SR1200 million, owned by a 

“Public Investment Fund (PIF)”. Tadawul was formed to regulate and administer 

financial transactions trading, and to ensure a clean and transparent clearing of 

these transactions including depository services and information dissemination. The 

establishment of the SSE segregated the operational aspects of the stock market 

from the surveillance and supervisory functions, as emphasized in the targets of the 

Capital Market Law (CMA Annual Report, 2007). 

2. The CMA also introduced monitoring criteria in order to ensure true/fair information 

dissemination and transparent quality disclosers. This requires a company with initial 

public offerings to issue a prospect containing hardcore information about the issuer 

of the security. Moreover, the CMA also ensures continuous information disclosures 

for all the stakeholders of the listed companies.    

3. In order to avoid insider trading, the CMA reported information about the block 

holders of companies, holding more that 5% of the shares of a company, as well as 

trade restrictions for the board members and executives of the companies to 

participate in the stock market.  

4. In order to settle trading conflicts, a resolution of securities disputes was adopted by 

CMA on 23rd January 2011.  

5. A restructuring of the industrial sectors of the stock market was done by the CMA in 

April 2008, which formed the fifteen industrial sectors in the Saudi market and 

sixteen indices, compared to previous classification.  
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6. The Tadawul All Share Index was recalculated based on this new sectoral 

development and actual free float tradable shares, in order to better reflect the 

stock market changes (CMA Annual Report, 2008).  

7. In order to liberalize the Saudi stock market: 

 All share values were split to SR10 from SR50 in April 2006 by CMA. 

 The GCC citizens were granted investor status in 2007 to increase the 

investor base of the Saudi stock market (Tadawul Annual Report, 2007).  

 From 2008, foreign citizens and investors were allowed to participate and 

trade in the Saudi stock market (CMA Annual Report, 2009). 

8. The CMA introduced 110 independent professional brokers to facilitate stock market 

transactions in 2009, and banks were no longer authorized to perform trading 

intermediation services.  

9. SUKUK and corporate bonds were introduced as trading securities for the very first 

time the Kingdom in June, 2009. This is a forward step in order to stock market 

development through financial engineering of tradable investment alternatives in 

the stock market of Saudi Arabia. This action enhanced the market depth of Saudi 

stock exchange and total worth of SUKUK and corporate bonds was estimated at SR 

28 billion (US$7.45 billion) in 2010. The issuers of these debt instruments were SABIC 

and Saudi Electric Company. 

 

In this most recent phase of stock market development in Saudi Arabia, the CMA has 

introduced many investment options and liberalized the financial market by increasing the 

accountability of listed companies, and creating and enhancing public awareness which has 

enhanced the investment culture in the Kingdom (Tadawul Annual Report, 2009). More than 

1 million copies of an investment awareness information and educational campaign were 

distributed by the CMA in 2009. Medial training to report the accounting disclosures of 

financial information of listed companies was also one of the major contributions of the 

CMA to the Saudi stock market development. Furthermore, the CMA also welcomed 

university students in the Kingdom to familiarise them with the role of capital markets in the 

economic development of Saudi Arabia (CMA Annual Report, 2009). 
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3.3 Performance of Saudi Stock Market 

Following the above review of the historical development of the Saudi stock market 

since its inception in 1935, the next section focuses on the financial facts of the stock 

market of Saudi Arabia (Tadawul). The data period for this analysis is 2007-2012, and it is 

based upon a time series review of the performance of the stock market. This section also 

compares the performance of different sectors of the stock market. Moreover, the 

performance of the Saudi stock market is compared with the regional stock markets of the 

Gulf and the Middle East, including North Africa. Lastly, the stock market activity of Tadawul 

is portrayed for the sample period.    

 

 3.3.1 Market Activity of the Saudi Stock Market 

 

 During the last three decades, the Saudi stock market has played its role in reducing 

the country’s dependence on its massive oil reserves. Although it is one of the oldest stock 

markets in the Arab world, it is still very young compared to the world’s major stock 

exchanges which were established in the nineteenth or early twentieth century, such as the 

New York Stock Exchange, the London Stock Exchange, and the Istanbul Stock Exchange etc. 

In this regard, Table 3.1 presents some of the summary figures about the stock market of 

Saudi Arabia. These facts and figures include the number of joint stock companies, quantity 

of traded shares, market canalization, turnover, and the Tadawul All Share Index for the 

period of 1985 to 2012. 

 As Table 3.1 shows, there were only 46 joint stock firms listed and trading in 1986. 

However, in 2012, the last year of analysis, this number has increased to 158 firms. Figure 

3.1 below the table also depicts the listed companies’ growth year by year in the Saudi Stock 

market. The annual growth rate in the listing of joint stock companies remained relatively 

low between the period of 1985 and 2005 and only 31 new companies were listed on the 

stock exchange during this period. In 2005, this total became 77 companies. Table 3.1 also 

reports that the number of listed companies decreased in 2002 because of the merger of 

different power/electricity companies in one company. The last few years have experienced 

a tremendous growth in the listing of companies on the stock market, and these listed 
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companies almost doubled between 2005 and 2012. On average, the growth in the listing of 

companies for this period remained at 5% with respect to the initial listing. 

 

Table 3.1: Key Indicators of Saudi Stock Market Activity. 

 
 Source: SAMA Annual Report, 2012; and Tadawul Annual Report, 2002-2012. 

 

Figures 3.1 and 3.2 below show the total annual number of listed companies and 

percentage growth in this listing for the period of 1985 to 2012, respectively. There was 

much less variation and volatility observed during this whole period (almost zero volatility) 

Year 
Total 
Firms 

٪ 

Shares 
Traded 
(Million 

SR) 

٪ 

Value of 
Shares 
Traded 

(Billion SR) 

٪ 
Transactions  
(Thousand) 

٪ 

Share 
Price 
Index 
(1985= 
1000) 

٪ 

1985 na. na. 4 na. 0.76 na. 7.84 na. 690.88 na. 

1986 46 na. 5 25 0.83 9 10.83 38 646.03 -6 

1987 51 11 12 140 1.69 104 23.27 115 780.64 21 

1988 52 2 15 25 2.04 21 41.96 80 892 14 

1989 54 4 15 0 3.36 65 110.03 162 1086.83 22 

1990 57 6 17 13 4.4 31 85.3 -22 979.8 -10 

1991 60 5 31 82 8.53 94 90.6 6 1765.24 80 

1992 60 0 35 13 13.7 61 272.08 200 1888.65 7 

1993 65 8 60 71 17.36 27 319.58 17 1793.3 -5 

1994 68 5 152 153 24.87 43 357.18 12 1282.9 -28 

1995 69 1 117 -23 23.23 -7 291.74 -18 1367.6 7 

1996 70 1 138 18 25.4 9 283.76 -3 1531 12 

1997 70 0 312 126 62.06 144 460.06 62 1957.8 28 

1998 74 6 293 -6 51.51 -17 376.62 -18 1413.1 -28 

1999 73 -1 528 80 56.58 10 438.23 16 2028.53 44 

2000 75 3 555 5 65.29 15 498.14 14 2258.29 11 

2001 76 1 692 25 83.6 28 605.04 21 2430.11 8 

2002 68 -11 1736 151 133.79 60 1,033.67 71 2518.08 4 

2003 70 3 5566 221 596.51 346 3,763.40 264 4437.58 76 

2004 73 4 10298 85 1773.86 197 13,319.52 254 8206.23 85 

2005 77 5 12281 19 4138.7 133 46,607.95 250 16712.64 104 

2006 86 12 68515 458 5261.85 27 96,095.92 106 7933.29 -53 

2007 111 29 57829 -16 2557.71 -51 65,665.50 -32 11038.66 39 

2008 127 14 58727 2 1962.95 -23 52,135.93 -21 4802.99 -56 

2009 135 6 56685 -3 1264.01 -36 36,458.33 -30 6121.76 27 

2010 146 8 33007 -42 759.18 -40 19,536.14 -46 6620.75 8 

2011 151 3 48263 46 1098.83 45 25,546.93 31 6417.73 -3 

2012 158 5 82544 71 1929.31 76 42,105.04 65 6801.22 6 
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until suddenly there was a large jump. There has been a significant increase in last 5 years in 

the listing of companies which may be attributed to the CMA’s efforts to development and 

transform the Saudi stock market. These efforts include foreign investment in the stock 

market and the conversion of savings of local citizens and expatriates to investment, which 

has enhanced the investment base of the Saudi stock market.   

 

 

 

Figure 3.1: Annual Number of Listed Companies 

 

 

 

Figure 3.2: Annual Percentage Change in Number of Listed Companies 
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 In addition to the increasing number of companies listed on the stock exchange of 

Saudi Arabia, other parts of stock market development have also shown a significant 

increase. For example, the number of traded shares on the stock exchange has increased. 

The quantity of shares traded on the Saudi stock market increased from 0.04 billion to 83 

billion shares between 1985 and 2012. However, it is noteworthy that this movement is most 

significant in the last 7 years of the analysis. After the establishment of the Tadawul 

transaction mechanism in 2001, there was a significant increase in the quantity of shares 

traded, particularly between 2002 and 2006. This is because of the CMA’s initiative of 

technology adoption in stock market operations and online floorless trading. There has been 

a great growth rate in the volume of shares traded between 2001 and 2006, approximately 

64% per year (Figures 3.3 and 3.4). 

 

 

 

 

Figure 3.3: Annual Shares Traded  
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Figure 3.4: Annual Percentage Change in Shares Traded  

 

 

 The year 2006 is a special case where the share traded volume experienced an 

abnormal growth rate of 458% compared to the previous year. This was the time period 

when the CMA took the initiative to split the face value of shares from 50 to 10 Saudi Riyals 

in order to make them convenient investment options, particularly for small investments. 

However, in the financial crisis of the Saudi capital market in the last days of 2006 and 2008, 

turnover was reduced significantly and negative growth has been observed in 2007 by 16%, 

in 2009 by 3% and in 2010 by 43%. However, investors’ confidence was restored in 2011 and 

2012, and there was a positive trend and growth in share trading value which was 46% and 

71% in 2011 and 2012, respectively.  
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Figure 3.5: Annual Values of Shares Traded  

 

 

 

Figure 3.6: Annual Percentage Change in Values of Shares Traded 

 

 

 The facts reported in Table 3.1 and Figures 3.5 and 3.6 are based upon the value of 

shares traded in billion SR and the percentage change in this value from 1985 to 2012. It is 

predicted that the stock market of Saudi Arabia will be an active market with regard to 

share transactions and values traded. The share value traded has increased from 0.76 billion 

SR to 1930 billion SR during the study period of 1985 to 2012 (Table 3.1). The total number 
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of financial transactions which were executed and completed increased from 0.784 million 

in 1985 to 96 million in 2006, depicting enhanced investor confidence. During the economic 

recession and downfall of the Saudi stock market in 2006 and 2008, a significant decline 

(around 30%) was observed in the value of shares traded and in the total number of 

transactions executed. This period can be considered as a failure in stock market 

development, however growth was renewed in 2011 and 2012 (Figure 3.7 and Figure 3.8). 

 There has been a constantly increasing trend in the share prices on Tadawul after the 

year 1986. This price increase was exceptional in the period between 2002 and 2006 (Figure 

3.9). Table 3.1 shows that the lowest increase observed was 4% whereas during this period 

the growth rate peaked at 104% in 2005. During the period of 1985 to 2012, the Tadawul All 

Share Index decreased significantly 6 times. As shown in Figure 3.10, these time periods 

were 1986, 1990, 1994, 1998, 2006, and 2008.  

 During the year of 1986, the market index of TASI depreciated by six percent 

compared to the previous year, and then its growth remained positive at 19% per year for 

the next 3 years. The second Gulf war in 1990 caused the market index to decrease by 10%, 

however after the war, the index witnessed 80% growth but then decreased by 5% and 28% 

in 1993 and 1994, on average respectively. During the subsequent 3 years after 1994, the 

index improved due to the enhancement and development of the overall economy of the 

country with high GDP growth rates, increases in public expenditures, favourable balance of 

payments etc. (SAMA Annual Report, 1997). It can also be observed from the available data 

that the Saudi stock market was not affected by the Asian financial crisis immediately; 

rather there was an increase of 28% in the market index during 1997, the period of Asian 

financial crisis 1997. This is an indicator of the localization and immunity of the Saudi stock 

market from the effects of the international financial crisis (Figure 9).  
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Figure 3.7: Annual Transactions 

 
 
 
 
 
 

 

Figure 3.8: Annual Percentage Change in Transactions 
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Figure 3.9: Tadawul All Share Index 

 
 
 

 
 

Figure 3.10: Annual Percentage Change in Market Return in TASI 
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experienced a tremendous growth of 88% per year afterwards (Figures 3.9 and 3.10). The 

annual report of the Saudi Arabia Monetary Agency (2006) described this development of 

the Saudi stock market as an outcome of many factors. These contributory factors include 

the role of structural reforms in reducing the dependency of the country on petro-dollars, 

the positive accounting performance of listed firms on the Saudi stock market which 

motivated investors to invest their savings in the stock market, stable oil prices globally, and 

an increase in the investor and investment base of the stock market. According to Al-Twaijry 

Abdulrahman (2007), the increased investor base enhanced the demand for more shares to 

be traded on the Saudi stock market, and this has played a major role in the stock market’s 

development. 

The highest closing point value of the market index of TASI was 20634.85 on 25th 

February, 2006. However, the end of 2006 also experienced the collapse of the Saudi stock 

market and TASI dropped to 12700 points approximately. This was more than a 60% decline 

in the index during that single year. Billions of riyals were withdrawn from the capital 

market due to this crisis and the total portfolio investment in the stock market declined by 

39% to the level of 53 billion SR (SAMA Annual Report, 2007). As an outcome of this crisis, 

many investors lost their money on the stock market and experienced increased financial 

burdens. 

During the year 2007, the stock market begun to recover its losses and the market 

index increased by 3106 points. This growth rate in the index value was 38.9%. In addition, 

the total investment base of the Saudi stock market increased by 25% to the level of 105 

billion SR (SAMA Annual Report, 2008). The stock market suffered another financial crunch 

in 2008 and the index closed at its lowest value during the new millennium at 4803 points. 

This was a decrease of 56% compared to the previous year and the total investment base 

declined by 30 billion SR – approximately 30% negative growth (SAMA Annual Report, 

2009). This financial crunch of 2008 has been attributed to the global financial crisis of the 

USA and the Western world, with the Saudi market participating as part of the world’s 

financial markets. In the preceding years, the Saudi stock market recovered from its losses 

of the financial crises of 2006 and 2008; however, these crises really harmed the significant 

growth rate that the Saudi stock market was experiencing until the start of 2006 (Table 3.1, 

and Figures 3.9 and 3.10). 
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3.3.2 Size and Liquidity of the Saudi Stock Market 

 
This study has utilized the following indicators to assess the maturity of the Saudi 

stock market; there are many measures of stock market size and liquidity in the literature, 

and there is no consensus on this:  

1. Share Traded value to GDP 

2. Share Traded Value to Market Capitalization  

3. Market Capitalization to GDP 

The market capitalization to GDP ratio is used to estimate the size of a stock market 

whereas the remaining two ratios are used to judge the stock market liquidity as used in the 

earlier literature on stock markets and financial markets (Levine and Zervos, 1996; Victor, 

2006). 

Table 3.2 and Figure 3.11 below report the size of the stock market of Saudi Arabia. 

The first ratio of market capitalization to GDP shows that this increased to 41% in 1993, 

compared to 18% in 1985. This growth rate has remained almost consistent until 2002. If we 

compare this ratio to the markets of the USA and other European counties, it seems to be 

relatively low because it is usually greater than in developed countries (Victor, 2006). This 

lower ratio can be justified by the argument that very few companies were added to the 

listing of the stock market of Saudi Arabia during the period of 1994 to 2002. This ratio 

greatly increased in 2003 when the market capitalization ratio jumped to a new peak value 

of 74%.  

The new Capital Market Law introduced by the Saudi government in 2003 was the 

main cause of the increase in the size of the stock market. The new law and the new 

regulatory authority performed very well in enhancing the size of the Saudi stock market by 

enhancing the market base of investment, attracting new investors to the stock market, 

improving the operational efficiency and trading mechanism of the stock market, and 

introducing the central body for new securities registration etc. So, it can be observed that 

the stock market size as measured by this ratio increased by 110% in the next seven years 

with a significant jump of 208% in 2005.    
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Figure 3.11: Market Liquidity (Depth):  The ratio of market capitalization to gross domestic product (GDP) of the Saudi Stock 

Market, 1985 to 2012 

Table 3.2: Market Size and Market Liquidity of the Saudi Stock Market, 1985-2012 

Source: Tadawul Annual Statistical Report, 2002; 2012, and SAMA Annual Report, 2012. 
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Value of Shares 
Traded (VST) 

Billion RS 

GDP 
Billion RS 

Market Size 
(depth) 

(MC/GDP) 

Market 
Liquidity Ind 

(VST/MC) 

Market 
Liquidity Ind 
(VST/GDP) 

1985 67.00 0.76 372.41 17.99 1.13 0.20 

1993 197.90 17.36 485.63 40.75 8.77 3.57 

1994 145.10 24.87 494.77 29.33 17.14 5.03 

1995 153.39 23.23 526.00 29.16 15.14 4.42 

1996 171.98 25.40 581.87 29.56 14.77 4.37 

1997 222.70 62.06 608.80 36.58 27.87 10.19 

1998 159.91 51.51 536.64 29.80 32.21 9.60 

1999 228.59 56.58 593.96 38.49 24.75 9.53 

2000 254.46 65.29 697.01 36.51 25.66 9.37 

2001 274.53 83.60 679.16 40.42 30.45 12.31 

2002 280.73 133.79 699.68 40.12 47.66 19.12 

2003 589.93 596.51 796.56 74.06 101.12 74.89 

2004 1148.60 1773.86 929.95 123.51 154.44 190.75 

2005 2438.20 4138.70 1172.40 207.97 169.74 353.01 

2006 1225.86 5261.85 1324.56 92.55 429.24 397.25 

2007 1946.35 2557.71 1430.77 136.04 131.41 178.76 

2008 924.53 1962.95 1771.20 52.20 212.32 110.83 

2009 1195.51 1264.01 1396.23 85.62 105.73 90.53 

2010 1325.39 759.18 1695.03 78.19 57.28 44.79 

2011 1270.84 1098.83 2221.77 57.20 86.46 49.46 

2012 1400.34 1929.31 NA NA 137.77 NA 
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      The next ratio measures the stock market liquidity which is the value of share trading to 

the total market capitalization as well as to the GDP of the country, and the literature has 

suggested that a higher value indicates greater market efficiency and a lower exchange cost 

of financial transactions, because investors are trading more and more in the financial 

markets (Victor, 2006, Levine and Zervos 1996).  

 

The values reported in Table 3.2 and the facts depicted in Figures 3.12 and 3.13 

elaborate the stock market liquidity of the Saudi stock exchange. According to these values, 

the stock market of Saudi Arabia became more and more liquid after 2002. Since the highest 

value of the first indicator (VST/MC) was 48% and the highest value of the second indicator 

(VST/GDP) was 19%, we can interpret these ratios in the light of the earlier literature, and 

conclude that the stock market of Saudi Arabia is relatively less liquid and less efficient, as 

well as having higher costs of transactions during the analysis period 1985-2002 (Levine and 

Zervos, 1996).  

 

 

 
Figure 3.12: Market Liquidity (VST/MC) of the Saudi Stock Market, 1985 to 2012 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

450

500

1985 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

M
ar

ke
t 

Li
q

u
id

it
y 

(V
ST

/M
C

) 

Year 



Chapter 3: Overview of the Saudi Stock Market 

52 

 

 

 
Figure 3.13: Market Liquidity in Terms of (VST /GDP) of the Saudi Stock Market, 1985 to 2012                   

 
 

The stock market of Saudi Arabia experienced higher liquidity during the period of 

2003 to 2008 based upon the ratios of (VST/MC) and (VST/GDP). The average increase 

during this period was more than 200% in both of these years (Figures 3.12 and 3.13). This 

was the period of financial crunch in Saudi Arabia. In 2006, the market lost 53% of its value 

compared to 2005, whereas 56% of market capitalization was lost in 2008. Compared to 

2007, the liquidity level of the Saudi stock market measured by the (VST/MC) indicator 

dropped by 50% in 2009, by 73% in 2010 to a level of 57%, then increased by 30% in 2011 to 

a level of 86%. Finally, it increased by 50% in 2012 to a level of 138% (Table 3.2). 

3.3.3 Saudi Arabia Stock Market Sectors 

The following section analyzes the industrial sectors of the Saudi stock market. There were a 

total of 8 business sectors in the capital market of Saudi Arabia in 2007. Among these, the 

business segment (which is also called the manufacturing sector) accounts for around 40% 

of the total market; the financial services (banks and others) constitute 30% of total market; 

and the remaining two big sectors (services and telecom) are 12% and 10%, respectively 

(Figure 3.14). The period from 2007 to 2012 witnessed a development in these 

classifications from 8 to 15. The percentage contribution of each business sector in 2012 is 

also represented in Figure 3.15. 
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                                Figure 3.14: Percantage of Market Capitalization for each sector  2007 

Source: Tadawul Annual Statistical Report 2008 

 

                        
Figure 3.15: Percentage of Market Capitalization for each sector 2012 

Source: Tadawul Annual Statistical Report 2008 
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       Through the last five years, several improvements led to an increase in the number of 

sectors to fifteen sectors in 2008, the percentage of market capitalization of each sector in 

the end of 2012 was: Petrochemical Industries 31%; Banks and Financial services 22%; 

Telecommunication & Information Technology sector 11%; Agriculture & Food Industries 

5%; Cement sector 5%; the other ten sectors –  Energy & Utilities, Insurance, retail, 

Industrial Investment, Real Estate Development, Building & Construction, Hotel & Tourism, 

Transport, Media and Publishing and Multi-investment – 26% of the market (Figure 3.15). 

3.4 Saudi Stock Market Rank in the Arab World 

When we compare the Saudi stock market to the rest of the Arab world’s stock markets, we 

see that it  is the largest stock market in the region in terms of US$. In 2012, the market 

capitalization of the Saudi stock market was around 340 billion US$ whereas the average 

Arab world stock market capitalization was only US$ 58 billion for the participants of the 

Arab Monetary Fund Index (AMFI) (Table 3.3). The biggest stock market of the Arab region, 

the Saudi stock market, also constituted around 40% of the total market capitalization of the 

Arab world’s stock markets in 2012 (Figure 3.16).  

Table 3.3: Key Indicators of Arab World Share Markets, end of 2012 

Source: Quarterly Bulletin, Arab Monetary Fund, 2012. 

     

Capital 
Market 

Market 
Capitalization 

(Million of 
Dollars) 

% of 
Total 

Value of Shares 
Traded (Million 

of Dollars) 

No. of 
Listed 

Companies 

Average 
Company Size 

(Million of 
Dollars) 

GDP at Current 
Prices (Million of 

Dollars) 

Market 
Depth 

Turnover 
Ratio 

S. Arabia 338873 39% 293000 150 2259.2 578.6 58.6 86.5 

Kuwait 86295 10% 24494 216 399.5 172.8 49.9 28.4 

Egypt 48679 6% 43715 214 227.5 231.1 21.1 89.8 

Morocco 60092 7% 11116 76 790.7 100.3 59.9 18.5 

Bahrain 16590 2% 279 49 338.6 26.5 62.6 1.7 

Jordan 27210 3% 4023 247 110.2 30 90.8 14.8 

Oman 26210 3% 2575 130 201.6 66 39.7 9.8 

Tunisia 9648 1% 1169 57 169.3 46.6 20.7 12.1 

Lebanon 10285 1% 516 25 411.4 42.5 24.2 5 

A. Dhabi 71329 8% 6970 67 1064.6 363.8 19.6 9.8 

Algeria 136 0% 2132.8 2 68 192.4 0.1 1568.2 

Dubai 49033 6% 8736 62 790.9 363.8 13.5 17.8 

Sudan 2695 0% 949 56 48.1 75.1 3.6 35.2 

Qatar 125598 14% 22936 42 2990.4 194.3 64.7 18.3 

Palestine 2782 0% 396 46 60.5 NA NA 14.2 

Total 875455 100% 423006.8 1439 9930.5 2483.8 529 1930.1 

Average 58364  28200 96 662 177 38 26 
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 The value of shares traded on the stock market of Saudi Arabia is far larger than on the rest 

of the stock markets of Arab world. The average share traded value of its stock market was 

US$ 293 billion in 2012 (Table 3.3) followed by the stock market of Egypt which has a size of 

US$ 44 billion (Figure 3.17). 

 

     The stock market of Saudi Arabia is ranked number 4 with regard to the number of listed 

companies. The highest listed companies in this region are in Jordon, Kuwait and Egypt 

(Figure 3.18). On the other hand, we can categorise the Saudi stock exchange as number 2 

with respect to average company size. The average size of listed firms in the Saudi Stock 

market is US$ 2.3 billion whereas in Qatar it is US$ 3 billion. The average market 

capitalization is US$ 662 million/company in the AMFI countries (Table 3.3 and Figure 3.19). 

The data also indicates that the class of companies listed on the Saudi stock market is 

different from those countries in the AMFI. 

 

 

 

 

Figure 3.16: Ratio of each Country Market Capitalization to the total Markets 
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Figure 3.17: Value of Shares Traded for Each Country 

 

 

 

 

 

Figure 3.18: Number of Listed Companies in Each Country 
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Figure 3.19: Average Company Size in Each Country 

 

 

 

 

Figure 3.20:  Market depth for each Country 
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Figure 3.21: Turnover Ratio for each Country 

 

       The level of activity in the stock market is also greater in Saudi Arabia as compared to its 

Arab counterparts. The Saudi stock market is deeper compared to others, with 59% of GDP 

while the average of Arab countries is only 38% (Table 3.3 and Figure 3.20). This is also the 

most liquid market after Egypt, with a turnover ratio of 87% (Egypt is 89.8%) in 2012 (Table 

3.3 and Figure 3.21). 

3.5 Summary  

     In summary, it can be concluded that the stock market of Saudi Arabia experienced 

tremendous growth and major development during the period of 1985 to 2012. However, 

there are still fewer companies listed than on the international stock markets of developing 

and developed countries. The total size of the economy of Saudi Arabia is relatively large and 

the ratio of companies to the size of the economy is very small (Table 3.4). This number 

should be improved. This is also depicted in Figure 3.22 which portrays the percentages of 

company types against the total number of companies. It is clear that limited liability 

partnerships represent 80% of the total companies operational in Saudi Arabia. 
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Table 3.4: Existing Companies by Type of Capital, 2012 

Type of company Number Capital (Million Riyals) 

Joint-stock companies 5076 1707555.6 

Limited liability partnerships 54294 280534.6 

Joint-liability partnerships 5854 3927.2 

Mixed liability partnerships 2767 9939.2 

Mixed liability partnerships by shares 1 0.5 

Total 67992 2001957.1 
Source: SAMA Annual Report, 2012. 

 

 

Figure 3.22: Percentage of number of each type of the companies to the total. 
 

The second most significant area for improvement in the stock market of Saudi Arabia 

is the issue of free floating tradable shares in the market. As many of the shares are held by 

government or a small number of families, there are fewer shares available for trading on the 

stock market, which makes the stock market less liquid. Table 3.5 reports some facts and 

figures about these free floating shares compared to the total issued and paid up shares of 

listed companies. Out of the 42.3 billion shares issued, there were only 4.4 billion free-floating 

shares available for trade, or 9.6% of the issued shares. There are only 1% tradable shares in 

the insurance sector which makes this the most concentrated sector. The least concentrated 

and highly tradable sector is the multi-investment sector in which there are 24% free floating 

shares available for trade by the general public, followed by petrochemical industries, and the 

cement and banking sectors. Figure 3.23 shows the number of companies in each sector. 
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Table 3.5: Total Issued Shares and Free-Floating Shares in the Saudi Stock Market, end of 2012 

Source: Tadawul Quarterly Report November, 2012. 

 

Figure 3.23: Number of Companies in Each Sector in Saudi Arab Market 

 

Last but not least, the stock market of Saudi Arabia is not yet fully open to foreign 

portfolio investment. Foreign investors can only invest in mutual funds or Swap agreements. 

The level of investment by resident and non-resident foreign investors is less and that is the 

main reason for the low level of association of the Saudi stock market with the international 

financial markets of the world. Therefore, the Saudi stock market can offer global investors 

real market diversification benefits.  
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No Sector Number of Companies Issued Shares Floating Shares % 

1 Banks & Financial Services 11 9,700,917,875 564,099,762 17.2 

2 Petrochemical Industries 14 9,185,524,165 465,843,666 19.7 

3 Cement 12 1,533,600,000 88,897,031 17.3 

4 Retail 11 438,700,000 171,630,466 2.6 

5 Energy & Utilities 2 4,241,593,815 38,102,861 0.89 

6 Agriculture & Food Industries 16 1,383,708,930 247,169,236 5.6 

7 Telecom. & Information Tech 5 4,037,600,000 420,791,975 9.6 

8 Insurance 33 903,166,667 892,783,664 1.0 

9 Multi-Investment 7 4,022,471,189 164,624,670 24.4 

10 Industrial Investment 14 1,462,457,236 156,927,850 9.3 

11 Building & Construction 15 799,922,979 139,784,489 5.7 

12 Real Estate Development 8 3,733,516,240 893,019,120 4.2 

13 Transport Sector 4 482,400,000 84,612,013 5.7 

14 Media and Publishing 3 155,000,000 27,129,677 5.7 

15 Hotel & Tourism 3 190,150,000 32,512,898 5.8 

 Total 158 42,270,729,096 4,387,929,378 9.6 
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4.1 Introduction 

This chapter describes in detail the logics and working of the frameworks that are used in the 

analysis. These are the tools that are used to implement the methodology in order to acquire 

the desired results. They are designed by renowned scientists and are implemented without 

any changes, with all of their advantages and drawbacks. Hence, these are treated as laws. 

The analysis involved in this study comprises several models and frameworks for testing the 

hypotheses, and the empirical validity of a standard mean-variance model that suggests a 

linear relationship between the covariance risk of risky assets and the return of assets. This 

chapter involves the description of several models that are implemented in sequence during 

the execution of the methodology. These include the Capital Asset Pricing Model (CAPM) 

introduced by Lintner (1966), Sharpe (1964), and Black (1972), Fama and French (1993), and 

the Value Based Management Model presented by Anthony (1965), and several types of 

artificial neural networks. Artificial neural networks are computer-based models that are 

inspired by the central nervous system of human beings, particularly the brain, and are also 

based on special types of logic, developed by different scientists, for finding solutions to 

various problems. These are generally shown in the form of connected graphs called neurons 

that take values from the user as input. It performs functions systematically on these inputs 

and gives an output value. These are widely used for solving problems that are difficult to 

solve using ordinary rules or programming techniques. Several types of neural networks have 

been used in this study and their functionality is discussed in this chapter. This chapter will 

discuss in detail neural networks with multilayer perceptron algorithm, the feed forward and 

back propagation techniques, monotonically increasing and decreasing functions, and curve 

fitting. 

4.2 The Capital Asset Pricing Model and Fama and French model  

The Capital Asset Pricing Model (CAPM) introduced by Lintner (1966), Sharpe (1964), and 

Black (1972) is considered to be a major tool in financial economics for investigating and 

explaining the connection between predictable risk and return.  

Ri-Rf = αi + βi(Rm-Rf) + εi                                       (4.1) 

where:  



Chapter 4: Theoretical framework  

63 

 

Ri denotes the expected return on the its asset 

Rf denotes the risk-free rate 

Rm defines the expected return on the market portfolio 

βi measures the risk of market sensitivity parameter which is defined as the Cov (Ri-Rf, Rm- 

Rf)/Var(Rm-Rf), which measures the sensitivity of asset return to variability in market return.  

The risk premium CAPM equation is defined by: 

(Ri-Rf)= βi (Rm –Rf)                                     (4.2) 

where:  

(Ri-Rf) represents the excess return on asset i. 

(Rm –Rf) represents the risk free excess return on the market portfolio. 

The above equation represents the fact that for any asset the expected excess return is 

directly proportional to its beta. 

The distribution of ex-post type from where the returns are received is ex-ante observed by 

the stakeholder. Multivariate normality shows that the above equation satisfies the 

assumptions of the Gauss-Markov regression. Hence, empirical testing by CAPM would be 

carried out with the following equation: 

Ri=λ0 + λ1 β1 +εi                                    (4.3) 

where:  

λ0 has been added to the equation as an intercept term  

λ1 shows the premium related to the beta risk 

Another version of CAPM is used for the adequacy that holds when there are risk free assets. 

A zero beta portfolio is used, Rz. Hence, after involving the zero beta portfolio return, the 

CAPM equation becomes: 

  Ri-Rf = Rz + βi(Rm-Rz) + εi                                           (4.4) 
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The zero beta portfolios perform in a similar way as the risk-free rate of return in the Sharpe-

Lintner model. 

For testing the linearity of the relationship of risk and return, the quadratic equation of βi can 

be written as the equation of the standard model as below: 

Ri=λ0 + λ1 β1 + λ2 β2i + εi                                               (4.5) 

For testing the hypothesis of the relationship between the residuals and the risks that show 

no effect on the expected asset return, the residual risk of assets are included as explanatory 

parameters: 

Ri=λ0 + λ1 β1 + λ2SD(εi)+ εi                                            (4.6) 

In the CAPM versions defined by Sharpe-Lintner and Black, market portfolios are the mean-

variance efficient in the joint hypothesis. This shows that the expected return of all assets is 

described by the difference in market betas, and other variables may not be added to explain 

the expected return.  

The CAPM model estimates the risk of assets by calculating the covariance of its return with 

all the invested wealth’s return, which is called the market return. The expected return must 

be linearly related to the covariance of an asset with the market portfolio return, which is 

called beta risk. These are the major implications of the model. The association of a higher 

beta risk with a higher return is the principle of risk compensation. However, no or weak 

statistical relationship to support this association are identified as empirical evidence by Basu 

(1977), and Fama and French (1992). The poor empirical performance and static versions of 

CAPM are discussed by Lintner (1966), and further motivated the research on conditional 

testing of the asset pricing model (Harvey, 1989; Jagannathan and Wang, 1996). These tests 

allow risk, and the prices of risk, to vary with time under particular assumptions. This suggests 

using data from the real world, with certain assumptions which are closer to the real world. 

The behaviour of the investor in only one period is examined under unconditional CAPM, 

whereas in real world investment, decisions are taken over many time periods. The betas of 

assets, risk premium, and the expected return usually rely on the nature of available 

information in any particular time period and hence vary accordingly. The relative risk of a 

firm’s cash flow is subject to fluctuations over the business cycles. It is also argued by 
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Jagannathan and Wang (1996) that to the same degree that business cycles are affected by 

taste and technology, the comparative share of multiple divisions of the economy fluctuates, 

causing variations in the betas of the firms in these divisions. Moreover, in times of recession, 

the financial influence of badly performing businesses may rise, compared to other 

businesses, causing their betas to increase. In times of deprivation, the risk premium is 

increased as stakeholders try to smooth out their consumption. Therefore, the risk premium 

should be high in equilibrium in order to make sure that stakeholders hold on to their 

portfolio of stocks. This implies that the conditioning information (instrument variables) 

should be associated with the future or current macro-economic scenario.  

The empirical inadequacy of CAPM might be due to several apparently inexplicable situations 

in asset returns that have caused the use of screened and sorted portfolios of stocks to show 

the further risk factor in the standard model. Fama and French’s (1993) three factor model, 

which requires a model of expected return, has been widely used in empirical research (Iqbal 

et al. 2010). Hence, due to the prominence of Fama and French (1992), the three factor model 

has been tested for its empirical performance as an asset pricing model in various studies. The 

standard CAPM model can be extended to Fama and French (1993) model by including 

variables, to test whether these variables can describe the expected returns that cannot be 

explained by CAPM. Firstly, the sensitivity, or betas of asset returns, to the firm’s 

characteristic variables (book to market value and size), and market returns capturing the 

estimated variability, are added. Secondly, the variation of cross section in the expected 

returns is estimated and explained for the firm characteristic is added.  

The series of papers by Fama and French (1992, 1993, 1995, 1996, 1998, and 2004) are the 

most noticeable work in its response. They presented a three-factor model which states that 

the expected return in the additional risk-free rate is described by the excess market return. 

The excess market return is defined by: 

SMB= the return on portfolio of small stocks - return on portfolio of large stocks  

HML= the return on portfolio of high book-to-market stocks - return on a portfolio of low 

book-to-market stocks. 
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SMB reflects the fact that all firms should expect sensitivity to several risk factors because of 

their comparatively inflexible nature and their minimum ability to captivate undesirable 

financial situations. HML reflects the fact that factors pose a higher risk exposure for ‘value’ 

stocks versus ‘growth’ stocks. This is logical because firms need to be approaching the 

minimum size if they want to accomplish an Initial Public Offering. If this is observed in the 

perspective of ‘value’ stock, it indicates that the public market value has fallen due to hard 

financial situations, or doubts related to future returns of profits.  

The equation of Fama and French model is defined as: 

Ri-Rf = αi + βi (RM-Rf) + γi RSMB + δi RHML + εi                                              (4.7) 

where:  

RSMB is referred to as size premium 

RHML is referred to as value premium 

βi, γi,and δi show the slopes in the multiple regression equation. Therefore, one of the 

implication of this equation is that the intercept is zero for all assets i in the time-series 

regression. 

Since Fama and French model is a multifactor model and represents the expected beta of the 

linear factor pricing model, it can be written as: 

Ri = αi + βiλm + γiλs + δiλh + εi       i ϵ {1, …, N}.                    (4.8) 

By cross sectional regression of average returns on betas, the newly involved variables in the 

above equation can be estimated.  

αi is the intercept and λm, λs, and λh represent the slope in this relation of cross-section. Betas 

represent the unconditional sensitivities of the involved assets of the factors. Furthermore, 

the additional beta i.e. βij, for any jϵ {m, s, h}, can be seen as the rate of risk exposure to factor 

j of asset i , so λj will indicate the price of risk exposure. Therefore, betas are described as the 

coefficients of multiple regression of the factors’ return. 

Fama and McBeth (1973) performed the classical CAPM on twenty portfolios of assets. The 

results of their study show statistically significant beta whose value remained small for several 
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sub periods during the total studied time period. Fama and McBeth (1973) also validated the 

CAPM on all stocks during 1935 to 1968, whereas Tinic and West (1984) tested the same data 

for the period of 1935 to 1982 and found contrary evidence. They stated that the intercept of 

residual risk and asset return is much greater that the risk-free rate, and the residual risk has 

no effect on asset returns, therefore the CAPM may not hold.  

CAPM was not valid with UK private sector data when investigated by Greene (1990). 

However, according to Sauer and Murphy (1992), the CAPM is the best model for describing 

the stock market data of Germany. The validity of CAPM could not be confirmed for the equity 

markets of the USA, Spain, France, Belgium, Canada, Japan, and UK (Hawawini, 1993).  

4.2.1 CAPM Model and FF model 

The equation of the CAPM model is given below: 

Ri-Rf = αi + βi(RM-Rf)+ εi                                                      (4.9) 

The equation of the Fama and French (1993) three factor model is given below: 

Ri-Rf = αi + βi (RM-Rf) + γi RSMB + δi RHML + εi                  (4.10) 

The dependent variable is: 

Ri-Rf represents the weighted average return of all the firms in each portfolio of the six 

portfolios.  

Rf : risk-free rate of return (there is none in Saudi Arabia). 

The independent variables are: 

1- Market Portfolio 

This is defined as the sum over, or cumulative portfolio, of each individual 

stakeholder. Each lender has a corresponding borrower; they both cancel each other 

out. The entire wealth of the economy will be equal to the value of the aggregate risky 

portfolio (Bodie et al., 2002). The weighted average return of each stock present in the 

model is same as the market portfolio return (Rm-Rf) as described by Fama and French 

(1993). 



Chapter 4: Theoretical framework  

68 

 

2- Size effect 

Size effect is the shared stock of smaller companies on averaged higher risk-

adjusted returns as compared to the shared stock of larger companies (Banz, 1981). 

The difference between the return on the portfolios of small stocks and the return on 

the portfolios of big stocks is represented by RSMB as described by Fama and French 

(1993), and can be written in the following equation:  

RSMB = (RSL+RSM+RSH-RBL-RBM-RBH) / 3.    (4.11) 

 

 3- Book-to-Market effect 

 Firms having poor prospects are judged and indicated by the market as having 

a high ratio of book-to-market equity, low stock prices, and higher expected stock 

returns, compared to firms with strong prospects (Banz, 1981). The difference 

between the return on the portfolios of high book-to-market stocks and the return 

on a portfolio of low-book-to-market stocks is defined by RHML. According to Fama 

and French (1993), this can be shown in the equation as: 

RHML = (RSH +RBH-RSL-RBL) / 2.                     (4.12) 

4.2.2 Measurement of the Variables and Forming the Portfolios 

4.2.2.1 Monthly Return  

The monthly return is the function of the price of the stock in the current month and the price 

of the stock in the previous month and can be represented in the following equation: 

Rt =(Pt –Pt-1) / Pt-1                                  (4.13) 

4.2.2.2 Method of Forming the Dependent Variable Portfolios 

All the companies of the Saudi Arabia Stock Exchange are considered in this study and the 

50% breakpoint for size at year t is calculated. The sample stock on two size groups (B & S) 

was placed on the breakpoint. B is used for a big group and S was used for a small group. Two 

breakpoints at 30% and 70% for book-to-market at year t-1 for both groups were calculated. 

The sample companies are placed into three book-to-market groups for each size group. B/H 



Chapter 4: Theoretical framework  

69 

 

denotes the above 50% breakpoint for size and above 70% breakpoint for book-to market, 

B/M denotes the above 50% breakpoint for size and between 30% and 70% breakpoints for 

book-to-market, B/L denotes above 50% breakpoint for size and below 30% breakpoint for 

book-to-market, S/L denotes below 50% breakpoint for size and below 30% breakpoint for 

book-to-market, S/M denotes below 50% breakpoint for size and between 30% and 70% 

breakpoints for book-to-market, and S/H denotes below 50% breakpoint for size and above 

70% for book-to-market. Hence, six value weighted portfolios are formed (S/L, S/M, S/H, B/H, 

B/M, B/L,) in the study period by adopting the Fama and French methodology and applying 

the Tim Loughran considering the varied number of firms in each of the six portfolios. 

4.2.2.3 Method of Forming the Independent Variable Portfolios 

A similar technique was adopted for forming the independent factor portfolios. Breakpoints 

for book-to-market are 30%, whereas 70% and 50% breakpoints for size were considered. 

Hence the six value-weighted portfolios S/L, S/M, S/H, B/L, B/M, B/H, were formed with a 

varied number of firms in each portfolio. The SMB portfolio is calculated from these portfolio 

returns and is defined as RSMB = (RSL+RSM+RSH-RBL-RBM-RBH)/3. The HML portfolio returns are 

defined as RHML = (RSH +RBH-RSL-RBL)/2. Another value-weighted portfolio was created that 

contains all the firms in the portfolios and is denoted by Mkt. The six outputs in the FF and 

CAPM model are as follows: 

RHB = Portfolio return for companies with high book-to-market level and big group. 

RHS = Portfolio return for companies with high book-to-market level and small group. 

RMB = Portfolio return for companies with medium book-to-market level and big group. 

RMS = Portfolio return for companies with medium book-to-market level and small group. 

RLB = Portfolio return for companies with low book-to-market level and big group. 

RLS = Portfolio return for companies with low book-to-market level and small group. 
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4.3 Value-Based Management Model  

Anthony (1965), described the management control framework as the procedure for ensuring 

the acquisition of resources, and their effective and efficient use, to achieve the objectives of 

the organization. This framework highlighted the differences of strategic planning, 

management, and operational control, thus restricting the possibility of managerial 

accounting responsibilities, while directing the prime consideration towards accounting 

information (Otley, 1999). The planning and control frameworks of management are 

expanded by contingency theories, by involving a few contingent or contextual factors 

affecting the whole company’s control ‘package’ of non-accounting & accounting information 

structures, several control mechanisms, and organizational design (Otley, 1980). According to 

these theories, there is no system that is applicable universally for management accounting 

and control. The selection of suitable control and accounting techniques depends on the 

situation of the organization. Most contingent factors involve the external environment 

(including static vs. dynamic; simple vs. complex), the competitive mission and strategy 

(including innovation vs. low cost), observability and knowledge factors (including behaviour 

observability, the transformation process, and outcome observability etc.), technology (for 

example automation, job shop to mass production, and interdependencies of production), 

industry characteristics and business unit (for example diversification, regulation, structure of 

the firm, and size) (Fisher, 1995).  

The Value-based Management Model is based on previous behaviours to provide a unified 

framework to manage and measure businesses, with the particular aim of creating bigger 

long- term value for investors (Black et al., 1998).  These models differ from firm to firm and 

usually involve six basic steps. These are as follows: 

1- Selection of specific objectives internally that may enhance the stakeholder value. 

2- Choosing reliable organizational designs and strategies to achieve the selected 

objectives. 

3- Identification of ‘value drivers’ or specific performance variables which make value in 

business subject to the strategies and design of the organization. 

4- Setting targets, choosing methods for performance evaluation, and developing action 

plans established on the significances recognized during the phase of value driver 

analysis. 
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5- Evaluation of the action strategies and their execution by steering managerial & 

organizational performance measures. 

6- Measuring the present rationality of the internal objectives, control systems, plans, 

and strategies of the organization in the perspective of achieved results, and modifying 

them as per requirements. 

 

Like the frameworks of all other organizational designs, VBM has also a simple sequential 

framework with a concept of multifaceted simultaneous options, interdependencies, and 

response loops present within the execution process. Its organizational design structure is 

shown in Figure 4.1. It provides a valuable mechanism to categorize empirical work in this 

field of successive processes execution, and to measure the degree to which the new methods 

maintain the association between different processes. Specifically, this framework captures 

several connections highlighted by principal-agent models as discussed by Lambert (2001), 

contingency theories (see Baiman [1990]), and organizational design frameworks based on 

economic theories (Jensen 1998). The representative contingency and economic frameworks 

developed by Otley (1980) and Brickley et al. (1995) are given in Figures 4.2 and 4.3. Though 

the placement of variables and specified terminologies varies, each framework proposes that 

the control systems and managerial accounting should be seen as a single control package of 

the organization containing the performance evaluation and reward systems, the 

organizational objectives and strategies, and the choice of performance consequences for the 

activities each department performs. The VBM framework encompasses the new designs to 

point out the financial and non-financial value drivers of a specific firm, to reassess the 

objectives and strategies of the firm, and to provide a feedback loop involving the 

performance of the activities, and the control and design of the organization. 
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Figure 4.1: Organizational structure model 

 

Overall Objective: Increase Shareholder Value

Identify Value Drivers

Identify Specific Organization Objectives

Develop Strategies and Select Organizational Design

Develop Action Plan, Select Majors and Select Targets

Evaluate Performance 
 

Figure 4.2: A typical VBM framework 
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Figure 4.3: Contingency theory framework Otley (1980) 

 

4.3.1 VBM Model  

 
This is a decision-making model. The decisions are taken on the basis of expectations of 

shareholders and portfolio investors following the methodology of Sherstneva & Kostyhin 

(2012). The decision depends on the expectation of growth, on the fall or speculative fall of 

the stock price, and on the expectation of investment, disinvestment or dividend of the 

shareholder. In this study we used a balance of the following four indicators:  

1- Weighted Average Cost of Capital (WACC) is a weighted cost from financing the capital of 

any company from its different resources (Equity, Debt, Preferred Stock etc.). It is defined as: 

WACC = Ks ∙ Ws + Kd ∙ Wd ∙ (1 - T) + Kp ∙ Wp                  (4.14) 

where: Ks = the cost of equity; Ws = weight of equity; Kd = cost of debt; Wd = weight of debt;  

T = corporate tax rate; Kp = cost of preferred stock; Wp = weight of preferred stock.  

2-Actual Return of Investments (Ract ) is the real rate of return that is gained from holding an 

asset during a specific period of time. 

To calculate Ract we can use ROIC  
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Ract = ROIC , where  

ROIC = Return on Invested Capital  

Ract = ROIC = NOPLAT / IC, where  

NOPLAT = Net Operating Profit Less Adjusted Taxes; IC = Invested Capital.  

3-Expected Investment Return (Rexp) is the mean value of the probability distribution of the 

return. For calculation of Rexp: 

Rexp = D/Po+Q 

where :D = dividend; Po = share price; Q =dividend growth.  

4- Required return on invested capital (Rreq ) 

The required rate of return is the required return from the market to compensate the investor 

for the risk he faces from investing in this stock. The present study proposes using Fama and 

French Model formula and CAPM Model. 

Rreq = FF  

FF = Fama and French Model (Ri-Rf) = αi + βi(RM-Rf) + γi RSMB + δi RHML + εi       (4.15) 

Rreq = αi + βi(RM-Rf) + γi RSMB + δi RHML + εi          (4.16) 

Where: 

(RM - Rf) = Risk premium; Rm = the return rate of a market benchmark; Rf = the rate of return 

for a risk-free security; RSMB= Size effect = (RSL+RSM+RSH-RBL-RBM-RBH)/3; 

RHML= Book-to-Market effect = (RSH +RBH-RSL-RBL)/2; βi = beta of the company’s shares. 

   Rreq = CAPM  

 

CAPM – Capital Asset Pricing Model  

Rreq = Rf + βi *(Rm - Rf)                           (4.17) 
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where: Rf = the rate of return for a risk-free security; Rm = the return rate of a market 

benchmark;  (Rm - Rf) = risk premium; βi = beta of the company’s shares. 

Table 4.1: The model of decision-making on the basis of expectations of shareholders and portfolio investor 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 shows that in the model of decision for the expectations of shareholder and 

portfolio investors, the decision will depend on the balance of four indicators. The expectation 

of the growth, fall or speculative fall of the stock price depends on the R actual and R 

expected:  

Growth: If the actual or real return is bigger than the expected, we predict that the stock price 

will grow. 

Fall: If the actual return is less than the expected return, we expect that the stock price will 

fall. 

Speculative fall: If the expected return is more than the real return, but both of them are 

larger than the required return, the result will be a speculative fall. 

The following three paragraphs show how the decision of invest, disinvest or dividend of the 

shareholder has been taken: 

 

BALANCE OF INDICATORS 

Increasing 
shareholders 

wealth carried 
out at the 

expense of: 

 

Share price 

WACC < R-act > R-exp > R-req investments growth 

WACC < R-act < R-exp < R-req disinvestment fall 

WACC < R-act < R-exp > R-req investments speculative fall 

 R-act > R-req   

WACC > R-act > R-exp > R-req dividends growth 

WACC > R-act < R-exp < R-req disinvestment fall 

WACC > R-act < R-exp > R-req dividends fall 

 R-act > R-req   



Chapter 4: Theoretical framework  

76 

 

Disinvest: if the real return is bigger than the weighted average cost of capital (WACC), which 

encourages investing in this company, but still the expected & real return is less than the 

required return, this means that this portfolio will not compensate the investor for the risk he 

will exposed to. Therefore the result will be to disinvest.  

Dividend: If the real rate of return is less than WACC, any money spent on this company’s 

projects will not cover its cost of capital, so it is preferred to distribute the profit to the 

investors and let them invest their money in economically profitable companies, instead in 

investing it in losing projects. Therefore the result will be dividend. 

Invest: If the real rate of return is bigger than WACC, any money spent on this company’s 

projects will cover its cost of capital, so it is preferred to keep the money inside the company 

as a retained earning instead of distributing the profit to the investors, because this company 

is economically profitable. In addition, the real rate of return is bigger than the required 

return. Therefore the result will be to invest. 

4.4 Hypothesizes 

The following hypothesizes are tested using GMM Regressions Coefficients 

CAPM Model Hypothesis 

Hypothesis number 1 

Ho: There is no significant effect of the market return on the portfolio return. 

H1: There is a significant effect of the market return on the portfolio return. 

The Fama and French Model Hypothesis 

Hypothesis number 2 

Ho: There is no significant effect of the market return on the portfolio return. 

H1: There is a significant effect of the market return on the portfolio return. 

 Hypothesis number 3 

Ho: There is no significant effect of the size on the portfolio return. 

H1: There is a significant effect of the size on the portfolio return. 
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Hypothesis number 4 

Ho: There is no significant effect of the book-to-market value on the portfolio return. 

H1: There is a significant effect of the book-to-market value on the portfolio return. 

4.5 Data Description 

This study examined monthly data relating to common stocks in the listed companies of the 

Saudi Arabia Stock Exchange from January 2007 to December 2011. The data herein is 

collected from several sources. Monthly stock returns, size, book-to-market values and 

market returns are taken from the Saudi Arabia Stock Exchange. Over the study period (2007-

2011) the researcher collected all available stock prices relating to all companies in the Saudi 

Arabia Stock Exchange. The number of observations during the study period was 60. 

 

4.6 Artificial Neural Network Tools 

Neural networks are the powerful tools used for forecasting of recent developments in 

artificial intelligence research. These involve non-linear models that may be used for mapping 

of past and future trends and time series data, and for revealing the hidden relationships and 

structures that govern them. The tools are used in several applied fields, for example 

economics, computer sciences, and medicine. They are used in the analysis of the 

relationships among financial and economic phenomena, generating time-series and 

optimization, and forecasting and filtration (Hamm and Brorsen, 2000). Neural networks are 

accepted as strong supporters of several investment banks, avant-grade portfolio managers, 

and trading firms. Several big banks like Morgan Stanley and Goldman Sachs have particular 

departments for the implementation of this tool. Similarly, Fidelity Investments has also been 

using these networks and gives recommendations based on the results of artificial neural 

networks. The fact that several of the world’s largest companies are investing their valuable 

financial resources in neural networks is proof that these are significant tools for forecasting.  

ANNs are electronic models based on a neural structure similar to the human brain. This 

modelling involves a less technical way of generating solutions, much as the brain does on the 

basis of experience. ANN is a non-linear self-adaptive data driven method. It takes vector 

(yj…yk) as input and is a type of real function. The output is usually a function, mostly a 
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sigmoid function i.e. tangent hyperbolic or logistic function. These types of functions 

(multilayer perceptron) consist of combinations of weighted sums of the functions parallel to 

the neurons. Cascade-forward and feedforward networks are particularly applicable in 

approximation functions when all inputs and outputs are known. The Neural network training 

parameters are: 

 The initial weights and biases randomly between -1 and +1 

 Training parameters learning rule Back-propagation 

 Adaptive learning rate is 0.001 

 Momentum constant is 0.9 

 Acceptable mean-squared error is 0.001 

 Performance function: mean square error (MSE) 

There are several types of neural networks that work effectively and efficiently to execute the 

process of the research. Some of these are discussed below: 

4.6.1 Feed-forward Neural Networks  

Feedforward neural networks (FF networks) are the most widely and popularly used models in 

many applications. These networks are also known as ‘multilayer perceptrons’. They involve 

hidden layers, input layers, and output layers. These networks begin with input layers, which 

are connected to a hidden layer or may be directly connected to the output layer. One hidden 

layer may be connected to another hidden layer or layers, or it may be connected to an 

output layer directly. The majority of such networks have only one hidden layer, although 

occasionally there exists neural networks that involve more than two hidden layers.  

The input layer is channelled through which the pattern of the neural network is presented by 

the external environment. The output layer produces another pattern as soon as a pattern is 

presented to the input layer. This is the basic function that a neural network performs. The 

condition for which the neural network is trained should be represented clearly. At least one 

independent variable should be represented by every neuron that has an influence on the 

output. The input to these networks is always floating point numbers.  

The output layer actually presents the forecasted pattern to the external environment. The 

path of the output layer can also be tracked back directly to the input layer. To classify items 

into groups, at least one output neuron is necessary for each group whose input values are to 
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be assigned. A typical feedforward neural network with a single hidden layer is shown in 

Figure 4.4 below. 

Input
1

Input
2

Hidden
1

Hidden
2

Hidden
3

Output
1

 

Figure 4.4: Feed forward neural network with single hidden layer 

 

4.6.2 Elman Neural Networks  

Elman (1990) presented the ‘Elman network’ which is a recurrent type of network used for 

dynamic system identification and financial prediction. The basic Elman network was only able 

to model first order dynamic systems by executing the back propagation algorithm; this 

process was later modified by Pham and Liu (1992). One output unit and one input unit are 

involved in an ‘Elman network’. Similar networks were presented by Robinson and Fallside 

(1987). By setting some variable values to zero, the neural networks presented by Robinson 

and Fallside (1987) and Elman (1990) show a similar structure. Figure 4.5 shows the Elman 

network which involves different units like input, hidden, and output units. In addition to 

these layers, it also consists of context units. The input and output layers interact with the 

external environment, whereas other units do not. The output unit sums the feed signals and 

has a linear unit function. Hidden units can involve either non-linear or linear activation 

functions. The context unit stores the previous processes of the activations of the hidden layer 

and supports the functions in one-step time delays. The feedforward processes are 

modifiable, whereas the recurrent processes are fixed. The Elman network is also called a 

partially recurrent network due to its feature of fixed recurrent connections. 

At a particular instant k, the preceding processes of the hidden units (at time = k-1) and the 

input at k input are fed to the network. Now, the system executes its functions as a feed 

forward network and processes the inputs forward to generate the output. According to 
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Rumelhart and McClelland (1986), at this stage, the standard back propagation learning rule 

can be adopted for training the network. At the next step, activation of the hidden layers at 

time k are set back by the associations of recurrent processes towards the context layers, and 

are stored for the next step’s execution (time k+1). The activations of the hidden layers are 

unknown at the beginning of the execution process. Most of the time, they are set to one-half 

of their domain. Figure 4.5 of the Elman network shows the external input which is 

represented by u(k) and the output which is represented by y(k). The input to the hidden layer 

at ith level is represented by x(k). The subsequent x(k) is acquired from the next context layer. 

Output Unit

Context Unit

U(K)

Input Unit

Hidden Unit
X(k)

y(K)

x
c
(k)

 

Figure 4.5: Elman network structure 

4.6.3 Cascade-Forward Network  

Cascade-Forward (CF) architecture is built by combining new neurons and developing their 

links with every input and hidden neuron. The weight of newly introduced neurons is fitted to 

reduce the outstanding error in the network. The newly added neurons increase the 

performance of the system. Hence, the usual cascade-correlation network supposes that all 

variables (x1,…,xm) attributing to the processing data are pertinent to the problem of 

classification. A cascade neural network with m number of inputs and only one output neuron 

begins the execution without the hidden layers. The adjustable weights (w1,…,wm) connect the 

output neurons to every input neuron. The standard sigmoid function f gives the output y of 

neurons in the network. Hence, 

𝑦 = 𝑓(𝑥; 𝑦) =  
1

1+exp ( −𝑤 − ∑ 𝑤𝑖 𝑥𝑖
𝑚
𝑖 )

           (4.18) 
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where: 

w= (w1,…,wm) represents a mx1 weight vector, w0 is the term representing error and is 

omitted, 

x=(x1,…,xm) represents a mx1 input vector. 

The new neurons are entered one by one into the network and each of them is linked to every 

m number of inputs and to the hidden layers. Only output layer is trained each time. For data 

processing and training, there are many algorithms and any one of them can be employed to 

acquire the output. These algorithms adjust their weights to minimize the residual error and 

then add and train the other new input neuron, while continuously minimizing the bias of the 

network. Cascade neural networks are widely accepted for data processing due to their 

several advantages. In this network there are no predefined structures. The network is built 

up automatically from the training data. It starts processing very fast because every neuron is 

trained separately from each other. There is also a disadvantage of these networks. They can 

be over fitted because of the presence of noise in the training data. An evolving cascade 

neural network is used to reduce the noise.  

There are p numbers of inputs that continue to increase from one layer to another. The 

neuron is linked to two inputs at the first layer (xi1,…, xi2), i1 ≠ i2ϵ(1, m). xi1 is the input that has 

the minimum error. The newly added neuron at the second layer is linked with the input xi1 

and also with the output of the previously executed neuron. Similarly, the third neuron would 

also be connected to the input xi1. Hence each new neuron connected with the input 

continues to reduce the bias of the network and the output. 

In the same manner, the new neuron at the rth layer has input p=r+1. The output zr of this new 

neuron for a logistic activation function can be shown as: 

𝑍𝑟 = 𝑓(𝑢; 𝑤) =  
1

1+exp ( −𝑤 − ∑ 𝑢𝑖 𝑤𝑖
𝑝
𝑖 )

                                    (4.19) 

where: 

r represents the total number of layers 

u= (u1,…,up) represents px1 input vector of the neuron added in the rth layer 
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The cascade network for r=3 layers and m=4 inputs is shown in Figure 4.6 The squares in the 

figure show the synaptic links between the inputs (x1,…, x4), two hidden neurons with two 

outputs z1 and z2 , and the output neuron. 
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Figure 4.6: Cascade neural network for 4 inputs and 3 layers 

The above diagram shows that the reduction in the bias of the output feature that is involved 

in connection with the previous feature can be easily estimated by simply following the above 

algorithm. The redundant, as well as the irrelevant, features are restricted to being involved in 

the resultant network if the output bias is evaluated by validating dataset. Hence, the 

selection criterion for the algorithm behaves as a regularity criterion Cr, which is calculated for 

any number of neurons that are not included in the fitting of the synaptic weights. The Cr 

values use the algorithm that involves the generalization ability of the neuron along with the 

other connections of the neuron. The value of the Cr continues to increase proportionally. The 

irrelevant connections of the rth neuron with other layers cannot be classified, hence the 

value of Cr is expected to be high. 

4.6.4 Radial Basis Function Network  

For a function y(x), a linear model takes the form: 

𝑦(𝑥) =  ∑ 𝑤𝑗 ℎ𝑗
𝑚
𝑗=1 (𝑥)                             (4.20) 

The function f of the model is represented as a linear combination of m fixed number of 

functions which are usually known as basic functions. A basis function involves a vector that 
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consists of a linear arrangement of basis vectors. The ability of the function f to be flexible, its 

derivation only from the freedom to pick separate values for the weights, and its ability to fit 

into many different functions, makes it more reliable and easier to apply. The parameters 

contained by the basis function and the function itself are fixed, but in the case of change 

during the process, the model would be non-linear. Linear models are easier to process 

mathematically. 

Any set of functions can be processed as the basis but it would be more useful if the function 

were differentiable. Classical statistics use several different types of basis function for 

different purposes, however the multilayer perceptron method involves logistic functions that 

are widely used in artificial neural networks of the form: 

 

ℎ(𝑥) =
1

1+exp (𝑏𝑇𝑥− 𝑏0)
                                                        (4.21) 

where h(x) is the hidden layer. 

Another special class of functions is known as radial functions. Their response decreases or 

increases monotonically with changes in distance from the centre. The distance scale, the 

centre, and the precise shape of these functions are assumed to be the parameters involved 

in the model. If the function is linear, all parameters will be fixed. 

A Gaussian function is a typical radial function if it takes the scalar as an input: 

h(x) = exp ( −(𝑥 − 𝑐)2 /𝑟2 )                                  (4.22) 

Where: the radius r and the centre c are the parameters of the model. Figure 4.7 shows the 

Gaussian Radial Basis Function (RBF) with the radius r =1, and c =0. 

This RBF (Gaussian) decreases monotonically as the distance from the centre. The multi-

quadratic RBF with the input as a scalar is: 

 

ℎ(𝑥) =
√𝑟2+(𝑥−𝑐)2

𝑟
             (4.23) 
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h(x) increases monotonically as the distance from the centre (see Figure 4.7).  RBFs such as 

Gaussian give a logical output near the centre and usually use the multi-quadric type radial 

basis functions that give global output and their response is finite. 

 

Figure 4.7: Gaussian Functions (left) and Radial Basis Functions (right) 

RBFs are a class of functions and they can be used in any kind of nonlinear or linear model and 

any kind of multilayer or single layer network. Traditionally, RBF networks (Figure 4.8) are 

associated with the single layer radial function network as discussed by Broomhead and Lowe 

(1988).  

f(x)

h1(x) hj(x) hm(x)

x1 xi xn

w1

wj

wm

 

Figure 4.8: Radial Basis Function Network 

All the n input vectors x are given to m number of basis functions. The outputs of these basis 

functions are combined linearly with the weights wj when j=1,…,m into the output of the 
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network y(x). The radial basis function network is non-linear if the basis function will change 

the size or move in the case of more than one hidden unit. Nonlinear optimization can also be 

used for the optimal subset of basis functions in forward selection and in ride regression for 

the regularization parameters. These RBFs networks make computation quicker, and analysis 

easier. 

4.6.5 Fitting Networks  

Fitting using neural networks (FIT) is assumed to be good by researchers and statisticians. A 

simple neural network can easily compute the fitting function of practical functions. ANN 

represents a simple to compute and is used for interpolation or curve fitting. Curve fitting is 

very simple for a 1-n-1 network. It consists of only one input, one linear output, and n number 

of nodes as shown in Figure 4.9: 
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b
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Figure 4.9: n hidden layers, 1 output layer 

Back propagation networks are used to reduce the bias errors in the previous layers. It is a 

supervised data processing method for training a neural network involving feedforward 

propagation. Back propagation uses artificial neurons or nodes to transfer the function in the 

hidden layers that are differentiable. The Log-Sigmoid function is used and is denoted by ‘L’ 

and is shown in Figure 4.9. The values stored in the biases and weights describe the behaviour 

of the neural network and are denoted by b and W. The feedforward network used for fitting 

is described by the following equation: 

a = Logsig  (Wx (input) + b)          (4.24) 

where: the resultant vector is represented by a from the hidden nodes, 

Logsig ( ) is the output = purelin (W’xa+b’) is the log sigmoid function, 
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W, W’, and a are the vectors, 

Purelin ( ) is represents the linear output of the function. 

As the biases and weights (vectors) are trained suitably for the points of the data set, the 

fitting neural network will start to model the function and indefinitely describe the set of data 

points. The behaviour of the network would not be a specified equation. Hence, the network 

will remain free of restrictions of functions or polynomials and would be specified before 

processing. To store the final biases and weights, the volume of information needed is:  

Numbers stored = nodes x 3+1 

where ‘nodes’ defines the number of nodes in the hidden layer. 

To train the network for fitting, an extensive amount of time is required. The behaviour will be 

closer to the points that are used in processing if more time is given. Below are the points that 

are followed to train the network for fitting the cure: 

  1-Training sample (data set points) is given to the neural network as input value. 

2- Compare the output of the network with the expected output of the sample. Calculate 

the error of all the neuron’s output. 

3- Calculate the scaling factor and the output for each neuron, and explain by how much 

higher or lower the output should be adjusted to bring it closer to the expected output. 

This is known as the local error of the network. 

4- The weights of each neuron should be adjusted to the local or lower error.  

5- Allocate the neurons responsible for generating or increasing error at the preceding 

level, prioritizing with the higher responsibility neurons linked with the higher weights. 

       6- Repeat the procedure in the same manner. 

4.6.6 Feed Forward Input Time-Delay Back Propagation Network  

Satsri et al. (2007) used this model arrangement for the comparison that consists of a 

single layer and involves three levels: 

    1- The feedforward of the input neurons’ pattern 
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    2- Associated errors are back propagated 

    3- Weight adjustments 

A multilayer perceptron has one input layer and one output layer of source nodes and 

neurons respectively, in a back propagation arrangement. These nodes are called 

computation nodes. It also comprises a hidden layer, as in all other types of neural 

networks, and it works in the same way. More often, the training of data is done by using 

a back propagation algorithm which has 2 important phases. The input signal is 

transmitted layer by layer through the network and all the free parameters are fixed 

during the forward phase. This phase completes while producing a signal of error. 

Ei =di - yi                   (4.25) 

where:  

di represents the expected response, 

yi represents the actual output generated in response to the input xi by the network. 

The error signal ei is transmitted by the network in the backward direction during the 

second phase. Adjustments are made at this stage of the independent parameters to 

minimize the error ei. 

The back propagation technique is easy to implement and efficient in computational 

processes, and it has linear complexity in the synaptic weights. However, this algorithm 

has the limitations that it is slow and does not always converge, which generates issues, 

specifically when processing difficult learning tasks which require the use of sophisticated 

networks (Haykin et al., 2001). The iterations of the back propagation algorithm can be 

written in the following form (Demuth et al., 2008): 

x𝑘+1 = x𝑘 − a𝑘g𝑘           (4.26) 

where: 

ak the rate of learning, 

xk is the vector of biases and weights, 
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gk is the gradient. 

The back propagation algorithm is typically concerned with an approximation of the 

arrangement without any dynamics, i.e. a static system. Time is another important aspect 

of learning in this algorithm. The time can be incorporated into the neural network’s 

system explicitly or implicitly. The time 1 can be implicitly represented by a 

straightforward method in the static neural network i.e. to add a short term memory 

structure in the input layer. The resultant configuration is known as a focused time lagged 

feedforward network. The mechanism is shown in the Figures 4.10 - 4.12. 
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Figure 4.10: Artificial neural network 
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Figure 4.11: Order p ordinary tapped delay line memory 
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Figure 4.12: Focused time lagged feedforward network 

 

The most widely used form of short term memory is the tapped delay line. Figure 4.11 shows 

p unit delays of time with p+1 terminal. It can be seen that it takes in one input and results in 

multiple output networks. Figure 4.12, which illustrates a focused time lagged feedforward 

network, shows a network employing a combination of tapped delay line. In Figures 4.11 & 

4.12, the time delay is represented by z-1. The tapped delay line memory’s time is fixed at p, 

whereas the resolution of the memory is fixed at 1, generating a depth resolution p as a 

constant. The focused time lagged feedforward network (TLFN) employs the tapped delay line 

memory, or gamma memory, that are restricted to dynamic procedures, in which the time is 

spread throughout the network at the synaptic level. The training of a TLFN is complex 

compared to the training of a focused TLFN. To train a focused TLFN, the ordinary back 

propagation algorithm can be used. The back propagation algorithm can be extended in the 

ordinary multilayer perceptron to cope with the replacement of the synaptic weight vector. 

The extension of the algorithm is known as the temporal back propagation algorithm (Wan 

1994). 
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4.6.7 Distributed Time Delay Neural Network  

The tapped delay line memory processes in the focused time delay neural network (TDNN) 

only at the input to the first layer of the static feedforward network. The tapped delay lines 

may be dispersed throughout the network system. The distributed time delay neural network 

was introduced for distinguishing the phoneme. At first, it was designed especially for the 

particular problem. The two-layer distributed TDNN is shown in Figure 4.13. 
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Figure 4.13: Distributed time delay two-layer neural network 

This network usually tries to identify the input signal and its frequency content. The signal 

with one of two frequencies is shown in Figure 4.14: 

 

 

Figure 4.14: Frequency content of an input signal with one of two frequencies 
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4.7 Adaptive Neural Fuzzy Inference Systems  

Zadeh (1965) introduced fuzzy logic to show and manipulate data and information involving 

several types of uncertainty. Linguistic variables are used in fuzzy rule-based systems to give 

reasons by utilizing a series of logics containing If-Then rules. These rules connect consequents 

and antecedents together. An antecedent with a specific degree of membership between 0 - 1 

is a fuzzy clause. Multiple antecedents may be linked with OR and AND operators by fuzzy 

rules. All processes are executed and resolved simultaneously. There may be multiple parts of 

consequents that may be averaged into a single output/number of a fuzzy set (Negnevitsky, 

2005). The process of mapping from a given input to an output through the fuzzy set of 

methods is called fuzzy inference and its system is shown in Figure 4.15: 

Rule base

Inference 
Engine

Fuzzification DefuzzificationInput  
Output  

Membership Functions

 

Figure 4.15: A typical system of fuzzy inference  

 

The fuzzy inference system has five functions as shown in Figure 4.15. The fuzzification 

component transforms each crisp input variable into a membership grade which is typically 

based on the membership’s functions. The fuzzy reasoning is processed in the inference 

component by the suitable fuzzy operators to acquire the fuzzy set. These fuzzy sets are 

further collected in the consequent variable. The fuzzy output variable is than transformed 

into a crisp resultant by employing the method of certain defuzzification, which occurs in the 

defuzzifiication component. Jang (1993) proposed the Adaptive Neuro-Fuzzy Inference 

System, and in 1993 he implemented a Sugeno fuzzy inference method. This Adaptive Neuro-
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Fuzzy Inference System (ANFIS) consisted of a six layers feed-forward neural network and is 

shown in Figure 4.16. 
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Figure 4.16: Six-layered feed-forward Adaptive Neuro-Fuzzy Inference Systems neural network (Jang, 1993) 

The external crisp signals are passed through layer 1 to layer 2 and is called the fuzzification 

layer. This determines the membership grades for all inputs applied by the specified function 

of the fuzzy membership. Examples of such fuzzy membership functions include Gaussian 

curve and bell-shaped. The membership function can be shown in the form of the given 

equation: 

µ𝐴𝑖(𝑥) =
1

1+[(
𝑥−𝑐𝑖

𝑎𝑖
)

2
]𝑏𝑖

                                    (4.27) 

 

µ𝐴𝑖(𝑥) = 𝑒𝑥𝑝 {− (
𝑥−𝑐𝑖

𝑎𝑖
)

2
}                                 (4.28) 

where ai, bi, and ci represent the parameters used in the membership function.  

The 3rd layer computes the firing strength of the rule as a multiple of the membership grades 

of ANFIS, which is called the rule layer. In layer 4, each neuron receives input from the 

previous layers’ neurons. This layer further computes the ratio of the sum of the firing 

strengths of all the rules, and the firing strength of a given rule. Layer 4 is known as 

‘normalized firing strengths’. The defuzzification layer is layer 5, and it yields the restrictions of 

the output part of the process. There is only one node in layer 6 that computes the final 
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resultant, considering it to be the sum of all the input signals. The specifics of ANFIS are 

discussed in detail by Jang (1993) and Negnevitsky (2005). 

𝑂3,𝑖 = 𝑤𝑖 =
𝑤𝑖

𝑤1+ 𝑤2+𝑤3+𝑤4
                                 (4.29) 

 

𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 =  𝑤𝑖(𝑝𝑖𝑥 +  𝑞𝑖𝑦 +  𝑟𝑖)                  (4.30) 

p, q, represent the set of parameters of layer 4 that may be identified by applying the Least 

Square Estimation method. 

 

                𝑂5,𝑖 =  ∑ 𝑤𝑗 𝑓𝑗𝑖                                      (4.31) 

4.31 is the equation of layer 5 which represents the summation of the all input signals in the 

previous layers. 

The training error can be reduced by applying the ANFIS and using the alternative algorithms. 

The least square algorithm and gradient descent algorithm are effective for finding the 

optimal parameters. This hybrid technique has the advantage of being very fast, and it 

reduces the dimensions of the search space of the back propagation technique commonly 

used in neural networks (Jang 1993).  

 

4.8 Genetic Algorithm  

Genetic algorithm (GA) was first described by Holland (1975). After that, a series of papers 

have been published by Srinivas and Patnaik (1994) and Beasley (1993). As its name suggests, 

it is inspired by the natural biological mechanism which says that stronger individuals are 

more likely to win in a competitive environment. The genetic algorithm engages the direct 

examples of natural evolution. It believes that an individual is the potential solution to the 

problem and it can be shown using a set of parameters. These parameters can be likened to 

the genes of a chromosome. The structure of a chromosome is like a string of binary values. 

The fitness value (i.e. a positive value) usually reflects the height of ‘goodness’ of the 

chromosome that is involved in problem solving. Such a value is very close to the objective 
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value. A fitter chromosome has the tendency to yield good quality offspring through the 

genetic evolution process that indicates a good solution for the problem. The chromosomes 

can be set initially on a random basis and their population pool has to be installed in a specific 

application of the genetic algorithm. McFarlane and Glover (1990) have defined some 

guidelines to deal with the problems of the size of the population variation. The evolution 

process is the cycle of genetic operation. A consequent generation is produced from the 

current population’s chromosomes through the process of evolution. The evolution process 

can only be successful if a group of chromosomes, usually known as a “mating pool” or 

“parents”, pass through a particular routine of selection. The parental genes are recombined 

and mixed for the next generation’s production of offspring. This process of evolution, or the 

manipulation of genes, is expected to give better chromosomes that can generate a large 

number of offspring. Therefore there is more chance to survive in the consequent population, 

following the survival of the best mechanism in nature. To understand this mechanism, the 

roulette wheel selection (Davies and Clarke, 1995) is the best suitable scheme for such a type 

of selection mechanism. The evolution cycle is repeated until the desired outcome is 

achieved, based on predefined criterion. The number of evolution cycles or computational 

runs, fitness values, and the aggregate of variation between the individuals of different 

generations can be set as a predefined criterion. Crossover and mutation are two 

fundamental operators which are required to facilitate the evolution cycle of the genetic 

algorithm. The selection criterion can also be considered as another operator. The operational 

procedure is shown in Figures 4.17 and 4.18 in a one point crossover mechanism:  

Crossover Point 

Parents Offspring
 

Figure 4.17: One-point crossover 

Original Chromosome

New Chromosome

0 0 1 1 0 1 0

0 0 0 1 0 1 0

1

1
 

Figure 4.18: New chromosomes generated by original chromosomes with bit mutation on the fourth bit 
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The crossover point is set randomly as the cut-off point. The sharing of the two chromosomes 

has to be exchanged after this point to the right to create the offspring. pc represents the rate 

of operation which is a value between 0.6 to 1.0, and is the probability crossover. The process 

is applicable to every individual offspring for mutation after the crossover exercise. Each bit 

with a small probability pm typically less than 0.1 is given an alert randomly. 

The control parameters pm and pc can be chosen for nonlinear optimization problems. 

Moreover, the settings of these control parameters depend on the characteristics of the 

objective function.  

According to the roulette wheel parent selection, N represents the sum of the fitness of all 

population members, n represents the random number between 0 and total fitness N. The 

when process returns to the first population member whose fitness, added to the fitness of 

the preceding population members, is usually larger or equal to n. 

4.9 Summary 

The theoretical frameworks described in this chapter are used in the analysis of data sets in 

this research. These frameworks are scientifically designed to solve multiple problems in the 

real world and their structure and mechanism cannot be randomly modified. The neural 

network is the most widely used method which provides solutions to problems in multiple 

fields of study. The theories of these frameworks help to understand the mechanisms that 

execute the processes and achieve the required objectives. The authentication of these 

above-discussed mechanisms is obvious in the literature, and the scientific community widely 

accepts them in order to achieve a level of reliability in data analysis and results. The CAPM is 

used to explain the association between the predictable market return and risk in the field of 

economics. It involves linear methods. Since CAPM has the limitation of certain types of 

problem solving, the Fama and French (1993) model performs as an extension of CAPM and 

provides valuable additional information about the risks and returns of the market. This 

model is a three factor model and also describes the risk-free rate of return with the help of 

different mathematical formulae and logics. Both models have been used in several studies in 

the past, which highlighted the importance of their application. The VBM model ensures the 

effective and efficient use of the available firm’s resources and highlights the differences 

between management, planning, and control of accounting. It also involves some contingency 
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theories that affect the information structures and the organizational design. VBM is a theory-

based model that describes the smooth execution of organizational processes. The neural 

networks are the most popular models, used in many applications. The feed forward neural 

network is based on a multilayer perceptron algorithm that involves the hidden, input, and 

output layers. The layers are interconnected and give the output after complex logical 

processing. The Elman network was presented by Elman (1990) and it involves the recurrent 

type of network logics that are used for identification and prediction of dynamic financial 

systems. It involves the back propagation algorithm and context unit functions to deal with 

the previous process of activations in layers to support time delays. The recurrent processes 

are fixed networks. The cascade-forward network is based on the connections built internally 

between all the layers. The new neurons are introduced in a chain in order to reduce the 

network bias error. This network is used for dealing with the problems of classification in the 

data sets. The radial basis function networks are based on the Gaussian functions and radial 

basis functions, involving linear and nonlinear models of multilayer or single layer networks. 

These networks are used for optimization of the finances of firms. The fitting networks are 

used to fit the linear regression curve fitting of n number of nodes. It is also based on the back 

propagation algorithm to reduce the model bias, and then it uses the supervised processing of 

data with feed forward propagation. The Log-Sigmoid functions are also used by this network 

to fit the curve. The Feed-Forward Input Time-Delay Back Propagation Network consists of a 

single layer and a feed forward algorithm as well as the back propagation algorithm. It is used 

for time delays during the logical processing of data sets involved in the study. This network 

uses several different types of algorithms at different stages for reducing the errors in the 

output. The distributed time delay neural network employs the static feed forward algorithm 

to process the data sets in which the dispersion occurs. It is used for distinguishing and 

identifying the frequency content of the signals or different practical problems. Adaptive 

neural fuzzy inference systems were introduced by Zadeh (1965) to manipulate data and 

information that involve probabilities. It uses fuzzy rules consisting of If-Then logics to solve 

the problems of economics. The genetic algorithm was introduced by Holland (1975) and 

proposes to find solutions to problems based on natural evolution processes. It involves the 

application of the roulette wheel selection for the operational procedures. 
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5.1 Introduction  

The present chapter of this thesis reports the model forecasting for the stock return 

predictions on the Saudi Arabian Stock Exchange, using the traditional Capital Asset Pricing 

Model (CAPM) along with the Fama and French (FF) three factor model. The popular Fama 

and French three factor model is based upon market returns, size and book to market. In 

order to boost the predictive power of stock prediction models, various Artificial Neural 

Network (ANN) models have been applied as well. For both CAPM and FF, forecasting has 

been done through a linear regression model, along with eight ANN models such as 

Cascade-Forward Network (CF), Elman Neural Networks (ELM), Feed Forward Input Time-

Delay Back Propagation Network (FFTD), Feed forward Neural Network (FF), Distributed 

Time Delay Neural Network (DTDNN), Fitting Network (FIT), Radial Basis Function Network 

(RB) and Adaptive Neural Fuzzy Inference Systems (ANFIS). Along with this, the simple 

average and weighted average of all these ANN models, as well as a Genetic Algorithm (GA,) 

have also been used in this study as stock return prediction models for the Saudi Arabian 

Stock Exchange for the period of January 2007 to December 2011 using MATLAB software. 

The rest of this chapter is organized as follows: Section two describes the results of the 

forecasting FF model, while section three shows the results of the forecasting CAPM model. 

Section four provides comparisons between the FF and CAPM models, and finally the last 

section presents the summary. 

 

5.2 Forecasting Fama-French three factor Model    

According to Fama and French (1993) methodology using monthly data in each model is 

based upon 60 monthly observations from 2007 to 2011, and it is divided into training type 

for the first 48 observations, and testing type for the last 12 observations. The training type 

is the biggest type and is used by neural network to learn patterns present in the data. The 

testing type is used to evaluate the generalization ability of a supposedly trained network 

Jha (2007).  This data was done in order to see the accuracy of the predictive power of ANN 

and other models in CAPM and FF. The root mean squared (RMS) is used to estimate the 

difference between the actual and predicted values for each of the six portfolios 

constructed for training and testing .The RMS is calculated as: 
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𝑅𝑀𝑆 =  
√ ∑  ( 𝑋−𝑋̂ )2𝑁

𝑖=1

𝑁
                      (5.1) 

where: N = the sample size, X = the actual values and X̂  = the predicted values. 

All the numbers in the tables are the RMS measure (Standard deviation) and each number 

has two values (training and testing) for returns of each portfolio – RHB, RHS, RMB, RMS, 

RLB, and RLS. The Fama and French (FF) proposed three-factor model is used for forecasting 

the stock returns in individual securities and portfolios. This model is actually an extension 

of the traditional CAPM model, which only uses market returns to predict individual stock 

returns. The FF model also includes the size and value effect (book to market ratio) along 

with market returns in order to forecast stock returns for a security. The present study uses 

the FF three-factor model to predict stock returns in the Saudi Arabian Stock market. The 

method uses a linear model, various ANN models, average and weighted average of ANN 

models and a genetic algorithm to predict the stock returns for the six portfolios 

constructed, based upon size and book to market ratio.  

5.2.1 Results of Linear Regression    

Table 5.1 shows the explanation power (R2) ranges from 0.73 to 0.34 which means 

that the three-factor model explains more of the variations in stock return, but not all of 

them. This means that there are other variables which explain the dependent variable. 

Table 5.1 R-squared for FF 

 

Moreover, Table 5.2 shows that the null hypothesis can be rejected which implies 

that there is no significant effect of the market return variable (independent variable) on 

the big portfolios return as the P-value is less than 1% (1 - confidence level (99%)). This 

implies that the alternative hypothesis can be accepted which indicates that there is positive 

significant effect for the market value on the stock return for the big portfolios. While the 

coefficients of the market return (independent variable) are 0.98 and 0.61 and 0.76 big 

portfolios. 

FF RHB RHS RMB RMS RLB RLS 

R-squared 0.472 0.339 0.434 0.702 0.731 0.703 



Chapter 5: Model Developments 

100 

 

Furthermore, table 5.2 shows that the null hypothesis can be rejected which implies 

that there is no significant effect of the market return variable (independent variable) on 

the small portfolios return as the P-value is less than 1% (1 - confidence level (99%)). This 

implies that the alternative hypothesis can be accepted which indicates that there is positive 

significant effect for the market value on the stock return for the small portfolios. While the 

coefficients of the market return (independent variable) are 0.77 and 0.84 and 0.91 for the 

small portfolios. This means that the market return significantly affects the stock return in 

the six portfolios when regressed with the other two factors. 

Table 5.2 shows the SMB size factor, the coefficients for big size high B/H, portfolio is 

significantly different than zero at 1 percent significant level but the coefficient for small size 

high S/H and small size Medium S/M and big size low B/L portfolios are significantly 

different than zero at 10 percent significant, finally coefficients of big size Medium B/M, 

small size Low S/L portfolios are not significantly different than zero. The coefficients are 

positive for all the portfolios except the big size high B/H and big size low B/L portfolio it's 

coefficient sign is negative. 

For the SMB size factor; Table 5.2 show that the null hypothesis can be rejected 

which implies that there is no significant effect of the SMB size variable (independent 

variable) on the for big size high B/H portfolio returns as the P-value is less than 1% (1-

confidence level (99%). This implies that the alternative hypothesis can be accepted which 

indicates that there is negative significant effect for the SMB size on the big size high B/H 

portfolio return for the small portfolios. 

Furthermore Table 5.2 shows that for the SMB size factor the null hypothesis can be 

rejected which implies that there is no significant effect of the SMB size variable 

(independent variable) on the for small size high S/H and small size Medium S/M and big 

size low B/L portfolios returns as the P-value is less than 10% (1-confidence level (90%). This 

implies that the alternative hypothesis can be accepted which indicates that there is positive 

significant effect for the SMB size on the for small size high S/H and small size Medium S/M 

portfolios return and there is negative significant effect for the SMB size on big size low B/L 

portfolio return. Moreover, Table 5.2 shows that for the SMB size factor, the null hypothesis 

cannot be rejected which implies that there is no significant effect of the SMB size variable 
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(independent variable) on the big size Medium B/M, and small size Low S/L portfolios 

returns as the P-value is more than 10% (1 - confidence level (90%)). This implies that there 

is no significant effect for the SMB size on the big size Medium B/M, and small size Low S/L 

portfolios returns. The coefficients are positive for all the portfolios except the big size high 

B/H and a big size low B/L portfolio it's coefficient sign is negative. 

For HML book-to-market factor, Table 5.2 show that the null hypothesis can be 

rejected which implies that there is no significant effect of the HML book-to-market variable 

(independent variable) on the big size high B/H and small size high S/H portfolios returns as 

the P-value is less than 1% (1 - confidence level (99%)). This implies that the alternative 

hypothesis can be accepted which indicates that there is positive significant effect for the 

HML book-to-market on the big size high B/H and small size high S/H portfolios return. 

Furthermore, Table 5.2 shows that for the HML book-to-market factor, the null 

hypothesis can be rejected which implies that there is no significant effect of the HML book-

to-market variable (independent variable) on the for small size medium S/M portfolio 

returns as the P-value is less than 5% (1 - confidence level (95%)). This implies that the 

alternative hypothesis can be accepted which indicates that there is positive significant 

effect for the HML book-to-market on the small size medium S/M portfolio. 

Finally, Table 5.2 shows that for the HML book-to-market factor, the null hypothesis 

cannot be rejected which implies that there is no significant effect of the HML book-to-

market variable (independent variable) on the big size medium B/M and big size low B/L and 

small size low S/L portfolios return as the P-value is more than 10% (1 - confidence level 

(90%)). This implies that there is no significant effect for the HML book-to-market factor on 

the big size medium B/M and big size low B/L and small size low S/L portfolios return. So 

there is no absolute evidence that this variable affects the stock return. 

Adding SMB and HML to the regression has an interesting effect on the market βs for 

stocks. It collapses the βs for stocks toward 1.0, low βs move up and high βs move down 

toward one. This behaviour is due to correlation between market and SMB or HML. 
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Table 5.2 Fama and French 1993 model Three Coefficients 

 

The intercept in the time series regression of returns should be indistinguishable 

from zero. Intercepts close to zero say that the regressions that use market return, SMB and 

HML to absorb common time series variation in returns do a good job in explaining the cross 

section of average stock returns. The result in Table 5.3 shows that some of the intercepts 

when regress three factor model are closer to zero than the intercepts for CAPM for three 

portfolios but not with a clear evidence because not all of them which means that using the 

three factor model market return, SMB and HML to absorb common time-series variation in 

returns does a better job in explaining the cross-section of average stocks returns. 

Table 5.3: CAPM and Fama and French 1993 Intercepts 

 

 

 

 

 

 

Portfolios Coefficients 

C(2)  RM 

Prob. Hypothesis Coefficients 

C(3)  RSMB 

Prob. Hypothesis Coefficients 

C(4)  RHML 

Prob. Hypothesis 

RHB 0.982 0.000 Reject (Ho) -0.373 0.0014 Reject (Ho) 0.770 0.0000 Reject (Ho) 

RHS 0.778 0.000 Reject (Ho) 0.191 0.0779 Reject (Ho) at 

10% 

0.514 0.0018 Reject (Ho) 

RMB 0.612 0.000 Reject (Ho) 0.038 0.7612 Accept (Ho) 0.171 0.1799 Accept (Ho) 

RMS 0.842 0.000 Reject (Ho) 0.172 0.0834 Reject (Ho) at 

10% 

0.251 0.0159 Reject (Ho) at 

5% 

RLB 03762 0.000 Reject (Ho) -0.256 0.0607 Reject (Ho) at 

10% 

-0.114 0.3511 Accept (Ho) 

RLS 0.912 0.000 Reject (Ho) 0.058 0.6123 Accept (Ho) -0.019 0.8657 Accept (Ho) 

FF model Coefficients C(1) Prob. CAPM model Coefficients C(1) Prob. 

RHB 0.016209 0.5077 RHB 0.008081 0.8126 

RHS 0.004754 0.8853 RHS 0.025829 0.4867 

RMB 0.001554 0.9522 RMB 0.006519 0.8166 

RMS -0.001987 0.9101 RMS 0.009791 0.6062 

RLB 0.017826 0.4280 RLB 0.007420 0.7615 

RLS 0.002692 0.9182 RLS 0.002758 0.9154 
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The Fama and French three factor model tested the first 48 observations by 

conducting the Generalized Method of Moments (GMM) regression (Time Series 

Heteroskedasticity Autocorrelation [HAC]), to find the intercept and the coefficients for the 

six portfolios as Shown in Table 5.4.  

The equation of the FF model is: 

Ri-Rf = αi + βi(RM -Rf) + γi RSMB + δi RHML + εi                                       (5.2)  

 

Table 5.4 shows the coefficients and T-value and P-value for the six portfolios tested 

according to the FF Model: 

 The intercept and the coefficients of big size and high book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

big size and high book to market value portfolio.   

RHB  = 0.0246  + 0.9893 RM   - 0.3447 RSMB  + 0.8091 RHML            (5.3) 

 The intercept and the coefficients of small size and high book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

small size and high book to market value portfolio.   

RHS  =  - 0.0093 + 0.8362 RM  + 0.2037 RSMB + 0.496 RHML          (5.4) 

 The intercept and the coefficients of big size and medium book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

big size and medium book to market value portfolio. 

RMB  =    - 0.0067   + 0.6084 RM  + 0.0589 RSMB  + 0.0329  RHML           (5.5) 

 The intercept and the coefficients of small size and medium book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

small size and medium book to market value portfolio. 

      RMS  =     - 0.0016  + 0.8507 RM  + 0.1937 RSMB + 0.1831 RHML               (5.6) 

 The intercept and the coefficients of big size and low book to market value portfolio. 

The following equation was used to calculate the 48 estimated returns for big size 

and low book to market value portfolio. 

RLB  = 0.0215 + 0.7927  RM  - 0.1448  RSMB  - 0.1441 RHML        (5.7) 



Chapter 5: Model Developments 

104 

 

 The intercept and the coefficients of small size and low book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

small size and low book to market value portfolio. 

RLS  =  -0.0034  + 0.9689  RM  + 0.147  RSMB - 0.1058 RHML       (5.8) 

Moreover, the linear regression results are reported for the FF model and for all the 

portfolios in Table 5.5. The RMS values for RHB, RHS, RMB, RMS, RLB, and RLS for training 

are 0.3088, 0.2890, 0.2737, 0.1856, 0.2416, and 0.2223 (0.2294, 0.2940, 0.3032, 0.1179, 

0.2220, and 0.2410 for testing), respectively. Figure 5.1 depicts the fact that the actual 

return values are located very far apart and spread unevenly from the prediction line in the 

training observations, as does Figure 5.2. The table of RMS values and both figures indicate 

that the predictive power of the linear model is very weak as the RMS values are high and 

the return points are located far away from the prediction line. 
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Table 5.4: Fama and French 1993 model 48 observation regression six portfolios coefficient 

No Model  
Intercept & 

Coefficients β 
T Value P Value 

1 RHB=C(1)+C(2)*RM+C(3)*RSMB+C(4)*RHML 

αi 0.0246 0.840 0.405 

RM βi 0.9893 8.312 0.000 

RSMB γi -0.3447 2.677- 0.010 

RHML δi 0.8091 4.852 0.000 

2 RHS=C(1)+C(2)*RM+C(3)*RSMB+C(4)*RHML 

αi -0.0093 0.281- 0.779 

RM βi 0.8362 4.974 0.000 

RSMB γi 0.2037 2.801 0.007 

RHML δi 0.496 3.091 0.003 

3 RMB=C(1)+C(2)*RM+C(3)*RSMB+C(4)*RHML 

αi -0.0067 -0.251 0.802 

RM βi 0.6084 4.289 0.000 

RSMB γi 0.0589 0.591 0.557 

RHML δi 0.0329 0.246 0.806 

4 RMS=C(1)+C(2)*RM+C(3)*RSMB+C(4)*RHML 

αi -0.0016 -0.077 0.938 

RM βi 0.8507 8.325 0.000 

RSMB γi 0.1937 1.773 0.083 

RHML δi 0.1831 1.504 0.139 

5 RLB=C(1)+C(2)*RM+C(3)*RSMB+C(4)*RHML 

αi 0.0215 0.871 0.388 

RM βi 0.7927 6.016 0.000 

RSMB γi -0.1448 -1.033 0.307 

RHML δi -0.1441 -1.034 0.306 

6 RLS=C(1)+C(2)*RM+C(3)*RSMB+C(4)*RHML 

αi -0.0034 -0.123 0.902 

RM βi 0.9689 7.894 0.000 

RSMB γi 0.147 1.360 0.180 

RHML δi -0.1058 -0.680 0.500 
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Figure 5.1: RMS Training results (FF model) using logistic regression technique (LR) 
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Figure 5.2: RMS Testing results (FF model) using logistic regression technique (LR) 
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Table 5.5: FF model RMS Training and Testing Results for Linear Regression 

FF RMS RHB RHS RMB RMS RLB RLS 

LR 
Train 0.3088 0.2890 0.2737 0.1856 0.2416 0.2223 

Test 0.2294 0.2940 0.3032 0.1179 0.2220 0.2410 

 

5.2.2 Results of Artificial Neural Networks Model    

Just like the previous section, when ANN models have been used to forecast stock portfolio 

returns, the predictive power of these models is greater than that of the linear model. The 

ANN parameters and topology are illustrated in Table 5.6. Table 5.7 shows that the best 

results are produced by the ELM model for portfolios RHB, RHS, and RMB with error values 

of 0.3051, 0.2875, and 0.2584 for training (0.2001, 0.2810, and 0.2631 for testing), 

respectively. For RMS, the FFTD ANN model has predicted with fewer errors and more 

accuracy; the RMS values are 0.1296 for training and 0.1167 for testing. Moreover, RB is the 

best ANN model for the RLB portfolio and the DTDNN model is best for the RLS portfolio 

with error values of 0.2352 and 0.1818 for training (0.1760 and 0.2327 for testing), 

respectively. These error values are less than the linear model prediction results, which 

indicates that the ANN models have greater predictive power (when compared to the 

simple linear model) for predicting FF three factor portfolio returns on the Saudi Arabian 

Stock Market. The figures given in Appendix A also present quite a similar picture i.e. better 

and closer return points predicted by the ANN models when compared to the linear model 

where the actual return points are more dispersed. Figure 5.3 shows that the best size of 

the ANN ensemble is 30 in general for all methods of ANN.  
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Table 5.6: ANN Parameters and Topologies 

 

 

 

 

 

 

Table 5.7: FF model RMS Training and Testing Results for ANNs 

FF RMS RHB RHS RMB RMS RLB RLS 

CF 
Train 0.2004 0.1693 0.1468 0.1205 0.1327 0.172 

Test 0.1123 0.3388 0.341 0.0957 0.2176 0.2925 

ELM 
Train 0.3051 0.2875 0.2584 0.2616 0.2668 0.3261 

Test 0.2001 0.281 0.2631 0.1301 0.2209 0.2756 

FFTD 
Train 0.2032 0.1932 0.1541 0.1296 0.1426 0.1683 

Test 0.1761 0.3579 0.3085 0.1167 0.2169 0.2457 

FF 
Train 0.216 0.1844 0.1545 0.1225 0.1503 0.1657 

Test 0.1342 0.3494 0.3047 0.1342 0.1817 0.2388 

DTDNN 
Train 0.2151 0.1894 0.1556 0.1293 0.1578 0.1818 

Test 0.1148 0.3314 0.3276 0.1201 0.1875 0.2327 

FIT 
Train 0.216 0.1844 0.1545 0.1225 0.1503 0.1657 

Test 0.1342 0.3494 0.3047 0.1342 0.1817 0.2388 

RB 
Train 0.2632 0.2681 0.2174 0.2154 0.2353 0.2419 

Test 0.2222 0.3532 0.3496 0.2231 0.1760 0.3186 

 

 

 

 

 

 

TYPE Topology Train/valid Training epochs Training function 

CF 3-5-1 80/20 500 Levenberg-Marquardt 

 ELM 3-5-1 80/20 500 Gradient descent 

 FFTD 3-5-1 80/20 500 Levenberg-Marquardt 

FF 3-5-1 80/20 500 Levenberg-Marquardt 

DTDNN 3-5-1 80/20 500 Levenberg-Marquardt 

FIT 3-5-1 80/20 500 Levenberg-Marquardt 

RB 3-5-1 80/20 500 Radial Bases Functions 
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a). Feed-Forward Network (FF)                                                                                 b) Elman Networks (ELM) 

      
c) Cascade-Forward Network (CF)                                                                             d) Radial Basis Networks (RB) 

     
e) Feed- Forward Input Time-Delay Back Propagation Network (FFTD)               f) Distributed Time Delay Neural Network (DTDNN) 

    

g) Fitting Network (FIT)                                                                             h) Adaptive Neural Fuzzy Inference Systems (ANFIS) 

 

Figure 5.3: RMS results for different ensemble size of ANNs and ANFIS. 
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5.2.3 Results of Adaptive Neural Fuzzy Inference Systems Model 

The setting of ANFIS is type of membership: Gaussian membership function and the number 

of fuzzy rules are shown in Table 5.8. Table 5.9 reports the RMS values of the adaptive 

neural fuzzy inference system (ANFIS) for our six portfolios. The error values for RHB, RHS, 

RMB, RMS, RLB, and RLS are 4.18E-06, 3.90E-06, 3.74E-06, 4.09E-06, 2.30E-06, 2.86E-06 for 

training (0.1571, 0.4113, 0.3173, 0.2367, 0.3201, and 0.3206 for testing), respectively. These 

values show that ANFIS has a weaker prediction power than those of the ANN models used 

earlier in the case of Fama and French. The actual values of stock return using ANFIS models 

have also been plotted and these figures are reported in Appendix A.  

 

Table 5.8: Number of fuzzy rules 

 

 

 

Table 5.9: FF model RMS Training and Testing Results for ANFIS 

 

 

 

5.2.4 Ensembles Model  

5.2.4.1 Results of Average Ensemble Model 

Figure 5.4 shows the average method of all types of ANN and ANFIS. Moreover, the average 

of ANN models have also been used to predict FF stock returns for underlying portfolios. In 

Table 5.10 the results show that the average method is better than the individual model of 

ANN as well as the linear model. The error values for RHB, RHS, RMB, RMS, RLB, and RLS are 

0.1875, 0.1723, 0.1417, 0.1219, 0.1382, and 0.1583 for training (0.1566, 0.1858, 0.2576, 

Portfolios 1 2 3 4 5 6 7 8 9 10 

RHB 140 125 200 100 160 175 120 160 60 80 

RHS 200 125 120 150 175 140 160 160 100 100 

RMB 140 200 140 150 125 175 160 120 100 75 

RMS 200 160 160 175 140 120 64 80 80 80 

RLB 160 120 140 125 80 100 100 175 200 120 

RLS 200 160 140 120 125 100 100 150 80 140 

FF RMS RHB RHS RMB RMS RLB RLS 

ANFIS 
Train 4.18E-06 3.90E-06 3.74E-06 4.09E-06 2.30E-06 2.86E-06 

Test 0.1571 0.4113 0.3173 0.2367 0.3201 0.3206 
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0.1127, 0.1760, and 2250 for testing), respectively. These values are less than the best 

individual models of ANN tested before, showing that the average method is superior at 

predicting the stock portfolio returns in Saudi Arabia. Figures 5.5 and 5.6 also indicate that 

actual return points predicted by the average method are in a better and closer position to 

the prediction line, as compared to previously discussed prediction models. 

The equation for the average is:   

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
 ∑  𝑝𝑎𝑟𝑎(𝑖)𝑛

𝑖=1

𝑁
              (5.9) 

 

 

DTDNN

FIT

RB

ANFIS

CF

ELM

FFTD

FF

AVERAGE Prediction

 

Figure 5.4: The average ensemble methods 
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Figure 5.5: RMS Training results using (FF model) average technique 
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Figure 5.6: RMS Testing results using (FF model) Average technique  
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Table 5.10: FF model RMS Training and Testing Results for Average ensemble 

FF RMS RHB RHS RMB RMS RLB RLS 

Average 
Train 0.1875 0.1723 0.1417 0.1219 0.1382 0.1583 

Test 0.1566 0.1858 0.2576 0.1127 0.1760 0.2250 

 

 

5.2.4.2 Results of Weighted Average Model 

The weighted average method is even better than the simple average. The error values in 

Table 5.11 for RHB, RHS, RMB, RMS, RLB, and RLS are 0.1846, 0.1685, 0.1372, 0.1119, 

0.1342, and 0.1573 for training (0.1253, 0.1554, 0.2446, 0.1027, 0.1625, and 0.2230 for 

testing), respectively. Figures 5.7 and 5.8 also indicate that the actual return points 

predicted by the weighted average are in a better and closer position to the prediction line, 

as compared to previously discussed prediction models. The weighted average was set in 

the training phase where the results were divided into 10 bins, and then the standard 

deviation was taken for each bin. Then the weights are set inversely to the standard 

deviation. The lower the deviation is, the higher the weight will be. The equations for the 

weighted average are: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑ 𝑝𝑎𝑟𝑎(𝑖) 𝑥 𝑊(𝑖)𝑛

𝑖=1

∑ 𝑊(𝑖)𝑛
𝑖=1

             (5.10) 

 

𝑊(𝑖) =  1 − 𝑆𝑇𝐷𝑖(𝑏𝑖𝑛)                                        (5.11) 

 

where: STDi  is the standard deviation for bin ,the normalized values taken (𝑆𝑇𝐷̅̅ ̅̅ ̅̅ ) 

 

Table 5.11: FF model RMS Training and Testing Results for Weighted Average 

FF RMS RHB RHS RMB RMS RLB RLS 

Weighted Average 
Train 0.1846 0.1685 0.1372 0.1119 0.1342 0.1573 

Test 0.1253 0.1554 0.2446 0.1027 0.1625 0.2230 
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Figure 5.7: RMS Training results (FF model) using weighted average technique  
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Figure 5.8: RMS Testing results (FF model) using weighted average technique 
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5.2.4.3 Results of GA Optimized Weighted Average Model 

The settings of the GA: Population size 20, No. of generations 100, mutation rate 0.05 and 

crossover rate 0.08. Figure 5.9 shows the weighted average and GA methods. Finally, the FF 

returns are predicted using a genetic algorithm and the results are much better than in all of 

the models used so far. In Table 5.12  the RMS values for our stock portfolios of RHB, RHS, 

RMB, RMS, RLB, and RLS are 0.0218, 0.0546, 0.0298, 0.0520, 0.0634 and 0.0595 for training 

(0.1165, 0.1269, 0.2243, 0.0590, 0.1587, and 0.1885 for testing), respectively. These error 

values are the least out of all the ANN models, average methods, and the linear regression 

model, which indicate that GA is the best model to predict the stock portfolio returns on the 

Saudi Arabian Stock Exchange. Figures 5.10 and 5.11 depict the predicting values of all the 

portfolios for the GA model for training and testing, respectively. It is clear from the figures 

of the GA model that the actual return points are approximately located on the prediction 

line, indicating that there is a very small error in prediction and stock returns are forecasted 

with the highest accuracy. While predicting FF based stock returns, the genetic algorithm is 

expected to provide the best results and much more accurate predicted values.  

 

 

Table 5.12:  FF model RMS Training and Testing Results for GA 

FF RMS RHB RHS RMB RMS RLB RLS 

GA 
Train 0.0218 0.0546 0.0298 0.052 0.0634 0.0595 

Test 0.1165 0.1269 0.2243 0.059 0.1587 0.1885 
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Figure 5.9: The weighted average and GA ensembles methods 
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Figure 5.10: RMS Training results (FF model) using GA technique 
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Figure 5.11: RMS Testing results (FF model) using GA technique 
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5.3 Forecasting Capital Asset Pricing Model 

This section will report the RMS values of training and testing for all portfolio returns for 

CAPM, using the linear model, nonlinear ANN models, average of ANN, weighted average 

ANN, and GA.  

5.3.1 Results of Linear Regression    

In Table 5.13 the explanation power (R2) ranges from 0.28 to 0.69 which means that the 

market return explains good a part of the variation in stock return, but not all of it. This 

means that there are other variables which explain the dependent variable.  

Table 5.13 R-squared for CAPM 

 

Furthermore, Table 5.14 shows that the null hypothesis can be rejected which implies 

there is no significant effect of the market return variable (independent variable) on the 

small and big portfolios return as the P-value is less than 1% (1 - confidence level (99%)). 

This implies that can be accepted the alternative hypothesis which indicates that there is 

positive significant effect for the market value on the stock return for the small and big 

portfolios. While the coefficients of the market return (independent variable) are 0.38 and 

0.65 and 0.90 for the small portfolios. And the coefficients of the market return 

(independent variable) are 0.37 and 0.49 and 0.85 for the big portfolios. 

Table 5.14: CAPM Model Coefficient 

Portfolios Coefficients C(2) RM Prob. Hypothesis 

RHB 0.369 0.0045 Reject Ho 

RHS 0.380 0.0018 Reject Ho 

RMB 0.498 0.0000 Reject Ho 

RMS 0.646 0.0000 Reject Ho 

RLB 0.854 0.0000 Reject Ho 

RLS 0.909 0.0000 Reject Ho 

CAPM RHB RHS RMB RMS RLB RLS 

R-squared 0.284 0.293 0.438 0.685 0.698 0.692 



Chapter 5: Model Developments 

123 

 

The CAPM model is used to test the first 48 observations by conducting the 

Generalized Method of Moments GMM regression (Time Series Heteroskedasticity 

Autocorrelation [HAC]), to find the intercept and the coefficient for the six portfolios as 

Shown in Table 5.15. The equation of CAPM model: 

Ri-Rf = αi + βi (RM -Rf)          (5.12) 

 

The six portfolios are as described below: 

 The intercept and the coefficient of big size and high book to market value portfolio. 

The following equation was used to calculate the 48 estimated returns for big size 

and high book to market B/H value portfolio. RHB = 0.0204   + 0.5755  RM          (5.13) 

 The intercept and the coefficient of small size and high book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

small size and high book to market value portfolio. RHS = 0.0185+0.4617 RM               

(5.14) 

 The intercept and the coefficient of big size and medium book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

big size and medium book to market value portfolio.  RMB = -0.0108   + 0.5683   RM          

(5.15) 

 The intercept and the coefficient of small size and medium book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

small size and medium book to market value portfolio. RMS = 0.0081   + 0.7085 RM              

(5.16) 

 The intercept and the coefficient of big size and low book to market value portfolio. 

The following equation was used to calculate the 48 estimated returns for big size 

and low book to market value portfolio.     

   RLB = 0.0148   + 0.9054   RM              (5.17) 

 The intercept and the coefficient of small size and low book to market value 

portfolio. The following equation was used to calculate the 48 estimated returns for 

small size and low book to market value portfolio.   

   RLS = 0.0044 + 0.9405 RM              (5.18) 
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Further, the linear regression results have been reported for the CAPM model and for all the 

portfolios. In Table 5.16 the RMS values for RHB, RHS, RMB, RMS, RLB, and RLS for training 

are 0.3289, 0.3048, 0.2306, 0.2224, 0.2150, and 0.2438 (0.2522, 0.3200, 0.3086, 0.1191, 

0.2402, and 0.2120 for testing), respectively. Figures 5.12 and 5.13 depict that the actual 

return values are located very far from the prediction line in both training and testing 

observations. Although this weak prediction is present in almost all figures of the linear 

model of training and testing. This spread is more in the case of RMS and RMB in both 

training and testing. The location of the return points in the cases of RMB, RMS, RLB, and 

RLS is relatively better than those of RHS and RHB, but we cannot say that the stock return 

prediction is fine.The table of RMS values and both figures indicate that the predictive 

power of the linear model is very weak as the RMS values are high and return points are 

located far away from prediction line. 

Table 5.15: CAPM model 48 observation regression six portfolios coefficient 

NO Model Intercept & Coefficients β T Value P Value 

1 RHB=C(1)+C(2)*RM 
αi 0.0204 0.549 0.585 

RM βi 0.5755 4.040 0.000 

2 RHS=C(1)+C(2)*RM 
αi 0.0185 0.472 0.638 

RM βi 0.4617 3.467 0.001 

3 RMB=C(1)+C(2)*RM 
αi -0.0108 -0.411 0.682 

RM βi 0.5683 5.044 0.000 

4 RMS=C(1)+C(2)*RM 
αi 0.0081 0.356 0.723 

RM βi 0.7085 10.851 0.000 

5 RLB=C(1)+C(2)*RM 
αi 0.0148 0.573 0.569 

RM βi 0.9054 9.823 0.000 

6 RLS=C(1)+C(2)*RM 
αi 0.0044 0.169 0.865 

RM βi 0.9405 9.352 0.000 
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Figure 5.12: RMS Training results (CAPM model) using regression technique (LR) 
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Figure 5.13: RMS Testing results (CAPM model) using regression technique (LR) 
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Table 5.16: CAPM model RMS Training and testing Results for LR 

CAPM RMS RHB RHS RMB RMS RLB RLS 

LR 
Train 0.3289 0.3048 0.2306 0.2224 0.2150 0.2438 

Test 0.2522 0.3200 0.3086 0.1191 0.2402 0.2120 

 

5.3.2 Results of Artificial Neural Networks Model    

After the linear regression model, different nonlinear ANN techniques were also used to 

predict the stock returns on the Saudi Arabian stock market. The ANN parameters and 

topology are illustrated in Table 5.17. Table 5.18 also reports the results of these portfolio 

stock returns of CAPM based upon these ANN techniques. It is clear from the table that the 

use of ANN techniques has improved the accuracy and predictive power of the CAPM return 

prediction. For the portfolio returns based upon high market to book ratio and big size 

(RHB), ELM has the lowest RMS which is 0.2520 for testing and 0.3173 for training. This is 

the best among all the ANN models. For the RHB stock portfolio, ELM has the highest 

predictive power by providing the least root mean square error which is only 0.2708 for 

training ANN and 0.2848 for testing ANN. Similarly, both the small and big stock portfolios 

with medium book to market ratio have been predicted more accurately with ELM 

techniques where RMS is 0.2212 and 0.2164 for training RMB and RMS; 0.3135 and 0.1190 

for testing RMB and RMS, respectively. For low book to market ratio and big stock size, FFTD 

provides the best result with the RMS values of 0.2114 and 0.2351 for training and testing, 

respectively. Finally, RLS returns have been best predicted by the radial based artificial 

neural network with RMS of 0.2411 and 0.2068 for training and testing values, respectively. 

It is obvious from Table 5.18 that CAPM portfolio returns can better be predicted by ANN 

models, compared to the simple linear regression model. The actual values of stock returns 

using these ANN models have also been plotted and these figures are reported in Appendix 

B.  
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Table 5.17: ANN Parameters and Topologies 

 

 

 

 

 

 

Table 5.18: CAPM model RMS Training and testing Results for ANNs 

CAPM RMS RHB RHS RMB RMS RLB RLS 

CF 
Train 0.2904 0.2554 0.1947 0.1965 0.2087 0.2401 

Test 0.2569 0.3164 0.3226 0.128 0.2363 0.2091 

ELM 
Train 0.3173 0.2708 0.2212 0.2164 0.2468 0.2691 

Test 0.2520 0.2847 0.3135 0.1190 0.2412 0.2321 

FFTD 
Train 0.2897 0.2553 0.1973 0.1897 0.2114 0.2393 

Test 0.2605 0.3109 0.3305 0.1213 0.2351 0.2097 

FF 
Train 0.2878 0.2596 0.1948 0.1975 0.2106 0.2421 

Test 0.2698 0.3219 0.3313 0.1404 0.2935 0.2208 

DTDNN 
Train 0.2904 0.2554 0.1947 0.1965 0.2087 0.2401 

Test 0.2569 0.3164 0.3226 0.1280 0.2363 0.2091 

FIT 
Train 0.2878 0.2596 0.1948 0.1975 0.2106 0.2421 

Test 0.2698 0.3219 0.3313 0.1404 0.2935 0.2208 

RB 
Train 0.2943 0.2567 0.2004 0.1967 0.2099 0.2411 

Test 0.2534 0.314 0.3339 0.1278 0.2493 0.2068 

 

5.3.3 Results of Adaptive Neural Fuzzy Inference Systems Model 

The settings of the ANFIS are: type of membership: Gaussian and number of fuzzy rules: 11. 

Table 5.19 reports the RMS values of the adaptive neural fuzzy inference system (ANFIS) for 

both training and testing. The RMS for ANFIS training is (0.1806, 0.2289, 0.1668, 0.1605, 

0.1616, and 0.1906) and for testing are (0.9444, 0.6082, 0.6464, 0.2303, 0.3131, and 

0.5551), respectively. These values are even higher than those of the ANN models which 

indicate that ANFIS provides less prediction accuracy in the case of the Saudi Arabian Stock 

Exchange. The actual values of stock return using ANFIS model has also been plotted and 

these figures are reported in Appendix B.  

 

TYPE Topology Train/valid Training epochs Training function 

CF 1-5-1 80/20 500 Levenberg-Marquardt 

ELM 1-5-1 80/20 500 Gradient descent 

FFTD 1-5-1 80/20 500 Levenberg-Marquardt 

FF 1-5-1 80/20 500 Levenberg-Marquardt 

DTDNN 1-5-1 80/20 500 Levenberg-Marquardt 

FIT 1-5-1 80/20 500 Levenberg-Marquardt 

RB 1-5-1 80/20 500 Radial Bases Functions 
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Table 5.19: CAPM model RMS Training and testing Results for ANFIS 

CAPM RMS RHB RHS RMB RMS RLB RLS 

ANFIS 
Train 0.1806 0.2289 0.1668 0.1605 0.1616 0.1906 

Test 0.9444 0.6082 0.6466 0.2303 0.3131 0.5551 

 

5.3.4 Ensembles Model  

5.3.4.1 Results of Average Ensemble Model 

 The present study not only used different ANN models to predict the stock returns based 

upon six CAPM portfolios, but also used the simple and weighted average of these ANN 

models. Table 5.20 also shows that the portfolio stock returns prediction improves when we 

use the average of ANN models instead of individual ANN models. The RMS for simple 

average training is (0.2840, 0.2431, 0.1838, 0.1793, 0.1920, and 0.2223) and for testing is 

(0.2418, 0.2214, 0.2944, 0.1109, 0.2346, and 0.2011). These RMS values are lower than the 

individual ANN models, which indicate that simple average provides best predicting CAPM 

stock returns, as well as the simple linear models. These results can also be verified by 

Figure 5.14 and 5.15 which show the actual returns with prediction line. The equation for 

the average is:  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
 ∑  𝑝𝑎𝑟𝑎(𝑖)𝑛

𝑖=1

𝑁
          (5.19) 

 

Table 5.20: CAPM model RMS Training and testing results for average 

CAPM RMS RHB RHS RMB RMS RLB RLS 

Average 
Train 0.2840 0.2431 0.1838 0.1793 0.1920 0.2223 

Test 0.2418 0.2214 0.2944 0.1109 0.2346 0.2011 
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Figure 5.14: RMS Training results (CAPM model) using average technique 
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Figure 5.15: RMS Testing results (CAPM model) using average technique 
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5.3.4.2 Results of Weighted Average model 

The accuracy level of prediction improves even more by using the weighted average instead 

of the simple average. In Table 5.21 the stock return prediction errors for RHB, RHS, RMB, 

RMS, RLB and RLS are (0.2737, 0.2425, 0.1825, 0.1757, 0.1820, and 0.2211) for weighted 

average training, and for testing they are (0.2282, 0.2209, 0.2910, 0.1064, 0.2251 and 

0.1985). Figures 5.16 and 5.17 also show that the weighted average technique provides 

better results than ANN and average of ANN, particularly when predicting the stock returns 

of medium and low book to market ratios for small and big stocks (i.e. RMB, RMS, RLB, and 

RLS). However, there is still some divergence of returns from the prediction line in the case 

of the RHB and RHS portfolios, even in the case of the weighted average. Particularly when 

predicting the stock returns of medium and low book to market ratios for small and big 

stocks (i.e. RMB, RMS, RLB, and RLS). However, there is still some divergence of returns 

from the prediction line in the case of the RHB and RHS portfolios, even in the case of the 

weighted average. The equation of the weighted average is: 

 

Weighted average =  
∑ para(i) x W(i)n

i=1

∑ W(i)n
i=1

                (5.20) 

 

W(i) =  1 − STDi(bin)                                       (5.21) 

 

where :STDi  is the standard deviation for bin, the normalized values taken (𝑆𝑇𝐷̅̅ ̅̅ ̅̅ ) 

 
Table 5.21: CAPM model RMS Training and Testing Results for Weighted Average 

 

CAPM RMS RHB RHS RMB RMS RLB RLS 

Weighted Average 
Train 0.2736 0.2425 0.1825 0.1757 0.1820 0.2211 

Test 0.2282 0.2209 0.2910 0.1064 0.2251 0.1985 
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Figure 5.16: RMS Training results (CAPM) using weighted average technique 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training - RHB

actual

p
re

d
ic

te
d

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training - RHS

actual

p
re

d
ic

te
d

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training - RMB

actual

p
re

d
ic

te
d

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training - RMS

actual

p
re

d
ic

te
d

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training - RLB

actual

p
re

d
ic

te
d

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Training - RLS

actual

p
re

d
ic

te
d

Return Return 

Return Return 

Return Return 

R
et

u
rn

 

R
et

u
rn

 
R

et
u

rn
 

R
et

u
rn

 

R
et

u
rn

 

 

R
et

u
rn

 



Chapter 5: Model Developments 

134 

 

 

 

 

Figure 5.17: RMS Testing results (CAPM model) using weighted average technique 
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5.3.4.3 Results of GA Optimized Weighted Average model 

Finally, the genetic algorithm has been used to predict the stock returns on the underlying 

six portfolios. The settings of the GA: Population size 20, No. of generations 100, mutation 

function 0.05 and crossover function 0.08. In Table 5.22 the results show that GA predicted 

the stock returns with the maximum accuracy where the RMS values for RHB, RHS, RMB, 

RMS, RLB, RLS training are 0.2620, 0.2325, 0.1538, 0.1285, 0.1737, and 0.1783, and for 

testing are (0.2206,0.2207,0.2905,0.0942,0.2158 and 0.1913) respectively. These RMS 

values are least among all the models used and discussed above for predicting stock returns 

on CAPM basis. Figures 5.18 and 5.19 for GA based returns prediction also indicate that the 

actual return points on these portfolios are much closer to the prediction line for all the 

stock portfolios.  

Table 5.22: CAPM model RMS Training and testing Results for GA 
 

CAPM RMS RHB RHS RMB RMS RLB RLS 

GA 
Train 0.2620 0.2325 0.1538 0.1285 0.1737 0.1783 

Test 0.2206 0.2207 0.2905 0.0942 0.2158 0.1913 
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Figure 5.18: RMS Training results (CAPM model) using GA technique 
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Figure 5.19: RMS Testing results (CAPM model) using GA technique 
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5.4 Comparison between CAPM and FF Models 

While comparing the FF and CAPM model results of forecasting discussed above, it can be 

concluded that FF models the stock returns in a better way with less error and greater 

prediction accuracy. Moreover, the returns predicted using the FF model are plotted closer 

to the prediction line as compared to CAPM where the actual return points are located 

relatively far away from the main prediction line. In case of our sample of Saudi Arabian 

stock portfolios, the FF model is better than CAPM and it is preferred to CAPM when using 

the GA method as shown in Table 5.23. This difference might be attributed to the size effect 

in the market which causes CAPM to be less effective in the Saudi market. Just like many 

other markets, Saudi capital markets also support the fact that the FF model is superior to 

the traditional CAPM model. 

Table 5.23:  Results RMS for GA in FF model and CAPM Model 
 

model GA RHB RHS RMB RMS RLB RLS 

FF 
Train 0.0218 0.0546 0.0298 0.052 0.0634 0.0595 

Test 0.1165 0.1269 0.2243 0.059 0.1587 0.1885 

CAPM 
Train 0.2620 0.2325 0.1538 0.1285 0.1737 0.1783 

Test 0.2206 0.2207 0.2905 0.0942 0.2158 0.1913 

 

 

5.5 Summary  

Stock return prediction is an important phenomenon which has generated enormous 

research as well as different sophisticated methods and models to more accurately forecast 

stock returns because the accurate prediction of stock returns may yield attractive benefits. 

In this regard, the traditional CAPM and advanced Fama and French models utilize linear 

models as well as nonlinear ANN models along with fuzzy networks and a genetic algorithm. 

The present chapter reports the forecasted results based upon the linear model, various 

ANN techniques, and a genetic algorithm for stock returns of six portfolios constructed. 

The results illustrate that for the CAPM model FF model explains good part of the variation 

in stock return, but not all of it which means that there are other variables to explain the 

dependent variable. But the FF model has more explanatory power than the CAPM. Also, 

the results show when applying the CAPM model for the six portfolios of the study that 
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there is positive significant effect for the market value on the stock return for the small and 

big portfolios. 

The results of FF model show that there is positive significant effect for the market value on 

the stock return for the small and big portfolios. For the size effect two of the big size 

portfolio has a negative significant effect for the size factor (which consistent with the 

theory upon the sign of the effect) while one of the big size portfolios has insignificant 

effect, while for the small portfolio also two portfolios of the small size portfolios has a 

positive significant effect for the size factor (which inconsistent with the theory upon the 

sign of the effect). Finally for the book to market effect, one of the big size portfolio has a 

positive significant effect for the book to market factor (which consistent with the theory 

upon the sign of the effect) while two of the big size portfolios has insignificant effect, while 

for the small portfolio also two portfolios of the small size portfolios has a positive 

significant effect for the book to market factor (which inconsistent with the theory upon the 

sign of the effect) while one portfolio of the book to market effect. 

 It can be summarized that the linear models provide the weakest prediction of stock 

returns both in the case of CAPM and Fama and French. However, when we used ANN 

models, the prediction power and accuracy tended to increase. This even gets better when 

the average and weighted average method is utilized instead of using the individual model 

of ANN. However, the genetic algorithm (GA) based upon FF can be considered as the best 

prediction model in the case of the Saudi Arabian Stock Market as it provides the best 

estimates of stock returns with the lowest prediction error as measured by RMS. After that, 

the weighted average method of ANN provides even better results and the simple average 

results are also good. So, GA is the best technique to provide Saudi Arabian Stock Market 

returns prediction, followed by the weighted average of ANN models, because it improves 

the level of predicting accuracy for stock market returns, investment decisions and the 

movement of future stock prices in the emerging market of Saudi Arabia.  
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6.1 Introduction  

     This section of the current research presents the results of the multi-Stage model of 

value-based management for decision making in the stock exchange of Saudi Arabia. Using 

the Value-Based Management (VBM) model of decision making and the prediction of stock 

portfolio returns with the help of Artificial Neural Networks (ANN), expectations of 

shareholders and portfolio investors to take investment decisions, and the behaviour of 

stock prices, There are two multi-Stage models discussed in this chapter. The first is based 

upon the combination of traditional forecasting based upon the Fama and French (FF) 

model, and applies value-based management to the results obtained. This is based upon the 

shareholder perspective as well as the share price perspective. The shareholder perspective 

describes the decision making of shareholders that involves investment, dividend and 

disinvestment decisions. The share price perspective focuses on the movement of the share 

price in terms of growth, speculative fall and fall. The results are based upon training and 

testing observations as discussed in previous chapters. The second multi-Stage model is the 

combination of CAPM and value-based management which uses the same approach for 

training and testing observations for shareholder and share price perspectives for decision 

making. This chapter will discuss the multi-Stage Model in Section two then discuss the 

results of the multi-Stage type-1 model in Section three and Section four describes the 

result of the multi-Stage type-2 model. Section five makes comparisons between both 

models, and then presents the Graphical User Interface (GUI) using Matlab software. Lastly 

the final section presents the summary. 

 

6.2 Multi-Stage Model  

     This study uses different types of models to execute the process and achieve the 

objectives. These are the Capital Asset Pricing Model (CAPM) or the Fama and French (FF) 

model, the Value-Based Management (VBM) model, the Multi-Stage type 1 (VBM and FF 

model), Multi-Stage type 2 (VBM and CAPM) model and Artificial Neural Networks. 

A multi-Stage type model includes two different types: the first one includes the VBM and FF 

models and the second one the VBM and CAPM models. The first type is designed by 

combining the operations of VBM and FF models. Four basic steps are considered while 
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computing the VBM model. This model design include the estimates of weighted average cost 

of capital (WACC), actual return of investment (Ract ), expected investment return (Rexp), and 

required return on  investment capital (Rreq ). The required return on investment capital is 

basically the FF model integrated with the VBM model. Hence, the FF model is first used as a 

factor within the VBM model. Figure 6.1 below describes the mechanism of this model design: 

The second type (VBM and CAPM model) is designed by combining the operations of the VBM 

and CAPM models. Four basic steps are considered while computing the VBM model. This 

model design include the estimates of weighted average cost of capital (WACC), actual return 

of investment (Ract ), expected investment return (Rexp), and required return on  investment 

capital (Rreq ).The required return on  investment capital is basically the CAPM model 

integrated with the VBM model. Hence, the CAPM model is used as a factor within the VBM 

model. Figure 6.2 below describes the mechanism of this model design. 

FF
 MODEL

VPM 
MODEL

(Multi-Stage 
Type 1)

MR
WACC

R_ act

R_ exp

R_ req

Shareholder

Share price

R_ req

SMB

HML

 

Figure 6.1: Multi-Stage type-1 VBM and FF model design 
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Figure 6.2: Multi-Stage type-2 VBM and CAPM model design 
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6.3 Forecasting Multi-Stage Type-1 Model 

This section uses the multi-stage type-1 model which is based on the FF and VBM model for 

shareholder and share price as shown in Figure 6.3 Various ANN models, average and 

weighted average of ANN models, along with a genetic algorithm, are utilized to predict and 

make decisions with respect to shareholder and share price.  

FF
 MODEL

VBM 
MODEL

(Multi-Type 1)

MR
WACC

R_ act

R_ exp

R_ req

Shareholder

R_ req

Share Price

(Invest/Dividend/
Disinvest)

(Growth/Speculative 
Fall/Fall)

SMB

HML

Figure 6.3: multi-Stage type-1 model 

6.3.1 Results of Artificial Neural Networks Model    

The ANN parameters and topology are illustrated in Table 6.1. Table 6.2 reports the RMS 

values for the shareholder perspective for multi-Stage type 1. When ANN models have been 

used to forecast stock returns, FFTD, RB, DTDNN, FF and FIT have proved to be the best 

prediction models for RHB, RHS, RMB, RMS, RLB, and RLS, respectively. The training values 

are 0.3479, 0.2846, 0.1524, 0.0926, 0.1434, and 0.1955 whereas the testing values are 

0.2240, 0.2280, 0.1615, 0.0950, 0.1063 and 0.1050. There is no single model which is best 

for all portfolios; rather different models provide good results for different portfolios. On 

the basis of the figures given in Appendix C, which shows that the decision for shareholders 

is to invest and dividends, these decisions are predicted well. According the methodology 

that followed, the figures are divided into three parts: Part 1: between 0.5 and -0.5 which is 

means this area for Dividend. Part 2: Above 0.5 which means that this area for Invest. Part 3:  

below -0.5 which is means this area for disinvest. On the other hand, Table 6.3 discusses the 

RMS values for the share price perspective for multi-Stage type-1. Here also different ANN 

models are best for the stock prediction of different portfolios – FFTD, RB, FF & FIT, DTDNN, 

FFTD and FIT are best for RHB, RHS, RMB, RMS, RLB, and RLS, respectively. The best values 

of ANN RMS for training are 0.2463, 0.5275, 0.2766, 0.2311, 0.5970, and 0.9660, and for 

testing are 0.4250, 0.3698, 0.2895, 0.1863, 0.339, and 0.1839. Appendix D which shows the 

prediction results for share prices indicate that the expectations for share prices are growth 
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and fall and speculative fall. According the methodology that followed, the figures are 

divided into three parts: Part 1: between 0.5 and -0.5 which is means this area for 

speculative fall. Part 2:  above 0.5 which means that this area for growth. Part 3: below -0.5 

which is means this area for fall. 

 

Table 6.1: ANN Parameters and Topologies. 

 

 

 Table 6.2: Shareholder RMS Training and Testing Results for ANNs 

 

 

 

 

 

 

TYPE Topology Train/valid Training epochs Training function 

CF 4-5-1 80/20 500 Levenberg-Marquardt 

ELM 4-5-1 80/20 500 Gradient descent 

FFTD 4-5-1 80/20 500 Levenberg-Marquardt 

FF 4-5-1 80/20 500 Levenberg-Marquardt 

DTDNN 4-5-1 80/20 500 Levenberg-Marquardt 

FIT 4-5-1 80/20 500 Levenberg-Marquardt 

RB 4-5-1 80/20 500 Radial Bases Functions 

Multi-Stage Type 1: 
Shareholder 

RMS RHB RHS RMB RMS RLB RLS 

CF 
Train 0.2742 0.1646 0.2244 0.1552 0.2241 0.1998 

Test 0.2463 0.3837 0.2423 0.1607 0.2092 0.2066 

ELM 
Train 0.3801 0.2894 0.4208 0.3819 0.4785 0.3681 

Test 0.3903 0.2994 0.2536 0.2751 0.3129 0.277 

FFTD 
Train 0.3479 0.0978 0.2767 0.0503 0.0553 0.1229 

Test 0.2240 0.281 0.2048 0.1204 0.1084 0.1133 

FF 
Train 0.2493 0.0951 0.1521 0.0926 0.1600 0.1303 

Test 0.2684 0.325 0.1954 0.0950 0.1081 0.1096 

DTDNN 
Train 0.2998 0.2145 0.1524 0.2047 0.1434 0.0952 

Test 0.2929 0.2582 0.1615 0.1448 0.1063 0.1164 

FIT 
Train 0.3166 0.1444 0.1574 0.1349 0.0777 0.1955 

Test 0.315 0.2708 0.1716 0.1204 0.1108 0.1050 

RB 
Train 0.2581 0.2846 0.2596 0.3158 0.2632 0.3277 

Test 0.2293 0.228 0.2006 0.2075 0.1677 0.1512 
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Table 6.3: share price RMS Training and Testing Results for ANNs 

6.3.2 Results of Adaptive Neural Fuzzy Inference Systems Model    

The settings of the ANFIS: Type of membership: Gaussian and number of fuzzy rules are 16, 

24, 32, 24, 32, 24, 32, 128, 54 and 144. In Table 6.4 the training RMS values for the ANFIS 

technique for shareholder and share price are 0.1436, 0.0807, 0.0661, 0.0392, 0.0282, 

0.0527 and testing values are 4.3760, 1.7610, 0.2686, 0.4391, 0.3636, and 1.4386. Similarly, 

for share prices Table 6.4 gives the RMS values as 0.1795, 0.1877, 0.1143, 0.1229, 0.0946, 

0.1277 for training and 3.4501, 4.1106, 1.1875, 0.5161, 0.8476, 0.7584 for testing, in the 

case of all portfolios respectively. The figures in Appendices C and D indicate that invest, 

dividend and disinvest decisions are predicted with weak prediction accuracy, and there are 

expectations about growth, fall and speculative fall in share prices. 

Table 6.4: shareholder & share price RMS Training and Testing Results for ANFIS 

 

Multi-Stage Type 1:  
Share price 

RMS RHB RHS RMB RMS RLB RLS 

CF 
Train 0.3713 0.3915 0.3332 0.2847 0.2638 0.3396 

Test 0.4866 0.8388 0.5172 0.2855 0.3827 0.3559 

ELM 
Train 0.5148 0.574 0.5484 0.5244 0.5307 0.4886 

Test 0.6731 0.6107 0.5853 0.3977 0.4747 0.4198 

FFTD 
Train 0.2463 0.19 0.2805 0.1025 0.5970 0.1341 

Test 0.4250 0.4328 0.2736 0.1902 0.3390 0.0937 

FF 
Train 0.3085 0.2178 0.2766 0.2239 0.1389 0.1428 

Test 0.5582 0.5206 0.2895 0.2294 0.4113 0.1281 

DTDNN 
Train 0.3521 0.1288 0.3005 0.2311 0.1165 0.1258 

Test 0.5125 0.5272 0.294 0.1863 0.6820 0.1132 

FIT 
Train 0.4343 0.2178 0.2766 0.2239 0.1389 0.966 

Test 1.2367 0.5206 0.2895 0.2294 0.4113 0.1839 

RB 
Train 0.5911 0.5275 0.5528 0.4435 0.4776 0.5554 

Test 0.4264 0.3698 0.5566 0.4132 0.3190 0.7329 

Multi-Stage 
Type 1:  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.1436 0.0807 0.0661 0.0392 0.0282 0.0527 
Test 4.376 1.761 0.2686 0.4391 0.3636 1.4386 

Share price 
Train 0.1795 0.1877 0.1143 0.1229 0.0946 0.1277 
Test 3.4501 4.1106 1.1875 0.5161 0.8476 0.7584 
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6.3.3 Ensembled model  

 6.3.3.1 Results of Average Ensemble model 

The average method has been used next which is the average of the ANN and ANIFS 

techniques. According to Table 6.5 which reports the results of the shareholder and share 

price, the RMS training values for the average method are 0.2525, 0.1334, 0.1629, 0.1102, 

0.1289, and 0.1409 and for testing are 0.2205, 0.1834, 0.1585, 0.0939, 0.1040, and 0.1023, 

for all stock portfolios. Figures 6.4 and 6.5 indicate that investment; dividend and 

disinvestment decisions are predicted with relatively more accuracy if we use the average 

method, as compared to the individual ANN and ANFIS techniques. On the other hand, 

Table 6.5 points out that the RMS training values for predicting stock prices are 0.4083, 

0.3642, 0.2954, 0.2233, 0.2508, 0.2491 and for testing are 0.4126, 0.3661, 0.2860, 0.1810, 

0.2920, 0.1804 for all the portfolios of RHB, RHS, RMB, RMS, RLB, and RLS, respectively. 

Figures 6.6 and 6.7 also indicate that growth, fall and speculative fall expectations are there 

in Saudi Arabia market.  

The equation for the average is:       

Average =  
∑ para(i)n

i=1

N
                    (6.1) 

 

Table 6.5: shareholder & share price RMS Training and Testing Results for Average Ensemble model  

Multi-Stage 
Type 1:  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.2525 0.1334 0.1629 0.1102 0.1289 0.1409 
Test 0.2205 0.1834 0.1585 0.0939 0.1040 0.1023 

Share price 
Train 0.4083 0.3642 0.2954 0.2233 0.2508 0.2491 
Test 0.4126 0.3661 0.2860 0.1810 0.292 0.1804 
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Figure 6.4: RMS Training results (multi-stage type 1 shareholder) using average technique  
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Figure 6.5: RMS Testing results (multi-stage type 1 shareholder) using average technique  
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Figure 6.6: RMS Training results (multi-stage type 1 share price) using average technique  
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Figure 6.7: RMS Testing results (multi- stage type 1 share price) using average technique 
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6.3.3.2 Results of Weighted Average Model 

The results of the weighted average method are much better than the simple average and 

individual ANN techniques in terms of prediction accuracy and error values. With respect to 

the shareholder perspective, in Table 6.6 the RMS values for training portfolios are 0.2402, 

0.1330, 0.1629, 0.1060, 0.1289, and 0.1303 and for testing are 0.2196, 0.1770, 0.1395, 

0.0919, 0.1033, and 0.1015. Figures 6.8 and 6.9 point out that there is much better 

prediction of investment and dividend decisions for shareholders. On the other hand, in 

Table 6.6 the training RMS values for the share price dimension are 0.3359, 0.2297, 0.2773, 

0.2098, 0.2044, and 0.2030 and for testing are 0.3125, 0.3630, 0.2809, 0.1792, 0.2862, and 

0.1799, respectively for all portfolios. Similarly, Figures 6.10 and 6.11 indicate that 

expectations for growth, fall and speculative fall are in share prices. However, these results 

are better than the simple average and individual ANN techniques because the prediction 

accuracy is much better in case of the weighted average method.  

The equations for the weighted average are: 

 

Weighted average =  
∑ para(i) x W(i)n

i=1

∑ W(i)n
i=1

                (6.2) 

 

W(i) =  1 − STDi(bin)                                            (6.3) 

   

Where:  STDi  is the standard deviation for bin , the normalized values taken (STD) 

 

Table 6.6: shareholder & share price RMS Training and Testing Results for Weighted Average Model 

Multi-Stage 
Type 1:  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.2402 0.133 0.1629 0.106 0.1289 0.1303 
Test 0.2196 0.177 0.1395 0.0919 0.1033 0.1015 

Share price 
Train 0.3359 0.2297 0.2773 0.2098 0.2044 0.203 
Test 0.3125 0.3630 0.2809 0.1792 0.2862 0.1799 
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Figure 6.8: RMS Training results (multi-stage type 1 shareholder) using weighted average technique 
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Figure 6.9: RMS Testing results (multi-stage type 1 shareholder) using weighted average technique 
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Figure 6.10: RMS Training results (multi-stage type 1 share price) using weighted average technique  
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Figure 6.11: RMS Testing results (multi-stage type 1 share price) using weighted average technique 
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6.3.3.3 Results of GA Optimized Weighted Average Model 

Lastly, the multi-stage type-1 model which is a combination of FF and VBM has been 

reported using the GA optimized weighted average. The settings of the GA: Population size 

20, No. of generations 100, mutation rate 0.05 and crossover rate 0.8. From the shareholder 

perspective, Table 6.7 states that RMS training values are 0.2340, 0.1262, 0.1367, 0.0313, 

0.0686, and 0.0935 and for testing are 0.2111, 0.1767, 0.1222, 0.0899, 0.0996, 0.0701, for 

all the stock portfolios respectively. Moreover, Figures 6.12 and 6.13 indicate that 

investment and dividend decisions for shareholders are predicted with the maximum 

accuracy, as all the portfolios. In the case of share prices, RMS training values, as reported 

by Table 6.7, are 0.2455, 0.2161, 0.2620, 0.1130, 0.1410, 0.1334 and testing values are 

0.2932, 0.3565, 0.2691, 0.1624, 0.1034, and 0.0870, respectively for all the portfolios. Both 

the training & testing and shareholder and share price RMS values generated by GA are 

least, on average, as compared to all the methods of ANN, average and weighted average. 

Furthermore, Figures 6.14 and 6.15 point out that there is growth, fall and speculative fall 

expectations in the share prices of all the portfolios. These expectations are correct and 

near to perfect in almost all the portfolios. 

 

Table 6.7: shareholder & share price RMS Training and Testing Results for GA 

Multi-Stage 
Type 1:  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.234 0.1262 0.1367 0.0313 0.0686 0.0935 
Test 0.2111 0.1767 0.1222 0.0899 0.0996 0.0701 

Share price 
Train 0.2455 0.2161 0.262 0.113 0.141 0.1334 
Test 0.2932 0.3565 0.2691 0.1624 0.1034 0.087 
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Figure 6.12: RMS Training results (multi-stage type 1 shareholder) using GA technique 
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                               Figure 6.13: RMS Testing results (multi-stage type 1 shareholder) using GA technique 
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Figure 6.14: RMS Training results (multi-stage type 1 share price) using GA technique  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLS

actual

p
re

d
ic

te
d

Share price Share price 

Share price Share price 

Share price Share price 

Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 



Chapter 6: Multi-Stage Model 

160 

 

 

 

 

Figure 6.15: RMS Testing results (multi-stage type 1 share price) using GA technique  
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6.4 Forecasting Multi-Stage Type 2 Model  

This section reports the RMS values of training and testing for all portfolios (RHB, RHS, RMB, 

RMS, RLB, and RLS) for the multi-stage type 2 model, which is the combination of CAPM and 

VBM for shareholders and share price, respectively as shown in Figure 6.16. Different ANN 

techniques and ANFIS, average, weighted average and GA are utilized to predict and make 

decisions with respect to shareholder and share price.  

CAPM
 MODEL

VBM 
MODEL

(Multi-Stage 
Type 2)

MR

WACC

R_ act

R_ exp

R_ req

Shareholder

R_ req

Share Price

(Invest/Dividend/
Disinvest)

(Growth/Speculative 
Fall/Fall)

Figure 6.16: Multi-Stage Type 2 model 

6.4.1 Results of Artificial Neural Networks Model    

The ANN parameters and topology are illustrated in Table 6.8. According to Table 6.9, which 

is for shareholders, the best prediction is by both FF and FIT techniques of ANN for RHB and 

RMB where the training RMS values are 0.4313 and 0.1459 and testing values are 0.5026 

and 0.3268. The returns of these two portfolios can be best predicted by using these two 

ANN techniques. However, DTDDNN is best for RHS, RLB and RLS with training values of 

0.2321, 0.1446 and 0.1563 (testing values are 0.8099, 0.1475, and 0.1386). Finally, CF is the 

best ANN model for the RMS portfolio with training value of 0.1206 and testing value of 

0.1915. According the figures given in Appendix E for ANN prediction using multi-stage type 

2 model (CAPM and VBM), it can be inferred that predictions are relatively strong for invest , 

dividend  and disinvest decisions.    

Similarly, for share price decisions, Table 6.10 shows that FFTD is best the ANN technique 

for return predictions where RMS values are 0.4123 and 0.2982 for training and 1.1265 and 

0.4978 for testing in the portfolios RH and RMB respectively. DTDNN is the best ANN 

technique for return predictions where RMS values are 0.2750, 0.2244, 0.1762 and 0.2519 

for training and 0.6785, 0.1533, 0.1724 and 0.2317 for testing in the portfolios RHS, RMS, 

RLB and RLS respectively. The figures are given in Appendix F indicate that prediction is 
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relatively correct and there are growth, fall and speculative fall expectations in the share 

prices. 

 

Table 6.8: ANN Parameters and Topologies 

 

 

Table 6.9: shareholder RMS Training and Testing Results for ANNs 

Multi-Stage Type 2: 
Shareholder 

RMS RHB RHS RMB RMS RLB RLS 

CF 
Train 0.4303 0.2538 0.1899 0.1206 0.1896 0.2039 

Test 0.5121 0.8521 0.4845 0.1915 0.2627 0.3006 

ELM 
Train 0.5026 0.3257 0.3714 0.2666 0.256 0.2794 

Test 0.5061 0.8753 0.4012 0.3324 0.2831 0.2836 

FFTD 
Train 0.4177 0.2211 0.1522 0.0728 0.107 0.1267 

Test 0.5463 0.8475 0.4169 0.1966 0.1577 0.1393 

FF 
Train 0.4313 0.2157 0.1959 0.0515 0.1046 0.1652 

Test 0.5026 0.8199 0.3268 0.1984 0.1648 0.1611 

DTDNN 
Train 0.4212 0.2321 0.1727 0.0742 0.1446 0.1563 

Test 0.5088 0.8099 0.3891 0.2023 0.1475 0.1386 

FIT 
Train 0.4313 0.2157 0.1959 0.0515 0.1046 0.1652 

Test 0.5026 0.8199 0.3268 0.1984 0.1648 0.1611 

RB 
Train 0.4881 0.3128 0.364 0.2818 0.2807 0.2767 

Test 0.5259 0.8926 0.4007 0.3444 0.2714 0.2762 

 

 

 

 

 

 

TYPE Topology Train /valid Training epochs Training function 

FF 4-5-1 80/20 500 Levenberg-Marquardt 

 ELM 4-5-1 80/20 500 Gradient descent 

CF 4-5-1 80/20 500 Levenberg-Marquardt 

RB 4-5-1 80/20 500 Radial Bases Functions 

FFTD 4-5-1 80/20 500 Levenberg-Marquardt 

DTDNN 4-5-1 80/20 500 Levenberg-Marquardt 

FIT 4-5-1 80/20 500 Levenberg-Marquardt 
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Table 6.10: share price RMS Training and Testing Results for ANNs 

Multi-Stage Type 2:  
Share price 

RMS RHB RHS RMB RMS RLB RLS 

CF 
Train 0.4554 0.4313 0.3122 0.24 0.3159 0.2752 

Test 1.1666 0.7955 0.7133 0.3906 0.5973 0.4501 

ELM 
Train 0.6243 0.644 0.5502 0.5215 0.4946 0.5099 

Test 1.1877 0.7613 0.6937 0.605 0.5111 0.5589 

FFTD 
Train 0.4123 0.391 0.2982 0.1521 0.1861 0.2178 

Test 1.1265 0.766 0.4978 0.2456 0.2111 0.2494 

FF 
Train 0.4343 0.3283 0.2905 0.1376 0.1903 0.2099 

Test 1.2367 0.6845 0.5804 0.234 0.2192 0.365 

DTDNN 
Train 0.4047 0.275 0.2786 0.2244 0.1762 0.2519 

Test 1.2083 0.6785 0.5081 0.1533 0.1724 0.2317 

FIT 
Train 0.4343 0.3283 0.2905 0.1376 0.1903 0.2099 

Test 1.2367 0.6845 0.5804 0.234 0.2192 0.365 

RB 
Train 0.6013 0.626 0.5867 0.5436 0.5416 0.4811 

Test 1.1495 0.8458 0.843 0.6305 0.4466 0.5877 

6.4.2 Results of Adaptive Neural Fuzzy Inference Systems model 

The settings of the ANFIS: Type of membership: Gaussian and number of fuzzy rules are 16, 

24, 32, 24, 32, 24, 32, 128, 54 and 144. Along with the ANN techniques, Table 6.11 reports 

the RMS values of the adaptive neural fuzzy inference system (ANFIS) for both training and 

testing for shareholder and share price, respectively. According to Table 6.11 the RMS for 

training are 0.1144, 0.1107, 0.0605, 0.0388, 0.0266, 0.0455, and for testing are 2.8005, 

2.4625, 1.2168, 0.2940, 0.3261, and 0.5842. According to Table 6.11, the RMS training 

values for share price perspective are 0.1703, 0.1732, 0.1140, 0.1145, 0.0916, 0.1158 and 

testing values are 1.1878, 1.8070, 0.1116, 0.8085, 1.1878, and 0.5486. Overall it can be 

concluded that value-based decision making remains for invest, dividend and disinvest and 

expectations are for growth, fall and speculative fall in share prices. The figures are given in 

Appendices E and F. 

Table 6.11: shareholder & share price RMS Training and Testing Results for ANFIS 

Multi-stage 
Type 2  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.1144 0.1107 0.0605 0.0388 0.0266 0.0455 
Test 2.8005 2.4625 1.2168 0.294 0.3261 0.5842 

Share price 
Train 0.1703 0.1732 0.114 0.1145 0.0916 0.1158 
Test 1.1878 1.807 0.1116 0.8085 1.1878 0.5486 
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6.4.3 Ensembled model 

6.4.3.1 Results of Average Ensemble model 

The present study not only used different ANN techniques for the multi-stage type 2 model, 

but also used the simple average method of all ANN and ANFIS models. The average method 

has stronger prediction accuracy, compared to individual ANN and ANFIS models. With 

respect to the shareholder perspective, in Table 6.12 the RMS values for training are 0.3869, 

0.2252, 0.1797, 0.1102, 0.1353, and 0.1542 and for testing are 0.450, 0.795, 0.3199, 0.1718, 

0.1421, and 0.1341. According to Figures 6.17 and 6.18, the decisions for shareholders are 

invest, dividend  and disinvest .With respect to share price movements, in Table 6.12 

training RMS values are 0.4083, 0.2661, 0.2954, 0.2233, 0.1290, 0.2491 and the testing RMS 

values are 1.0726, 0.6561, 0.4859, 0.1476, 0.1295 and 0.2204. The expectations are growth, 

fall and speculative fall in share prices. However, these results for the average method are 

better than those of the individual ANN and ANFIS technique, with better prediction of 

decisions about stock portfolios as shown in Figures 19 and 20. 

The equation for the average is:  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑ 𝑝𝑎𝑟𝑎(𝑖)𝑛

𝑖=1

𝑛
            (6.4) 

 

Table 6.12: shareholder & share price RMS Training and Testing Results for Average Ensemble Model 

Multi-stage 
Type 2  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.3869 0.2252 0.1797 0.1102 0.1353 0.1542 
Test 0.4500 0.7950 0.3199 0.1718 0.1421 0.1341 

Share price 
Train 0.4083 0.2661 0.2954 0.2233 0.1290 0.2491 
Test 1.0726 0.6561 0.4859 0.1476 0.1295 0.2204 
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Figure 6.17: RMS Training results (Multi-Stage Type 2 shareholder) using average technique  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLS

actual

p
re

d
ic

te
d

Shareholder 

Shareholder Shareholder 

Shareholder 

Shareholder Shareholder 

Sh
ar

eh
o

ld
er

 

 Sh
ar

eh
o

ld
er

 

 

Sh
ar

eh
o

ld
er

 

 Sh
ar

eh
o

ld
er

 

 

Sh
ar

eh
o

ld
er

 

 Sh
ar

eh
o

ld
er

 

 



Chapter 6: Multi-Stage Model 

166 

 

 

 

 

Figure 6.18: RMS Testing results (Multi-Stage Type 2 shareholder) using average technique  
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Figure 6.19: RMS Training results (Multi-Stage Type 2 share price) using average technique 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLS

actual

p
re

d
ic

te
d

Share price Share price 

Share price Share price 

Share price Share price 

Sh
ar

e 
p

ri
ce

 

 Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 Sh
ar

e 
p

ri
ce

 

 



Chapter 6: Multi-Stage Model 

168 

 

 

 

 

Figure 6.20: RMS Testing results (Multi-Stage Type 2 share price) using average technique 
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6.4.3.2 Results of Weighted Average Model 

This accuracy level of prediction and decision making improves more by using the weighted 

average of ANN and ANFIS, instead of the simple average. In Table 6.13 the training RMS 

values for shareholders are 0.3855, 0.2217, 0.1797, 0.1099, 0.1353, 0.1509 and testing RMS 

values for shareholders are 0.4400, 0.7850, 0.3199, 0.1705, 0.1421, and 0.1335. The 

prediction accuracy has been increased. Figures 6.21 and 6.22 state that the predictions are 

strong where decisions are invest, dividend and disinvest. In the case of share prices, in 

Table 6.13 the training RMS values are 0.3937, 0.2630, 0.2954, 0.2230, 0.1250, 0.2425 and 

the testing RMS values are 1.0549, 0.6380, 0.4859, 0.1465, 0.1290, and 0.2177. There are 

expectations about the growth, fall and speculative fall in share prices as shown in Figures 

23 and 24. The equations of weighted average are: 

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
∑ 𝑝𝑎𝑟𝑎(𝑖) 𝑥 𝑊(𝑖)𝑛

𝑖=1

∑ 𝑊(𝑖)𝑛
𝑖=1

           (6.5) 

 

Table 6.13: shareholder & share price RMS Training and Testing Results for Weighted Average 

Multi-stage 
Type 2  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.3855 0.2217 0.1797 0.1099 0.1353 0.1509 
Test 0.4400 0.7850 0.3199 0.1705 0.1421 0.1335 

Share price 
Train 0.3937 0.2630 0.2954 0.2230 0.1250 0.2425 
Test 1.0549 0.6380 0.4859 0.1465 0.1290 0.2177 
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Figure 6.21: RMS Training results (Multi-Stage Type 2 shareholder) using weighted average technique 
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Figure 6.22: RMS Testing results (Multi-Stage Type 2 shareholder) using weighted average technique 
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Figure 6.23: RMS Training results (Multi-Stage Type 2 share price) using weighted average technique  
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Figure 6.24: RMS Testing results (Multi-Stage Type 2 share price) using weighted average technique  
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6.4.3.3 Results of GA Optimized Weighted Average Model 

Finally, a genetic algorithm was used to optimize the average, and used to predict the stock 

returns on the underlying six portfolios. The settings of the GA: Population size 20, No. of 

generations 100, mutation function 0.05 and crossover function 0.08. In Table 6.14 for the 

shareholders perspective, GA predicted the stock returns with the maximum accuracy 

where the RMS values for RHB, RHS, RMB, RMS, RLB, RLS for training are 0.3708, 0.1996, 

0.1464, 0.0499, 0.0773, 0.1061, and for testing are 0.415, 0.715, 0.3127, 0.1614, 0.1315, and 

0.1211, respectively. According to Figures 6.25 and 6.26, stock returns are predicted with 

the highest accuracy in the case of all portfolios and decisions for shareholders are investing 

dividend and disinvesting.  

In the case of share prices, in Table 6.14 RMS values for training are 0.2536, 0.2508, 0.2807, 

0.1387, 0.1169, and 0.1639 and for testing are 0.9162, 0.5836, 0.4746, 0.1105, 0.1228, and 

0.2028 for RHB, RHS, RMB, RMS, RLB, and RLS portfolios, respectively. According to Figures 

6.27 and 6.28, there are much stronger expectations about growth, fall and speculative fall 

in stock prices. These RMS values are least among all the models used and discussed above 

for predicting stock returns in the multi-stage type 2 model which is a combination of CAPM 

and VBM. The decisions about shareholders and expectations in share prices are much 

stronger, compared to all the other techniques used.  

Table 6.14: shareholder & share price RMS Training and Testing Results for GA 

Multi-Stage 
Type 2  

RMS RHB RHS RMB RMS RLB RLS 

 
Shareholder 

Train 0.3708 0.1996 0.1464 0.0499 0.0773 0.1061 
Test 0.4150 0.7150 0.3127 0.1614 0.1315 0.1211 

Share price 
Train 0.2536 0.2508 0.2807 0.1387 0.1169 0.1639 
Test 0.9162 0.5836 0.4746 0.1105 0.1228 0.2028 
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Figure 6.25: RMS Training results (Multi-Stage Type 2 shareholder) using GA technique 
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Figure 6.26: RMS Testing results (Multi-Stage Type 2 shareholder) using GA technique 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Testing - RHB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Testing - RHS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Testing - RMB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Testing - RMS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Testing - RLB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Testing - RLS

actual

p
re

d
ic

te
d

Shareholder Shareholder 

Shareholder Shareholder 

Shareholder Shareholder 

Sh
ar

eh
o

ld
er

 

 

Sh
ar

eh
o

ld
er

 

 Sh
ar

eh
o

ld
er

 

 

Sh
ar

eh
o

ld
er

 

 Sh
ar

eh
o

ld
er

 

 

Sh
ar

eh
o

ld
er

 

 



Chapter 6: Multi-Stage Model 

177 

 

 

 

 

Figure 6.27: RMS Training results (Multi-Stage Type 2 share price) using GA technique 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RHS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RMS

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLB

actual

p
re

d
ic

te
d

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training - RLS

actual

p
re

d
ic

te
d

Share price 

Share price Share price 

Share price Share price 

Share price 

Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 Sh
ar

e 
p

ri
ce

 

 

Sh
ar

e 
p

ri
ce

 

 



Chapter 6: Multi-Stage Model 

178 

 

 

 

 

Figure 6.28: RMS Testing results (Multi-Stage Type 2 share price) using GA technique 
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6.5 Comparison between Multi-Stage Type-1 and Multi-Stage Type-2 

models 

When comparing the two multi-stage  models used in this chapter for making value-based 

decisions for shareholders and share prices, the conclusion is that the shareholder 

perspective and decision making based upon multi-stage type-1 (FF + VBM) models provided 

the best results when using the GA optimized weighted average. The invest, dividend and 

decisions are recommended for shareholders in almost all the portfolios, however, the level 

of accuracy of these recommended decisions increased with the use of the multi-stage type-

1 model, based upon the GA optimized weighted average. Similarly, with respect to 

expectations in stock price movements, the results suggested that growth, fall and 

speculative fall expectations are found in the share prices of the Saudi Arabian Stock 

Market. The perfection of expectations increases for all the stock portfolios when the 

average and weighted average methods are used, instead of individual ANN techniques. This 

prediction accuracy and perfection is considered to be best if used with the GA optimized 

weighted average method. In comparison, it can by summarized that the multi-stage type-1 

model, which is based upon the FF model and value-based management, is better and 

provided the best results compared to the multi-stage type-2 model, based upon CAPM and 

VBM, for both shareholders and share prices movements, as shown in Tables 6.15 and 6.16. 

So in our study sample of the Saudi Arabian stock market, the multi-stage type-1 model is 

preferable.   

Table 6.15: Results multi-stage type 1 and multi-stage type 2 Models for GA shareholder 

shareholder RHB RHS RMB RMS RLB RLS 

Multi-stage 
type 1 

Train 0.2340 0.1262 0.1367 0.0313 0.0686 0.0935 

Test 0.2111 0.1767 0.1222 0.0899 0.0996 0.0701 

Multi-stage 
type 2 

Train 0.3708 0.1996 0.1464 0.0499 0.0773 0.1061 

Test 0.4150 0.7150 0.3127 0.1614 0.1315 0.1211 

 
 

 Table 6.16: Results multi-stage type 1 and multi-stage type 2 Models for GA Share price 

Share price RHB RHS RMB RMS RLB RLS 

Multi-stage 
type 1 

Train 0.2455 0.2161 0.262 0.113 0.141 0.1334 

Test 0.2932 0.3565 0.2691 0.1624 0.1034 0.087 

Multi-stage 
type 2 

Train 0.2536 0.2508 0.2807 0.1387 0.1169 0.1639 

Test 0.9162 0.50836 0.4746 0.1105 0.1228 0.2028 
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6.6 Graphical User Interface  

In addition to proposing a stock market prediction model for the Saudi financial market, the 

study also created a Graphical User Interface (GUI) in Matlab software. This is an input-

output based interface which returns the suggested decision for shareholder and share 

price based upon the best model (multi-stage type 1 based upon FF + VBM), recommended 

by the earlier analysis. There are seven inputs, namely company type, market return, size 

effect, book to market ratio, WACC, (Rexp), and (Ract). Outputs are the decisions for 

shareholder and share prices movement. The company type is its classification of portfolio 

such as any one of RHB, RHS, RMB, RMS, RLB, RLS etc. Market return, size, and book to 

market ratio are the inputs of the FF model, which gives outputs of required return then 

using that with WACC, (Rexp), and (Ract ), as input for VBM Model. The output will be either 

for shareholder decision making in terms of invest, dividend or disinvest as well as for share 

price expectations such as growth, fall or speculative fall. The algorithm behind this user 

interface applies the value-based management model along with FF on the basis of required 

returns, WACC, (Rexp), and (Ract). (As discussed in the methodology) and delivers the 

decision/expectation to the user in a much easier manner. The users or investors do not 

have to carry out many calculations and they can easily make investment decisions and 

predict price movements based upon the output of this interface. This may prove to be very 

helpful in investment decision making for Saudi investors. We can also get the best result 

when making the evaluation of this application and the methodology working behind this 

graphic user interface validated by users and investors by providing feedback regarding this 

decision-making model and system. The GUI front page is shown in Figure 6.29. 
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Figure 6.29: The GUI front page. 

 6.7 Summary  

Forecasting of stock market returns is an important phenomenon in financial economics 

literature. This is also one of the most researched empirical issues in finance and 

researchers tried their best to discover the best techniques to predict stock returns, so than 

market anomalies can be minimized. Two frameworks have been designed in this study and 

it is called the multi-stage type 1 VBM and FF model, and the multi-stage type 2 VBM and 

CAPM Model. The multi-stage type 1 model first executes the processes under the 

framework of the VBM model. The one of the input to the VBM model is given as an output 

of the FF model for further processing. The design of this model is very flexible, estimating 

the weighted average cost of capital, the expected investment return, the actual return of 

investments and the required return on invested capital. The multi-stage type 2 model first 

executes the processes under the framework of the VBM model. The one of the input to the 

VBM model is given as an output of the CAPM model for further processing. The design of 

this model is very flexible, estimating the weighted average cost of capital, the expected 

investment return, the actual return of investments and required return on invested capital. 

In this regard, the present chapter uses different ANN-based forecasting techniques in order 

to predict stock returns, based upon CAPM and Fama and French concepts for different 

portfolios and to make appropriate decisions for shareholders about expectations of share 

prices in the Saudi Arabian Stock Exchange. This present chapter applies two different multi-
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stage type models, one of which is a combination of FF and VBM, whereas the other one is 

based upon CAPM and VBM. The decisions given to shareholders are to invest, disinvest or 

dividend, whereas stock price expectations are assumed to be fall, growth and speculative 

fall. The results concluded that ANN techniques, optimized by the GA weighted average and 

based upon the multi-stage type 1 model of FF + VBM, could be used in the best manner by 

investors in the Saudi Arabian financial market to make value-based investment decisions. 

GA is the best technique to predict stock returns in Saudi Arabia and the multi-stage type 1 

model of FF + VBM applies to decision making by investors, because it improves the level of 

predicting accuracy for stock market returns, investment decisions and the movement of 

future stock prices in the emerging market of Saudi Arabia. Matlab software also generated 

a graphic user interface (GUI) for Saudi investors to participate in the investing activities 

more easily, by following the rules finalized in the results discussion of this research study. 

This may prove to be very helpful in investment decision-making for Saudi investors who do 

not have enough time or expertise to make such complex investing calculations. In the 

future can be further verified and validated by obtaining feedback from the investors 

participating in the Saudi Arabia Stock Exchange to improve this application. 
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 7.1 Conclusions 

Stock markets play a crucial role in the economic development of any country and they are 

considered as the barometer of a country’s progress. The stock markets are developed if the 

level of investing activities is enhanced and investors are making more and more 

transactions. Investment activities depend on the stock price prediction capability of 

investors which is a very tricky and complicated task in financial markets as these prices 

behave in a random fashion and vary over time. Owing to the potential of returns and the 

inherent risk factors in stock market returns, researchers have proposed various stock 

market prediction models and decision support systems to provide investors with an 

optimal forecast of stock prices and returns. Forecasting of stock market returns is an 

important phenomenon in financial economics literature. It is also one of the most 

researched empirical issues in finance and researchers have tried their best to find out the 

best techniques to predict stock returns so that market anomalies can be minimized. Two of 

these commonly used stock return prediction models are the capital asset pricing model 

(CAPM) and the three-factor model proposed by Fama and French in their empirical 

research papers. Usually, these models assume that the relationship of stock returns and 

their independent variables is linear and researchers have applied linear econometric 

models to forecast stock prices and returns. However, the greater level of complexity 

inherent in the relationship of stock market prices and their risk factors made intelligent 

prediction paradigms highly significant, as well as forecasting stock prices using the 

conventional prediction models of CAPM and Fama and French.  

The present study is a preliminary attempt in this regard to apply artificial neural network 

techniques (along with adaptive neural fuzzy inference systems and genetic algorithm) to 

stock market prediction models (capital asset pricing models and Fama French three-factor 

model) to stock prices and returns on the Saudi Arabian Stock Exchange using monthly data 

starting from January 2007 to December 2011. Predicted stock returns have been obtained 

for both stock market prediction models, CAPM and the Fama French model, and the output 

has been used in a value-based decision-making model. The value-based management 

model focuses on four dimensions: required rate of returns, expected returns on 

investment, actual return of investment, and weighted cost of capital. The study makes a 
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contribution to stock prediction by design a value-based decision-making model to investing 

activities which is done by developing a graphic user interface simple application. This 

application tries to be helpful for investors who do not have much knowledge about 

background stock prediction. 

In order to boost the predictive power of stock prediction models, various ANN models have 

been applied as well. For both CAPM and Fama and French, forecasting has been done by 

using a linear regression model along with eight ANN models – Cascade-Forward Network 

(CF), Elman Neural Networks (ELM), Feed Forward Input Time-Delay Back Propagation 

Network (FFTD), Feedforward Neural Networks (FF), Distributed Time Delay Neural Network 

(DTDNN), Fitting Networks (FIT), Radial Basis Function Network (RB) and Adaptive Neural 

Fuzzy Inference Systems (ANFIS). Along with this, the simple average and weighted average 

of all these ANN models, as well as the Genetic Algorithm (GA), are also used as stock return 

prediction models for the Saudi Arabian Stock Exchange for the period of January 2007 to 

December 2011 using MATLAB software. There have been six portfolios constructed namely 

RHB, RHS, RMB, RMS, RLB, and RLS for which training and testing returns have been 

obtained during the sample period by applying linear as well as non-linear techniques of 

ANN.  

The findings of stock market predictions based upon CAPM and Fama and French indicate 

that linear models provide the weakest prediction of stock returns both in the case of CAPM 

and Fama and French. Moreover, this prediction power of stock prices and returns tends to 

increase when non-linear models of artificial neural network were applied for estimating 

returns on portfolios of selected securities on the Saudi Arabian Stock Exchange. ANN also 

provides better results compared to adaptive neural fuzzy inference systems (ANFIS). The 

improved prediction power after the application of non-linear artificial neural network 

model techniques improves even more when the average and weighted average method is 

used instead of using an individual model of artificial neural networks. However, when the 

genetic algorithm (GA) was used in stock market prediction, it provided the best results and 

can be considered as the best prediction model in the case of the Saudi Arabian Stock 

Market, providing the best estimates of stock returns with lowest prediction error as 

measured by root mean square error. After the genetic algorithm, the weighted average 
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method of ANN and average method provide the best results, respectively. So GA is the best 

technique to use in the case of the Saudi Arabian Stock Market returns prediction, followed 

by the weighted average of ANN models, because it improves the level of predicating 

accuracy for stock market returns, investment decisions and the movement of future stock 

prices in the emerging market of Saudi Arabia. 

If the results of predicted stock returns calculated on the basis of CAPM and Fama and 

French are compared, it becomes evident that Fama and French is a better model for 

estimating stock market prices and returns with greater accuracy and less estimation error 

in the Saudi Arabian Stock Exchange. In addition, the returns predicted using Fama and 

French model are plotted closer to the prediction line in figures as compared to CAPM, 

where actual return points are located relatively far from the main prediction line. So, it can 

be summarised that Fama and French model is better and preferable to CAPM when using 

the Genetic Algorithm method in the case of our sample of Saudi Arabian stock portfolios. 

Like many other emerging and developing capital markets, the Saudi Arabian Stock 

Exchange provides for the applicability of the Fama and French three-factor model in 

comparison to the capital asset pricing mode. This preference for Fama and French model 

might be due to the size effect anomaly present in the Saudi market which causes CAPM to 

be less effective. 

In the second stage, the study used a value-based management model on the basis of 

predicted return values obtained through Fama and French model, as well as the CAPM by 

estimating the model in linear and nonlinear artificial neural network techniques. These 

results are called multi-stage type-1 and multi-stage type-2 for the purpose of investment 

decision-making, also called value-based management in the Saudi Arabian Stock Exchange. 

This is based upon shareholders’ perspective as well as share price perspective. Using the 

Value- Based Management (VBM) model of decision-making and prediction of stock 

portfolio returns with the help of Artificial Neural Networks (ANN), expectations of 

shareholders and portfolio investors to take investment decisions and the behaviour of 

stock prices are discussed. The perspective of the shareholder narrates the decision-making 

done by shareholders which consists of investing, dividends and disinvesting decisions, 
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whereas the perspective of share prices narrates movements and behaviour of stock prices 

in terms of fall, speculative fall and growth. 

The findings summarized that multi type 1 model, which is the combination of Fama and 

French three-factors predicted returns plus the value-based management model, provided 

the best results when obtained using the genetic algorithm optimized weighted average 

with a focus on shareholder perspective. The results of the multi-stage type-1 model 

recommend shareholders’ decisions such as dividends and investing more in stocks in 

almost all the stock portfolios obtained, however, the accuracy of results is at its peak when 

these predicted stock returns are obtained using the genetic algorithm optimized weighted 

average. On the other hand, the multi-stage type-1 model with a perspective of share prices 

suggests that there are expectations about growth and fall in share prices on the Saudi 

Arabian Stock Exchange during the sample period. Just like previously, the prediction 

accuracy is at its best when predicted returns are obtained through the genetic algorithm-

optimised weighted average instead of various individual artificial neural network 

techniques. In summary, it can be concluded that multi-stage type-1 model, a combination 

of Fama and French three factors and value based management, is better than multi-stage 

type-2 which is the combination of the capital asset pricing model and value-based 

management, in terms of greater accuracy and less error for both shareholders’ perspective 

as well as share prices’ perspective. Hence, in the case of our research, the multi-stage type-

1 model is preferable in the case of the Saudi Arabian stock market. 

Finally, along with comparing and selecting a stock market prediction model for the Saudi 

Arabian Stock Exchange on the basis of value-based management, Matlab software also 

generated a graphic user interface for Saudi investors to participate in the investing 

activities more easily, by following the rules finalized in the results discussion of this 

research study. This interface is an input/output based application returning the 

recommended decision for investors from the shareholder perspective as well as from the 

share price perspective, using the best model of this study i.e. multi-stage type-1 of Fama 

and French and value-based management. Using several inputs such as type of stock, 

market returns, size, value, WACC etc., this application recommends different investing 

decisions to Saudi investors. The advantage of this interface is that the investors do not 
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need to perform many complex and difficult calculations and he/she can easily make 

investment decisions and observe price movements based upon the output of this graphic 

user interface. This may prove to be very helpful in investment decision-making for Saudi 

investors who do not have enough time or expertise to make such complex investing 

calculations.  

The findings of the present study also provide some practical implications for the investors 

and regulators. It is found that the Fama and French model is better applicable to the Saudi 

Stock Exchange, which is an indication that there exists a size anomaly in the Saudi capital 

market. The investors must be careful while investing in the Saudi stock market regarding 

the size and value effects, as these are important predictors of stock returns variations in 

Saudi Arabia. Moreover, value-based management can be proven to be a significant 

decision- making tool in the capital markets of emerging markets, particularly when 

estimated non-linearly by the use of the genetic algorithm optimized weighted average of 

artificial neural network techniques. Investors should use the Fama and French model 

estimated in its non-linear form to make best investment decisions both from the 

shareholders’ perspective as well as from the share prices’ perspective. This model is best 

when investors want to make investment or disinvestment decisions equally or when they 

wish to see the behaviour of the stock prices on the Saudi Arabian Stock Exchange. 

Moreover, the regulators must also be careful regarding the stock market of Saudi Arabia 

because investment activity can be improved in the market by providing information and 

training about the latest artificial intelligence stock market prediction tools and techniques 

which not only increase the market turnover and liquidity but also the market capitalization 

of the Saudi stock market.  

7.2 Future Work  

The findings of the present study also provide some important future guidelines for 

researchers in the field of economics and finance, particularly those conducting research in 

capital markets with a focus on stock price and returns forecasts for better investment 

decisions. This study recommends that other models related to artificial intelligence systems 

for stock price prediction and forecasts successfully implemented in the developed capital 

markets should be applied to the Saudi Arabia market by adding new variables at the micro 
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level such as market, size and book to market and macro level like term structure and 

default risk Fama and French (1993) that relate to the nature of the religion and culture. 

These models should not only differ in their estimation methodology but also in the process 

of estimation of stock returns. For instance, the arbitrage pricing theory of Ross or the inter-

temporal capital asset pricing model of Merton can also be used to compare the results of 

the capital asset pricing model and Fama and French three-factor models used in the 

present study. Not only these, but the extensions of Fama and French model such as the 

five-factor model, zero beta model and others can be used in a similar way to predict stock 

market behaviour in Saudi Arabia.   

Moreover, the scope of this study is limited to only sixty monthly observations with a 

limited number of companies listed on the Saudi Arabian Stock Exchange. Future research 

studies can overcome this limitation by adding more companies to the sample, as well as 

conducting the research over a longer time period. This may obtain better results regarding 

stock market returns estimation and the value-based management model. In addition, the 

market efficiency of the Saudi Arabian Market must be tested in depth by applying the 

Efficient Market Hypothesis tests at the three forms to improve the confidence of Saudi 

investors regarding risk-adjusted return reward investing background in front of speculating 

methodology. Furthermore, a comparative analysis of stock prediction models among Gulf 

countries, as well as the Middle East and North Africa (MENA) region, should be carried out 

to better compare and contrast the results regionally among developing markets. This will 

provide a better picture of value-based management in different economies.  

Last but not least, the graphic user interface developed in this study can be further verified 

and validated by obtaining feedback from the investors participating in the Saudi Arabia 

Stock Exchange. The feedback of the investors and users is not only helpful in improving the 

decision-making in the value-based management model, but other extensions of this 

graphic user interface can be proposed by modifying it into a more user-friendly version. 

The evaluation of this application and the methodology working behind this graphic user 

interface can also be validated by users and investors by providing feedback regarding this 

decision-making model and system.    
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Appendix A : Prediction Result using FF Model  
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Figure A1: training results (FF) using ANN technique (NEWCF). 
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Figure A2: testing results (FF) using ANN technique (NEWCF). 
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Figure A3: training results (FF) using ANN technique (NEWELM). 
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Figure A4: testing results (FF) using ANN technique (NEWELM). 
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Figure A5: training results (FF) using ANN technique (NEWFFTD). 
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Figure A6: testing results (FF) using ANN technique (NEWFFTD). 
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Figure A7: training results (FF) using ANN technique (NEWFF). 
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Figure A8: testing results (FF) using ANN technique (NEWFF). 
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Figure A9: training results (FF) using ANN technique (NEWDTDNN). 
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Figure A10: testing results (FF) using ANN technique (NEWDTDNN). 
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Figure A11: training results (FF) using ANN technique (NEWFIT). 
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                                           Figure A12: testing results (FF) using ANN technique (NEWFIT). 
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Figure A13: training results (FF) using ANN technique (NEWRB). 
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                                           Figure A14: testing results (FF) using ANN technique (NEWRB). 
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Figure A15: training results (FF) using ANFIS technique.  
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Figure A16: testing results (FF) using ANFIS technique. 
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Figure B1: training results (CAPM) using ANN technique (NEWCF). 
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Figure B2: testing results (CAPM) using ANN technique (NEWCF). 
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Figure B3: training results (CAPM) using ANN technique (NEWELM). 
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Figure B4: testing results (CAPM) using ANN technique (NEWELM). 
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Figure B5: training results (CAPM) using ANN technique (NEWFFTD). 
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Figure B6: testing results (CAPM) using ANN technique (NEWFFTD). 
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Figure B7: training results (CAPM) using ANN technique (NEWFF). 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Training - RHB

actual

p
re

d
ic

te
d

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Training - RHS

actual

p
re

d
ic

te
d

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Training - RMB

actual

p
re

d
ic

te
d

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Training – RMS

actual

p
re

d
ic

te
d

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Training – RLB

actual

p
re

d
ic

te
d

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Training – RLS

actual

p
re

d
ic

te
d



Appendix  

226 

 

 

 

  
Figure B8: testing results (CAPM) using ANN technique (NEWFF). 
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Figure B9: training results (CAPM) using ANN technique (NEWDTDNN). 
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Figure B10: testing results (CAPM) using ANN technique (NEWDTDNN). 
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Figure B11: training results (CAPM) using ANN technique (NEWFIT). 
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Figure B12: testing results (CAPM) using ANN technique (NEWFIT). 
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Figure B13: training results (CAPM) using ANN technique (NEWRB). 
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Figure B14: testing results (CAPM) using ANN technique (NEWRB). 
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Figure B15: training results (CAPM) using ANFIS technique. 
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Figure B16: testing results (CAPM) using ANFIS technique. 
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Appendix C: Prediction Result using 

Multi-Stage Type-1 Model  

(Shareholder)  
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Figure C1: Training results (Type1 shareholder) using ANN technique (NEWCF). 
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Figure C2: Testing results (Type1 shareholder) using ANN technique (NEWCF). 
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Figure C3: Training results (Type1 shareholder) using ANN technique (NEWELM). 
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Figure C4: Testing results (Type1 shareholder) using ANN technique (NEWELM). 
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Figure C5: Training results (Type1 shareholder) using ANN technique (NEWFFTD). 
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Figure C6: Testing results (Type1 shareholder) using ANN technique (NEWFFTD). 
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Figure C7: Training results (Type1 shareholder) using ANN technique (NEWFF). 
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Figure C8: Testing results (Type1 shareholder) using ANN technique (NEWFF). 
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Figure C9: Training results (Type1 shareholder) using ANN technique (NEWDTDNN). 
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Figure C10: Testing results (Type1 shareholder) using ANN technique (NEWDTDNN). 
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Figure C11: Training results (Type1 shareholder) using ANN technique (NEWFIT). 
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Figure C12: Testing results (Type1 shareholder) using ANN technique (NEWFIT). 
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Figure C13: Training results (Type1 shareholder) using ANN technique (NEWRB). 
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Figure C14: testing results (Type1 shareholder) using ANN technique (NEWRB). 
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Figure C15: Training results (Type1 shareholder) using ANFIS technique.  
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Figure C16: Testing results (Type1 shareholder) using ANFIS technique.  
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Figure D1: Training results (Type1 share price) using ANN technique (NEWCF). 
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Figure D2: Testing results (Type1 share price) using ANN technique (NEWCF). 
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Figure D3: Training results (Type1 share price) using ANN technique (NEWELM). 
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Figure D4: Testing results (Type1 share price) using ANN technique (NEWELM). 
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Figure D5: Training results (Type1 share price) using ANN technique (NEWFFTD). 
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Figure D6: Testing results (Type1 share price) using ANN technique (NEWFFTD). 
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Figure D7: Training results (Type1 share price) using ANN technique (NEWFF). 
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Figure D8: Testing results (Type1 share price) using ANN technique (NEWFF). 
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Figure D9: Training results (Type1 share price) using ANN technique (NEWDTDNN). 
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Figure D10: Testing results (Type1 share price) using ANN technique (NEWDTDNN). 
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Figure D11: Training results (Type1 share price) using ANN technique (NEWFIT). 
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Figure D12: Testing results (Type1 share price) using ANN technique (NEWFIT). 
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Figure D13: Training results (Type1 share price) using ANN technique (NEWRB). 
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                          Figure D14: Testing results (Type1 share price) using ANN technique (NEWRB). 
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Figure D15: Training results (Type1 share price) using ANFIS technique. 
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Figure D16: Testing results (Type1 share price) using ANFIS technique.  
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Figure E1: Training results (Type 2 shareholder) using ANN technique (NEWCF). 
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Figure E2: Testing results (Type2 shareholder) using ANN technique (NEWCF). 
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Figure E3: Training results (Type2 shareholder) using ANN technique (NEWELM). 
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Figure E4: Testing results (Type2 shareholder) using ANN technique (NEWELM). 
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                             Figure E5: Training results (Type2 shareholder) using ANN technique (NEWFFTD). 
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Figure E6: Testing results (Type2 shareholder) using ANN technique (NEWFFTD). 
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Figure E7: Training results (Type2 shareholder) using ANN technique (NEWFF). 
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Figure E8: Training results (Type2 shareholder) using ANN technique (NEWFF). 
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Figure E9: Training results (Type2 shareholder) using ANN technique (NEWDTDNN). 
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Figure E10: Testing results (Type2 shareholder) using ANN technique (NEWDTDNN). 
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Figure E11: Training results (Type2 shareholder) using ANN technique (NEWFIT). 
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Figure E12: Testing results (Type2 shareholder) using ANN technique (NEWFIT). 
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Figure E13: Training results (Type2 shareholder) using ANN technique (NEWRB). 
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Figure E14: Testing results (Type2 shareholder) using ANN technique (NEWRB). 
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Figure E15: Training results (Type2 shareholder) using ANFIS technique. 
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Figure E16: Testing results (Type2 shareholder) using ANFIS technique. 
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Figure F1: Training results (Type2 share price) using ANN technique (NEWCF). 
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Figure F2: Testing results (Type2 share price) using ANN technique (NEWCF). 
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Figure F3: Training results (Type2 share price) using ANN technique (NEWELM). 
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Figure F4: Testing results (Type2 share price) using ANN technique (NEWELM). 
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Figure F5: Training results (Type2 share price) using ANN technique (NEWFFTD). 
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Figure F6: Testing results (Type2 share price) using ANN technique (NEWFFTD). 
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Figure F7: Training results (Type2 share price) using ANN technique (NEWFF). 
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Figure F8: Testing results (Type2 share price) using ANN technique (NEWFF). 
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Figure F9: Training results (Type2 share price) using ANN technique (NEWDTDNN). 
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Figure F10: Testing results (Type2 share price) using ANN technique (NEWDTDNN). 
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Figure F11: Training results (Type2 share price) using ANN technique (NEWFIT). 
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Figure F12: Testing results (Type2 share price) using ANN technique (NEWFIT). 
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Figure F13: Training results (Type2 share price) using ANN technique (NEWRB). 
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Figure F14: Testing results (Type2 share price) using ANN technique (NEWRB). 
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Figure F15: Training results (Type2 share price) using ANFIS technique.  
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Figure F16: Testing results (Type2 share price) using ANFIS technique. 
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