Verifying Opacity of a Transactional Mutex Lock

John Derrick?, Brijesh Dongol?, Gerhard Schellhorn®, Oleg Travkin?, and Heike
Wehrheim*

'Department of Computing, University of Sheffield, Sheffield, UK
2Department of Computer Science, Brunel University, London, UK
3Universitit Augsburg, Institut fiir Informatik, 86135 Augsburg, Germany

4Universitit Paderborn, Institut fiir Informatik, 33098 Paderborn, Germany

Abstract. Software transactional memory (STM) provides programmers with a
high-level programming abstraction for synchronization of parallel processes, al-
lowing blocks of codes that execute in an interleaved manner to be treated as an
atomic block. This atomicity property is captured by a correctness criterion called
opacity. Opacity relates histories of a sequential atomic specification with that of
STM implementations.

In this paper we prove opacity of a recently proposed STM implementation (a
Transactional Mutex Lock) by Dalessandro et al.. The proof is carried out within
the interactive verifier KIV and proceeds via the construction of an intermediate
level in between sequential specification and implementation, leveraging existing
proof techniques for linearizability.

1 Introduction

Software transactional memory (STM) is a mechanism that provides an illusion of
atomicity in concurrent programs and thus aims to reduce the burden of implementing
synchronization mechanisms on a programmer. The analogy of STMs is with database
transactions, which perform a series of updates to data atomically in an all-or-nothing
manner. If a transaction succeeds, all its operations succeed, and otherwise, all its oper-
ations fail. Since the first proposal of an STM [20], a number of STM implementations
have been presented (e.g. [11, 3]). Intuitively, an STM should behave like a lock mech-
anism for critical sections: transactions appear to be executed sequentially, but — unlike
conventional locking mechanisms — STMs should (and do) allow for concurrency be-
tween transactions. The locking mechanism of Transactional Mutex Locks [4] which we
study in this paper implements an optimistic locking scheme. These currently find their
way into standard programming languages, for instance via the new class StampedLock
of the Java 8 release.

As STM implementations allow several operations to execute simultaneously, what
one means by "correctness" is open to interpretation. Several notions of correctness
have been defined, e.g., strict serializability [17], opacity [8,2], TMS1 and TMS?2 [6],
and virtual world consistency [13]. A number of researchers have already considered
methods for verifying correctness of transactional memory implementations; a com-
prehensive survey may be found in [14]. Formal verification is clearly needed as STM



implementations employ fine-grained operations allowing interleavings between con-
current transactions, and subtle errors are therefore likely to arise but difficult to detect
via e.g. testing.

In this paper, we provide the first formal, mechanised proof of correctness of the
Transactional Mutex Lock (TML). As correctness criterion we employ the recently
given definition of opacity of Attiya et al. [2]. It provides strong guarantees to program-
mers in the form of observational refinement allowing programmers to reason about
programs using opaque STMs in terms of atomic transactions. Our proof technique is
fully mechanised within the interactive prover KIV [18] and leverages existing proof
techniques [5] for linearizability [12].

More specifically, our approach consists of two steps: we (1) show that all runs
of TML are linearizable to runs in which first of all reads and writes to memory oc-
cur atomically, and (2) establish an invariant about such runs stating that they all have
"matching" runs in which whole transactions are executed atomically. These two steps
are necessary for covering the two sorts of non-atomicity in STMs: STMs decompose
(atomic) transactions into several operations (begin, read, write etc.), but also further
decompose these operations into several steps (accessing and manipulating so-called
meta-data) as to allow for a maximum of concurrency. The former decomposition is
accounted for in step (2), the latter in step (1).

The paper is structured as follows: Section 2 gives an introduction to software trans-
actional memory, presents our case study and defines the correctness criterion of opac-
ity. Our general proof approach with steps (1) and (2) is described in Section 3; Sec-
tion 4 explains both steps for our case study, the Transactional Mutex Lock. Section 5
concludes and discusses related work.

2 Software Transactional Memory and Opacity

Software Transactional Memory (STM) provides programmers with an easy-to-use syn-
chronisation mechanism for concurrent access to shared data. The basic mechanism
is a programming construct that allows one to specify blocks of code as transactions,
with properties of database transactions (e.g., atomicity, consistency and isolation) [10].
All statements inside a transaction execute as though they were atomic. However —
like database transactions — software transactions need not successfully terminate, i.e.,
might abort.

To support the concept of software transactions, STMs usually provide a number
of operations to programmers: operations to start (TMBegin) or to end a transaction
(TMEnd), and operations to read or write shared data (TMRead, TMWrite)'. These oper-
ations can be called (invoked) from within a program (possibly with some arguments,
e.g., the variable to be read) and then will return with a response. Except for starting
transactions, all other operations might potentially respond with abort, thereby abort-
ing the whole transaction. STMs expect the programmer to always start with TMBegin,
then a number of reads and writes can follow, and eventually the transaction is ended
by calling TMEnd unless one of the other operations has already aborted.

"'In general, arbitrary operations can be used here; for simplicity we use reads and writes to
variables.



Init: glb = 0

TMBegin: TMEnd:
// B1 is LP if even glb // E1 is LP if even loc
B1 do loc := glb E1 if (loc & 1)
B2 while (loc & 1) E2 glb++; // LP
B3 return ok; E3 return commit;
TMRead (addr): TMWrite (addr,val):
R1 tmp := *addr; W1 if (loc & 0)
R2 if (glb = loc) // LP // W2 is LP when glb # loc
R3 return tmp; W2 if (!cas(&glb, loc, loc+1))
R4 else return abort; W3 return abort;
w4 else loc++;

W5 *xaddr := val; // LP
W6 return ok;

Fig. 1. The Transactional Mutex Lock (TML)
2.1 Example: Transactional Mutex Lock

In this paper, we will study a particular implementation of STM, namely the Transac-
tional Mutex Lock (TML) of Dalessandro et al. [4]. It provides exactly the four types of
operations, but operation TMEnd will never respond with abort. See Fig. 1 (the references
in the comments to LP are explained later).

The TML uses a global counter g/b (initially 0) shared by all processes, and local
variables tmp (temporarily storing the value read from an address) and loc (storing a
copy of glb). Variable glb records whether there is a live writing transaction. Namely,
glb is odd if there is a live writing transaction, and even otherwise. Initially, g/b is O and
hence even.

Operation TMBegin copies the value of glb into its local variable loc and checks
whether glb is even. If so, the transaction is started, and otherwise, the process attempts
to start again by rereading g/b. A TMRead operation succeeds as long as glb equals loc
(meaning no writes have occurred since the transaction began), otherwise it aborts the
current transaction. The first execution of TMWrite attempts to increment glb using a cas
(compare-and-swap), which atomically compares the first and second parameters, and
sets the first parameter to the third if the comparison succeeds. If the cas attempt fails,
a write by another transaction must have occured, and hence, the current transaction
aborts. Otherwise loc is incremented (making its value odd) and the write is performed.
Note that because loc becomes odd after the first successful write, all successive writes
that are part of the same transaction will perform the write directly after testing loc at
line 1. Further note that if the cas succeeds, glb becomes odd, which prevents other
transactions from starting, and causes all concurrent live transactions still wanting to
read or write to abort. Thus a writing transaction that successfully updates glb effec-
tively locks shared memory. Operation TMEnd checks to see if a write has occurred by
testing whether loc is odd. If the test succeeds, glb is incremented (to an even value),
allowing other transactions to begin.



invocations ‘ possible matching responses

inv,(TMBegin) res,(TMBegin(ok))

inv,(TMEnd) res,(TMEnd(commit)), res,(TMEnd(abort))
inv,(TMRead(x)) resy(TMRead(v)), res,(TMRead(abort))
inv,(TMArite(x, v)) res,(TMWrite(ok)), res,(TMWrite(abort))

Table 1. Events appearing in the histories of TML

The key question we want to answer in this paper is: “Does the TML correctly im-
plement an STM”, i.e., does TML guarantee that transactions look as though they were
executed atomically, even when a large number of transactions are running concurrently.
Concurrently here means that the individual lines in the operations (i.e., B1, B2, etc) can
be interleaved by different calling processes. We start by first fixing the meaning of a
“correctness” for an STM implementation as opacity [8]. We formalise this via a series
of definitions leading up to the definition of an opaque history in Definition 5 below.

2.2 Opacity

There are numerous formalizations of opacity in the literature; our definition mainly
follows Attiya et al. [2]. We model shared memory by a set Addr of addresses or loca-
tions. For simplicity we assume addresses hold integer, denoted Z, values only, hence
State == Addr — Z describes the possible states of the shared memory. Initially, all
addresses hold the value 0. As standard in the literature, opacity is defined on the histo-
ries of an implementation. Histories are sequences of events that record all interactions
between the implementation and its clients. Histories form an abstraction of the actual
interleaving of individual lines of code, and thus an event is either an invocation (inv)
or a response (res). For the TML implementation, the possible invocation and matching
response events are given in Table 1. In the table, p is a process identifier from a set of
processes P (and is given as a subscript to an invocation or response), x is an address of
a variable and v a value.

Example 1. The following history /; is a possible execution of the TML. It accesses
the address x by two processes 2 and 3 running concurrently.

hy = (inv3(TMBegin); invo(TMBegin); ress(TMBegin(ok)); reso(TMBegin(ok));
invs(TMWrite(x, 4)); inva(TMRead(x)); reso(TMRead(0));
res3(TMWrite(ok)); invs(TMENnd); res3(TMEnd(commit))) O

Notation. We use the following notation on histories: for a history &, h | p is the pro-
jection onto the events of process p only and A[i..j] the subsequence of from A(i) to

h(j) inclusive. For a response event e, we let rval(e) denote the value returned by e; for
instance rval(TMBegin(ok)) = ok. If e is not a response event, then we let rval(e) = L.

Histories. We're interested in three different types of histories. At the concrete level the
TML implementation produces histories where the events are interleaved. #; above is an
example of such a history. At the abstract level we’re interested in sequential histories
which are ones where there is no interleaving at any level - transactions are atomic:



completed transactions end before the next transaction starts. As part of the proof we
use an intermediate specification which has alternating histories, which we define now.

A history h is alternating if h = () or h is an alternating sequence of invocation
and matching response events starting with an invocation. For the rest of this paper, we
assume each process invokes at most one operation at a time and hence assume that 4 [ p
is alternating for any history 4 and process p. Note that this does not necessarily mean A
is alternating itself. Opacity is defined for well-formed histories, which formalises the
allowable interaction between an STM implementation and its clients. Given a projec-
tion & | p of a history & onto a process p, a consecutive subsequence ¢ = (s, . . . , 5,,) of
h | pis a transaction of process p if so = inv,(TMBegin) and

— either rval(s,,) € {commit,abort} or s, is the last event of process p in & | p, and
— forall 0 < i < m, event s; is not a transaction invocation, i.e., s; # inv,(TMBegin)
and not a transaction completion, i.e., rval(s;) ¢ {commit, abort}.

Furthermore, ¢ is committing whenever rval(s,) = commit and aborting whenever
rval(s,,) = abort. In these cases, the transaction ¢ is finishing, otherwise ¢ is live. A
history is well-formed if it consists of transactions only and at most one live transaction
per process.

Example 2. The history h; given above is well-formed, and contains a committing
transaction of process 3 and a live transaction of process 2. a

The basic principle behind the definition of opacity (and similar definitions) is the com-
parison of a given concurrent history against a sequential one. The matching sequential
history has to (a) consist of the same events, and (b) preserve the real-time order of
transactions.

Sequential histories. We now define formally the notion of sequentiality, noting that
sequentiality refers to transactions: a sequential history is alternating and does not in-
terleave events of different transactions. We first define non-interleaved histories.

Definition 1 (Non-interleaved history). A well-formed history h is non-interleaved if
transactions of different processes do not overlap. That is, for any processes p and q
and histories hy, he and hs, if h = hy ™ (inv,(TMBegin)) " hy ™ (inv,(TMBegin)) ™ hg
and hy contains no TMBegin operations, then either hy contains a response event e such
that rval(e) € {abort, ok}, or hs contains no operations of process p. O

In addition to being non-interleaved, a sequential history has to ensure that the be-
haviour is meaningful with respect to the reads and writes of the transactions. For this,
we look at each address in isolation and define what a valid sequential behaviour on a
single address is.

Definition 2 (Valid history). Ler h = (evy, ..., eva,—1) be a sequence of alternating
invocation and response events starting with an invocation and ending with a response.

We say h is valid if there exists a sequence of states oy, . . . , o, such that oo(x) = 0
for all x € Addr and, for all i such that0 <i < nandp € P:



1. if evy; = inv,(TMWrite(x, v)) and evqirq1 = res,(TMArite(ok))
then oiy1 = oi[x :== V]

2. if evy; = inv,(TMRead(x)) and evq; 11 = res,(TMRead(v))
then o;(x) = v and 011 = 0.

3. for all other pairs of events (reads and writes with an abort response, as well as
begins and ends) 0,41 = 0;.

We write [h](0) if o is a sequence of states that makes h valid (since the sequence is
unique, if it exists, it can be viewed as the semantics of h). O

The point of STMs is that the effect of the writes only takes place when the trans-
action commits. Writes in a transaction that abort don’t effect the memory. However,
all reads must be consistent with previously committed writes. Therefore, only some
histories of an object reflect ones that could be produced by an STM. We call these the
legal histories, and they are defined as follows.

Definition 3 (Legal histories). Let hs be a non-interleaved history and i an index of
hs. Let hs' be the projection of hs[0..(i — 1)] onto all events of committed transactions
plus the events of the transaction to which hs(i) belongs. Then we say hs is legal at i
whenever hs' is valid. We say hs is legal iff it is legal at each index i. O

This allows us to define sequentiality for a single history, which we lift to the level of
specifications.

Definition 4 (Sequential history). A well-formed history hs is sequential if it is non-
interleaved and legal. We denote by S the set of all possible well-formed sequential
histories.

Opagque histories. Opacity relates concurrent histories that an implementation gener-
ates to sequential histories. We say a history / is equivalent to a history &', denoted
h = I, if for all processes p € P, h [ p = h' | p. Further, the real-time order on transac-
tions #; and #5 in a history 4 is defined as #; <, t2 if #1 is a finished transaction and the
last event of #; in & occurs before the first event of 5.

A given concrete history may be incomplete, i.e., consist of pending operation calls,
which may be distinguished in a history as an invocation that has no matching response.
As some of these pending calls may have taken effect, pending operation calls may be
completed by adding matching responses. There may also be incomplete operation calls
that have not taken effect; it is safe to remove the pending invocations. It is however not
possible to determine whether or not a pending operation call has taken effect from the
history only; therefore, we define a function complete(h) that constructs all possible
completions of /& by appending matching responses and removing pending invocations.

Definition 5 (Opaque history). A history h is opaque iff for some hc € complete(h),
there exists a sequential history hs € S such that hc = hs and <, C<y;; a set of
histories H is opaque iff each h € H. is opaque; and an STM implementation is opaque
iff its set of histories is opaque. O



Example 3. The above history h; is opaque; the corresponding sequential history is

hs = (inva(TMBegin); resy(TMBegin(ok)); invy(TMRead(x); resq(TMRead(0));
invs3(TMBegin); ress(TMBegin(ok)); invs(TMWrite(x,4));
ress3(TMWrite(ok)); inv3(TMEnd); ress(TMEnd(commit)))

However, a history may not be opaque for several reasons. A very simple example is A3,
which violates memory semantics, since it reads a value 4, that has not been written:

ho = (inv1 (TMBegin); res;(TMBegin(ok)); invi(TMRead(x)); resi(TMRead(4)))
A second more complex example is /3.

hs = (inv1(TMBegin); res;(TMBegin(ok)); inva(TMBegin); reso(TMBegin(ok));
invi (TMWrite(x, 3)); res1(TMWrite(ok)); inve(TMRead(x)); res2(TMRead(3)))

Transaction 2 reads value 3 written by transaction 1, which is still live. This is dis-
allowed by opacity, since all values read must from a state where only the effects of
transactions that have already committed are visible.

hy = (inv1(TMBegin); res;(TMBegin(ok)); invi(TMRead(x)); res1(TMRead(0));
invo(TMBegin); resa(TMBegin(ok)); inve(TMWrite(x, 4));
resa(TMWrite(ok)); invo(TMWrite(y,4)); reso(TMWrite(ok));
invo(TMENd); resz(TMEnd(commit)); invy(TMRead(y)); res1(TMRead(4)))

In hy transaction 1 reads x = 0 from initial memory, then transaction 2 runs, which
writes x = y = 4 and commits. Finally transaction 1 reads y = 4 . This also violates
opacity, since it is not possible to order the transactions sequentially: either transaction
1 runs first (and read x = y = 0), or transaction 2 runs first (in which case transaction 1
should read x = y = 4). The TML will prevent 74 — the second read of transaction 1
will abort because its loc value is smaller than glb, which was incremented by the first
write of transaction 2. However, in general an implementation could allow transaction
2toread y = 0, i.e., if we replace the last event in &4 by reso(TMRead(0)), the modified
history is still opaque.

Thus our question of implementation correctness of the TML can now be rephrased
as: Are all the well-formed histories generated by TML opaque? Having provided the
necessary formalism to pose this question, we now explain our general proof method
for showing opacity of TML.

Aside. Neither h3 nor hy violate strict serializability [17]. To satisfy strict serializability,
for h3 we must guarantee that transaction 1 always commits, while for s, we require
that transaction 1 detects the inconsistent reads when attempting a commit, and to abort.

Strict serializability is too weak, and histories such as i4 are problematic for imple-
mentations in which reading and writing transaction variables is alternated with com-
putations that use these values. To see this, suppose all committing transactions are
required to preserve the invariant x = y (the transactions in /4 satisfy this invariant).
Then, assuming all transactions act as if they are atomic, transaction 1 could rely on
reading equal values for x and y. Even though transaction 1 will not be able to success-
fully commit, it could attempt to compute x/(y + 4 — x) after reading x and y, which
would give an unexpected division by zero.



ABegin: AEnd:

return ok return commit
ARead (addr): AWrite (addr,val):
atomic { atomic {
return addr addr := val ; return ok
or or
return abort } return abort }

Fig. 2. Atomic specification of an STM

3 A proof method for opacity

Proving opacity of an STM object is difficult, as it determines a relationship between
a fine-grained implementation in which individual statements (and hence, operations)
may be interleaved, in terms of a sequential specification in which unbounded (but
finite) sequences of transactional memory operations are considered atomic. The op-
erations of STM implementations are however simple: there are operations to begin
and end a transaction and operations to read and write from memory. The majority of
these leave memory unchanged; for our TML example, the only operation that modifies
memory is a write operation that does not abort. Note that this is not the only possibility
— there are STM implementations that use deferred updates, where write operations
leave memory unchanged and writes are only performed when transactions end.

Our proof method uses an intermediate specification which is an atomic specifica-
tion of an STM implementation (with non deferred updates) where each operation is
atomic, thus interleaving of statements within an operation does not occur.

The proof method works by (a) showing that every history in the TML imple-
mentation can be linearized by an alternating history of this intermediate specifica-
tion, and (b) these alternating histories are themselves opaque. We describe the proof
method using TML as a running example. Our proofs have been fully automated in KIV
[18], the resulting development may be viewed online (https://swt.informatik.
uni-augsburg.de/swt/projects/TML.html). The link also contains additional notes
on our KIV proof.

3.1 Defining an atomic specification of an STM
The definition of the intermediate specification is simple, and the atomic specification
of an STM is given in Fig. 2. For example, the ARead(x) operation is an abstraction of

TMRead(x) that reads and returns the value of x in a single atomic step or it aborts. (We
assume that or defines a non-deterministic choice.)

3.2 Linearizability and opacity

Correctness of the TML implementation is shown using linearizability [12], which is
the standard correctness criterion for concurrent objects. The idea of linearizability is:



Linearizability provides the illusion that each operation applied by concurrent
processes takes effect instantaneously at some point between its invocation and
its return. This point is known as the linearization point.

In other words, if two operations overlap, then they may take effect in any order from an
abstract perspective, but otherwise they must take effect in the order in which they are
invoked. This provides a meaning for fine-grained concurrent objects with overlapped
operation calls in terms of the abstract object, whose operation calls do not overlap.

As with opacity, the formal definition of linearizability is given in terms of histories
(of invocation/response events); for every concurrent history we have to find an equiv-
alent alternating (invocations immediately followed by the matching response) history
that preserves real time order of operations. The real-time order on operation calls? o4
and 05 in a history £ is defined as 01 <, 02 if the return of 01 precedes the invocation
of 05 In h.

Linearizability differs from opacity in that it does not deal with transactions; thus
transactions may still be interleaved in a matched alternating history. As with opacity,
the given concurrent history may be incomplete. Thus the definition of linearizability
uses a function complete that adds matching returns to pending invocations to a history
h, then removes any remaining pending invocations.

Definition 6 (Linearizability). A history h is linearized by alternating history ha, if
there exists a history hc € complete(h) such that hc = ha and <. C <K pq. A concurrent
object is linearizable with respect to a specification if for each concurrent history h,
there is an alternating history ha of the specification that linearizes it. O

With linearizability formalised, we now present the main theorem for our proof method,
which enables opacity to be proved via histories of the atomic specification of an STM.

Theorem 1. A concrete history h is opaque if there exists an alternating history ha
such that h is linearizable with respect to ha and ha is opaque.

Proof. Suppose (a) h is linearizable with respect to ha and (b) ha is opaque with re-
spect to hs. Then, by (a), there exists a history hc € complete(h) such that hc = ha and
~<<neC < and by (b), there exists a well-formed sequential history As such that ha = hs
and <, C <}, We must show that hic = hs and <, C <, holds. Clearly, hic = hs be-
cause = is transitive, and if <. C <, and <, C <, then <, C <, because preserving
the real-time order of operations also preserves the real-time order of transactions. O

In applying this to TML, we show that every concurrent history . will be linearized
by an alternating history ha of the intermediate specification given in Figure 2, and that
every such ha is opaque.

Because the histories of the atomic specification of an STM are alternating, i.e., each
operation invocation is immediately followed by its response, we further simplify rea-
soning by reasoning about runs, which abstractly represent alternating histories. Thus
we specifically show that the run r corresponding to ha is opaque.

2 Note: this is different from the real time order on transactions defined in Section 2.2



run events possible sequential invocation/response pairs

Begin(p) (inv,(TMBegin), res,(TMBegin(ok)))

Read(p, x,v) (inv,(TMRead(x)), res, (TMRead(v)))

Write(p, x, v) (inv, (TMWrite(x, v)), res,(TMWrite(ok)))

Commit(p) (inv,(TMENd), res,(TMEnd(commit)))
(inv (
(invy (

Abort(p) inv,(TMRead(x)), res,(TMRead(abort))),
inv,(TMWrite(x,v)), res,(TMWrite(abort))),
(inv,(TMENd), res, (TMEnd(abort)))

Table 2. Run events abstracting matching invocation/return pairs

A run is a sequence of run events (see column 1 of Table 2), representing a matching
invocation/response event pair; Begin(p) denotes a TMBegin operation by process p; run
events Read(p,x,v) and Write(p,x,v) denote successful read and write operations by
process p on address x with value v; run event Commit(p) denotes a successful TMBegin
operation by process p; and Abort(p) denotes an operation invocation that aborts.

Example 4. The run corresponding to the history

ha = (invo(TMBegin); resa(TMBegin(ok)); inve(TMRead(x); resa(TMRead(0));
invs3(TMBegin); ress(TMBegin(ok)); invs(TMWrite(x,4));
ress3(TMWrite(ok)); inv3(TMEnd); ress(TMEnd(commit)),
inve(TMRead(x); resz(TMRead(abort)))

is (Begin(2); Read(2,x,0); Begin(3); Write(3,x,4); Commit(3); Abort(2)). O

Because Abort(p) relates to several possible pairs, a run is more abstract than a
history. Although it is possible to obtain a 1-1 correspondence between runs and his-
tories by defining other types of run events, the encoding in this paper simplifies the
mechanisation of the proof.

4 Proving opacity of TML

In this section we apply the theory from the previous section and show how opacity of
the TML may be proved. Section 4.1 describes how the TML may be modelled in K1V,
Section 4.2 presents the linearizability proof and Section 4.3 the opacity of the runs
recorded as part of this proof.

4.1 Modelling TML in KIV

Before we discuss the proof steps, we first describe how the different specifications are
modelled in KIV.

The concrete specification: To model the concrete state of the TML, we use KIV’s
record type, which is used to define a constructor mkcs (make concrete state c¢s) con-
taining a list of fields of some type. Field glb represents the global variable glb, and mem

10



represents the memory state and hence maps addresses to values (in this case integers).
Local variables are mappings from processes (of type Proc) to values; for the TML, we
have local variable pc for the program counter, loc for the local copy of glb, as well
as variable a and v storing the input/output addresses and values, respectively. We thus
use the following state:

CState =
mkcs(. .glb : nat, . .mem : address — int, . .pc : Proc — PC,
.loc : Proc — nat, . .a : Proc — address, . .v : Proc — int)

Modelling atomic statements: Modelling an atomic statement of the TML as a KIV
state transition is also straightforward; for example, consider statement labelled W2,
which is modelled by write2-def below. Here, COP is used to denote that the step is
internal (i.e., neither an invocation nor a response; such steps have an additional input
resp. output parameter) and write? is the index of the operation. Modifications to glb
and pc are conditional, denoted by D, on the test loc = glb. Thus, if loc = glb, then
pc’ is set to W3, otherwise pc’ is set to W6. The transitions alter the concrete state, the
after state is denoted by dashed variables.

write2-def:
F COP(write2)(glb, mem, pc, loc, a, v, glb’, mem’, pc’, loc’, a’, v’)
“
(pc =W2 A loc’ =1loc Amem” =mem A a’ =a AV =vV
A glb’ = (loc = glb D loc + 1;glb) A pc’ = (loc = glb D W3;W6) );

Promotion to system wide steps: Local specifications must now be promoted to the
level of the system, where the system consists of the concrete state cs together with a
variable r representing the run so far.

As promotion is a standard procedure [21], we omit the full details here. In KIV
we define one generic promoted KIV state transition COp-def that gets instantiated to
specific promoted transitions as necessary.

More interestingly, as part of the promotion we record run events in the run variable
r, at the linearization points of the operations TMBegin, TMRead, TMEnd, and TMWrite.

The linearization points of these transitions are annotated in comments in the code
in Figure 1. As with standard linearizability proofs, linearization points are often condi-
tional and their locations sometimes not intuitive. An operation may either linearize the
invoked operation or linearize to abort. Operation TMBegin linearizes at B1 if an even
value of glb is loaded into loc; in this case the operation will definitely go on to start a
transaction as the outcome of the next test is determined locally. Operation TMRead lin-
earizes at R2 to a non-aborting Read if the value of glb is the same as the stored value in
loc, and linearizes to an aborting Read if the value of glb changes. Operation TMWrite
linearizes successfully when the memory is updated at W5, and linearizes to Abort if
the cas at W2 fails. Finally, operation TMEnd never aborts, yet there are two lineariza-
tion points depending on whether successfully executed a TMWrite. If no writes were
performed, then 1oc must be even; such a transaction must linearize at E1, otherwise if
the transaction had performed a successful write, then 1oc must have been set to an odd
value at W4, therefore, the linearization point for TMEnd for such a transaction is is E2.

11



Wy

The expression on the right of “r’ =" below is an if-then-else expression describing
the value of r’ (i.e., the value of r in the post state). To save space some details are
omitted, and replaced by “...”. Thus, for example, the first condition states that r’
is set to r + Begin(p), which concatenates Begin(p) to r, whenever pc = B1 A
even(glb) holds in the pre-state, i.e., whenever process p executes line B1 where the
value of glb is even.

COp-def :

F COp(cj, p)(cs, r, cs’, r’)

< ( 3 pc, loc, a, v. COP(cj)(cs.glb, cs.mem,..., cs’.glb, cs’.mem,...) A
pc = cs.glb A loc = cs.loc(p) ... A

r’ = (pc = B1 A even(glb) D r + Begin(p) ;

(pc = R2 A loc = glb D r + Read(p, a, Vv) ;
(pc = R2 A loc # glb D r + Abort(p) ;
(pc = W2 A glb # loc D r + Abort(p) ;
(pc = W5 D r + Write(p, a, v) ;
(pc = E1 A even(loc) D r + Commit(p) ;
(pc = E2 D r + Commit(p) ;
)5

r)))

4.2 Step 1: Proving linearizability with respect to the intermediate specification

Having described how we model the TML implementation in KIV, including the em-
bedding of the linearization points in the promoted operations, the next step is to show
that every history % of this TML implementation is linearized by an alternating history
of the intermediate specification. To simplify the proof, the alternating histories have
been represented by runs.

We thus show that 4 is linearized to a run r. This is done by proving two lemmas in
KIV for each operation of transaction (TMWrite etc).

First, when executed by process p no operation ever passes more than one lineariza-
tion point (LP) in any execution (regardless of other interleaved operations executed
by other processes) before executing a return (so even nonterminating TMBegins never
execute more than one LP).

Second, if the operation reaches a return and terminates, then it has executed ex-
actly one LP, i.e. exactly one run event of process p has been added to the run r. The
arguments of this run event agree with the actual input/output of the invoking/response
transition. As an example, the write operation adds Write(p, x, v) to r when executing
the instruction at W5 (and therefore actually writes v to mem(x)), and we prove that this
is possible only when the input to the invoking instruction of TMWrite is x, v and the
output is empty.

Note that this encoding is recording the (more abstract) runs directly, as opposed
to recording an alternating history which is abstracted to runs as a separate step. This
simplified the KIV proof significantly without affecting soundness. In particular, lin-
earizability is guaranteed because the linearization points that occur are done by steps
of the operations themselves (more intricate examples where linearization points are
executed by other threads need more complex techniques, see [19] for a complete proof
method). The method used here is akin to the technique used in [22], where concrete

12



states are augmented with auxiliary variables representing the abstract state together
with additional modifications of the auxiliary state at the linearization points.

4.3 Step 2: Proving opacity of alternating histories using runs

In this subsection we prove an alternating history which linearized a concurrent TML
history is itself opaque. Together with the results defined above this will be sufficient to
show opacity of the TML.

Firstly, we define opacity for runs, and show that proving opacity of runs is equiv-
alent to proving opacity of alternating histories. Secondly, we discuss the KIV proof
of opacity for TML runs. (Note that the descriptions below differ slight from the ac-
tual KIV proof online; as we use modified function names here to keep this paper
self-contained, i.e., the proof can be understood without having to refer to the KIV
specification online.)

Defining opacity for runs. Many of the definitions follow over from the definitions
for histories in Section 2. We also need to define the semantics of a valid run on a
sequence of states. To define opacity of a run, we first define the semantics of each run
event from Table 2 on the memory state mem € State to produce the next state mem’.
Notation mem|x := v] denotes functional override, where mem(x) is updated to v.

[Begin(p)
[Read(p,x,v)
)

)

ment, mem

mem, mem em' = mem N\ mem(x) =v

[Write(p, x,v
[Commit(p

[Abort(p)

Semantics of individual run events are lifted to the level of runs as follows. Below,
o is a sequence of memory states and #o defines the length of o, which by the first
conjunct is one more than the length of r. By the second conjunct, for each n, the
transition from o (n) to o(n + 1) is generated using r(n). Because the memory state has
been made explicit, [r] (o) only holds for valid and legal runs.

[rl(c) = #o=#r+1AVnen< #r= [r(n)](cn),c(n+1));

Finally, we define opaque runs as follows, where run r is mapped to sequential run
rs. Predicate r = rs ensures equivalence between r and rs, predicate <,C <, ensures
real-time ordering is preserved, and interleaved states that transactions may be overlap.
The final conjuct ensures rs is both valid and legal as defined in Definitions 2 and 3,
respectively, where committed restricts a given run to the committed runs plus the (live)
transaction to which r(n) belongs as defined in Definition 3.

ment, nent

I( )
I( )
[ (mem, mem”)
I( )
I( )

opaque(r,rs) = r = rs A<,C =<\ —interleaved(rs) N
Vnen<#rs= Jo ec(0) = (Axe0) A [committed(rs|0..n])] (o)

We must now ensure that proving opacity of runs is sufficient for proving opacity of
complete alternating histories. This is established via the following theorem. We say a

13



run r corresponds to an alternating history ha iff r can obtained from ha by replacing
each pair of matching events in sa by the corresponding run event from Table 2.

Theorem 2. An alternating history ha is opaque if there exists a run r that corresponds
to ha and r is opaque.

Proof. The proof of this theorem is straightforward as the definition of opacity of a run
is built on the opacity of an alternating history. O

The invariants for opacity. The rest of the proof is now about proving that for each
execution of the TML augmented with runs (cs, r), it is possible to find an rs such that
opaque(r, rs).

As with our work on linearizability we prove this via construction of an appropri-
ate invariant. The main proof then shows that all augmented states (cs, r) generated
by a concurrent execution of the TML implementation satisfies the predicate Jrs e
INV (cs, r,rs). The formula INV(cs, r, rs) defines a number of invariants for a sequen-
tial history rs, which in particular imply opaque(r, rs), which we now explain.

The formula INV(cs, r, rs) formalizes the observation that the (legal) transaction
sequences rs generated by the TML implementation always consist of three parts: a
first one that alternates finished transactions and live transactions with an even value for
loc(p) that is already smaller than the current value of glb. The processes p executing
such live transactions have only done reads. They are still able to successfully commit,
but they are no longer able to successfully read or write. A second part that consists
of transactions of processes p that have loc(p) = glb (or loc(p)+1 = glb, in case a
writing transaction exists). Finally, an optional live writing transaction. The process p
executing this transaction either satisfies odd(loc(p)) A loc(p) = glb or pc(p) = W4 A
odd(glb) N glb = loc(p) + 1.

That the partitioning is an invariant is established by proving some additional sim-
pler properties of the TML implementation with respect to the corresponding sequential
run rs. The most important ones are as follows, where p is assumed to be the process
generating the transaction.

INV1. Transactions for which loc(p) is even have not performed any writes.

INV2. Any live transaction with an odd value of loc(p) is the last transaction in rs,
and loc(p) = glb in this case. This implicitly implies that there is at most one live
transaction with an odd value for loc(p).

INV3. If the sequential run rs contains a live transaction ¢ by process p with loc(p) =
glb and pc(p) = W5, any finished transaction must occur before 7.

INV4. Live transactions are ordered (non-strictly) by their local values of loc. This
property is crucial for preserving real-time order, since a larger loc implies that the
transaction has started later.

INVS5. Strengthening opaque(r, rs), the state sequence o that is needed to ensure that
the last event of rs is valid (cf. Def. 3) always ends with current memory. Formally,
for any augmented state cs, r the sequential history rs is such, that for its projection
rs’ to events of committed transactions plus the events of the last transaction a
(unique) state sequence o with [rs']o exists where the last element of o is equal to
cs.mem.

INV6. Aborted transactions contain no write operations.

14



Opacity proof in KIV. The proof proceeds by assuming INV (cs, r, rs) holds for some rs,
we show that the invariant holds after any step of the TML specification that generates
cs’, ¥/, it must be possible to construct a new sequence rs’ such that INV(cs’, ', rs')
holds.

For all steps that do not linearize (i.e. do not modify r) this is easy, we simply choose
rs' = rs. Therefore, each of these proofs except for the operation at W4 (that increments
loc) is trivial.

Linearization steps of a TML operation add the corresponding run event re to r, i.e.
r" = r " (re). The proof for the LP of TMBegin (i.e., line B1) is relatively simple, the
new rs’ has the newly started transaction concatenated at the end. For the other LPs, we
use a function tseq(rs), which generates a sequence of transactions from rs in order.
In particular, if ts = tseq(rs), then rs = ts(0) " ts(1) 7 -+ 7 ts(#ts — 1). Ateach LP,
assuming ts = tseq(rs), we add a run event re at the end of some #s(j) and leave all other
ts(i) unchanged to generate a new zs’. The sequence ts’ may also reorder transactions in
ts that overlap in #/, however, in most cases, the order of transactions is left unchanged,
i.e. the choice for ts" is s[j := ts(j) ~ (re)]. We then consider rs' = tseq(ts’) and we
show that this new rs’ preserves the memory semantics.

Because opacity holds for the transaction sequence rs before the LP step, we know
from Definition 5 that for each transaction zs(k) a memory sequence oy exists, that fits
the run events of the committed transactions before k together with the run events in
ts(k). In the following, we refer to oy as the memory sequence validating ts[0..k]. There
are three cases.

1. For k = j, we choose o’ := o ™ (mem'), where mem’ is computed from the last
element mem := last(c) by applying the semantics of the added event re on last(o).

2. For k < j, we choose cr,’( = oy, since the extended transaction is not present.

3. Forj < k, we choose o}, = oy when re is not a commit. The difficult case remaining
is the one where 75’ (j) is committing. However, because #s’(j) is not the last trans-
action in the sequence, it cannot have an odd /loc due to INV2, and by INV1, the
transaction has not performed any writes. Therefore, the memory sequence 0]{ that

validates #5[0..j] is of the form o ™ (mem)", where (mem)" is a sequence of mems
of length n. The memory sequence oy that validates #s[0..k] has prefix og ™ (mem)",

since j < k. Therefore, oy = oo ™ (mem)" ™ o’ and the new memory sequence that

validates #5' (k) can be set to g > (mem)" ™1 7 o',
This proves the main invariant that rs’ is legal. However, there is an additional problem
when (a) run event re is a Commit or Abort or (b) loc(p) is incremented at W4. Both
(a) and (b) may violate INV3, which is necessary to ensure that real-time order in r
is preserved. For both scenarios, we must commute the transaction with current loc(p)
value. Case (a) must move the committing reader to the start among those whose value
of loc equals loc(p). In terms of the split of the transaction sequence into three parts,

3 Technically, a transaction sequence fs is represented in KIV as a sequence of ranges m;..n;, such
that m; and n; mark the first and last event of a transaction in r. Assuming r[m;| = Begin(p;),
the events of transaction 7s(i) then are specified as #s(i) = r[m;..n;] | pi. The opacity predicate
is therefore defined directly in terms of the range sequence instead of using rs.

15



the transaction was one of the transactions of part 2, and must now become the last
transaction of part 1. Case (b) must move the transaction that executes W4 to the end
of fs (it moves from part 2 to become the single writer of part 3). Both cases can be
reduced to a lemma, that says that adjacent transactions ts(n),ts(n + 1) executed by
processes p and g, respectively, can be reordered whenever loc(p) = loc(g). This is
because by property INV2, both loc(p) and loc(g) must be even and by INV1 neither
may have performed any writes.

Proof statistics. Specifying and proving opacity using KIV required four weeks of
work. In particular, half the time was invested to develop an elegant formalisation of
transactions that does not have to refer to auxiliary data like transaction identifiers and
does not have to explicitly specify permutations. The most difficult part of the proof
was figuring out a good lemma that gives criteria for preserving the semantics. This
proof and the proofs of the main goals for each of the 7LPs + the goal for pc=W4
are rather complex. They each have between 50 and 100 interactions. Our first guess
for defining the invariant left out the two properties INV4 and INV6, they were added
during the proof, which also took ca. two person weeks. Streamlining these techniques
in the context of a larger example (e.g., the TL2 algorithm [3]) is a topic of future work.

5 Conclusions

There are many notions of correctness for STMs [14, 9]. Of these, opacity is an easy-
to-understand notion that ensures all reads are consistent with committed writing trans-
actions. We have developed a proof method for, and verified opacity of, a transactional
mutex lock implementation. Many definitions of opacity in the literature require an ex-
plicit mention of the permutations on histories, which would make proofs significantly
more complex. Our formalization has avoided the explicit use of permutations.

Opacity defines correctness in terms of histories generated by interleaving STM
operations as well as statements within the operations. Our method simplifies proof of
opacity by reformulating opacity terms of runs, and proving opacity of the runs. A run
allows interleaving of operations, but each operation is treated as being atomic, and
hence, the statements within an operation are not interleaved. Linearizability is used
to justify replacing an interleaved history by an alternating one (Theorem 1), while
Theorem 2 justifies proving opacity of an alternating history by proving opacity of the
run corresponding to the history.

Although there are several works comparing and contrasting different correctness
conditions for STM (including opacity) (e.g., [6, 16, 1]), there only a handful of papers
that consider verification of the STM implementations themselves. A model checking
approach is presented in [7], however, the technique only considers conflicts between
read and write operations in different transactions. More recently, Lesani has considered
opacity verification of numerous algorithms [14], which includes techniques for reduc-
ing the problem of proving opacity into one of verifying a number of simpler invariants
on the orders of events [15]. However, these decomposed invariants apply directly to
the interleaved histories of the implementation at hand, as opposed to our method that
performs a decomposition via runs.

16



References

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.
22.

H. Attiya, Gotsman A, S. Hans, and N. Rinetzky. Safety of live transactions in transactional
memory: TMS is necessary and sufficient. In F. Kuhn, editor, DISC, volume 8784 of LNCS,
pages 376-390. Springer, 2014.

. H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky. A programming language perspective on

transactional memory consistency. In P. Fatourou and G. Taubenfeld, editors, PODC 13,
pages 309-318. ACM, 2013.

. Dice D, O. Shalev, and N. Shavit. Transactional locking II. In S. Dolev, editor, DISC, volume

4167 of LNCS, pages 194-208. Springer, 2006.

. L. Dalessandro, D. Dice, M. L. Scott, N. Shavit, and M. F. Spear. Transactional mutex locks.

In P. D’ Ambra, M. R. Guarracino, and D. Talia, editors, Euro-Par (2), volume 6272 of LNCS,
pages 2—13. Springer, 2010.

. J. Derrick, G. Schellhorn, and H. Wehrheim. Verifying linearisabilty with potential lineari-

sation points. In Proc. Formal Methods (FM), pages 323-337. Springer LNCS 6664, 2011.

. S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards formally specifying and veri-

fying transactional memory. Formal Asp. Comput., 25(5):769-799, 2013.

. R. Guerraoui, T. A. Henzinger, and V. Singh. Model checking transactional memories. Dis-

tributed Computing, 22(3):129-145, 2010.

. R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In S. Chatterjee

and M. L. Scott, editors, PPOPP, pages 175-184. ACM, 2008.

. R. Guerraoui and M. Kapalka. Principles of Transactional Memory. Synthesis Lectures on

Distributed Computing Theory. Morgan & Claypool Publishers, 2010.

T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, 2nd edition. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Publishers, 2010.

T. L. Harris and K. Fraser. Language support for lightweight transactions. In Crocker R and
G. L. Steele Jr., editors, OOPSLA, pages 388-402. ACM, 2003.

M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS, 12(3):463-492, 1990.

. D. Imbs and M. Raynal. Virtual world consistency: A condition for STM systems (with a

versatile protocol with invisible read operations). Theor. Comput. Sci., 444:113-127, 2012.
M. Lesani. On the Correctness of Transactional Memory Algorithms. PhD thesis, UCLA,
2014.

M. Lesani and J. Palsberg. Decomposing opacity. In F. Kuhn, editor, DISC, volume 8784 of
LNCS, pages 391-405. Springer, 2014.

V. Luchangco M. Lesani and M. Moir. Putting opacity in its place. In Workshop on the
Theory of Transactional Memory, 2012.

C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):631—
653, 1979.

W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Structured specifications and interactive
proofs with KIV. In Automated Deduction—A Basis for Applications, volume II, chapter 1:
Interactive Theorem Proving, pages 13 — 39. Kluwer, 1998.

G. Schellhorn, J. Derrick., and H. Wehrheim. A Sound and Complete Proof Technique for
Linearizability of Concurrent Data Structures. ACM Trans. Comput. Logic, 15, 2014.

N. Shavit and D. Touitou. Software transactional memory. Distributed Computing, 10(2):99—
116, 1997.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.

V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of Cam-
bridge, 2007.

17



