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Abstract—This study presents a novel dynamic threshold algo-
rithm that is applied to daily self-measured SpO2 data for manage-
ment of chronic obstructive pulmonary disease (COPD) patients
in remote patient monitoring to improve accuracy of detection of
exacerbation. Conventional approaches based on a fixed threshold
applied to a single SpO2 reading to detect deterioration in patient
condition are known to have poor accuracy and result in high false
alarm rates. This study develops and evaluates use of a dynamic
threshold algorithm to reduce false alarm rates. Daily data from
four COPD patients with a record of clinical interventions during
the period were selected for analysis. We model the SpO2 time-
series data as a combination of a trend and a stochastic component
(residual). We estimate the long-term trend using a locally weighed
least-squares (low-pass) filter over a long-term processing window.
Results show that the time evolution of the long-term trend indi-
cated exacerbation with improved accuracy compared to a fixed
threshold in our study population. Deterioration in the condition
of a patient also resulted in an increase in the standard deviation of
the residual (σres ), from 2% or less when the patient is in a healthy
condition to 4% or more when condition deteriorates. Statistical
analysis of the residuals showed they had a normal distribution
when the condition of the patient was stable but had a long tail on
the lower side during deterioration.

Index Terms—Remote patient monitoring, SpO2 , telehealth.

I. INTRODUCTION

T ELEMONITORING can play a vital role in the manage-
ment of patients with chronic conditions by using the data

from long-term monitoring to identify trends and changes in
the data that might be indicative of changes in the condition
of the patient. Typically this includes monitoring SpO2 data in
patients with chronic obstructive pulmonary disease (COPD),
or blood pressure and weight in patients with congestive heart
failure (CHF). However, monitoring a patient over prolonged
periods generates significant amounts of data, much of which
will have little clinical relevance. The conventional approach
to manage this data is to generate alerts regarding a change in
condition based on a fixed threshold. However, this approach
is known to result in a high number of false alarms, and leads
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to distrust in the monitoring system with alerts being disabled
or ignored. Moreover, there is a little or no evidence in the lit-
erature regarding the prognostic value of SpO2 readings taken
in the home. There is a need both to decrease the rate of false
alarms and to demonstrate the value of the use of the data for
long-term management of patients.

Pulse oximeters provide a noninvasive estimation of the ar-
terial hemoglobin oxygen saturation (SpO2) [1]–[3]. SpO2 has
been widely used in intensive care units, operating rooms, and
primary care in the detection of hypoxemia (defined as SpO2
< 90% in [4] and [5] and in this study). Pulse oximetry could
have a vital role in improving the management of COPD pa-
tients by determining the need for long-term oxygen therapy
and intervention in acute exacerbations [6], [7]. Exacerbations
are caused by airway infections and result in worsening of the
symptoms [8]. Frequent exacerbations and delayed intervention
are associated with faster decline [9].

However, it is the case that oxygen saturation is not an ab-
solute indication of condition, and patients can remain com-
fortable and stable at relatively low levels. This means that
applying a simple threshold will result in many false alarms
[10], [11]. There is also concern that measurements taken in the
home by the patient may be of poor quality, with errors due
to motion, poor perfusion, excessive light, venous pulsation,
dyshaemoglobin, intravenous dyes, nail polish, artificial nails,
pigmentation, and electromagnetic interference [1], [12]–[14].
This presents a challenge to discriminate whether a low reading
is due to a measurement error, other causes of false reading or
real [15]–[17].

Most work on analyzing and developing alerts for SpO2 has
been undertaken on data from the intensive care unit (ICU) or
operating room (OR) [18]–[20]. However, the research is ap-
plied to continuous SpO2 data and short-term effects, and the
results and techniques are not applicable to home monitoring.
Moreover, in ICU and OR, multiple physiological signals are
measured and clinical staff is on hand to make an immediate
decision on whether the alarm is true hypoxia or due to a techni-
cal fault, measurement error or other cause. In contrast, in home
monitoring, there may only be a single physiological parame-
ter being monitored and a small number of readings taken at
infrequent intervals, such as once per day.

Our aim is to develop an approach that can accommodate the
long-term fluctuations observed in SpO2 that are tolerated by
the patient and not indicative of exacerbation and determine the
short-term changes that are, and thereby, reduce the number of
false alarms and provide timely intervention.
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TABLE I
PATIENT MONITORING INFORMATION

Patient Number of Days With
Readings / Total Number of

Monitoring Days

Reason for End of
Monitoring

Number of
Clinical In-
terventions

11 127 / 134 (95%) Died 12

2 338 / 408 (83%) Monitoring ended 3
3 355 /465 (76%) Monitoring ended 1
4 310 /370 (84%) Monitoring ended 0
5 225 / 360 (63%) Monitoring ended 0
6 81 / 126 (64%) Withdrew 0
7 3 / 110 Withdrew 0

1 Pulmonary fibrosis.
2 O2 therapy started on day 34 and continued until day 134.

II. METHODS

A. Patient Selection and Data Collection

SpO2 data were collected from seven patients with chronic
respiratory disease, who were recruited to participate in the
inCASA project. All the patients were over the age of 65, were
assessed as frail (using Edmonton frailty scale), had at least one
chronic disease, and were living alone. Each patient was given a
pulse oximeter and instructed to take at least one measurement
each day; where possible first thing in the morning.

The pulse oximeter was connected wirelessly to a home gate-
way, which transmitted the data to a remote server for storage
and to allow the clinical team to assess condition. The pulse
oximeter was designed to be easy to use for the elderly; the user
interface was a simple push button to start a reading and a green
light when the reading was complete, at which point the sensor
could be removed by the patient. The gateways were designed
to be simple and self-contained for easy and rapid installation
and unobtrusive for user acceptance. The gateway communica-
tion was based on GSM/GPRS for the WAN connection to the
remote server and ZigBee Health Care Profile and IEEE 11073
for connection with the sensor [21].

Seven patients with chronic respiratory disease (six with
COPD, one with pulmonary fibrosis) were enrolled and monitor-
ing occurred between December 2012 and March 2014. Patients
were enrolled at various times and for varying duration. Two pa-
tients (6 and 7) withdrew and their data were not included in the
analysis. Compliance for taking daily readings was greater than
70% for four patients (patients 1–4 in Table I), and these have
been selected for further analysis in this study. Missing readings
were due to: the patient being absent from home; forgetting; or
a technical fault. The first two were the most common.

Of the four patients, two had clinical interventions (including
hospital admission), one had clinical intervention and died dur-
ing the study, and one had no intervention. Clinical events were
recorded in the patient electronic health record by the health
care professionals caring for the patient. Detail on each patient
is given in Table I.

B. Multiple Daily Measurements

On occasion, patients would take repeated measurements on
a single day. For our analysis, we require uniformly spaced data

samples, one per day, and so a single representative value was
derived to replace multiple daily measurements. Several options
are available; including the median or maximum of the multiple
measurements. The median has commonly been used in tele-
monitoring, whereas the maximum is often used by a clinician,
who may repeat a measurement when suspecting it is incorrect
and will select the higher reading (generally errors through mo-
tion, poor perfusion, excessive ambient light, dyshaemoglobin,
result in a low reading).

Multiple measurements per day were seen in three of the four
patients. For two patients, all the readings were above 90% (so
both median and maximum value were above 90%) and so the
method would not impact analysis. However, for one patient
(patient 4), in 6 out of 10 days, one of readings was under 88%
while the other was above 90%, which would lead to a difference
in analysis. However, whenever a low reading was accompanied
by a high reading on the same day, the higher was accepted by
the clinician as representative, and so we adopted the maximum
in our analysis.

III. DATA ANALYSIS

A. Signal Decomposition

Analysis of the statistical properties of the SpO2 time series
shows that it is nonstationary. Due to the stochastic nature of
the SpO2 data and its day-to-day variability, we have chosen to
model the SpO2 time series as the sum of a trend component
(here, called the short-term trend) and a residual (the stochastic
component), where the SpO2 reading for day i can be expressed
as (1):

si = mi + ri (1)

where

i denotes the time index (day of monitoring);
si is the SpO2 reading on day i of monitoring;
mi is the short-term trend function;
ri is the residual.

The short-term trend, mi , is further decomposed into two
components: the long-term trend, Mi , and the difference be-
tween the short- and long-term trends, yi , that represents the
variation of the short-term trend about the long-term trend,
where, yi = mi − Mi , giving

si = Mi + yi + ri. (2)

The full decomposition of the SpO2 data for each time interval
was according to (2).

B. Trend Analysis

The trend represents the time evolution of the SpO2 time-
series data, distinct from short-term fluctuations. From our anal-
ysis, we have identified two distinct trends: long term and short
term. We hypothesize that the long-term trend represents the un-
derlying evolution of the condition over a prolonged period and
may provide information on changes in the condition, such as
deterioration, of the patient. The short-term trend will disclose
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Fig. 1. SpO2 time-series data for patient 1 (circles); 15-point MA filter
(dashed-line); estimates of long-term trends with LOWESS (using 90 near-
est neighbors), 90-point MA filter and LS regression (linear trend). The vertical
line shows when the patient was placed on oxygen therapy.

rapid changes in condition that might accompany an exacerba-
tion. The residual represents the expected fluctuations in daily
readings. However, the variance may also indicate the condition
of the patient; for example, there might be increased variance
accompanying an exacerbation.

There are many methods to determine the trend components
including least-square (LS) fitting, moving average (MA) fil-
ter, kernel smoothing, locally weighed least-squares smoother
(LOWESS) [22], Bayesian smoother, Kalman filtering, or low-
pass filtering [23]–[25]. In this study, we considered the MA
filter, LOWESS, and LS regression.

1) Short-Term Trend: We evaluated 7-point and 15-point
symmetric MA filters to determine the short-term trend com-
ponent from the SpO2 time-series data; and provide an estimate
of parameter mi in (1).

The symmetric MA filter used in this study can be expressed
as

m̂i =
1
N

k∑

j=−k

si+j , N ≤ 2k + 1 (3)

where k = 3 for 7-point and 7 for 15-point MA filter, N is
the number of readings within 15-day processing window and
N<2k+1 when there are missing readings in the processing
window.

The width of the processing window is adjusted for the first
and last seven data points in order to retain the properties of an
MA filter and have an equal number of days of monitoring on
each side.

The result from using the 7-point and 15-point MA filters
was similar; both suppressed the day-to-day random variations
on the readings but the greater smoothing provided by the 15-
point MA filter was found preferable for this study. There were
two further advantages: it is less sensitive to missing readings,
and it allows a large class of trend functions (e.g., third degree

polynomials) to pass through without distortion. The result of
the 15-point MA smoothing is given as the dashed line in Fig. 1.

2) Long-Term Trend: We considered three approaches for
extracting the long-term trend: LS regression, MA filter, and
LOWESS. For an MA filter and LOWESS, we used a slid-
ing window approach and examined varying widths (60-day to
180-day) depending on the presence of sudden changes in the
trend. The wider the processing window, the smoother is the
estimate of the trend. However, narrow processing windows
can better track sudden rapid changes in the trend that may be
caused by an exacerbation. We only present results for 90-day
processing window for the long-term trends.

Fig. 1 illustrates the results for the 90-point LOWESS (solid
line), 90-point MA (dot-dash line), and LS regression (dotted
line). In this example, the three approaches achieve similar re-
sults, i.e., an approximately linear declining trend, and are al-
most indistinguishable in Fig. 1. The LS method assumes the
trend is a single linear function over the entire interval, and
therefore, the data would have to be segmented into several
time intervals if there were changes within the time series. In
contrast, the MA and LOWESS filters do not assume the trend
remains constant and adapt to the changes in the trend. The MA
filter is quick to compute, which is an advantage for real-time
applications. However, as there are no computation restrictions,
we have chosen the LOWESS method.

Fig. 1 shows the analysis of the SpO2 time series for pa-
tient 1, and includes the long-term and short-term trends. In this
example, the long-term trend is almost linear, showing a grad-
ual deterioration over the period of monitoring. The short-term
trend shows the short-term variations about the long-term trend.
In this example, this includes a number of excursions of increas-
ing (days 35–60, 80–100) and decreasing (days 5–35, 60–75,
105–120) trend toward the hypoxia state. The variations of the
short-term trend around the long-term trend resemble a cyclic
component with a period of ∼47 days.

3) Residuals and the Standard Deviation of Residuals: Resid-
uals are obtained by subtracting the estimated short-term trend,
m̂, from the SpO2 readings, i.e., ri = si − m̂i . Our expectation
would be that the residual will have noise like properties; zero
mean and will be stationary, that is, the variance (and standard
deviation) will be consistent for all selected segments. However,
the state of health might affect SpO2 , resulting in variation of
the variance with condition.

The standard deviation of the residuals is a measure of rapid
day to day fluctuations of the SpO2 data about the short-term
trend. This study investigates the standard deviation of residuals
as a measure to detect a change in the condition of a patient. We
use the notion of a moving estimator of the standard deviation,
as we consider it is not stationary. The estimate is found using
a sliding window that contains the residuals from the previous
N days. We investigated 30-day and 60-day windows, and de-
termined that the 30-day window gave best results as it is better
able to detect the changes characteristic of an exacerbation. In
contrast, the 60-day window would fail to detect the onset of an
exacerbation that followed on rapidly after another. Recovery
time following an exacerbation can also be used to determine
an appropriate duration of the window. For example, in [26] and
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Fig. 2. Residuals (top) and estimate of the standard deviation of the residuals
(bottom) for patient 1.

[27], it was found that there is a high risk of recurrent exacer-
bations within 8 weeks of the onset of the previous. Therefore,
it is highly likely that the onset of such recurrent exacerbations
using a standard deviation estimated using a window in excess
of 50 days will be missed; a shorter window is indicated for
detecting exacerbations that are close in time.

The variance of the SpO2 time series could be used as an in-
dicator of the physiological state of COPD patients, but we have
shown that the mean is not stationary. In contrast, the residual
signal is a zero mean time series and its variance is preferred.
Moreover, we have observed that the standard deviation of this
residual signal is not stationary and has a continually varying
value.

Fig. 2 shows the residuals (upper figure) and a windowed
estimator (30 days) of the standard deviation (σ̂res). There is an
increased value of the variance from 4% to 5% between days
100 and 120.

We tested whether the residuals were normally distributed
using Kolmogorov–Smirnov (K–S) hypothesis test. We consid-
ered three periods for this test: whole monitoring period, first
90 days, last 44 days all the residuals. All of the periods passed
the test at significance level of α = 0.05, but the last two at a
smaller value of the K–S statistics.

IV. RESULTS

A. SpO2 Time-Series Data and Trends

1) Patient 1: Patient 1 had pulmonary fibrosis and com-
menced oxygen therapy on day 34 (vertical dashed line) and
died on day 135. The long-term trend (see solid line in Fig. 1) is
linear throughout the monitoring period and falls from 91.0% on
day 1 to 85.8% on day 134, the last monitoring day. This trend
would appear to indicate a steady decline in the condition of
the patient. The short-term trend oscillates about the long-term
trend with a period of approximately 47 days. On day 54, the
nurses made a clinical note that the SpO2 remained low, and
this condition is clearly indicated in the short-term trend. The

Fig. 3. SpO2 time-series data for patient 2; 15-point MA filter (dashed-line)
and estimate of long-term trend with LOWESS (using 90 nearest neighbors).

Fig. 4. Residuals (top) and estimates of standard deviation of residuals (bot-
tom) for patient 2.

short-term trend includes a succession of periods of increased
and decreased level SpO2 , and this trend may be indicative of a
change in the underlying physiological condition.

If a simple fixed threshold of 90% were to be applied to the
raw data (a typical value for this type of work), then this would
result in 70 separate alarms during the monitoring period. How-
ever, there is no specific mention in the clinical record of an
exacerbation and these would all be deemed to be false alarms.
However, the long-term trend clearly indicates a continued de-
terioration throughout the monitoring period, and the short-term
trend indicates distinct periods of improvement and deteriora-
tion. The sudden increase in the value of the standard deviation
of the residual around day 100 may also indicate an underlying
deterioration in condition, where there is loss of physiological
control of the condition, resulting in rapid fluctuations in the
observations on a daily basis. Furthermore, although the patient
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Fig. 5. Distribution of SpO2 readings during periods of exacerbation and
intervention.

commenced oxygen therapy on day 34 and reported that it was
helping, there is no associated change in the SpO2 data.

2) Patient 2: Patient 2 had three major recorded clinical in-
terventions; hospital admission on day 120 for 3 days, chest
infection on day 204, and an exacerbation on day 381 (heavy
vertical dashed lines in Figs. 3 and 4). Patient 2 also had notes
on clinical concerns around day 22, 30, and 88 (light vertical
dashed lines in Figs. 3 and 4), which were investigated but no
intervention made.

The occurrence of the first two major clinical events is clearly
evident in the long-term trend, short-term trend, and the resid-
uals. During periods of good health, the long-term trend and
short-term trend of the SpO2 remain between 96–98% and the
standard deviation of the residuals is about 1%. However, dur-
ing the first two major clinical events the long-term trend and
the short-term trend fall to a level below 90% and the standard
deviation of the residuals rises above 6%. In contrast, there are
no significant changes in any of the long-term trend, short-term
trend, or residuals accompanying the major third clinical event
on day 381 to indicate an exacerbation.

In contrast to patient 1, patient 2 did not exhibit a progressive
and steady decline throughout the monitoring period, instead
there were a series of episodes, with the SpO2 returning to a
usual value following intervention. Neither was there any repet-
itive or cyclic behavior. Instead, the SpO2 appears to follow the
condition of the patient closely; with the onset of exacerbation
and response to treatment clearly seen (e.g., intervention on days
120 and 204).

There was concern among the clinical team over the low
readings around day 14, 22, and 88 (shown light vertical dashed
lines). However, the patient did not report any change in con-
dition on day 14 or 22; indeed the patient believed that their
breathing had improved around day 14, and the long-term and
short trend would support that although there was a change
in underlying condition, it was not severe. On day 88, the pa-
tient was diagnosed with a cold, and the condition continued to

Fig. 6. SpO2 time-series data for patient 3; 15-point MA filter (dashed-line);
estimates of long-term trends with LOWESS (90).

Fig. 7. Residuals (top) and estimates of standard deviation of residuals (bot-
tom) for patient 3.

deteriorate until the patient was admitted to hospital on day 120
for 3 days. This is supported by the long trend, short-term trend,
and residuals. The patient is further diagnosed with productive
cough and chest infection on day 204, again supported by the
long trend, short-term trend, and residuals.

We examined the distribution of the SpO2 readings for periods
in which there was an exacerbation and intervention and com-
pared with other periods during the monitoring. Fig. 5 shows
the distribution as a histogram for the periods: day 91 to 155
(exacerbation and intervention); day 1 to 65 (no treatment); day
211 to 275 (after treatment); and day 341 to 405 (just before
the end of monitoring). It is clear that during the period of ex-
acerbation, we observe a significant number of readings that
are below a nominal threshold, e.g., 93%. However, although
the condition of the patient during first 85 days of monitoring
is considered stable and without exacerbation, there are also a
significant number of readings that fall below that threshold and
these would trigger false alarms. In contrast, using the long- and
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Fig. 8. SpO2 time-series data for patient 4; 15-point MA filter (dashed-line);
estimates of long-term trend with LOWESS (90).

short-term trends prevents such false alarms. It is evident that
the distributions are not normal and in several instances have a
long tail on the lower side.

3) Patient 3: Patient 3 was reported to have shortage of breath
on day 230 (light dotted vertical line), an exacerbation on day
333 (heavy dashed vertical line), feeling better on day 354 (light
dotted vertical line), and assessed by respiratory team to deter-
mine if oxygen therapy was required on day 417 (light dotted
vertical line).

Visual inspection of the SpO2 data (see Fig. 6) would suggest
that up to reporting of shortage of breath on day 230, the long-
term trend had been relatively constant at about 92%, there were
a few relatively minor short-term trend fluctuations (excepting
the short-term trend at day 200) and the standard deviation of
the residuals was low at 1% (see Fig. 7). Whereas after day 230,
there is a steady decline in the long-term trend, falling to 90%
by day 460, there are greater excursions in the short-term trend,
and the standard deviation of the residuals rises to at least 2%,
and over 3% for significant periods of time. Moreover, there
is a clear excursion in the short-term trend, falling to 90% on
day 205, shortly before the reported shortness of breath, and the
standard deviation of the residuals increases from 1% on day
200 to 4% by day 230.

There are corresponding falls in the short-term trend and
rises in the standard deviation of the residuals accompanying
the exacerbation on day 333 and the introduction of oxygen on
day 417 (see Fig. 7).

We further note that the long-term trend for patient 3 after day
330 begins to follow that of patient 1, with a continual linear
fall and there is a sustained increase in the standard deviation of
the residuals. We do not have the data to follow the trend to its
conclusion.

4) Patient 4: Patient 4 had no interventions during the mon-
itoring period. The patient was seen after a particularly low
reading on day 225 (89%), but it was decided that the patient
was in good condition. In contrast, the long-term trend (see
Fig. 8) would indicate a steady decline from 93.5% on day 1

Fig. 9. Residuals (top) and estimates of standard deviation of residuals (bot-
tom) for patient 4.

to 92% on day 275, and the standard deviation of the residuals
(see Fig. 9) increases steadily from 1% to 2%. Thereafter, the
long-term trend reverses and increases to nearly 93% and the
standard deviation of the residuals falls to 1% by the end of
monitoring.

B. Standard Deviation of Residuals

1) Results: We have proposed a new measure; the standard
deviation of the residuals. The residual is derived by removing
the short-term trend from the SpO2 data, and the standard devi-
ation of this signal is then found. As the signal is not stationary,
we determine a moving windowed value.

When the patient is in a stable condition, the residuals are
small and have a low standard deviation; whereas during ex-
acerbation and decline in the condition, the standard deviation
of the residuals rises significantly. From the patients presented
in this paper, we have observed the standard deviation to be
between 1% and 2% when the patient is in a stable condition,
and during exacerbation or decline in the condition, the stan-
dard deviation of the residuals rises above 2%, with an increase
above 5% in some cases. For example, patient 2 has a standard
deviation of residuals of 2% during periods of stable condition
and rises as high as 8% during exacerbation. In patients where
there is a steady decline in condition, such as patient 1, the
standard deviation of the residuals remains high throughout the
monitoring period (4%), and increases from 4% to 5% as the
condition deteriorates (see Fig. 2).

2) Comparison With Long-/Short-Term Trends: From our
small set of patient data, we have observed that the standard
deviation of residuals appears to accompany the onset of ex-
acerbation in each instance for each patient. Moreover, in the
case of patient 3, the standard deviation of residuals indicates
episodes of exacerbation (see Fig. 7) that are not indicated in
the long-term or short-term trends (see Fig. 6). We observe that
when patients are in a stable condition, the value of standard
deviation of residuals is about 2% or less and the long-term
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Fig. 10. Comparison of estimate of standard deviation of residuals against
corresponding long-term trend value.

trend of SpO2 is generally above 91%. During exacerbation
the value of the standard deviation of residuals is above 3.5%,
however, there is no unique threshold value for the long-term
trend.

In Fig. 10, we compare the value of the estimate of standard
deviation of residuals against the value for the long-term trend
at the corresponding time for a number of representative points
during monitoring for each of the patients to include good health
and exacerbation. Data points that correspond to times when
there was an exacerbation are encircled.

Note that in some cases, although there was concern regard-
ing the health of the patient, there were no specific instances
of exacerbation recorded. This includes patient 1 who had con-
sistently low SpO2 , with 70 readings below 90% (O2 therapy
started on day 34) and patient 3 (∗ symbols in Fig. 10) with
long-term trend consistently around 91–92. The values for the
standard deviation of residuals for patient 1 and patient 3 were
�4% and �3.5%, respectively.

From Fig. 10, we do not see any correlation between the stan-
dard deviation of residuals and long-term trend and conclude
that the long-term trend is not a reliable predictor of exacerba-
tion. However, we note the continual fall in the long-term trend
in some patients from which they do not recover and that suggest
that the long-term trend could be an indicator of the underlying
condition and eventual outcome.

3) Approaches to Generating Alerts Using SpO2: Our aim
is to develop accurate algorithms to determine exacerbations,
deterioration, or other events of clinical significance. Inspection
of the long-term trend of the SpO2 in patients such as patient
1 and the later stages for patient 3 indicates that use of a fixed
threshold is inappropriate, and any such use (e.g., 90%) will
result in an unacceptable number of false positive detections.
Instead, we must identify phenomena that exhibit a change that
occurs when there is an event.

We considered the use of the short-term trend of the SpO2 ,
but this did not provide an indication in all events. Therefore, we

TABLE II
NUMBER OF ALARMS WITH RESIDUAL METHOD AND SIMPLE

THRESHOLD METHOD

Number of Alarms

Patient
number

Day of
Intervention

Residuals
Method

Simple
Threshold

Alarm Days With
Residual Method

Residual < −6% SpO2 < 90%

1 34 10 (0) 70 (0) See 1
2 120;204;381 19 (17) 28 (24) See 2
3 333 7 (2) 37 (7) See 3
4 0 0(0) 4 (0)

1: P-1 residual method: [2;8;31;34;42;90;98;99;101;125].
2: P-2 residual method: [88;96;97;102;107;114;115;118;123;128;134;142;151;162].
3: P-3 residual method: [228;315;332;412;413;430;452].

have investigated the use of the standard deviation of the resid-
uals as a method to determine exacerbation. We have observed
that standard deviation of the residuals remains below 2% when
the patient has a stable condition and rises to above 3.5% when
there is an exacerbation.

We have investigated how we can use the instantaneous value
of the residuals as the criterion for detecting an exacerbation.
Normally a value twice the standard deviation is used for de-
tecting outliers in signals with normal distribution. However, we
observe a long tail on the lower side and so we use a value three
times the standard deviation as threshold. In this case, we set
the residual threshold to determine an exacerbation to –6%. We
call this the residuals method. For this study, we have chosen an
empirical value for the threshold of three times the value of the
standard deviation during the periods when the patients are in
a stable condition. An optimum threshold value for the residu-
als can be determined from the distributions of the estimate of
standard deviation of residuals for periods of stable condition
and exacerbation.

Table II presents the number of alarms for each patient using
the residual method compared with the simple method of a fixed
threshold applied to the SpO2 time-series data (SpO2 < 90%).
For each method, we present the total number of points that were
detected together with the number of those points (in brackets)
that occurred immediately preceding, or within an exacerbation
or treatment period. For example, for patient 2, 28 alarms were
detected in total for the simple threshold method, but only 24
of those alarms occur between days 88 and 155 (as considered
from the long-term trend), and thus, considered relevant.

For patients that have distinct episodes of exacerbation (pa-
tient 2 and 3), we observe that the residual method detects the
episode several days in advance of the recording of the clinical
event. There are also fewer false alarms.

Patient 1 did not have any clinically recorded events or dis-
tinct exacerbations, as in the case of patient 2 and 3, rather
the patient had a condition in which there is expected to be
continual deterioration. We observed that the long-term trend
had a continual decline and also that the value of the standard
deviation of the residual is consistently high in value throughout
the monitoring period, with an increase in value at day 100 that
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is maintained almost until the end. The clinical significance of
this change is uncertain.

V. DISCUSSION

We have investigated the decomposition of daily SpO2 time-
series data into three components; long-term trend, short-term
trend, and the residual signal. We have then considered the phys-
iological interpretation of each of the components and evaluated
their use in understanding the underlying condition and detect-
ing an exacerbation. The long-term trend has been found to
provide information on the evolution of the patient condition.
This is evident in the continual downward trend in patient 1, the
downward trend in the latter stages of monitoring in patient 3
and the recovery from exacerbations in patient 2 and patient 3.
The presence of these long-term trends highlighted that simple
thresholds would not be an effective method for detecting exac-
erbation and would generate many false alarms if compensation
for long-term trend were not applied. The short-term trend is
designed to smooth the day-to-day variations and is considered
to identify the rapid changes in the SpO2 data that would ac-
company exacerbation, but there were not clear changes for all
events and so there would be a number of false negatives and
false positives depending on threshold. The estimate of the stan-
dard deviation of residuals was found to be the most accurate
method to detect exacerbations and was also found to indicate
deterioration in condition of the patient.

We have observed two types of behavior in the long-term
trend. In some patients (e.g., patient 2), there is a rapid drop in
the long-term trend that is accompanied by an increase in the
estimate of standard deviation of the residuals and accompanies
an exacerbation. There is usually a return to normal value. In
the second behavior, (e.g., patients 1 and 3), there is a continual
slow declining trend. This might be indicative of the underlying
condition and could be used to determine long-term approach
to management of the condition. This trend, when accompa-
nied with high value for the estimate of standard deviation of
the residuals, could have predictive value for increased risk of
mortality (e.g., patient 1).

The standard deviation of residuals can indicate the status of
the patient: low values (∼2% or less) are seen to be associated
with stable condition, whereas high values (∼4% or greater) are
seen to be associated with exacerbation or steady irreversible
declining state. There are parallels with the findings of the study
of [28] in which continuously measured SpO2 signals from in-
tensive therapy unit were analyzed. The signal was split into
a series of time intervals during each of which the signal was
approximated by a step-wise linear model (rising, falling, or
steady) and the difference between the linear approximation
and the signal gave the residuals. For best detection of exac-
erbation using standard deviation of residuals, we would need
to determine optimum threshold values for onset and ending of
the exacerbation. The threshold values should be chosen so that
they are best able to distinguish exacerbations and deterioration
from the stable condition. For this purpose, the distribution of
the standard deviation of residuals of the two conditions can

be used. However, we had insufficient patients and examples to
permit this analysis.

To be useful for timely detection of exacerbation, then the
algorithm must be based on instantaneous residual values rather
than their standard deviation. We have observed that the standard
deviation remains below 2% when the condition of the patient
is stable. The usual approach is to apply a threshold that is
twice the standard deviation; however, during deterioration, the
residuals are not normally distributed and have a long tail on
the lower side. We therefore chose to use a threshold for the
residuals that is three times the standard deviation (−6%).

Currently, we believe that the standard deviation of residuals
provides insight to the status of the underlying regulatory mech-
anism, which is affected by the health of the patient. When in
homeostasis, the feedback control mechanism will maintain the
control variable within a well-defined range; in the normal case,
breathing is regulated by the levels of oxygen and carbon dioxide
in the blood to maintain well oxygenated levels close to 100%;
and in the COPD patient, although lowered, the level of oxygen
is maintained within well-controlled limits. However, when the
feedback control is impaired, such as during an exacerbation,
there is a loss of regulation and the controlled variable can vary
wildly, giving rise to a signal with noise like properties. We de-
tect this signal as the rise in standard deviation of the residual.
In this case, when the patient has an exacerbation, blood oxygen
levels fluctuate over a wide range in an uncontrolled fashion.

We investigated the impact of the choice of the window length
for the MA filter that was used to determine the short-term trend
(to remove the rapid day-to-day variations in the data). We
determined that 15-point gave good results, being a compromise
between reducing the day-to-day fluctuations and reacting to
rapid changes in the underlying data.

We also investigated the type of filter to use for the long-term
trend and found the LOWESS technique gave best results. How-
ever, we also determined that the results from an MA filter were
acceptable. We investigate the window length (60–120 points).
Again there is a compromise between short windows that will
track rapid changes (such as patient 2) and determining under-
lying trend. When applied to real time data, MA filters have the
advantage over LS regression: 1) they are simpler to implement,
2) they are a local smoothing technique and can, therefore, adapt
to the changes in trend, and 3) they do not require data segmen-
tation into time intervals over which regression is applied as
in [29].

A significant limitation of this study is the small number of
patients and the small number of clinically recorded events.
This precludes statistical analysis of sensitivity and specificity.
Although we cannot generalize the results or comment on sta-
tistical significance, we believe our approach is promising. We
need to apply our approach to a larger dataset to determine the
accuracy and predictive capability of the indicators that we have
proposed. Future studies might consider other aspects including:
are there combinations of indicators that can better predict exac-
erbation and underlying condition of the patient [30]; are there
factors that affect day-to-day SpO2 variability (e.g., O2 ther-
apy, changes in activity level, skin pigmentation, presence of
co-morbidities such as tachycardia or other heart condition); the
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role of self-measured SpO2 in patient management (is it com-
plementary or is it a better way of managing COPD patients?);
how do missing data affect the accuracy of the suggested
approaches?

VI. CONCLUSION

Providing accurate notification of exacerbation, deterioration,
and other clinical events in patients in remote patient monitoring
is essential. Too often alerts are disabled because of an unac-
ceptable level of false alarms, and daily screening of all patient
data is too high a burden when going to scale. Improved al-
gorithms that are accurate and can adjust automatically to the
individual are required. We have presented approaches that are
not only promising as a technique to determine exacerbation but
also may provide information on the underlying condition and
that may be useful in determining management of the patient.

We have undertaken retrospective analysis of SpO2 data mea-
sured in patients with COPD as part of a long-term project
to monitor frail elderly. Although we are unable to generalize
our results or draw statistically significant conclusions, this ex-
ploratory work has identified several important parameters that
can indicate exacerbation, deterioration, and provide informa-
tion on the long-term management. These include the standard
deviation of residuals (day-to-day SpO2 variability) and the time
evolution of the long-term trend. Using the standard deviation
of residuals was found to be highly accurate in detecting ex-
acerbation, and reduced the number of false alerts significantly
compared to a simple threshold applied to the SpO2 data. More-
over, we also observed that it could detect changes in patients
where there was long-term deterioration.
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