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Abstract  

The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics 

is usually reduced to the evaluation of stress intensity factors (SIFs). The SIF calculation can be 

carried out experimentally, theoretically or numerically. Each methodology has its own advantages 

but the use of numerical methods has become very popular. Several schemes for numerical SIF 

calculations have been developed, the J-integral method being one of the most widely used because 

of its energy-like formulation. Additionally, some variations of the J-integral method, such as the 

M-integral method and displacement-based methods, are also becoming popular due to their 

simplicity.  In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its 

performance is compared with contour integrals and other displacement-based formulations such as 

the generalized displacement correlation method. These schemes are all implemented with the 

Boundary Element Method (BEM) in order to exploit its advantages in crack growth modelling. 

Some simple examples are solved with the BEM and the calculated SIF values are compared 

against available solutions, showing good agreement between the different schemes.  

1. INTRODUCTION 

Numerical methods are necessary to solve many fracture mechanics problems. The Finite Element 

Method (FEM) and the Boundary Element Method (BEM) have become very popular for the 

analysis of fracture mechanics in solids. The BEM has been widely used in recent years because it 

allows a very accurate stress analysis along crack faces and modelling of crack propagation without 

re-meshing (Aliabadi, 2002). Under a linear elastic approach, fracture mechanics allows the 

determination of the stress field at the crack tip using stress intensity factors (SIFs) as a function of 

the crack geometry and loading. 

The application of the BEM to fracture mechanics problems was initiated by Cruse through two 

works presented in 1970 and 1971 (Cruse, 1996). These early works reported inaccurate SIF results 

(Aliabadi, 2002). Later, Cruse and Wilson (1977) implemented quarter-point elements to improve 



the accuracy of the BEM calculations, but the method had other difficulties for its application to 

crack problems. In general, these initial applications of the BEM to crack problems were limited by 

the fact that the two surfaces that form the crack were coplanar, generating a mathematical 

degeneration (Cruse, 1996). 

In the early nineties, Portela et al. (1992) for two dimensions, and Mi and Aliabadi (1992) for 3D 

solids, proposed the Dual Boundary Element Method (DBEM) in which a displacement boundary 

integral equation (BIE) is applied on a surface of the crack and a traction BIE is applied on the other 

crack surface, thus avoiding the degeneracy in the Kelvin formulation found by Cruse (1996). 

From there, many works have been developed in the area, such as dell'Erba and Aliabadi (2001) 

who developed a DBEM methodology to solve 3D thermo-elasticity problems using the J-integral 

for evaluating the SIF.  Dirgantara and Aliabadi (2002) used the DBEM to obtain mixed mode SIF 

values for cracked thin plates using crack surface displacement extrapolation and the J-integral 

technique. Purbolaksono et al. (2012) calculated the SIF in deformable plates using the DBEM and 

displacement extrapolation techniques. Wen and Aliabadi (2012) developed an algorithm to model 

smooth curve cracks using the DBEM. 

Several alternative methods have been proposed for calculating SIF values at the crack tip using the 

FEM or the BEM as primary methods to solve the linear elasticity problem, such as: 

• Displacement Extrapolation (DE), which consists in extrapolating the numerical displacement 

field with the analytical solution to obtain the SIF. Cruse and Wilson (1978) used the DE with 

quarter-point elements, obtaining reasonable results.  

• Strain Energy Release, which calculates the strain energy of the deformed body or the external 

work done by loads for small crack advances in order to differentiate it and extract the SIF. This 

method was used by Cruse (1988) but was computationally expensive due to the small crack 

advance needed to achieve a reasonable accuracy.  

• J-integral, a path-independent integral proposed by Rice (1968), which is a contour integral that 

measures the strain energy flux across its boundary. This technique has been used to compute 

the SIF in many FEM and BEM works, including Rigby and Aliabadi (1998) who proposed a 

decomposition technique to extract the mixed mode SIF, Bezerra and Medeiros (2002) who 

proposed an alternative numerical scheme to implement the J-integral calculation, Ortiz and 

Cisilino (2006) who developed a J-integral based methodology for 3D cracks. 

• M-integral, also called interaction integral, a variant of the J-integral used by Walters et al. 

(2005) with the Galerkin BEM to obtain the SIF for 3D curved loaded cracks. 



•  Energy Domain Integral, an approach used by Balderrama et al. (2006) that measures the total 

change of potential energy (including thermal strains) when the crack advances.   

• Crack Closure Integral, originally developed for the FEM, which is a stress-based approach to 

extract the SIF by measuring the force needed to close the crack. Singh et al. (1998) developed a 

formulation to be applied with the BEM, obtaining good results.  

• The Least Squares method was used by Ju (1998) to extract the KIII SIF through a least square 

fit of the stress solution obtained from the FEM.  

• The Generalized Displacement Correlation method, recently developed by Fu et al. (2012) for 

the FEM, uses the displacement solution at crack surfaces for an explicit calculation of the 

mixed mode SIF. 

In this work, a new displacement-based technique is proposed to calculate SIFs for different 

geometric configurations using the DBEM. Different schemes are proposed to be used with this 

new technique, and numerical results are compared with those obtained using the J-integral 

technique in order to compare their accuracy and computing performance. 

2. THE BOUNDARY ELEMENT METHOD 

The formulation of the BEM is based on Betti’s reciprocal theorem where the following integral 

equation relating displacements 𝑢𝑢 with tractions 𝑡𝑡 for the boundary 𝑆𝑆 is used (Becker, 1992),  
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where 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖 2⁄  for smooth surfaces, with  𝛿𝛿𝑖𝑖𝑖𝑖 the Kronecker delta, 𝑇𝑇𝑖𝑖𝑖𝑖 and 𝑈𝑈𝑖𝑖𝑖𝑖 are traction and 

displacement kernels for the displacement integral equation,  p is the collocation point and Q is a 

generic boundary point.  

The boundary geometry is discretized using quadratic elements (adopted in this work) and then Eq. 

(1) is written for each node, generating a square system of equations after known boundary 

conditions are applied. 

However, for a cracked body, the crack geometry schematized in figure 1, defined by SC+ and SC−, 

has the same nodal coordinates if the crack faces are coplanar. This generates an ill-posed problem 

since Eq. (1) written for the SC+ nodes is linearly dependent on the SC− equations. To overcome this 

issue, Portela et al. (1992) developed the DBEM for two-dimensional problems.  



 

Figure 1. Cracked body geometry 

The DBEM consists on applying Eq. (1) to the non-crack boundary S and one crack face 𝑆𝑆𝐶𝐶−, while 

the traction integral equation below is applied on the other crack face 𝑆𝑆𝐶𝐶+, 
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This will result in a well-posed system of equations that can be solved to obtain displacement and 

tractions fields over the boundary. In Eq. (2),  𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘 and 𝐷𝐷𝑘𝑘𝑘𝑘𝑘𝑘 are traction and displacement kernels 

for the traction integral equation. 

The kernels for Eq. (1) and Eq. (2) are shown below (Aliabadi, 2002). The different singular 

behaviors of the integrands require special treatment to obtain meaningful and accurate results. 
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In this work, the DBEM implementation is done using isoparametric quadratic elements; regular 

integration is performed using Gauss quadrature, and the Cauchy principal value and the Hadamard  

finite-part regularization are used to evaluate the kernels with singular integrals. 
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3. STRESS INTENSITY FACTORS 

The validity of the linear elastic fracture mechanics (LEFM) assumption resides in the small scale 

yielding hypothesis, meaning that plastic strains are only developed, at the crack tip, in a small 

region compared to the whole geometry, thus they can be neglected since their contribution to the 

global response is negligible. The stress and displacement fields are given by,  
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where 𝐺𝐺 is the shear modulus, 𝑘𝑘 = 3 − 4𝜈𝜈 for plane strain and 𝑘𝑘 = (3 − 𝜈𝜈) (1 + 𝜈𝜈)⁄  for plane 

stress, in accordance with the crack geometry coordinate system shown in figure 2 (Gross and 

Seelig, 2011). 

             

Figure 2. Crack tip coordinate system 

Now, the fracture mechanics problem with the LEFM approach is reduced to the determination of 

stress intensity factors. The easiest way to calculate the SIF is by obtaining stress values directly at 

the crack tip, but this task is unsuitable since numerical results near the crack tip are generally 

imprecise. 

4. COMPUTATION TECHNIQUES FOR SIFS 

In order to obtain stress intensity factors for cracked bodies, the classic approach begins by 

calculating the stress field near the crack tip and extrapolating the results to the crack tip with Eq. 

(7). This approach leads to numerical inaccuracies due to the singular behavior of the stress field 

near the crack tip, which is usually underestimated in the elastic solution of the problem by 

numerical methods including the BEM (Cruse, 1996). 
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4.1 The J-Integral 

The J-integral is a contour integral that measures the strain energy flux across its boundary. Setting 

the integration contour far from the crack tip, the strain and stress fields can be accurately computed 

to evaluate the contour integral and obtain the SIF values. The J-Integral for plane problems is 

calculated as follows: 
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The relationship between J and the SIF for the LEFM approach is given by  
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A circumferential integration contour centered at the crack tip is defined to implement the J- 

integral technique, as shown in figure 3. The contour is discretized into quadratic elements (Bezerra 

and Medeiros, 2002) parameterized with an intrinsic variable (z). After some manipulations of Eq. 

(9), the integrand is rewritten in quadratic form as a function of the displacement gradient as,  
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The first array in Eq. (11) corresponds to the constitutive matrix that relates stresses to 

deformations, where 𝜆𝜆 and 𝜇𝜇 are Lame´s parameters, while the second array contains the 

arrangement for the contour outward normal. The contour integration is parameterized by means of 

the Jacobian 𝐽𝐽𝐽𝐽 and the J-integral can be evaluated by the summation of the values at the Gauss 

points (𝑛𝑛𝑛𝑛) times their weights 𝑤𝑤𝑖𝑖 for each element of the contour  𝑛𝑛𝑛𝑛. 

 

Figure 3. Contour integral discretization  
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The gradient of the displacement field 𝑢𝑢 (∇𝑢𝑢), defined below, is written in vector form and can be 

decomposed into its symmetric and anti-symmetric parts using the method proposed by Rigby and 

Aliabadi (1998) to obtain 𝐾𝐾𝐼𝐼, 
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4.2 Displacement-based methods 

4.2.1 Displacement extrapolation 

From the displacement field solution, the easiest way to obtain the SIF is by using the displacement 

extrapolation method (DE). This could be accomplished by taking the nearest crack tip opening 

displacement value obtained immediately after solving the problem and using Eq. (13) to retrieve 

the SIF directly (Aliabadi, 2002), 
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This technique is very efficient because the numerical solution at crack nodes is immediately 

available from the BEM and no internal nodes need to be evaluated. 

The displacement field near the crack tip is well behaved and can be retrieved with good accuracy 

using the BEM even at the crack tip, but the DE results are very sensitive to displacement numerical 

errors.   

4.2.2 Displacement fitting 

The displacement field given in Eq. (8) is valid at any point near the crack tip because it only 

includes the leading term √𝑟𝑟 of the power series. However, from the complete crack tip solution, it 

is known that the next term in the power series is 𝑟𝑟, which must be included in the approximation in 

order to consider its contribution to the displacement field accompanied with a 𝜑𝜑 function, as 

shown in Eq. (14) below 
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An internal or surface mesh with an arbitrary set of nodes, as shown in figure 4, can be used to 

apply this methodology; the displacement field can be retrieved using Eq. (1) at each of the nodes 

from the BEM solution. 



The displacement field can be decomposed to decouple the SIF in Eq. (14), in order to take 

advantage of its symmetry properties (Aliabadi, 2002). The decomposition can be carried out using 

Eq. (15). For the given set of twelve internal nodes in figure 4, the displacement field (modes I and 

II) is known from the BEM numerical solution. The position of these nodes in the crack tip 

coordinate system is also known. 
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Figure 4. Nodes for displacement fit 

Writing Eq. (14) in matrix form, separating unknowns from geometric parameters, the following 

equation is obtained  
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The 𝑟𝑟 coefficients in Eq. (14) are considered as unknown. The numerical displacement field for 

each node is equaled to Eq. (14) considering the idea of the DE method. This leads to a system of 

equations with four unknowns (𝐾𝐾𝐼𝐼 ,𝐾𝐾𝐼𝐼𝐼𝐼 , 𝑐𝑐1, 𝑐𝑐2), 
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The system of equations (17) is solved through the least square method. Renaming the terms in Eq. 

(17) gives, 
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The fitting solution is retrieved using the pseudo-inverse approach as the equation system is linear, 

as follows,  
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Thus, 𝐾𝐾𝐼𝐼 and 𝐾𝐾𝐼𝐼𝐼𝐼 can be retrieved from a completely arbitrary node distribution, by fitting the 

numerical solution to the analytic field. This procedure is suitable to the BEM where the internal 

solution for the displacement field is easily calculated in a post-processing routine using Eq. (1), 

which is more efficient than evaluating the stress integral equation needed in the J-integral 

calculations. 

5. METHODOLOGY 

5.1. General 

In order to compare the performance and accuracy of the different schemes for calculating the SIF, 

six examples are solved and compared with their respective reference solutions, which can be found 

in Tada et al. (1985) for specimen cases, Shahani and Tabatabaei (2008) for the FPB specimen and 

in API 579-1/ASME FFS-1 (2007) for cylinder cases. The material properties are set to 𝐸𝐸 =

200𝐺𝐺𝐺𝐺𝐺𝐺 and 𝜈𝜈 = 0.3 to solve the linear elasticity problem. 

The geometries are generated and meshed using an automatic crack growth algorithm developed in 

MatLab. All geometries were modelled from a relation varying from a/t=0.1 until a/t=0.6. 𝐾𝐾𝐼𝐼 

values are calculated at each crack growth step using the following schemes:  

• J-integral: Evaluated using four symmetric elements and a contour radius of one element 

length to guarantee a straight crack inside the integrating contour. 

• Displacement Fitting Technique (DFT). The following schemes were used to fit the solution 

considering that this technique could be applied to any arbitrary set of nodes: 

o Surface nodes (S nodes): In the crack tip element, there are three boundary nodes because 

the element is quadratic as shown in figure 5. Displacements are directly available from the 

BEM solution and the DFT can be used to calculate the SIF. 

o Contour nodes (J nodes): The nodes resulting from the discretization of the circular 

contour to evaluate the J-integral are taken as follows: a node belongs to the surface of the 



crevice and the remaining nodes are internal (see figure 6). These nodes are evaluated using 

Eq. (1), obtaining another particular approach to apply the DFT. 

o Internal nodes (M nodes): A symmetric mesh with twelve internal nodes is used for 

calculating the SIF (figure 7). Several internal nodes at different angles and radius are used. 

 

Figure 5. Surface nodes for displacement fit 

 

Figure 6. Contour nodes for displacement fit 

 

Figure 7. Internal nodes for displacement fit 
 

Five different geometries are evaluated to determine the performance of the numerical schemes 

used in this work. The values obtained are compared to the corresponding reference solutions. The 

comparison is carried out using the following expression 
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5.2. Single Edge Notched Tension (SENT) 

A SENT geometry is solved with dimensions 𝑡𝑡 = 1𝑚𝑚 and 𝐿𝐿 = 3𝑚𝑚 as shown in figure 8 with an 

initial crack length 𝑎𝑎0 = 0.1𝑚𝑚 and a crack growth advance of ∆𝑎𝑎 𝑡𝑡⁄ = 0.05. The boundary 

conditions and loads are also schematized with the BEM contour mesh.  

5.3. Three and Four Point Bend (TPB and FPB) 

As a second case, a TPB specimen is modelled using the dimensions 𝑡𝑡 = 1𝑚𝑚 and 𝐿𝐿 = 4𝑚𝑚 (keeping 

the relation 𝐿𝐿 𝑡𝑡⁄ = 4) as shown in figure 9. On the other hand, the FPB specimen is solved using the 

dimensions 𝑡𝑡 = 1𝑚𝑚, 𝐿𝐿 = 6𝑚𝑚 and 𝑑𝑑 = 1.5𝑚𝑚. An initial crack length 𝑎𝑎0 = 0.1𝑚𝑚 is also used and a 

crack growth advance ∆𝑎𝑎 𝑡𝑡⁄ = 0.05 is established. The boundary conditions and loading are also 

schematized in the BEM contour mesh. 

 

Figure 8. SENT schematic 
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Figure 9. TPB and FPB schematic 

5.4.  Compact Specimen (CS) 

The CS geometry is modelled with the required dimensions for the experimental testing given by 

ASTM E647. However, some simplifications are carried out to model the CS, e.g. the loading pin 

holes are neglected and the tensile load is directly applied as shown in figure 10. The geometry 

thickness is set to 𝑡𝑡 = 1𝑚𝑚, 𝑎𝑎𝑛𝑛 = 0.2𝑡𝑡, 𝐿𝐿 = 1.2𝑡𝑡, and the initial crack length 𝑎𝑎0 = 0.2𝑡𝑡.  

5.5   Thick and Thin Walled Cylinders (CYL1 and CYL50)  

Finally, a thick walled cylinder (𝑅𝑅𝑖𝑖 𝑡𝑡⁄ = 1) and a thin walled cylinder (𝑅𝑅𝑖𝑖 𝑡𝑡⁄ = 50) are modelled, 

both with an infinite long radial crack subjected to internal pressure (figure 11). The boundary 

conditions are defined at symmetry planes and a pressure loaded crack is located located at an angle 

of 45º measured from the ends. The thickness is set to 𝑡𝑡 = 1𝑚𝑚 and the initial crack length is 

𝑃𝑃 = 1𝑁𝑁 
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Figure 10. CS schematic 
 

 

Figure 11. CYL schematic 

6. RESULTS 

6.1 Single Edge Notched Tension (SENT) 

Results obtained for the SENT geometry are shown in figure 12. The  𝐾𝐾𝐼𝐼 values calculated with the 

J-integral method and the DFT applied with the different schemes used (S-nodes, J-nodes and M-

nodes) are compared with the respective reference solution. First, the general response of the  𝐾𝐾𝐼𝐼 

behavior is well retrieved by both approaches (the J-integral and DFT). On the other hand, 
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comparing the numerical results versus the reference solution by means of Eq. (20), a numerical 

error lesser than 2% is obtained for all the proposed schemes except for the S-nodes approach for 

small cracks. This difference could be attributed to numerical errors associated to the closeness of 

the crack tip. Nevertheless, the other DFT results are in very good agreement with the reference 

solution.  

Figure 13 shows the deformation pattern of the SENT geometry. 

 

Figure 12. SENT results. 

 

Figure 13. Deformed shape of SENT geometry for 𝒂𝒂 𝒕𝒕⁄ = 𝟎𝟎.𝟔𝟔 

 

6.2 Three Point Bend (TPB) 

Figure 14 shows the results for the TPB specimen. There,  𝐾𝐾𝐼𝐼 has a sharper behavior compared with 

the SENT results, but all the schemes successfully capture this response. In this case, the J-integral 

method gives more accurate results compared with displacement based ones, although a difference 

lesser than 4% is found. The S-nodes scheme again produced the highest differences for small crack 
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sizes (a/t≤0.4). These differences are attributed to the model and the boundary closeness, leading to 

the conclusion that the S-nodes scheme is very sensitive to this error. 

The geometry deformation pattern is shown in figure 15, where the symmetry of the solution and 

the crack opening mode could be appreciated. 

 

Figure 14. TPB results. 

 

Figure 15. Deformed shape of TPB geometry for 𝒂𝒂 𝒕𝒕⁄ = 𝟎𝟎.𝟔𝟔 

Figure 16 shows the results for the FPB specimen. In this example, the crack opening mode II is the 

most important, and 𝐾𝐾𝐼𝐼𝐼𝐼 values are also calculated and compared to the reference solution (Shahani 

and Tabatabaei, 2008). In this example, for small cracks, the J-integral method gives more accurate 

results compared with displacement based ones. For longer cracks, the displacement based methods 

show comparable precision to the J-Integral. 

In Figure 17, a non-symmetric displacement behavior leading to a crack opening mode II is 

observed. 

6.3 Compact Specimen (CS) 

Figure 18 shows the results obtained for the CS geometry. The J-integral method has a higher 

difference (almost 7%) to the reference solution; this difference is due to the effect of the initial 
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notch, which is not considered in the reference solution and is mitigated for longer cracks. In this 

example, the DFT results are more accurate than the J-integral results, with the exception of the S-

node scheme. These results justify the simplification made to the original CS geometry. 

 
 

 

Figure 16: FPB results. 

 

Figure 17: Deformed shape of FPB geometry for 𝒂𝒂 𝒕𝒕⁄ = 𝟎𝟎.𝟔𝟔. 
 

 

Figure 18. CS results 
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The compact specimen displacement solution is plotted in Figure 19. 

 

Figure 19. Deformed shape of CS geometry for 𝒂𝒂 𝒕𝒕⁄ = 𝟎𝟎.𝟔𝟔 

6.4 Thick Walled Cylinder (CYL1) 

The thick walled cylinder is a more complicated geometry because of its configuration and loading, 

and a finer mesh is needed to achieve convergence. Results for this geometry are shown in figure 

20, using the reference solution obtained from the API 579 standard for comparison. An important 

difference of almost 7% is present for the initial crack configuration, mainly attributed to the 

closeness of the crack tip to the geometry contour. J-node and M-node schemes show a slightly 

better performance than the S-node scheme. 

The pressure load acting at the inner cylinder face lead to a symmetric load with respect to the crack 

surface as can be seen in figure 21. The crack growth mode is 𝐾𝐾𝐼𝐼 since the crack grows straight for 

this load case. 

 

Figure 20. CYL1 results 
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Figure 21. Deformed shape of CYL1 geometry for 𝒂𝒂 𝒕𝒕⁄ = 𝟎𝟎.𝟔𝟔 

6.5 Thin Walled Cylinder (CYL50) 

Finally, a thin walled cylinder is solved. Higher values for 𝐾𝐾𝐼𝐼 are found in comparison with the 

previous geometries, and both the J-integral and displacement-based methods give good results with 

differences of around 1% for long cracks, as can be seen in figure 22. 

The deformation pattern of the thin walled cylinder is quite different from the thick one. Figure 23 

shows a deformed 𝑅𝑅/𝑡𝑡 = 50 cylinder, the symmetry is well retrieved and the displacement 

variation through the thickness is negligible.  

 

 

Figure 22. CYL50 results 
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Figure 23. Deformed shape of CYL50 geometry for 𝒂𝒂 𝒕𝒕⁄ = 𝟎𝟎.𝟔𝟔 

6.6 Computing time 

The performance of the different schemes in terms of computing time and accuracy is analyzed in 

the context of the BEM. After solving the elasticity problem, boundary displacements and tractions 

are known and the solution at any internal point can be retrieved in a post-process routine by means 

of Eq. (1). 

The specific SIF calculations for each scheme are small compared to the calculation time of the 

internal points, and proportional to the number of evaluating points. Figure 24 shows a comparison 

between the schemes where the number of required evaluating points and internal points for each 

method are plotted. 

The faster scheme corresponds to S nodes because this scheme only uses information from 

boundary nodes, which are directly available from the BEM solution, followed by J nodes and M 

nodes, which require less internal points than the J integral. The time spent in the evaluation of 

internal points depends of many factors, but is independent of the SIF calculation method. 

The accuracy of the schemes, however, is inversely proportional to the computation time. The most 

accurate scheme is the J-integral, closely followed by fitted M nodes and J nodes. S nodes are less 

accurate than the other schemes as can be seen in figure 25, where the mean relative error for the 

different test specimens is shown.  

 



 

Figure 24. Computing load for the different schemes 

 

Figure 25. Mean relative error for the different schemes 

It is noteworthy that the accuracy is proportional to the number of evaluating points. All schemes 

studied give good accuracy and can be used to estimate 𝐾𝐾𝐼𝐼. Each method has different advantages 

and is suitable for implementation in the BEM as has been demonstrated. The proposed 

methodology is also applicable to FEM models. 

7. CONCLUSIONS 

In this work, different techniques for evaluating stress intensity factors (SIF) in cracked bodies were 

compared by solving six different geometries using the BEM. The J-integral and three different new 

schemes based on the Displacement Fitting Technique (DFT) have been developed for the BEM: 

Surface nodes (S nodes), Contour nodes (J nodes) and Internal nodes (M nodes).  

The comparison carried out showed that the J-integral and the M-node method are the most accurate 

techniques. In terms of efficiency, the computing time of the J-integral method is the highest, due to 

the calculation of displacement gradients, compared with the displacement-based schemes whose 
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computing time in the BEM context is proportional to the number of internal points. The faster 

scheme corresponds to the DFT with surface nodes, but it is also the least accurate, concluding that 

a compromise between accuracy and speed need to be assessed to select the appropriate scheme. 

The BEM showed to be an efficient tool for solving fracture problems independently of the scheme 

used for the calculation of the SIF. 

8. REFERENCES 

Aliabadi, M.H. (2002) The Boundary Element Method. Vol. 2: Applications in Solids and 

Structures. John Wiley & Sons. 

Anderson, T.L. (2005) Fracture Mechanics. Fundamentals and Applications, 3rd Edition. CRC 

Press.  

API 579-1/ASME FFS-1 (2007) Fitness-For-Service. American Petroleum Institute and the 

American Society of Mechanical Engineers. 

Balderrama, R., Cisilino, A. P. and Martinez, M. (2006) Boundary element method analysis of three-

dimensional thermoelastic fracture problems using the energy domain integral. Transactions of the 

ASME, Journal of Applied Mechanics, Vol. 73: 959–969.  

Becker, A.A. (1992). The Boundary Element Method in Engineering . A Complete Course. 

McGraw-Hill Book Company. 

Bezerra, L.M. and Medeiros, J.M.S (2002) Using boundary elements and J-integral for the 

determination of KI in fracture mechanics. IABEM 2002. 

Cruse, T.A. and Wilson, R.B. (1977) Boundary integral equation method for elastic fracture 

mechanics. AFSOR-TR-78-0355:1-11. Air Force Office of Scientific Research, Arlington.  

Cruse, T. A. and Wilson, R. B. (1978). Advanced applications of the boundary-integral equation 

method. Nuclear Engineering and Design, Vol. 6: 223-234. 

Cruse, T. A. (1988) Boundary Element Analysis in Computational Fracture Mechanics. Springer. 

Cruse, T. A. (1996) BIE fracture mechanics analysis: 25 years of developments. Computational 

Mechanics, Vol. 18: 1-11. 

Dell´Erba, D.N. and Aliabadi, M.H. (2001) BEM analysis of fracture problems in three-dimensional 

thermoelasticity using J-integral. International Journal of Solids and Structures, Vol. 38: 4609–

4630. 



Dirgantara, T. and Aliabadi, M.H. (2002) Stress intensity factors for cracks in thin plates. 

Engineering Fracture Mechanics, Vol. 69: 1465–1486.  

Fu, P., Johnson, S.M., Settgast, R.R. and Carrigan, C.R. (2012) Generalized displacement 

correlation method for estimating stress intensity factors. Engineering Fracture Mechanics, Vol. 88: 

90–107.  

Gross, D. and Seelig, T.H. (2011) Fracture Mechanics: With an Introduction to Micromechanics, 

2nd edition. Springer. 

Ju, S. H. (1998) Simulating three-dimensional stress intensity factors by the least-squares method. 

International Journal for Numerical Methods in Engineering, Vol. 43: 1437-1451. 

Mi, Y. and Aliabadi, M.H. (1992). Dual boundary element method for three-dimensional fracture 

mechanics analysis. Engineering Analysis with Boundary Elements, Vol. 10: 161–171. 

Ortiz, J.E. and Cisilino, A.P. (2006) Boundary element method for J-integral and stress intensity 

factor computations in three-dimensional interface cracks. International Journal of Fracture, Vol. 

133: 197-222.  

Portela, A., Aliabadi M.H., y Rooke D.P. (1992) The dual boundary element method: effective 

implementation for crack problems. International Journal for Numerical Methods in Engineering, 

Vol. 33: 1269-1287. 

Purbolaksono J., Dirgantara, T. and Aliabadi, M.H. (2012). Fracture mechanics analysis of 

geometrically nonlinear shear deformable plates. Engineering Analysis with Boundary Elements, 

Vol. 36: 87–92.  

Rice, J. R., (1968) A path-independent integral and the approximate analysis of strain concentration 

by notches and cracks, Transactions ASME, Journal of Applied Mechanics, Vol. 35: 379–386.  

Rigby, R.H. and Aliabadi, M.H. (1998) Decomposition of the mixed-mode J-integral-revisited. 

International Journal of Solids and Structures, Vol. 35: 2073–2099. 

Shahani, A. R. and Tabatabaei, S. A. (2008) Computation of mixed mode stress intensity factors in a 

four-point bend specimen. Applied Mathematical Modelling, Vol 32: 1281-1288. 

Singh, R., Carter, B.J., Wawrzynek, P.A. and Ingraffea, A.R. (1998) Universal crack closure 

integral for SIF estimation. Engineering Fracture Mechanics, Vol. 60: 133-146. 

Tada, H., Paris, P.C. and Irwin, G.R. (1985) The Stress Analysis of Cracks Handbook, 2nd Edition. 

Paris Productions, St. Louis, MO. 



Walters, M.C., Paulino, G.H. and Dodds Jr, R.H. (2005) Interaction-integral procedures for 3-D 

curved cracks including surface tractions. Engineering Fracture Mechanics, Vol. 72: 1635–1663. 

Wen, P. H., Aliabadi, M. H. (2012) Dual boundary element method for modelling curved crack 

paths. International Journal of Fracture. Vol. 176: 127-133. 

 


	1. INTRODUCTION
	2. THE BOUNDARY ELEMENT METHOD
	3. STRESS INTENSITY FACTORS
	4. Computation techniques for SIFs
	4.1 The J-Integral
	4.2 Displacement-based methods
	4.2.1 Displacement extrapolation
	4.2.2 Displacement fitting
	5. METHODOLOGY
	5.1. General
	5.2. Single Edge Notched Tension (SENT)
	5.3. Three and Four Point Bend (TPB and FPB)
	5.4.  Compact Specimen (CS)
	6. RESULTS
	7. CONCLUSIONS
	8. REFERENCES

