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Abstract

This paper is concerned with the problem of event-triggered distributed state estimation for a class of discrete

nonlinear stochastic systems with time-varying delays, randomly occurring uncertainties and randomly occurring non-

linearities. Both the uncertainties and nonlinearities enter into the system in a random way characterized by random

variables obeying the Bernoulli distribution. An event-triggered scheme is introduced to reduce the number of excessive

executions of the signal transmissions. The aim of this paper is to design a distributed state estimator such that the

estimation error dynamics is asymptotically mean-square stable. By constructing a Lyapunov-Krasovskii functional and

employing the delay-fractioning approach, sufficient conditions are established to guarantee the desired performance

requirements and then the explicit form of the distributed estimator gains is parameterized. An illustrative exam-

ple is finally provided to demonstrate the effectiveness of the developed distributed state estimation scheme with the

event-triggered communication mechanism.
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I. Introduction

A sensor network is composed of a group of sensor nodes equipped with the communication infrastructure

monitoring and collecting information at diverse locations [26]. During the past decade, the sensor networks

have received an increasing research interest due to their successful applications in a variety of domains such as

industrial automation, traffic and environmental monitoring, medical device monitoring, and wireless networks

etc [6, 24, 31]. In terms of theoretical research, considerable effort has been devoted to the synchronization,
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estimation and filtering problems over sensor networks [7,32,34]. To be specific, the design of the centralized

time-varying Kalman filtering has been studied in [30] over a wireless sensor network with correlated fading

channels, where the stochastic stability of the developed filtering algorithm has been discussed. A stochastic

sampled-data approach has been proposed in [35] to design the distributedH∞ filtering in sensor networks, and

a sufficient condition has been given to ensure the exponential mean-square stability of the resulting filtering

error dynamics as well as the H∞ performance requirement. In [38–40], the distributed synchronization

problems have been addressed for dynamical networks with nonlinear disturbances and stochastic coupling.

As is well known, time delays are inevitable in various practical engineering systems including networked

control systems and process control systems [9,10,15,41]. The occurrence of time delays causes lasting impact

on the desirable system performance and may even yield the instability of the controlled systems [17,19,44].

So far, a number of approaches have been developed to deal with the analysis and synthesis problems for

time-delay systems. It should be pointed out that, so far, much effort has been made to design the state

estimators for time-delay systems over sensor networks [18, 20, 21]. To mention a few, in [18], the Gaussian

mixture Kalman particle filtering algorithm has been developed to cope with the Gaussian or non-Gaussian

nature of the random network delays. The distributed state estimation problems have been investigated in

[20,21] for discrete nonlinear systems with time-delays and nonlinear disturbances.

On the other hand, note that the measured signals collected by the sensors are commonly transmitted

over a shared communication channel in the networked systems [33, 43]. Since a network is typically of

limited communication capacity, it would be significant yet challenging to avoid unnecessary waste of the

communication and computation resources. In this regard, the event-triggering mechanism has recently gained

particular research focus because of its capability of decreasing the executions of the signal transmissions while

maintaining the admissible performance [8,16,22,29,37]. To be specific, the event-triggered filtering and fault

detection problems have been investigated in [16,22] for networked systems with communication delays. In [37],

the optimal event-triggered approach to state estimation has been developed for linear discrete time systems

where the multiple sensors provide the measurement updates according to the individual event-triggering

conditions. It is worth mentioning that, however, little research attention has been paid on the distributed

state estimation problem for time-delay systems with the event-triggered communication mechanism, and this

constitutes one of the motivations of this paper.

Nonlinearities and uncertainties are arguably two of the most important kinds of complexities that have

received considerable research attention in the past few decades [1, 4, 14, 23]. With the rapid development of

the network technologies, it has now well recognized that both the nonlinearities and uncertainties may occur

in a probabilistic way with certain types/intensity due primarily to the random changes of the network cir-

cumstances. As such, the randomly occurring uncertainties (ROUs) and the randomly occurring nonlinearities

(RONs) should be properly taken care of when designing the control systems. In [45], sufficient conditions have

been established to guarantee the asymptotic synchronization in the mean-square sense for discrete stochastic

complex networks subject to RONs, multiple stochastic disturbances and mixed time delays. Very recently,

in [11], a sliding mode control scheme has been developed for a class of discrete networked nonlinear systems

with both ROUs and RONs. Up to now, despite its practical significance, the event-based distributed state

estimation problem has not yet been tackled for discrete stochastic systems in the simultaneous presence of
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ROUs and RONs, not to mention the case where the communication delays are also involved. It is, therefore,

the purpose of this paper to shorten such a gap by initiating a study on the distributed state estimation

problem with both ROUs and RONs by using the delay-fractioning approach [12,28] with hope to reduce the

possible conservatism.

Motivated by the above discussions, in this paper, we aim to discuss the distributed state estimation

problem for a class of discrete nonlinear stochastic systems with ROUs, RONs and time-varying delay over

sensor networks. By constructing a Lyapunov-Krasovskii functional based on the delay-fractioning approach,

sufficient conditions are given such that the resulting estimation error systems are asymptotically stable in

the mean-square sense. Moreover, the derived explicit form of the distributed estimator gains can be easily

solved by using the semi-definite programme approach. Finally, an illustrative example is provided to show

the usefulness of the distributed estimation scheme. The main contributions of this paper lie in the following

two aspects: (i) the delay-fractioning approach is, for the first time, introduced to deal with the event-based

distributed state estimation problem; and (ii) intensive stochastic analysis is conducted to handle the ROUs,

RONs and time-varying delay in a unified framework under the event-triggered communication mechanism.

The rest of this paper is organized as follows. In Section II, the problem addressed is formulated and some

preliminaries are briefly introduced. By constructing the Lyapunov-Krasovskii functional based on the delay-

fractioning approach, sufficient conditions are presented in Section III to ensure the asymptotical mean-square

stability of the estimation error systems. Subsequently, the explicit form of the distributed estimator gain are

derived that can be easily solved by using the semi-definite programme method. In Section IV, a numerical

example is provided to illustrate the feasibility and effectiveness of the proposed estimation method. Finally,

conclusions are drawn in Section V.

Notations. The notations used throughout the paper are standard except where otherwise stated. The

superscript “T” stands for matrix transposition. R
n (Rn×m) denote the n-dimensional Euclidean space and

the set of all n×m matrices, respectively. The notation P > 0 (P ≥ 0) means that matrix P is real symmetric

and positive definite (positive semi-definite). (Ω,F ,Prob) is a probability space, where Prob, the probability

measure, has a total mass 1. E{x} stands for the expectation of x. ⊗ represents the Kronecker product.

1N is the N -dimensional vector with all elements being 1. I and 0 denote the identity matrix and a zero

matrix with appropriate dimensions, respectively. diag{X1,X2, · · · ,Xn} stands for a block-diagonal matrix

with matrices X1,X2 · · · ,Xn on the diagonal. ‖·‖ denotes the Euclidean norm of a vector or its induced norm

of a matrix. In symmetric block matrices or long matrix expressions, we use a star (∗) to represent a term that

is induced by symmetry. Matrices, if their dimensions are not explicitly stated, are assumed to be compatible

for algebraic operations.

II. Problem Formulation and Preliminaries

Let G = (V, E ,L) be a directed graph of order N with the set of nodes V = {1, 2, . . . , N}, the set of edges

E ⊆ V × V, and the weighted adjacency matrix L = [lij ] with nonnegative adjacency element lij. Here, the

matrix L characterizes the interconnection topology of the nodes and the ordered pair (i, j) denotes an edge of

G. The adjacency elements associated with the edges of the graph are positive, i.e., lij > 0 ⇐⇒ (i, j) ∈ E which

represents that there exists the information transmission from sensor j to sensor i. Also, assume that lii = 1
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for all i ∈ V. The set of the neighbors of node i ∈ V plus the node itself is denoted by Ni = {j ∈ V|(i, j) ∈ E}.
In this paper, we consider the following class of discrete nonlinear stochastic systems:

xk+1 = (A+ αk∆A)xk +Adxk−dk + βkBf(xk) +Dxkωk (1)

where xk ∈ R
n is the state vector, f(xk) is the known nonlinear function, and ωk is a one-dimensional, zero-

mean Gaussian white noise sequence on a probability space (Ω,F ,Prob) with E{ω2
k} = 1. The positive integer

dk describes the discrete time-varying delay satisfying dm ≤ dk ≤ dM , where dm and dM are known positive

integers representing the lower and upper bounds of dk, respectively. The lower bound of delay dm can always

be described by dm = τm with τ and m being positive integers. xs = ϕs (s = −dM ,−dM + 1, . . . , 0) is the

initial condition. A, Ad, B and D are known real matrices with appropriate dimensions.

The real-valued matrix ∆A stands for the norm-bounded parameter uncertainty:

∆A = HFM (2)

where H andM are known real constant matrices, and F ∈ R
n1×n2 is an unknown matrix satisfying F TF ≤ I.

The nonlinearity f(·) : Rn → R
n satisfies

‖f(x)− f(y)‖ ≤ ‖Φ(x− y)‖, ∀x, y ∈ R
n (3)

with Φ being a known matrix.

The random variables αk ∈ R and βk ∈ R are Bernoulli distributed white noise sequences taking the values

0 or 1 by

Prob{αk = 1} = E{αk} = ᾱ, Prob{αk = 0} = 1− ᾱ

Prob{βk = 1} = E{βk} = β̄, Prob{βk = 0} = 1− β̄ (4)

with ᾱ ∈ [0, 1] and β̄ ∈ [0, 1] being known scalars. Here, we assume that αk, βk and ωk are mutually

independent.

Assume that the sensors are distributed in the space according to certain rules. The states of the target

plant are to be estimated based on the measurement outputs collected by sensors. For the i-th sensor, the

measurement output is

yk,i = Cixk, (5)

where yk,i ∈ R
p is the output measured by sensor i from the target plant, Ci (i = 1, 2, . . . , N) are known real

matrices with appropriate dimensions.

To reduce the data transmission frequency, the following event generator functions ψi(·, ·) (i = 1, 2, . . . , N)

are introduced

ψi(φk,i, δi) = φTk,iΩiφk,i − δir
T
k,iΩirk,i (6)

where rk,i = yk,i−Cix̂k,i is the innovation sequence exchanged via the network with x̂k,i ∈ R
n being the state

estimation of the target plant in the i-th sensor node, Ωi > 0, δi ∈ [0, 1), and φk,i = rkk′ ,i − rk,i with rkk′ ,i

being the broadcast innovation at the latest event time.
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The execution is triggered if

ψi(φk,i, δi) > 0 (7)

holds. Hence, the sequence of the event-triggered instants 0 = k0,i ≤ k1,i ≤ · · · ≤ kk′,i ≤ · · · is determined

iteratively by

kk′+1,i = inf{k ∈ N|k > kk′,i, ψi(φk,i, δi) > 0}, (8)

where k0,i = 0 is the initial event-triggered instant.

Remark 1: In the extreme case, when δi = 0 (i = 1, 2, . . . , N), we can see that {k0,i, k1,i, k2,i, . . .} =

{0, 1, 2, . . .}. It means that all measurements are transmitted to the side of the state estimator at each

sampling instant. Then, the addressed event-triggered state estimation problem reduces to the traditional

one.

In this paper, we construct the following event-based distributed state estimator for sensor node i:

x̂k+1,i = Ax̂k,i + β̄Bf(x̂k,i) +
∑

j∈Ni

lijKijrkk′ ,j (9)

where x̂0,i = 0 and Kij (j ∈ Ni) are the estimator gains on the sensor node i to be designed.

By letting x̃k,i = xk − x̂k,i, we have

x̃k+1,i = Ax̃k,i + αk∆Axk +Adxk−dk + β̄Bf̃(x̃k,i)

+(βk − β̄)Bf(xk) +Dxkωk −
∑

j∈Ni

lijKij(φk,j + Cj x̃k,j), (10)

where f̃(x̃k,i) = f(xk)− f(x̂k,i). For convenience of later developments, set

x̃k =
[

x̃Tk,1 x̃Tk,2 · · · x̃Tk,N

]T

, Ã = IN ⊗A, ∆Ã = 1N ⊗∆A,

Ãd = 1N ⊗Ad, B̃1 = IN ⊗B, B̃2 = 1N ⊗B,

C̃ = diag{C1, C2, · · · , CN}, D̃ = 1N ⊗D,

f̃(x̃k) =
[

f̃T (x̃k,1) f̃T (x̃k,2) · · · f̃T (x̃k,N)
]T

,

φ̃k =
[

φTk,1 φTk,2 · · · φTk,N

]T

, (11)

and

K̃ =
[

K̃ij

]

N×N
with K̃ij =







lijKij , i = 1, 2, . . . , N, j ∈ Ni

0, i = 1, 2, . . . , N, j /∈ Ni

(12)

Noting that lij = 0 if j /∈ Ni, it is easy to see that K̃ is a sparse matrix in Wn×p with

Wn×p =
{

Ũ = [Uij ] ∈ R
Nn×Np|Uij ∈ R

n×p, Uij = 0 if j /∈ Ni

}

. (13)

Then, (10) can be rewritten by

x̃k+1 = (Ã− K̃C̃)x̃k + αk∆Ãxk + Ãdxk−dk + β̄B̃1f̃(x̃k)

+(βk − β̄)B̃2f(xk) + D̃xkωk − K̃φ̃k. (14)
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It follows from (3) and the definition of f̃(x̃k) that

‖f̃(x̃k)‖ ≤ ‖Φ̃x̃k‖ (15)

with Φ̃ = IN ⊗ Φ.

By denoting ηk =
[

xTk x̃Tk

]T

, we have

ηk+1 = (A+ ᾱ∆A)ηk + (αk − ᾱ)∆Aηk +Adηk−dk + β̄B1F (ηk)

+(βk − β̄)B2F (ηk) +Dηkωk − K̄φ̃k, (16)

with

A =

[

A 0

0 Ã− K̃C̃

]

, ∆A =

[

∆A 0

∆Ã 0

]

, Ad =

[

Ad 0

Ãd 0

]

,

B1 =

[

B 0

0 B̃1

]

, B2 =

[

B 0

B̃2 0

]

, F (ηk) =

[

f(xk)

f̃(x̃k)

]

,

D =

[

D 0

D̃ 0

]

, K̄ =

[

0

K̃

]

. (17)

It is not difficult to test that

‖F (ηk)‖ ≤ ‖Φ̄ηk‖ (18)

where Φ̄ = diag{Φ, Φ̃} and Φ̃ is defined in (15).

To proceed, we introduce the following lemmas that will be used for further developments.

Lemma 1: [5] Given constant matrices S1, S2 and S3 where S1 = ST
1 and S2 = ST

2 > 0. Then S1 +

ST
3 S−1

2 S3 < 0 if and only if

[

S1 ST
3

∗ −S2

]

< 0 or

[

−S2 S3

∗ S1

]

< 0.

Lemma 2: [42] LetQ = QT ,N andH be real matrices of appropriate dimensions. Then, for any F satisfying

F TF ≤ I, Q+NFH+HTF TNT < 0 if and only if there exists a scalar ε > 0 such that Q+ε−1NNT+εHTH <

0, or equivalently,









Q N εHT

∗ −εI 0

∗ ∗ −εI









< 0.

Lemma 3: [34] Let P = diag{P1, P2, . . . , PN} with Pi ∈ R
n×n (i = 1, 2, . . . , N) being invertible matrices.

If X = PU for U ∈ R
nN×pN , then we have U ∈ Wn×p ⇐⇒ X ∈ Wn×p.

The purpose of this paper is to design the event-based distributed state estimator of form (9) on each sensor

node i such that the resulting estimation error system (16) is mean-square asymptotically stable irrespective

of the time-varying delays, ROUs and RONs. To be specific, by using the delay-fractioning approach, we aim

to design the estimator gains Kij so as to ensure the asymptotical stability of the estimation error system in

the mean-square sense.
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III. Main Results

In this section, by constructing a Lyapunov-Krasovskii functional and using the delay-fractioning approach,

a sufficient condition is established to ensure the mean-square asymptotical stability of the estimation error

system. Subsequently, the explicit form of the distributed state estimator gains is provided.

Theorem 1: For given K̄ and a scalar γ ∈ (0, 1), assume that there exist matrices P = diag{P1,P2, · · · ,PN+1}
with Pi > 0 (i = 1, 2, · · · , N + 1), Q > 0, R > 0, S > 0, X1 ≥ 0, X2 ≥ 0, matrices Yi (i = 1, 2, 3), and scalars

λ1 > 0, λ2 > 0 satisfying

Π1 +Π2 +ΠT
2 +Π3 < 0, (19)

Λ1 =

[

X1 Y1

∗ γP

]

≥ 0, Λ2 =

[

X2 Y2

∗ γP

]

≥ 0, Λ3 =

[

X2 Y3

∗ γP

]

≥ 0, (20)

where

Π1 = τX1 + (dM − dm)X2,

Π2 =
[

Y1 Y2 Y3

]

×











I(N+1)n×(N+1)n −I(N+1)n×(N+1)n 0(N+1)n×[(N+1)(m+2)n+Np]

0(N+1)n×(N+1)nm I(N+1)n×(N+1)n −I(N+1)n×(N+1)n 0(N+1)n×[2(N+1)n+Np]

0(N+1)n×(N+1)(m+1)n I(N+1)n×(N+1)n −I(N+1)n×(N+1)n 0(N+1)n×[(N+1)n+Np]











,

Π3 = (1 + 2γ~)ΞT
1 PΞ1 + α̃(1 + 2γ~)ΞT

2 PΞ2 + β̃(1 + 2γ~)ΞT
5 BT

2 PB2Ξ5

+ΞT
3 [(1 + 2γ~)DTPD + (2γ~− 1)P + (dM − dm + 1)Q+ S + λ1Φ̄

T Φ̄ + λ2CTΨΩC]Ξ3

−ΞT
4QΞ4 − ΞT

5 SΞ5 − λ1Ξ
T
6 Ξ6 − λ2Ξ

T
7 ΩΞ7 + ΞT

R̄
R̄ΞR̄,

Ξ1 =
[

A+ ᾱ∆A 0(N+1)n×(N+1)mn Ad 0(N+1)n×(N+1)n β̄B1 −K̄
]

,

Ξ2 =
[

∆A 0(N+1)n×[(N+1)(m+3)n+Np]

]

,

Ξ3 =
[

I(N+1)n×(N+1)n 0(N+1)n×[(N+1)(m+3)n+Np]

]

,

Ξ4 =
[

0(N+1)n×(N+1)(m+1)n I(N+1)n×(N+1)n 0(N+1)n×[2(N+1)n+Np]

]

,

Ξ5 =
[

0(N+1)n×(N+1)(m+2)n I(N+1)n×(N+1)n 0(N+1)n×[(N+1)n+Np]

]

,

Ξ6 =
[

0(N+1)n×(N+1)(m+3)n I(N+1)n×(N+1)n 0(N+1)n×Np

]

,

Ξ7 =
[

0Np×(N+1)(m+4)n INp×Np

]

,

~ = dM − τm+ τ, α̃ = ᾱ(1− ᾱ), β̃ = β̄(1− β̄),

ΞR̄ =





I(N+1)mn×(N+1)mn 0(N+1)mn×[4(N+1)n+Np]

0(N+1)mn×(N+1)n I(N+1)mn×(N+1)mn 0(N+1)mn×[3(N+1)n+Np]



 ,

R̄ = diag{R,−R}, Ω = diag{Ω1,Ω2, · · · ,ΩN},
Ψ = diag{δ1I, δ2I, · · · , δN I}, C =

[

0 C̃
]

. (21)

Then, the estimation error system (16) is mean-square asymptotically stable.
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Proof: Based on the delay-fractioning idea, let us construct the following Lyapunov-Krasovskii functional

for (16):

V (ηk) =

4
∑

l=1

Vl(ηk) (22)

where

V1(ηk) = ηTk Pηk,

V2(ηk) =
k−1
∑

l=k−dk

ηTl Qηl +
−τm
∑

j=−dM+1

k−1
∑

l=k+j

ηTl Qηl,

V3(ηk) =

k−1
∑

l=k−τ

ΓT
l RΓl +

k−1
∑

l=k−dM

ηTl Sηl,

V4(ηk) =
0

∑

j=−τ+1

k−1
∑

l=k+j−1

ζTl γPζl +
τm
∑

j=−dM+1

k−1
∑

l=k+j−1

ζTl γPζl

Γl =
[

ηTl ηTl−τ · · · ηT
l−(m−1)τ

]T

, ζl = ηl+1 − ηl

with P > 0, Q > 0, R > 0 and S > 0 to be determined. Along the state trajectory of the system (16), one

has

E{∆V1(ηk)} = ηTk (A+ ᾱ∆A)TP(A + ᾱ∆A)ηk + 2ηTk (A+ ᾱ∆A)TPAdηk−dk

+2β̄ηTk (A+ ᾱ∆A)TPB1F (ηk)− 2ηTk (A+ ᾱ∆A)TPK̄φ̃k
+α̃ηTk ∆ATP∆Aηk + ηTk−dk

AT
dPAdηk−dk

+2β̄ηTk−dk
AT

dPB1F (ηk)− 2ηTk−dk
AT

dPK̄φ̃k
+β̄2F T (ηk)BT

1 PB1F (ηk)− 2β̄F T (ηk)BT
1 PK̄φ̃k

+β̃F T (ηk)BT
2 PB2F (ηk) + ηTk DTPDηk

+φ̃Tk K̄
TPK̄φ̃k − ηTk Pηk, (23)

where α̃ and β̃ are defined in (21). Similarly, through straightforward algebraic manipulations, we have

E{∆V2(ηk)} = ηTk Qηk − ηTk−dk
Qηk−dk +

k−1
∑

l=k+1−dk+1

ηTl Qηl −
k−1
∑

l=k+1−dk

ηTl Qηl

+(dM − τm)ηTk Qηk −
k−τm
∑

l=k−dM+1

ηTl Qηl

≤ (dM − τm+ 1)ηTk Qηk − ηTk−dk
Qηk−dk , (24)

E{∆V3(ηk)} = ΓT
kRΓk − ΓT

k−τRΓk−τ + ηTk Sηk − ηTk−dM
Sηk−dM , (25)
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E{∆V4(ηk)} =
0

∑

j=−τ+1

( k
∑

l=k+j

ζTl γPζl −
k−1
∑

l=k−1+j

ζTl γPζl
)

+

τm
∑

j=−dM+1

( k
∑

l=k+j

ζTl γPζl −
k−1
∑

l=k−1+j

ζTl γPζl
)

= ~ζTk γPζk −
k−1
∑

l=k−τ

ζTl γPζl −
k−τm−1
∑

l=k−dk

ζTl γPζl −
k−dk−1
∑

l=k−dM

ζTl γPζl

≤ 2γ~ηTk+1Pηk+1 + 2γ~ηTk Pηk −
k−1
∑

l=k−τ

ζTl γPζl

−
k−τm−1
∑

l=k−dk

ζTl γPζl −
k−dk−1
∑

l=k−dM

ζTl γPζl, (26)

where ~ is defined in (21).

Subsequently, for any appropriately dimensioned matrices X1 ≥ 0 and X2 ≥ 0, we have

0 = τξTk X1ξk −
k−1
∑

l=k−τ

ξTk X1ξk, (27)

0 = (dM − dm)ξTk X2ξk −
k−dm−1
∑

l=k−dk

ξTk X2ξk −
k−dk−1
∑

l=k−dM

ξTk X2ξk, (28)

where ξk =
[

ΓT
k ηTk−dm

ηTk−dk
ηTk−dM

F T (ηk) φ̃Tk

]T

. Noting ζl = ηl+1 − ηl, for any matrices Yi (i =

1, 2, 3), the following equations are true:

0 = 2ξTk Y1

[

ηk − ηk−τ −
k−1
∑

l=k−τ

ζl

]

, (29)

0 = 2ξTk Y2

[

ηk−dm − ηk−dk −
k−dm−1
∑

l=k−dk

ζl

]

, (30)

0 = 2ξTk Y3

[

ηk−dk − ηk−dM −
k−dk−1
∑

l=k−dM

ζl

]

. (31)

In addition, according to the event-triggering condition (7), we obtain

φ̃TkΩφ̃k − ηTk CTΨΩCηk ≤ 0, (32)
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where Ω, C and Ψ are defined in (21). Then, together with (18), (20), (23)-(32), for two scalars λ1 > 0 and

λ2 > 0, we have

E{∆V (ηk)} ≤ ηTk (A+ ᾱ∆A)TP(A + ᾱ∆A)ηk + 2ηTk (A+ ᾱ∆A)TPAdηk−dk

+2β̄ηTk (A+ ᾱ∆A)TPB1F (ηk)− 2ηTk (A+ ᾱ∆A)TPK̄φ̃k
+α̃ηTk ∆ATP∆Aηk + ηTk−dk

AT
dPAdηk−dk

+2β̄ηTk−dk
AT

dPB1F (ηk)− 2ηTk−dk
AT

dPK̄φ̃k − ηTk Pηk
+β̄2F T (ηk)BT

1 PB1F (ηk)− 2β̄F T (ηk)BT
1 PK̄φ̃k

+β̃F T (ηk)BT
2 PB2F (ηk) + ηTk DTPDηk + φ̃Tk K̄

TPK̄φ̃k
+(dM − τm+ 1)ηTk Qηk − ηTk−dk

Qηk−dk + ΓT
kRΓk

−ΓT
k−τRΓk−τ + ηTk Sηk − ηTk−dM

Sηk−dM

+2γ~ηTk+1Pηk+1 + 2γ~ηTk Pηk + ξTk [τX1 + (dM − dm)X2]ξk

+2ξTk Y1(ηk − ηk−τ ) + 2ξTk Y2(ηk−dm − ηk−dk) + 2ξTk Y3(ηk−dk − ηk−dM )

−
k−1
∑

l=k−τ

ςTk,lΛ1ςk,l −
k−τm−1
∑

l=k−dk

ςTk,lΛ2ςk,l −
k−dk−1
∑

l=k−dM

ςTk,lΛ3ςk,l

+λ1η
T
k Φ̄

T Φ̄ηk − λ1F
T (ηk)F (ηk) + λ2η

T
k CTΨΩCηk − λ2φ̃

T
kΩφ̃k

≤ ξTk (Π1 +Π2 +ΠT
2 +Π3)ξk −

k−1
∑

l=k−τ

ςTk,lΛ1ςk,l

−
k−τm−1
∑

l=k−dk

ςTk,lΛ2ςk,l −
k−dk−1
∑

l=k−dM

ςTk,lΛ3ςk,l (33)

where ςk,l =
[

ξTk ζTl

]T

, Π1, Π2, Π3, Λ1, Λ2 and Λ3 are defined in (21). According to (19)-(20), we can

conclude that the estimation error system (16) is mean-square asymptotically stable.

Now, we are in a position to deal with the uncertainties in (19) and then derive the explicit form of the

distributed estimator gains Kij .

Theorem 2: For a given scalar γ ∈ (0, 1), assume that there exist matrices P = diag{P1,P2, · · · ,PN+1}
with Pi > 0 (i = 1, 2, · · · , N + 1), Q > 0, R > 0, S > 0, X1 ≥ 0, X2 ≥ 0, matrices Yi (i = 1, 2, 3), matrix

K ∈ Wn×p, and scalars λ1 > 0, λ2 > 0, ε > 0 satisfying (20) and



















Π1 +Π2 +ΠT
2 + Π̄3

√
1 + 2γ~(Ξ̄T

1 P + Ξ̂T
1 ) 0 0 εM̄T

∗ −P 0 ᾱ
√
1 + 2γ~PH̄ 0

∗ ∗ −P
√

α̃(1 + 2γ~)PH̄ 0

∗ ∗ ∗ −εI 0

∗ ∗ ∗ ∗ −εI



















< 0, (34)
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with

Ξ̄1 =
[

A0 0(N+1)n×(N+1)mn Ad 0(N+1)n×(N+1)n β̄B1 0(N+1)n×Np

]

,

Ξ̂1 =
[

−K̄C 0(N+1)n×(N+1)(m+3)n −K̄
]

, K̄ =
[

0 KT
]T

,

A0 = diag{A, Ã}, H̄ = 1N+1 ⊗H,

Π̄3 = β̃(1 + 2γ~)ΞT
5 BT

2 PB2Ξ5 + ΞT
3 [(1 + 2γ~)DTPD + (2γ~− 1)P

+(dM − dm + 1)Q+ S + λ1Φ̄
T Φ̄ + λ2CTΨΩC]Ξ3 − ΞT

4 QΞ4

−ΞT
5 SΞ5 − λ1Ξ

T
6 Ξ6 − λ2Ξ

T
7 ΩΞ7 + ΞT

R̄
R̄ΞR̄,

M̄ =
[

M 0n2×[(N+1)nm+4Nn+3n+Np]

]

, (35)

then the estimation error system (16) is mean-square asymptotically stable. If the above linear matrix in-

equalities are feasible, the matrix K̃ can be given by

K̃ = (V TPV )−1K (36)

with V =
[

0Nn×n INn×Nn

]T

. Accordingly, the distributed state estimator gains Kij (i = 1, 2, . . . , n, j ∈
Ni) can be obtained by (12).

Proof: By using Lemma 1, Π1 +Π2 +ΠT
2 +Π3 < 0 is equivalent to









Π1 +Π2 +ΠT
2 + Π̄3

√
1 + 2γ~ΞT

1 P
√

α̃(1 + 2γ~)ΞT
2 P

∗ −P 0

∗ ∗ −P









< 0 (37)

where Π̄3 is defined in (35). Then, we can rewrite (37) into the following form:

Θ +HFM+MTF THT < 0, (38)

where

Θ =









Π1 +Π2 +ΠT
2 + Π̄3

√
1 + 2γ~(Ξ̄T

1 + Ξ̃T
1 )P 0

∗ −P 0

∗ ∗ −P









,

Ξ̃1 =
[

−K̄C 0(N+1)n×(N+1)(m+3)n −K̄
]

,

H =
[

0n1×[(N+1)(m+4)+p]n ᾱ
√
1 + 2γ~H̄TP

√

α̃(1 + 2γ~)H̄TP
]T

,

M =
[

M 0n2×[(N+1)nm+6Nn+5n+Np]

]

.

By denoting PK̄ = K̄ and using Lemma 2, it is not difficult to verify that (38) holds if (34) is true. Moreover,

according to Lemma 3, it is easy to show that K̃ ∈ Wn×p. Hence, the proof of this theorem is complete.

Remark 2: Up to now, the distributed state estimation problem is studied for a class of discrete nonlinear

stochastic systems with time-varying delay, ROUs and RONs. Based on the event-triggered mechanism, a

new distributed state estimator is constructed where the available neighbor information of the sensor nodes

is employed. It is shown that the explicit form of the estimator gains can be easily solved by using the

semi-definite programme approach.
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IV. An Illustrative Example

In this section, we provide a numerical example to demonstrate the feasibility and effectiveness of the

distributed state estimation scheme.

The sensor network is represented by a directed graph G = (V, E ,L) with the set of nodes V = {1, 2, 3, 4},
the set of edges E = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 3), (4, 4)}, and the following adjacency matrix

L =















1 0 0 0

1 1 0 0

1 1 1 0

0 0 1 1















.

The system parameters are given as follows:

A =

[

−0.24 −0.32

0.4 −0.08

]

, Ad =

[

−0.8 0.8

−1.2 −0.4

]

,

B =

[

−0.6 −0.02

0.02 −0.7

]

, D =

[

−0.4 0

−0.3 −0.2

]

,

H =
[

0.1 0.2
]T

, M =
[

0.05 0.1
]

, F = sin(0.5k)

C1 =
[

0.8 1.6
]

, C2 =
[

5.6 2.4
]

,

C3 =
[

0.8 0
]

, C4 =
[

2.4 3.2
]

.

Assume that the time-varying delay dk satisfies 2 ≤ dk ≤ 5, Φ = diag{0.2, 0.3}, ᾱ = 0.9, β̄ = 0.85, Ωi = 1

and δi = 0.5 (i = 1, 2, 3, 4). Set m = 1 and γ = 0.01. By solving (20) and (34) in Theorem 2, we have

K11 =
[

0.0097 −0.0984
]T

, K21 =
[

−0.0701 0.0079
]T

,

K22 =
[

−0.1277 0.0652
]T

, K31 =
[

−0.0064 0.0518
]T

,

K32 =
[

0.0177 −0.3597
]T

, K33 =
[

0.0151 0.0401
]T

,

K43 =
[

−0.0378 −0.0236
]T

, K44 =
[

0.0178 0.0086
]T

,

which confirm the feasibility of the proposed state estimation approach.

V. Conclusions

In this paper, the event-based distributed state estimation problem has been investigated for a class of

nonlinear stochastic systems with time-varying delay, ROUs and RONs. The phenomena of the ROUs and

RONs have been depicted by introducing two random variables obeying the Bernoulli distribution. By con-

sidering the event-triggered mechanism and the characteristic of the sensor works, a new distributed state

estimator has been constructed. Based on the delay-fractioning idea, a sufficient condition has been proposed

to guarantee the mean-square asymptotical stability of the estimation error system and the explicit form of

the estimator gains has also been given. Finally, a numerical example has been provided to demonstrate the

usefulness of the developed estimation scheme. Further research topics include the extension of the proposed
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results to more complex systems with event-triggering communication mechanism such as nonlinear polyno-

mial systems [2, 3], time-varying systems [13, 43], mechanical systems [25] and multi-machine power systems

[27].
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