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Abstract

This paper is concerned with the problem of almost sure state estimation for general nonlinear hybrid stochastic

systems whose coefficients only satisfy local Lipschitz conditions. By utilizing the stopping time method combined

with martingale inequalities, a theoretical framework is established for analyzing the so-called almost surely asymptotic

stability of the addressed system. Within such a theoretical framework, some sufficient conditions are derived under

which the estimation dynamics is almost sure asymptotically stable and the upper bound of estimation error is also

determined. Furthermore, a suboptimal state estimator is obtained by solving an optimization problem in the H2 sense.

According to the obtained results, for a class of special nonlinear hybrid stochastic systems, the corresponding conditions

reduce to a set of matrix inequalities for the purpose of easy implementation. Finally, two numerical simulation examples

are used to demonstrate the effectiveness of the results derived.
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I. Introduction

The past few decades have seen an ever increasing attention in the optimal filtering or state estimation in

various application areas including target tracking, image processing, signal processing and control engineering

[25]. Among a variety of existing approaches, the Kalman filtering approach has proven to be an optimal one

on the assumptions that the linear model is exact and the noise statistics is known. On the other hand, the

H∞ filtering can be regarded as a suboptimal filtering due to its capability of providing a smaller bound for

the worst-case estimation error [1, 2]. It might be worth emphasizing that, in most of the existing results,

the estimators are designed to guarantee that the dynamics of the estimation error converges in terms of

certain stability concepts such as the stochastic asymptotic stability [23], the mean-square stability [6–8,11],

the mean-square exponential stability [29], the pth moment stability [14], and the asymptotic stability in

probability [24].
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In comparison with the aforementioned stability concepts, the almost surely asymptotic stability [20, 21]

describes the dynamical performance from the sample state trajectories. More specifically, the almost sure

stability requires that the probability of the system’s largest excursion from equilibrium goes to zero as time

tends to infinity. In addition, as mentioned in [13], there are some cases where the stochastic system is

not mean-square stable but stable in almost sure sense since the noise can play a role for stabilizing the

systems. Therefore, the performance of almost sure stability could be suitable to evaluate some real-world

engineering situations with high reliability requirements where the impact from the noises cannot be ignored.

For example, the performance requirement of the controlled rocket should be guaranteed with the probability

1. Very recently, the analysis and design problems in almost sure sense have attracted considerable attention,

see [3, 4, 13, 14, 30] and the references therein. For instance, a Razumikhin-type theorem on pth moment

input-to-state stability has been developed in [14] for a class of nonlinear stochastic systems with Markovian

switching. In [13], a desired controller has been designed to stabilize a stochastic system almost surely

which may not be stabilized in mean-square sense. Also, from a practical point of view, in addition to the

traditional stability, the estimation performance is also vitally important and should been taken into account

in the estimator design. For example, in engineering applications, one would expect the effects from the

initial states and the jumping modes on the estimation accuracy to be attenuated or even minimized at a

satisfactory level and such kind of H2-type performance consideration would give rise to considerable difficulty

in the selection of the estimator structure selection and the subsequent analysis. Unfortunately, to the best

of the authors’ knowledge, the almost sure state estimation problem with H2-type performance constraints for

general nonlinear stochastic systems has not been properly investigated so far, and this constitutes one of the

motivations for the present research.

On the other hand, stochastic systems with Markovian switching parameters, which are usually referred

to as hybrid stochastic systems, provide much convenience for modeling system plants whose structures are

subject to abrupt changes such as component failures or repairs, changing subsystem interconnections, abrupt

environmental disturbances, see [9] for more details. As a result, the performance analysis and synthesis

issues for such systems have received much research attention [12,26]. In particular, with regard to H∞ state

estimation, some effective methods have been proposed in the literature [5,17–19,27]. For instance, attention

has focused on the design of state estimator to estimate the semi-nonlinear Markovian jump system in [12]

where a maximum likelihood solution has been obtained in terms of expectation-maximization algorithm.

In addition, Since nonlinearities are ubiquitous in practice, much effort has been devoted to deal with the

state estimation or filtering problems for nonlinear systems [22, 31, 32]. Up to now, in most reported results

concerning nonlinear filtering, a common assumption is that the coefficients satisfy both the local Lipschitz

condition and the linear growth condition. Such an assumption, however, would inevitably limit the applica-

tion potentials of the established results. Therefore, there is a practical need to deal with the filtering problem

with relaxed assumptions and another motivation of this paper is to shorten such a gap.

In this paper, we study the suboptimal almost sure state estimation problem for a class of nonlinear

hybrid stochastic systems whose coefficients are assumed to satisfy the local Lipschitz condition only. For

the concerned problem in this paper, the fundamental questions we are going to answer are identified as

follows: 1) what kind of methods can be developed to overcome the difficultly stemming from the assumption

of local Lipschitz conditions? and 2) how can we establish a suitable framework to analyze the estimation

performance in almost sure sense? It is, therefore, the main motivation of this paper to provide satisfactory

answers to the above two questions and also propose a design scheme of the suboptimal state estimator. The
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main contribution of this paper lies in the following three aspects: 1) in the plant under consideration, the

coefficients are only assumed to satisfy local Lipschitz conditions and the traditional linear growth conditions

are no longer needed; 2) a sufficient condition on almost sure stability is established in order to facilitate

the later suboptimal state estimation problem; and 3) a suboptimal state estimator is obtained by solving an

optimization problem.

The rest of this paper is organized as follows. In Section II, a class of nonlinear hybrid stochastic systems

(NHSSs) are presented, and some preliminaries are briefly outlined. In Section III, the main results are

established by using the stochastic analysis techniques. These obtained results are then applied to a class of

special NHSSs in Section IV. Furthermore, two examples are proposed to demonstrate the effectiveness of the

proposed results in Section V. Finally, conclusions are drawn in Section VI.

Notation The notation used here is fairly standard unless otherwise specified. R
n and R

n×m denote,

respectively, the n dimensional Euclidean space and the set of all n × m real matrices, and R+ = [0,+∞).

(Ω,F , {Ft}t≥0,P) is a complete probability space with a natural filtration {F}t≥0 satisfying the usual con-

ditions (i.e. it is right continuous and F0 contains all P-null sets). MT represents the transpose of the

matrix M . | · | denotes the Euclidean norm. E{·} stands for the mathematical expectation. P{·} means

the probability. C([−τ, 0];Rn) denotes the family of all continuous R
n-valued function ϕ on [−τ, 0] with

the norm |ϕ| = sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}. Cb
F0
([−τ, 0);Rn) is the family of all F0-measurable bounded

C([−τ, 0);Rn)-value random variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. L1(R+;R+) denotes the family of functions

λ : R+ → R+ such that
∫∞
0 λ(t)dt < ∞. K denotes a class of continuous (strictly) increasing functions µ

from R+ to R+ with µ(0) = 0. K∞ denotes a class of functions µ in K with µ(r) → ∞ as r → ∞. L2(R+,R
p)

denotes the space of nonanticipative stochastic process y(t) ∈ R
p with respect to the filtration Ft satisfying

|y(t)|2L2
:= E

∫∞
0 |y(t)|2dt < ∞.

II. Problem formulation

In this paper, let r(t), t ≥ 0 be a right-continuous Markov chain taking values in a finite state space

S = {1, 2, . . . , N} with generator Γ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

{

γij∆+ o(∆) if i 6= j,

1 + γii∆+ o(∆) if i = j,

where △ > 0 and γij ≥ 0 is the transition rate from mode i to mode j if i 6= j while γii = −∑j 6=i γij. It is

known that almost all sample paths of r(·) are right-continuous step functions with a finite number of simple

jumps in any finite subinterval of R+ := [0,∞).

Let us consider the nonlinear hybrid stochastic systems of the form















dx(t) = f(x(t), t, r(t))dt + g(x(t), t, r(t))dω(t)

y(t) = h(x(t), t, r(t))

z(t) = m(x(t), t, r(t))

(2.1)

where x(t) ∈ R
n is the state vector, y(t) ∈ R

p is the actual measurement output, z(t) ∈ R
q is the state combi-

nation to be estimated, and ω(t) represents a scalar Wiener process (Brownian motion) on (Ω,F , {Ft}t≥0,P).

Furthermore, assume that ω(t) is independent of Markov chain r(t) and satisfies:

E{dω(t)} = 0, E{dω(t)2} = dt.
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f, g : Rn×R+×S → R
n, h : Rn×R+×S → R

p and m : Rn×R+×S → R
q with f(0, t, i) = 0, g(0, t, i) = 0,

h(0, t, i) = 0 and m(0, t, i) = 0 are vector-valued nonlinear functions.

In this paper, we are concerned with the estimate x̂(t) of the state x(t) by utilizing the measurement output

y(t). The state estimator is of the following form

{

dx̂(t) = f(x̂(t), t, r(t))dt +K(r(t))y(t)dt

ẑ(t) = m(x̂(t), t, r(t)), x̂(0) = 0
(2.2)

where x̂(t) ∈ R
n is the estimate of state x(t), ẑ(t) ∈ R

q is the estimate of the output z(t), and K(i) is the

estimator gain matrix to be designed.

Assumption 1: For each i ∈ S, the function f , g, h and m satisfy the local Lipschitz condition. That is, for

any H > 0, there is LH > 0 such that

|φ(x, t, i) − φ(x̄, t, i)| ≤ LH |x− x̄|, (2.3)

for all (x, x̄, t, i) ∈ R
n × R

n × R+ × S with |x| ∨ |x̄| ≤ H, and the function φ could be f , g, h or m.

Denoting η(t) = [xT (t), x̂T (t)]T and the estimation error z̃(t) = z(t) − ẑ(t), we can obtain the following

augmented system
{

dη(t) = fe(η(t), t, r(t))dt + ge(η(t), t, r(t))dω(t)

z̃(t) = m(x(t), t, r(t)) − m̂(x̂(t), t, r(t))
(2.4)

where

ge(η(t), t, r(t)) =
[

gT (x(t), t, r(t)) 0
]T

,

fe(η(t), t, r(t)) =

[

f(x(t), t, r(t))

f(x̂(t), t, r(t)) +K(r(t))h(x(t), t, r(t))

]

.

Let C2,1(R2n × R+ × S;R+) be the family of all nonnegative functions V (η, t, i) on R
2n × R+ × S that are

twice continuously differentiable in η and once in t. If V ∈ C2,1(R2n × R+ × S;R+), define an operator L
associated with (2.4) from R

2n × R+ × S to R by

LV (η, t, i) = Vt(η, t, i) + Vη(η, t, i)fe(η, t, i)

+
1

2
trace[gTe (η, t, i)Vηη(η, t, i)ge(η, t, i)] +

N
∑

j=1

γijV (η, t, j)
(2.5)

where

Vt(η, t, i) =
∂V (η, t, i)

∂t
, Vη(η, t, i) =

(

∂V (η, t, i)

∂η1
, · · · , ∂V (η, t, i)

∂η2n

)

,

Vηη(η, t, i) =

(

∂2V (η, t, i)

∂ηi∂ηj

)

2n×2n

.

Before proceeding further, we introduce the following definition.

Definition 1: For η0 ∈ R
2n and r0 ∈ S, the augmented system (2.4) with the equilibrium η = 0 is said to

be almost surely asymptotically stable if

P

(

lim
t→∞

η(t; η0, r0) = 0
)

= 1. (2.6)
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Our aim in this paper is to develop techniques to deal with the suboptimal almost sure state estimation

problem for nonlinear hybrid stochastic systems. In other words, we are going to determine the estimator

parameter Ki such that the estimation error output z̃ satisfies the following performance requirement

R1) the augmented system (2.4) is almost surely asymptotically stable;

R2) for every i ∈ S, the estimation error output z̃ satisfies

E

∫ ∞

0
|z̃|2dt ≤ min

s.t.Ki

V (η0, 0, i) (2.7)

where V (η, t, i) is a positive definite function to be determined. Furthermore, such an estimator is said to

be a suboptimal almost sure state estimator. Note that the second requirement is closely related to the H2

performance of the designed estimator against the initial states.

Remark 1: The traditional H2 performance has been considered for linear time-invariance systems based on

the H2-norm, see [10] for the definition. In this paper, we use the interpretations of the H2-norm to describe

the impact on the total output energy of the error dynamics from the nonzero initial values as well as the

jumping mode. The H2-type performance constraint given in (2.7) is a very helpful measure to quantify the

capability of the design estimator that attenuates the effects from the initial states.

Remark 2: In [15], the almost sure asymptotic stability has been investigated for the state estimation prob-

lem of a general class of nonlinear stochastic systems with Markovian switching. Compared to [15], this paper

exhibits the following distinctive features: 1) the controlled output is included in the underlying model that

facilitates the investigation on the estimation performance; 2) the H2-type performance index is introduced

to reflect the attenuation level of the estimation performance against the initial states as well as the jumping

modes; 3) an optimization problem is considered to design a suboptimal estimator in order to minimize the

impact from the initial states as well as the jumping modes on the estimation accuracy; and 4) the consid-

eration of the performance constraints in the almost sure sense demands more comprehensive mathematical

analysis, for example, the feasibility analysis of the suboptimal estimator design is more challenging.

III. Main Results

In this section, the suboptimal almost sure state estimation problem of nonlinear hybrid stochastic systems

is discussed, and the results are specialized to a special case for practical convenience.

In the following theorem, a sufficient condition is derived to obtain a suboptimal almost sure state estimator.

Theorem 3.1: If there are functions V ∈ C2,1(R2n × R+ × S;R+), λ ∈ L1(R+;R+), µ1 ∈ K∞, n ∈ K and

constant matrices Ki such that

µ1(|η|) ≤ V (η, t, i), (3.1)

LV (η, t, i) ≤ λ(t)− n(V (η, t, i)), (3.2)

hold for every i ∈ S and all (η, t, i) ∈ R
2n ×R+ × S, then one has

lim
t→∞

η(t; η0, r0) = 0 almost surely (a.s.) (3.3)

for all η0 ∈ R
2n and r0 ∈ S, that is, the augmented system in (2.4) is almost surely asymptotically stable.

Before proving the main results in Theorem 3.1, let us present the following three lemmas.
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Lemma 1: If V ∈ C2,1(R2n × R+ × S;R+), then for any t ≥ 0, the generalized Itô’s formula is given as

dV (η(t), t, r(t)) =LV (η(t), t, r(t))dt + Vη(η(t), t, r(t))ge(η(t), t, r(t))dω(t)

+

∫

R

[V (η(t), t, r(t) + n(r(t), α)) − V (η(t), t, r(t))] × µ(dt, dα)

where the function n(·, ·) and the martingale measure µ(·, ·) are the same as (2.6) and (2.7) in [30].

It is well known that both the local Lipschitz condition and the linear growth condition are generally

required on the coefficients of a stochastic differential equation in order to make use of the classical existence-

and-uniqueness theorem. Unfortunately, in some practical situations, the linear growth condition might be

difficult to be satisfied. In this paper, however, only the local Lipschitz condition (i.e. Assumption 1) is

utilized to guarantee a unique maximal local solution. Furthermore, under such a condition, the maximal

local solution is in fact a unique global solution, which is to be proved in the following lemma.

Lemma 2: Under the conditions of Theorem 3.1 and Assumption 1, for any initial data η0 ∈ R
2n and

r(0) = r0 ∈ S, the system (2.4) has a unique global solution.

Proof: The proof is conducted following a similar line to [30]. For each i ∈ S and any integer k > b ≥ |η0|,
we define

f (k)
e (η, t, i) = fe(mη,k, t, i), g(k)e (η, t, i) = ge(mη,k, t, i)

where

mη,k =











|η| ∧ k

|η| η, η 6= 0,

0, η = 0.

Then, in light of Assumption 1, it can be found that both f
(k)
e (η, t, i) and g

(k)
e (η, t, i) satisfy the global Lips-

chitz condition as well as the linear growth condition. By utilizing the well-known existence-and-uniqueness

theorem, it can be seen that there is a unique global solution ηk(t; η0, r0) to the system (2.4) with coefficients

f
(k)
e (η, t, i) and g

(k)
e (η, t, i).

Define the stopping time

σk , inf{t ≥ 0 : |ηk(t)| ≥ k}

with inf φ = ∞. It is easy to see that σk is increasing in k. The property aforementioned also enables us to

define η(t) as follow:

η(t) = ηk(t), 0 ≤ t ≤ σk.

It is clear that η(t) is a unique solution to system (2.4) for t ∈ [0, σ) where σ = limk→∞ σk. Obviously, to

complete the proof, we only need to show P{σ = ∞} = 1.

Applying the general Itô’s formula in Lemma 1, for any t > 0, we have

EV (ηk(t ∧ σk), t ∧ σk, r(t ∧ σk)) = EV (ηk(0), 0, r(0)) + E

∫ t∧σk

0
L(k)V (ηk(s), s, r(s))ds

where the operator L(k)V is similar to the definition LV . Specifically, fe and ge are replaced by f
(k)
e and g

(k)
e ,

respectively. Note the definitions of f
(k)
e and g

(k)
e , one has

L(k)V (ηk(s), s, r(s)) = LV (η(s), s, r(s)), 0 ≤ s ≤ t ∧ σk.

Consequently, it follows from (3.2) that

EV (ηk(t ∧ σk), t ∧ σk, r(t ∧ σk))
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≤ V (η(0), 0, r0) +

∫ t

0
λ(s)ds+ E

∫ t

0
−n(V (ηk(s), s, r(s)))ds

≤ V (η(0), 0, r0) +

∫ t

0
λ(s)ds.

Noting the fact

EV (ηk(t ∧ σk), t ∧ σk, r(t ∧ σk)) ≥
∫

{σk≤t}
V (ηk(t ∧ σk), t ∧ σk, r(t ∧ σk))dP

≥ P{σk ≤ t}inf |η|≥k,t≥0,i∈SV (η, t, i),

one has

P{σk ≤ t} ≤ V (η(0), 0, r0) +
∫ t
0 λ(s)ds

inf |η|≥k,t≥0,i∈S V (η, t, i)
.

Taking λ(t) ∈ L1(R+;R+) and (3.1) into consideration, we can obtain that

P{σ ≤ t} = 0.

Since t is arbitrary, we have P{σ = ∞} = 1, which completes the proof.

Lemma 3: [16] Let A1(t) and A2(t) be two continuous adapted increasing processes on t ≥ 0 with A1(0) =

A2(0) = 0 a.s., M(t) be a real-valued continuous local martingale with M(0) = 0 a.s., and φ satisfying Eφ < ∞
be a nonnegative F0-measurable random variable. Denote X(t) = φ+ A1(t)− A2(t) +M(t) for all t ≥ 0 . If

X(t) is nonnegative, then

{ lim
t→∞

A1(t) < ∞} ⊂ { lim
t→∞

X(t) < ∞} ∩ { lim
t→∞

A2(t) < ∞} a.s.

where C ⊂ D a.s. means P(C ∩Dc = 0) = 0. In particular, if limt→∞A1(t) < ∞ a.s., then,

lim
t→∞

X(t) < ∞, lim
t→∞

A2(t) < ∞ and −∞ < lim
t→∞

M(t) < ∞ a.s.

That is, all of the three processes X(t), A2(t) and M(t) converge to finite random variables with probability

one.

After presenting the previous three lemmas, we are now in a position to prove the Theorem 3.1.

Proof of Theorem 3.1.

According to Lemma 1 and the condition (3.2), we have

V (η(t), t, r(t)) = V (η0, 0, r0) +

∫ t

0
LV (η(s), s, r(s))ds

+

∫ t

0
Vη(η(s), s, r(s))ge(η(s), s, r(s))dω(s)

+

∫ t

0

∫

R

[V (η(s), s, r0 + n(r(s), α)) − V (η(s), s, r(s))]µ(ds, dα)

≤ V (η0, 0, r0) +

∫ t

0
λ(s)ds−

∫ t

0
n(V (η(s), s, r(s)))ds

+

∫ t

0
Vη(η(s), s, r(s))ge(η(s), s, r(s))dω(s)

+

∫ t

0

∫

R

[V (η(s), s, r0 + n(r(s), α) − V (η(s), s, r(s))]µ(ds, dα). (3.4)
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Since
∫∞
0 λ(s)ds < ∞, applying Lemma 3, it follows that there is an Ω̄ ⊂ Ω with P(Ω̄) = 1 such that for

every ω ∈ Ω̄

limt→∞ supV (η(t), t, r(t)) < ∞, (3.5)

and

lim
t→∞

∫ t

0
n(V (η(s), s, r(s)))ds =

∫ ∞

0
n(V (η(s), s, r(s)))ds < ∞. (3.6)

In what follows, for every ω ∈ Ω̄, we claim that

lim
t→∞

n(V (η(t, ω), t, r(t))) = 0. (3.7)

If (3.7) is false, then for some ω̂ ∈ Ω̄ and i ∈ S, the following inequality

lim
t→∞

supn(V (η(t, ω̂), t, i)) > 0

holds. Therefore, there exist a number ε > 0 and a positive sequence {tk}k≥1 with tk + 1 < tk+1 such that

n(V (η(tk, ω̂), tk, i)) > ε for all k ≥ 1. (3.8)

On the other hand, it is straightforward to see from (3.5) that n(V (η(tk, ω̂), tk, i)) and V (η(t, ω̂), t, i) are

bounded and uniformly continuous. Let h be the bound of n(V (η(tk, ω̂), tk, i)) and δ1 be a positive number

to satisfy

|n(u)− n(v)| ≤ ε

2
if 0 ≤ u, v ≤ h, |u− v| < δ1. (3.9)

Furthermore, there is a δ2 ∈ (0, 1/2) such that

|V (η(t, ω̂), t, i) − V (η(s, ω̂), s, i)| < δ1 if 0 ≤ t, s < ∞, |t− s| ≤ δ2. (3.10)

Moreover, for every k ≥ 1, it follows from (3.9) and (3.10) that

|n(V (η(tk, ω̂), tk, i)) − n(V (η(t, ω̂), t, i))| ≤ ε

2
if tk ≤ t ≤ tk + δ2.

For tk ≤ t ≤ tk + δ2, it follows from (3.8) that

n(V (η(t, ω̂), t, i)) ≥ n(V (η(tk, ω̂), tk, i)) − |n(V (η(tk, ω̂), tk, i)) − n(V (η(t, ω̂), t, i))| ≥ ε

2

which results in

∫ ∞

0
n(V (η(t, ω̂), t, i))dt ≥

∞
∑

k=1

∫ tk+δ2

tk

n(V (η(t, ω̂), t, i))dt ≥
∞
∑

k=1

εδ2
2

= ∞.

This contradicts (3.6), which implies that (3.7) must be true.

Finally, noting n ∈ K, we have

lim
t→∞

V (η(t; η0, r0), t, i) = 0 a.s.

which, together with (3.1), yields

lim
t→∞

µ1(|η(t; η0, r0)|) = 0 a.s.

Because µ1(u) = 0 if and only if u = 0, we must therefore have

lim
t→∞

|η(t; η0, r0)| = 0 a.s.
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which completes the proof of Theorem 3.1.

In the following theorem, a sufficient condition is derived to obtain a suboptimal almost sure state estimator.

Theorem 3.2: For each i ∈ S, assume that there are functions V ∈ C2,1(R2n×R+×S;R+) with V (0, t, i) = 0,

µ1 ∈ K∞, n ∈ K and the constant matrix Ki such that

µ1(|η|) ≤ V (η, t, i), (3.11)

LV (η, t, i) + |z̃|2 ≤ −n(V (η, t, i)), (3.12)

hold for all (η, t, i) ∈ R
2n × R+ × S. In this case, the state estimator (2.2) is a suboptimal almost sure state

estimator in which the gain matrix is obtained by solving the following optimization problem:

min
s.t. Ki,(3.11),(3.12)

V (η(0), 0, i). (3.13)

Proof: Firstly, in terms of Theorem 3.1, the system (2.4) is almost sure asymptotically stable, that is

lim
t→∞

η(t) = 0 a.s. (3.14)

For every i ∈ S and t ≥ 0, by means of the condition of V (0, t, i) = 0, it is not difficult to verify that

lim
t→∞

V (η(t), t, i) = 0 a.s. (3.15)

Moreover, for any T > 0, it follows from Lemma 1 and (3.12) that

E

∫ T

0
|z̃|2dt = E

∫ T

0
[|z̃|2 + dV (η(t), t, i)]dt + V (η0, 0, i) − EV (η(T ), T, i)

= V (η0, 0, i) − EV (η(T ), T, i) + E

∫ T

0
(|z̃|2 + LV (η(t), t, i))dt + E

∫ T

0
Vηgedω

≤ V (η0, 0, i) − EV (η(T ), T, i) + E

∫ T

0
−n(V (η, t, i))dt

≤ V (η0, 0, i) − EV (η(T ), T, i). (3.16)

Finally, taking T → ∞ in (3.16), it follows from (3.15) that

min
s.t. Ki,(3.11),(3.12)

E

∫ T

0
|z̃|2dt ≤ min

s.t. Ki,(3.11),(3.12)
V (η0, 0, i) ∀ i ∈ S

which completes the proof.

Remark 3: It can be found from the proof of Theorem 3.2 that, for each i ∈ S, V (η0, 0, i) is not a tight

upper bound of E
∫∞
0 |z̃|2dt. Obviously, it is a difficult task to determine the tightest (minimal) upper bound

due to difficulty in choosing n(V (η, t, i)). Instead, a more realistic way is to take V (η0, 0, i) as a smaller upper

bound of E
∫∞
0 |z̃|2dt. It should be pointed out that, as discussed in [32], V (η0, 0, i) is a tighter upper bound

of E
∫∞
0 |z̃|2dt when the condition (3.12) reduces to LV (η, t, i) ≤ −|z̃|2.

Obviously, the sufficient conditions given in Theorem 3.2 are difficult to be verified/solved. For application

convenience, a special Lyapunov function V (η) = V (x) + V (x̂) can be utilized to decoupled the complicated

nonlinear inequality (3.12) into a seemingly simple form in the following corollary.

Corollary 1: Assume that there are two positive definite matrices Pi, Qi, a set of matrices Ki (i ∈ S), and

a positive scalar εi such that

2xTPif + ε−1
i h2 + gTPig + 2m2 + xTPix+ 2x̂TQif̂ + εix̂

TQiKiK
T
i Qix̂+ 2m̂2 + x̂TQix̂ < 0 (3.17)
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holds for all x ∈ R
n, x̂ ∈ R

n. In this case, the state estimator (2.2) is a suboptimal almost sure state estimator

in which the gain matrix is obtained by solving the following optimization problem:

min
s.t. Ki,(3.17)

Pix
2
0. (3.18)

Proof: Define the following Lyapunov function

V (η, t, i) = xTPix+ x̂TQix̂

and let n(V (η, t, i)) = V (η, t, i). Then, the condition (3.12) associated with the system (2.4) becomes

2xTPif + 2x̂TQif̂ + 2x̂TQiKih+ gTPig + |z̃|2 + xTPix+ x̂TQix̂ < 0. (3.19)

Applying the inequality

XTY + Y TX ≤ εXTX + ε−1Y TY, ∀ε > 0, (3.20)

one has

2λx̂TKih ≤ εix̂
TQiKiK

T
i Qix̂+ ε−1

i h2, (3.21)

and

|z̃|2 = |m− m̂|2 ≤ 2m2 + 2m̂2. (3.22)

On the other hand, it follows from (3.19)-(3.22) that the condition (3.12) is true. Therefore, it follows from

Theorem 3.2 that the state estimator (2.2) is a suboptimal almost sure state estimator and its gain matrix is

obtained by solving the following optimization problem (3.18).

To illustrate the application insights of the main results we have obtained so far, a linear state estimator

is adopted to study the suboptimal almost sure state estimation problem for a class of special NHSSs in the

next section.

IV. A Class of Special NHSSs with Linear Estimator

In the sequel, we denote the matrix associated with the ith mode by

Γi , Γ(r(t) = i)

where the matrix Γ could be A,B,C,L, F,H or K.

Consider a class of special nonlinear hybrid stochastic system as follows:














dx(t) = [A(r(t))x(t) + f(x(t), r(t))]dt+B(r(t))x(t)dω(t)

y(t) = C(r(t))x(t) + φ(x(t), r(t))

z(t) = L(r(t))x(t)

(4.1)

where Ai, Bi, Ci and Li are known matrices with appropriate dimensions, f(·, ·) and φ(·, ·) are nonlinear

functions which are assumed to satisfy the following conditions for every i ∈ S:

|f(x(t), i)|2 ≤ xTFix, |φ(x(t), i)|2 ≤ xTHix

with known positive definite matrices Fi and Hi.

We are interested in constructing a linear estimator of the following form for system (4.1)

{

dx̂(t) = A(r(t))x̂(t)dt+K(r(t))y(t)dt,

dẑ(t) = L(r(t))x̂(t), x̂(0) = 0.
(4.2)
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where x̂(t) ∈ R
n is the estimate of state x(t), ẑ(t) ∈ R

q is the estimate of the output z(t), and K(i) is the

estimator gain matrix to be designed. The augmented system can be written as follows:

{

dη(t) = fe(η(t), r(t)) + ge(η(t), r(t))dω(t)

z̃(t) = L(r(t))x(t) − L(r(t))x̂(t), x̂(0) = 0
(4.3)

where

fe(η(t), r(t)) =

[

A(r(t))x(t) + f(x(t), r(t))

A(r(t))x̂(t) +K(r(t))(C(r(t))x(t) + φ(x(t), r(t)))

]

ge(η(t), r(t)) =
[

BT (r(t))x(t) 0
]T

.

Applying Theorem 3.2, we have the following result for which only the sketch of the proof is given in order

to ensure the conciseness.

Theorem 4.1: For the augmented system (4.3), if there exist matrices Ki (i ∈ S), and positive scalars ε1i, ε2i

and λ satisfying the following matrices inequalities:

















Ωi λKiCi Πi 0 0

∗ λAi + λAT
i + λI 0 λLi Bfi

∗ ∗ Λi 0 0

∗ ∗ ∗ −1
2I 0

∗ ∗ ∗ ∗ −ε2iI

















< 0, ∀ i ∈ S (4.4)

where

Ωi = λAi + λAT
i + ε1iλ

2I + ε2iλ
2Hi + λI,

Πi = [Fi λBi Li], Λi = diag{−ε1iFi, −I, −1

2
I},

then the state estimator (4.2) is a suboptimal almost sure state estimator in which the gain matrix is obtain

by solving the following optimization problem

min
s.t. Ki,(4.4)

λx2(0). (4.5)

Proof: Define the following Lyapunov function for system (4.3) as follows:

V (η(t), t, i) = ληT (t)η(t) = λxT (t)x(t) + λx̂T (t)x̂(t), ∀i ∈ S (4.6)

and let n(V (η, t, i)) = ληT (t)η(t) = V (η(t), t, i).

Based on Lemma 1, the condition (3.12) associated with the system (4.3) becomes

Vt + Vηfe +
1

2
gTe Vηηge +

N
∑

j=1

γijVj + |z̃|2 + λη2

= 2λxT (t)Aix(t) + 2λxT (t)f(x(t), i) + 2λx̂T (t)Ax̂(t) + 2λx̂T (t)Ki(Cix(t) + φ(x(t), i))

+ λxT (t)BT
i Bix(t) + |Lix(t)− Lix̂(t)|2 + λxT (t)x(t) + λx̂T (t)x̂(t)

≤ xT (t)[λAi + λAT
i + ε1iλ

2I + ε−1
1i Fiε2iλ

2Hi + λBT
i Bi + 2λ2LT

i Li + λI]x(t)

+ x̂T (t)[λKiCi + λCT
i K

T
i ]x(t) + x̂T (t)[λAi + λAT

i + ε−1
2i K

T
i Ki + 2LT

i Li + λI]x̂(t).

(4.7)

By using the Schur Complement Lemma, it follows directly from (4.4) that the right-hand side of the

inequality in (4.7) is less than zero for all η(t) 6= 0, which means that the condition (3.12) associated with
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the system (4.3) holds. Furthermore, it is easy to verify that (3.11) is also true. Therefore, it follows from

Theorem 3.2 that the state estimator (4.2) is a suboptimal almost sure one with its gain matrix obtained by

solving the optimization problem (4.5).

V. Examples

To illustrate the effectiveness of the proposed methods, two numerical examples are given in this section.

For this purpose, let ω(t) be a scalar Wiener process, γ(t) be a right-continuous Markov chain which is

independent on ω(t) and takes values in S = {1, 2}, and the step size be △=0.005.

Example 1: The analysis of almost surely asymptotic stability

Let the generator Γ be

Γ = (γij)2×2 =

(

−0.9 0.9

0.5 −0.5

)

.

Consider the system (2.1) with parameters:

f(x(t), t, 1) = −3

2
x(t) + e−t/2, g(x(t), t, 1) = x sin(t), h(x(t), t, 1) = x(t);

f(x(t), t, 2) = −2x(t) + sin(x(t)), g(x(t), t, 2) =
1√
2
x cos(t), h(x(t), t, 2) = x(t).

By selecting K1 = 1, K2 = 0.5, λ(t) = e−t and V (η, t, r(t)) = x2(t) + x̂2(t), and utilizing Theorem 3.1, we

can check that the augmented system (2.4) is almost surely asymptotically stable. The simulation results of

the actual state trajectory x(t) and its estimate x̂(t) are shown in Fig. 1. It can be found that they tend to

zeros when t → +∞.

Example 2: The design of suboptimal almost sure state estimator

Let the generator Γ be

Γ = (γij)2×2 =

(

−1.2 1.2

0.6 −0.6

)

.

Consider the system (4.1) with parameters

A1 = −2, f(x(t), 1) =
1

2
x(t) sin(t), B1 =

1

2
,

C1 =
1

2
, φ(x(t), 1) =

1

2
x(t) cos(t), L1 =

1

2
,

A2 = −3, f(x(t), 2) =
1

3
x(t) sin(t), B2 =

1

3
,

C2 =
1

3
, φ(x(t), 2) =

1

3
x(t) cos(t), L2 =

1

3
.

By using Matlab software to solve (4.4) and the optimization problem (4.5) in Theorem 4.1, we obtain that

K1 = 0.52, ε11 = 2.33, ε21 = 1.17,

K2 = 1.12, ε21 = 6.3, ε22 = 1.32, λ = 0.412.

The simulation results are shown in Fig. 2 and Fig. 3, where Fig. 2 plots the real state x and its estimate x̂,

and Fig. 3 depicts the estimate error x− x̂. The simulation results have confirmed that the designed estimator

performs very well.
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VI. Conclusions

In this paper, we have investigated the suboptimal almost sure state estimation problem for a class of

general nonlinear hybrid stochastic systems with the assumption that coefficients only satisfy local Lipschitz

conditions. By utilizing the stopping time method combined with martingale inequalities, sufficient conditions

have been obtained such that the estimation error process is almost surely asymptotically stable and the upper

bound of estimation error is also determined. Then, a linear suboptimal state estimator has been obtained by

solving an optimal problem. Based on the proposed results, for a class of special nonlinear hybrid stochastic

systems, the corresponding conditions have been decoupled into a set of matrix inequalities which can be

easily solved by using Matlab software. Finally, the results derived in this paper have been demonstrated by

using two numerical examples.
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Fig. 3. Estimation error x− x̂ of Example 2.


