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Event-basedH∞ Consensus Control of Multi-agent
Systems with Relative Output Feedback:

the Finite-Horizon Case

Qinyuan Liu, Zidong Wang, Xiao He and D. H. Zhou

Abstract—In this paper, the H∞ consensus control problem is investi-
gated over a finite horizon for general discrete time-varying multi-agent
systems subject to energy-bounded external disturbances.A decentralized
estimation-based output feedback control protocol is put forward via
the relative output measurements. A novel event-based mechanism is
proposed for each intelligent agent to utilize the available information in
order to decide when to broadcast messages and update control input.
The aim of the problem addressed is to co-design the time-varying
controller and estimator parameters such that the controlled multi-
agent systems achieve consensus with a disturbance attenuation level
γ over a finite horizon [0, T ]. A constrained recursive Riccati difference
equation approach is developed to derive the sufficient conditions under
which the H∞ consensus performance is guaranteed in the framework of
event-based scheme. Furthermore, the desired controller and estimator
parameters can be iteratively computed by resorting to the Moore-
Penrose pseudo inverse. Finally, the effectiveness of the developed event-
basedH∞ consensus control strategy is demonstrated in the numerical
simulation.

Index Terms—Multi-agent systems; event-based mechanism;H∞ con-
sensus; Riccati difference equation; output feedback.

I. I NTRODUCTION

During the past decade, the coordination problems of multi-agent
systems have been a research focus attracting an increasinginterest
due primarily to their practical application insights in a variety of
realms such as satellite formation control [3], collectivebehavior of
flocking [22], attitude alignment among spacecraft [14], distributed
estimation [7] and automated highway systems [2]. A critical issue
in coordinated control problems is to design a distributed control
protocol for communication behaviors and controller actuation based
on the shared information (including graph topologies, real-time
states of adjacent nodes and common control algorithms) in order to
ensure that all the agents reach an agreement or collectively perform
certain actions. Many important results have recently beenreported on
the cooperative control problems for multi-agent systems,see e.g. [4],
[8], [10], [11], [16]–[19], [21], [24], [29] and the references therein.

Consider the practical situations where the states of the multi-
agent systems are subject to real-time changes/variations/fluctuations
such as time-varying temperature and mutative working conditions.
In this circumstance, the evolution of the dynamics of localagents
is inevitably dependent on the time. For such time-varying systems,
in response to the changes in the environment, the intelligent agents
should adopt thetime-varying cooperative control strategies so as
to better reflect the reality. A literature search has shown that
several methodologies have recently been developed for time-varying
systems and a great number of results have been available forthe
general control and filtering problems. These methodologies include,
but are not limited to, the recursive linear matrix inequality (RLMI)
technique [20] and the backward recursive Riccati difference equation
(RDE) approach [25]. Unfortunately, up to now, the corresponding
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results on the coordination problems for time-varying multi-agent
systems have been really scattered, and the first motivationof this
paper is to shorten such a gap.

Owing to the recent advances in digital technologies, embedded
microprocessors, which are responsible for communicationbetween
adjacent agents, have been becoming indispensable components of
multi-agent systems. In anideal world, the communication bandwidth
is assumed to be unlimited and the traditionally periodically triggered
communication won’t bring any concern in terms of the network load.
Such an assumption, however, is not true in some applications subject
to certain resource constraints such as limited network bandwidth. For
example, the frequent signal transmissions might give riseto network-
related adverse phenomena such as communication delays andpacket
losses. In this case, a novel sporadic scheduling (called the event-
based approach) seems to be more preferable, where the pre-described
executions are triggered if and only if some ‘interesting’ events
occur. With appropriately developed triggering events, itis predictable
that both the reduction of bandwidth occupation and the desired
properties of close-loop system (e.g. stability and convergence) can
be guaranteed [1].

Up to now, many event-based schemes have been available in the
literature for continuous- or discrete-time systems basedon the input-
to-state stable (ISS) theory, see for instance [15] and the references
therein. Such sporadic event-based schemes have been applied in
[27] for distributed network control systems (NCSs) with packet
loss and transmission delays. Event-based control problems have also
been addressed for multi-agent systems, see e.g. [5], [6], [9], [23],
[28]. Specifically, in [5], both centralized and decentralized event-
based control strategies have been proposed for a group of single-
integrator multi-agents in order to reach an agreement according
to a fixed undirected network topology. The event-based tracking
control problem has been investigated in [9] for leader-follower multi-
agent systems with and without communication delays, wherethe
convergence analysis has been provided. Several linear matrix in-
equality (LMI) conditions have been reported in [28] for event-based
control problem of discrete-time heterogeneous multi-agent systems.
Additionally, in [6], the distributed event-based methodshave been
combined with an iterative algorithm to render the implementation
more practical. A novel event-based strategy, which is independent
of the real-time state of neighbors, has been examined in [23] for
both single and double-integrator agents such that the continuous
monitoring is no longer required. As for general agent dynamics,
in [32], the authors have intensively investigated the consensus of
multi-agent systems when the individual full state is available for its
neighbors. Furthermore, in [30] and [31], the event-based consensus
problems have been thoroughly studied for general linear ornonlinear
system dynamics by assuming that each agent is passive.

It should be pointed out, despite the recent surge of research
attention on the event-based schemes for multi-agent systems, several
challenges still remain. First, most available results have been con-
cerned with single or double-integratortime-invariantmodelswithout
any external disturbances. Unfortunately, in real-world applications,
the behaviors of local agents are usually complicated especially when
they suffer from various stochastic disturbances and communication-
induced noises. It is of vital importance to suppress the influence
from the external noise disturbances for general multi-agent systems
through analyzing and synthesizing the cooperative control schemes,
for which theH∞ disturbance rejection attenuation would be a suit-
able performance index. So far, some preliminary results [12], [13]
have been reported on theH∞ consensus control problem with the
assumption that real-time information of adjacent nodes’full states
is available in order for the agents to share their local information at
every sampling instant. Such an assumption is somewhat restrictive
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in practice since the state of agents may not be easily available in
some occasions. Also, the real-time full state feedback would increase
the communication frequency, which is undesirable. To resolve the
problem, a natural idea is to develop an appropriate event-based
control scheme by usingaccessible relative measurement outputs
instead of the full states, and this motivates us to investigate the
H∞ consensus control problem.

Summarizing the above discussions, in this paper, we aim to deal
with the H∞ consensusproblems for a class of lineartime-varying
multi-agent systems with external disturbances by usingrelative
output feedback. An event-based scheme is proposed to distributively
calculate event times based on a predetermined data transmission
condition in order to reduce the communication burden amongagents.
Moreover, we would like to derive sufficient conditions under which
the consensus error is bounded in anH∞ sense over a finite horizon.
The corresponding time-varying estimation-based output feedback
controller is designed via optimizing anH2 performance index. The
main contributions can be highlighted as follows:1) the discrete-
time intelligent agents with general dynamics are under consideration
which cover the frequently investigated integrator modelsas special
cases; 2) the transient behaviors are studied in order to reflect
the time-varying nature of the addressed multi-agent systems; 3) a
novel event-based control protocol is first proposed for thetime-
varying multi-agent systems so as to achieve the prespecified H∞

constraints over a finite horizon[0, T ]; and 4) different from the
existing literature, relative measurements between adjacent agents
are utilized for the event-based feedback control.

Notation. Except where otherwise stated, the notations used
throughout the paper are standard.L2([0, T ];R

n) is the space
of square-summablen-dimensional vector functions over[0, T ]. 1
represents theN × 1 column vector of with all the elements equal
to 1 and0n denotes then × n zero matrix.diag{.} stands for a
block-diagonal matrix andcolN{xi} represents[xT

1 , · · · , x
T
N ]T . MT

denotes the transpose of a matrixM , andM† ∈ R
n×m describes

the Moore-Penrose pseudo inverse ofM ∈ R
m×n. ‖x‖ stands for

the Euclidean norm of a vectorx and‖f‖2Ω representsfTΩf .

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce some preliminaries related todis-
tributed control of multi-agent systems and then describe the problem
setup.

A. Graph topology

The communication topology of the system is described by a
fixed undirected graphG = (V, E ,A) of order N with the set of
nodesV ={1, 2, · · · , N}, the set of edgesE = V × V, and the
weighted adjacency matrixA =[aij ]. The weighted adjacency matrix
of the graph is a matrix with nonnegative elementsaij satisfying the
propertyaij > 0 ⇐⇒ (i, j) ∈ E , which means if there is an edge
between nodesi andj, then they are called adjacent. Note that for an
undirected graphG, A is a symmetricN×N matrix given byaij = 1
(if nodesi andj are adjacent) andaij = 0 (otherwise). The graphG
is assumed to be connected where there is a path between any oftwo
nodes. The neighbors of nodei is denoted byNi , {j|(i, j) ∈ E}.
The degreeD is a diagonal matrix with elementsdi defined as the
number of its adjacent vertices. The Laplacian of undirected graph
G is a symmetric positive semidefinite matrixH = D − A.

B. Problem Formulation

Consider a multi-agent system withN identical agents, labelled
by 1, 2, · · · , N , respectively. The dynamics of agenti is governed

by the following discrete time-varying systems:










xi(k + 1) = Akxi(k) +Bkui(k) +Dkwi(k),

yi(k) = Ckxi(k) + Ekvi(k),

zi(k) = Mkxi(k)

(1)

where xi(k) ∈ R
nx is the system state,wi(k) ∈ R

nw and
vi(k) ∈ R

nv are the external disturbances belonging toL2[0, T ],
yi(k) is the measurement output,zi(k) is the controlled output, and
ui(k) is a sequence of control inputs. Note that the system (1) under
consideration is quite general which includes the single- and second-
order integrators as special cases.

Owing to the time-varying manner of the system and the influence
from external disturbances, it is difficult for the multi-agents to
achieve asymptotic and accurate consensus. Therefore, in this paper,
the finite-horizonH∞ consensus problem is taken into account to
alleviate the interferences from the time-varying parameters and the
external disturbances on the desired agreement among the agents.

Definition 1: Let a disturbance attenuation levelγ > 0 and a
positive definite matrixW = W T > 0 be given. The multi-agent
system (1) with a prefixed connected topology is said to satisfy the
H∞ consensus performance constraint over the finite horizon[0, T ]
if the following inequality holds:

N
∑

i=1

‖z̄i(k)‖
2
[0,T ]

< γ
2

N
∑

i=1

{

‖wi(k)‖
2
[0,T ] + ‖vi(k)‖

2
[0,T ] + x̄

T
i (0)Wx̄i(0)

}

(2)

where z̄i(k) = zi(k) − 1
N

∑N

j=1 zi(k), ‖z̄i(k)‖
2
[0,T ] =

∑T

k=0 ‖z̄i(k)‖
2 and x̄i(0) = xi(0)− 1

N

∑N

j=1 xi(0).
Remark 1:The asymptotic (steady-state)H∞ consensus problem

has been dealt with in [12] for time-invariant system over aninfinite
horizon. To capture the behaviors of time-varying systems addressed
in this paper, it makes more sense to study the finite-horizon
(transient)H∞ consensus control problem with hope to attenuate
the effects from external disturbances over a specific time period.

C. Cooperative Estimators Design

Consider the situation where each agent has access to the mea-
surements relative to its adjacent agents rather than the local mea-
surements, which means the measurementsyi(k) (i = 1, 2, · · · , N )
cannot be obtained directly. In the following, a distributed estimator-
type consensus protocol is proposed based on relative output mea-
surements, which utilizes the state estimation information (for the
controller design) and the output measurement information(for the
estimator design).

The relative measurement of adjacent agents with respect toagent
i is defined by

ζi(k) =
∑

j∈Ni

aij(yj(k)− yi(k)), ζi(k) ∈ R
ny (3)

and the relative full state is defined by

ξ
∗
i (k) =

∑

j∈Ni

aij(xj(k)− xi(k)), ξ
∗
i (k) ∈ R

nx . (4)

Note that the relative full state is unavailable but could beesti-
mated. As such, an estimator-type consensus protocol is proposed
as











ξi(k + 1) = Akξi(k) +Bk

∑

j∈Ni
aij(uj(k)− ui(k))

+ Lk(ζi(k)−Ckξi(k))

ui(k) = Kkξi(k)

(5)
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where ξi(k) ∈ R
nx is an estimate for the variableξ∗i (k) and Lk

(Kk) are the estimator (controller) parameters to be determined with
appropriate dimensions. The control term

∑

j∈Ni
(uj(k)−ui(k)) in

(5) requires the information exchanges between each agent and its
neighbors, which renders the protocol (5) distributed and convenient
for implementation in practical applications.
D. Event-based Mechanism

Thanks to its capabilities to reduce the information exchange
frequency, the event-based mechanism has proven to be suitable for
distributed control of multi-agent systems subject to limited network
resources.

For the purpose of introducing the event-based scheduling,we first
denote the triggering instant sequence of agenti by si0 = 0 < si1 <

si2 < · · · and then defineξti(k) = ξi(s
i
m) for k ∈ [sim, sim+1) with

the superscript “t” indicating triggering. To this end, the event-based
estimator-type consensus protocol (5) can be rewritten as follows with
a little abuse of the notationξi(k):











ξi(k + 1) = Akξi(k) +Bk

∑

j∈Ni
aij(u

t
j(k)− ut

i(k))

+ Lk(ζi(k)− Ckξi(k))

ut
i(k) = Kkξ

t
i(k)

(6)

and the dynamics of the close-loop system can be rewritten as










xi(k + 1) = Akxi(k) +Bku
t
i(k) +Dkwi(k),

yi(k) = Ckxi(k) + Ekvi(k),

zi(k) = Mkxi(k).

(7)

Moreover, let σ be a given positive scalar and the distributed
triggering functionfi(k, ξi(k), ξti(k), σ) be given by

fi(k) = (ξi(k)− ξ
t
i(k))

T (ξi(k)− ξ
t
i(k))− σξ

T
i (k)ξi(k) (8)

which takes values inR for each agent. The control execution is
triggered as long as the inequalityfi(.) > 0 is satisfied, i.e.

(ξi(k)− ξ
t
i(k))

T (ξi(k)− ξ
t
i(k)) > σξ

T
i (k)ξi(k). (9)

Therefore, the next triggering instant is determined iteratively by

s
i
m+1 = min{k ∈ N|k > s

i
m, fi(k, ξi(k), ξ

t
i(k), σ) > 0} (10)

Remark 2:From the event-based protocol (6), it can be seen
that the estimator constructed for each agent updates the signals
∑

j∈Ni
(ut

j(k) − ut
i(k)) at event triggering instants for both the

adjacent agents and itself, while the control input signalsare corrected
only when the agent triggers an event. On the other hand, once(9)
is satisfied, a new event is triggered to correct difference of the
estimationξi(k) (local knowledge) and the estimation at event times
ξti(k) (shared knowledge between adjacent nodes). According to the
triggering rules (10), at triggering instants, we haveξti(k) = ξi(k)
which indicates thatfi(k, ξi(k), ξti(k), σ) ≤ 0 would never be
violated during the system process. Moreover, the scalarσ regulates
the triggering frequency. Obviously, more events would be triggered
if such a scalar decreases. Particularly, whenσ = 0, the event-based
control approach reduces to the classical clock-driven control one.

To facilitate the subsequent formulation, the corresponding estima-
tion error and the control input error (between actual and ideal input
signals) are defined, respectively, by

e
s
i (k) = ξi(k)− ξ

∗
i (k), e

t
i(k) = ξ

t
i(k)− ξ

∗
i (k).

For notational presentation convenience, here we denote

x(k) = colN{xi(k)}, ξ
∗(k) = colN{ξ∗i (k)}, ξ(k) = colN{ξi(k)}

v(k) = colN{vi(k)}, w(k) = colN{wi(k)}, e
s(k) = colN{esi (k)}

e
t(k) = colN{eti(k)}, u

t(k) = colN{ut
i(k)}, u(k) = colN{ui(k)}

z(k) = colN{zi(t)}, z̄(k) = colN{z̄i(t)}

Combining the consensus protocol (6) with the multi-agent systems
(7), we have the following compact form:

x(k + 1) = (IN ⊗ Ak)x(k) + (IN ⊗BkKk)e
t(k)

+ (IN ⊗BkKk)ξ
∗(k) + (IN ⊗Dk)w(k)

(11)

It can be verified thatξ∗(k) = −(H ⊗ Inx)x(k). Letting s(k) ,
et(k)− es(k) = ξt(k)− ξ(k) represent the control error introduced
by the event-based schedule, (11) becomes

x(k + 1) = (IN ⊗ Ak −H ⊗BkKk)x(k) + (IN ⊗BkKk)e
s(k)

+ (IN ⊗BkKk)s(k) + (IN ⊗Dk)w(k)

Next, it follows from the relationshipes(k) = ξ(k)− ξ∗(k) that

e
s(k + 1) = (IN ⊗ (Ak − LkCk)) e

s(k)

− (H ⊗ LkEk)v(k) + (H ⊗Dk)w(k)
(12)

Similar to z̄i(k), we let x̄i(k) = xi(k)−
1
N

∑N

i=1 xi(k) and then get
x̄(k) = (Hm ⊗ Inx)x(k), where x̄(k) = colN{x̄i(k)} andHm =
IN − 1

N
11T . It can be derived that

x̄(k + 1) = (Hm ⊗ Ak −HmH ⊗BkKk)x(k) + (Hm

⊗BkKk)e
s(k) + (Hm ⊗BkKk)s(k) + (Hm ⊗Dk)w(k)

(13)

Utilizing the properties of matrixHm, we haveHmHm = Hm as
well asHmH = HHm = H . Apparently, (13) can be converted into
the form

x̄(k + 1) = (Hm ⊗ Ak −H ⊗BkKk)x̄(k) + (Hm ⊗BkKk)e
s(k)

+ (Hm ⊗BkKk)s(k) + (Hm ⊗Dk)w(k)

By defining the variablesX(k) , [ x̄T (k) (es(k))T ]T andω(k) ,
[ wT (k) vT (k) ]T , we obtain the augmented system as follows











X(k + 1) = AkX(k) + Bks(k) +Dkω(k)

z̄(k) = MkX(k)

ξ(k) = HX(k)

(14)

where

Ak =

[

Hm ⊗ Ak −H ⊗BkKk Hm ⊗BkKk

0 IN ⊗ (Ak − LkCk)

]

,

Bk =

[

Hm ⊗BkKk

0

]

, Dk =

[

Hm ⊗Dk 0
H ⊗Dk −H ⊗ LkEk

]

,

Mk =
[

IN ⊗Mk 0
]

, H =
[

−H ⊗ Inx IN ⊗ Inx

]

.

We are now in a position to state the problem addressed in this
paper as follows. We aim to design appropriate controller and esti-
mator parameters to ensure that the controlled system (14) achieves
the following H∞ consensus performance constraint over the finite
horizon [0, T ]:

‖z̄(k)‖2[0,T ] < γ
2
{

‖ω(k)‖2[0,T ] + x̄
T (0)(IN ⊗W )x̄(0)

}

. (15)

III. M AIN RESULTS

To start with, we first deal with the performance analysis problem,
that is, derive the sufficient conditions under which theH∞ consensus
performance requirement (15) is guaranteed in terms of the feasibility
of a backward RDE.

Lemma 1:Consider the multi-agent systems (1) with the
estimator-type consensus protocol (5) and the event-basedmechanism
(10). Given a disturbance attenuation levelγ > 0, a positive scalar
θ > 0 and a positive definite matrixW . For any disturbance
sequence{ω(k)}0≤k≤T , the augmented system (14) satisfies the
H∞ consensus performance index if there exist a set of matrices
{Kk}0≤k≤T , {Lk}0≤k≤T and a set of non-negative definite matrices
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{Pk}0≤k≤T+1 (with final condition PT+1 = 0) to the following
backward RDE:

Pk = AT
k Rk+1Ak +AT

k Rk+1DkΩ
−1
k+1D

T
k Rk+1Ak

+MT
k Mk + σθ

2HTH
(16)

subject to

Φk+1 , θ
2
I −BT

k Pk+1Bk > 0,

Ωk+1 , γ
2
I −DT

k Rk+1Dk > 0,

P0 < γ
2(I2N ⊗W )

(17)

where

Rk+1 , Pk+1(I − θ
−2BkB

T
k Pk+1)

−1
. (18)

Proof: First, define a Lyapunov-like quadratic function
Vk(X(k)) = XT (k)PkX(k). For a set of non-negative definite ma-
trices{Pk}0≤k≤T , the difference ofVk(X(k)) along the trajectory
of (14) is calculated as follows:

Y
(1)
k , Vk+1(X(k + 1))− Vk(X(k))

= ‖AkX(k) + Bks(k) +Dkω(k)‖
2
Pk+1

− ‖X(k)‖2Pk

Furthermore, by introducing the zero term‖z̄(k)‖2 − γ2‖ω(k)‖2 −
‖z̄(k)‖2 + γ2‖ω(k)‖2 + θ2‖s(k)‖2 − θ2‖s(k)‖2, we obtain that

Y
(1)
k = X

T (k)(AT
k Pk+1Ak +MT

k Mk − Pk)X(k)− ‖s(k)‖2Φk+1

− ‖ω(k)‖2γ2I−DT
k
Pk+1Dk

+ 2XT (k)AT
k Pk+1Dkω(k)

+ 2sT (k)BT
k Pk+1Dkω(k) + 2XT (k)AT

k Pk+1Bks(k)

− ‖z̄(k)‖2 + γ
2‖ω(k)‖2 + θ

2‖s(k)‖2

By using the matrix inversion lemma and substitutingΦk+1, one has

Rk+1 = Pk+1+Pk+1BkΦ
−1
k+1B

T
k Pk+1 = Pk+1(I−θ

−2BkB
T
k Pk+1)

−1

Completing the square fors(k), we have the following equation:

Y
(1)
k = X

T (k)(AT
kRk+1Ak +MT

kMk − Pk)X(k)

+ 2XT (k)AT
k Rk+1Dkω(k)− ‖s(k)− s

∗(k)‖2Φk+1

− ‖ω(k)‖2Ωk+1
− ‖z̄(k)‖2 + γ

2‖ω(k)‖2 + θ
2‖s(k)‖2

where s∗(k) , Φ−1
k+1B

T
k Pk+1Dkω(k) + Φ−1

k+1B
T
k Pk+1AkX(k).

Furthermore, considering the definition ofΩk+1 in (17) and letting
ω∗(k) , Ω−1

k+1D
T
k Rk+1AkX(k), we complete the square forω(k)

as follows:

Y
(1)
k = X

T (k)(AT
k Rk+1Ak +MT

k Mk +AT
k R

T
k+1DkΩ

−1
k+1

×DT
k Rk+1Ak − Pk)X(k)− ‖s(k)− s

∗(k)‖2Φk+1
− ‖z̄(k)‖2

+ γ
2‖ω(k)‖2 + θ

2‖s(k)‖2 − ‖ω(k)− ω
∗(k)‖2Ωk+1

Without loss of generality, the initial estimation error can be chosen
as zero and let us consider a performance index

J1(Kk, Lk, ω(k), s(k))

, ‖z̄(k)‖2[0,T ] − γ
2‖ω(k)‖2[0,T ] − γ

2
X

T (0)(I2N ⊗W )X(0)

According to the triggering inequality (9), one has

s
T (k)s(k) ≤ σξ

T (k)ξ(k) = σX
T (k)HTHX(k).

Then, it follows from the conditionsΦk+1 > 0, Ωk+1 > 0, P0 <

γ2(I2N ⊗W ) and the final conditionPT+1 = 0 that

J1(Kk, Lk, ω(k), s(k))

≤
T
∑

k=0

Y
(1)
k +

T
∑

k=0

(‖z̄(k)‖2 − γ
2‖ω(k)‖2)

≤
T
∑

k=0

{−‖(s(k)− s
∗(k)‖2Φk+1

− ‖ω(k)− ω
∗(k)‖2Ωk+1

} < 0

where (16) and (17) have been used in deriving the last inequality
(19). To this end, it can be concluded that theH∞ consensus of
multi-agent systems is achieved.

Since the feasibility of (16) subject to (17) is difficult to tackle
directly, let us now propose an approach for computing the controller
parametersKk and estimator parametersLk in each step under the
worst situation, i.e.ω(k) = ω∗(k) = Ω−1

k+1D
T
k Rk+1AkX(k) and

s(k) = s∗(k) = ∆k+1X(k) with

∆k+1 , Φ−1
k+1B

T
k (Pk+1DkΩ

−1
k+1D

T
k Rk+1 + Pk+1)Ak.

In the sequel, we rewrite the augmented system (14) as follows

X(k + 1) = (Āk +DkΩ
−1
k+1D

T
k Rk+1Ak)X(k) + B̄ku

t(k) (19)

whereĀk , diag{Hm⊗Ak, IN ⊗(Ak−LkCk)} andB̄k , [ Hm⊗
BT

k 0 ]T .
Before the statement of Lemma 2, we introduce the following

notations in order to simplify the presentation.

˜̄Ak , diag{Hm ⊗Ak, IN ⊗Ak},Kk , IN ⊗Kk,Lk , IN ⊗ Lk,

¯̄Ak , diag{0N ⊗ Inx ,−IN ⊗ LkCk}, I = [ 0 InxN ]T

Lemma 2:Consider the multi-agent systems (1) with the
estimator-type consensus protocol (5) and the event-basedmechanism
(10). Let the disturbance attenuation levelγ > 0, positive scalars
θ > 0, ε1 > 0 and the positive definite matrixW be given. For
the worst disturbance sequence{ω∗(k)}0≤k≤T and control error
sequence{s∗(k)}0≤k≤T , the augmented system (14) satisfies the
H∞ consensus performance requirement if there exist solutions
(Pk, Qk,Kk,Lk) to the following backward RDEs











Pk = AT
k Rk+1Ak +AT

k R
T
k+1BkΩ

−1
k+1B

T
k Rk+1Ak

+MT
kMk + σθ2HTH

Pk ≥ 0, PT+1 = 0

(20)

and






























Qk = (Āk +DkΩ
−1
k+1D

T
k Rk+1Ak)

TQk+1(Āk +DkΩ
−1
k+1

×DT
k Rk+1Ak) +MT

kMk +∆T
k+1K

T
k Πk+1Kk∆k+1

− ˜̄AT
k Qk+1B̄kΠ

−1
k+1B̄

T
k Q

T
k+1

˜̄Ak + Ξ
(1)
k+1 + Ξ

(1)T
k+1

− ε−1
1 IΞ(2)T

k+1 Ξ
(2)
k+1IT

QT+1 = 0

(21)

subject to


















Φk+1 , θ2I −BT
k Pk+1Bk > 0

Ωk+1 , γ2I −DT
k Rk+1Dk > 0

Πk+1 , B̄T
k Qk+1B̄k + I > 0

P0 < γ2(I2N ⊗W )

(22)

Ξ
(1)
k+1 andΞ(2)

k+1 are defined as follows:

Ξ
(1)
k+1 , (DkΩ

−1
k+1D

T
k Rk+1Ak)

T
Qk+1B̄kKkH+ (Āk +DkΩ

−1
k+1

×DT
k Pk+1Ak)

T
Qk+1B̄kKk∆k+1 +HTKT

k Πk+1Kk∆k+1

+ I(IN ⊗ LkCk)
TΞ

(2)
k+1(H ⊗ Inx)[ InxN 0 ]

Ξ
(2)
k+1 , Q

(21)
k+1(Hm ⊗BkKk)

whereQ(ij)
k+1(i, j = 1, 2) is the block elements of the matrixQk+1

with appropriate dimensions.
Proof: Define a cost functional asJ2(Kk, Lk, ω

∗(k), s∗(k)) ,
‖z̄(k)‖2[0,T ] + ‖ut(k)‖2[0,T ] + ε1‖ẽ

s(k)‖2[0,T ], whereẽs(k) , (IN ⊗
LkCk)e

s(k), andε1 is introduced for more flexibility in the estimator
parameter design. Furthermore, introducing the functionY

(2)
k ,
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XT (k + 1)Qk+1X(k + 1) − XT (k)QkX(k), it follows from (19)
that

Y
(2)
k

= X
T (k)(Āk +DkΩ

−1
k+1D

T
k Rk+1Ak)

T
Qk+1(Āk +DkΩ

−1
k+1D

T
k

×Rk+1Ak)X(k)−X
T (k)QkX(k) + (ut(k))T B̄T

k Qk+1B̄ku
t(k)

+ 2XT (k)(Āk +DkΩ
−1
k+1D

T
k Rk+1Ak)

T
Qk+1B̄ku

t(k)

which leads to

J2(Kk, Lk, ω
∗(k), s∗(k))

=
T
∑

k=0

(Yk + ‖z̄(k)‖2 + ‖ut(k)‖2 + ε1‖ẽ
s(k)‖2) +X

T (0)Q0X(0)

Noting the fact thatut(k) = u(k) +Kks(k), one has

J2(Kk, Lk, ω
∗(k), s∗(k))

=
T
∑

k=0

{XT (k)[(Āk +DkΩ
−1
k+1D

T
k Rk+1Ak)

T
Qk+1(Āk +DkΩ

−1
k+1

×DT
k Rk+1Ak) +MT

k Mk −Qk]X(k) + ε1‖ẽ
s(k)‖2 + ‖u(k)‖2Πk+1

+ 2uT (k)Πk+1Kk∆k+1X(k) +X
T (k)∆T

k+1K
T
k Πk+1Kk∆k+1X(k)

+ 2XT (k)( ¯̄Ak + ˜̄Ak)
T
Qk+1B̄ku(k) + 2XT (k)(DkΩ

−1
k+1D

T
k Rk+1

×Ak)
T
Qk+1B̄ku(k) + 2XT (k)(Āk +DkΩ

−1
k+1D

T
k Rk+1Ak)

T
Qk+1

× B̄kKk∆k+1X(k)}+X
T (0)Q0X(0)

Completing the square with respect toẽs(k) andu(k), it follows
from (21) that

J2(Kk, Lk, ω
∗(k), s∗(k))

=

T
∑

k=0

{ε1‖ẽ
s(k)− ε

−1
1 Ξ

(2)
k+1e

s(k)‖2 +X
T (0)Q0X(0)

+ ‖u(k) + Π−1
k+1B̄

T
k Q

T
k+1

˜̄AkX(k)‖2Πk+1

(23)

which ends the proof.
Remark 3:Under the constraint of the event rules, the errors(k)

may not always be taken as the worst cases∗(k) during the dynamics
evolution. In other words, some non-worst cases may happen during
the process. Fortunately, it is clear from (19) that, with the solutions
(Pk, Qk,Kk,Lk) to (20)-(21) subject to (22), theH∞ consensus
performance requirement (15) can be satisfied even in the non-worst
cases.

In the following theorem, an explicit algorithm is given to compute
the controller parametersKk and estimator parametersLk in each
step of the time-varying consensus process.

Theorem 1:Consider the multi-agent systems (1) with the
estimator-type consensus protocol (5) and the event-basedmechanism
(10). Let the disturbance attenuation levelγ > 0, positive scalars
θ > 0, ε1 > 0 and the positive definite matrixW be given.
The augmented system (14) satisfies theH∞ consensus performance
requirement if there exist solutions(Pk, Qk,K

∗
k , L

∗
k) to the backward

RDEs (20) and (21) subject to (22) with the controller and estimator
parameters given as follows:

K
∗
k = −[δ

(1)
k , δ

(2)
k , · · · , δ(N)

k ][h(1)
, h

(2)
, · · · , h(N)]†

L
∗
k = [ κ

(1)
k , κ

(2)
k , · · · , κ(N)

k ][ ν
(1)
k , ν

(2)
k , · · · , ν(N)

k ]†
(24)

where


















Dk , Π−1
k+1B̄

T
k Qk+1

˜̄Ak , [δ
(1)T
k , δ

(2)T
k , · · · , δ(N)T

k ]T

H , [h(1)T , h(2)T , · · · , h(N)T ]T

Vk , (IN ⊗Ck) , [ ν
(1)T
k , ν

(2)T
k , · · · , ν(N)T

k ]T

Wk , ε−1
1 Q

(21)
k+1(Hm ⊗BkKk) , [ κ

(1)T
k , κ

(2)T
k , · · · , κ(N)T

k ]T

Proof: It is easy to verify that the best choice of the controller
parameterKk = IN⊗Kk and the estimator parameterLk = IN⊗Lk

that suppress the cost function (23) is determined in each iteration
backward as follows:

K∗
k = arg min

Kk

norm (KkH+Π−1
k+1B̄

T
k Qk+1

˜̄Ak),

L∗
k = arg min

Lk

norm (Lk(IN ⊗ Ck)− ε
−1
1 Q

(21)
k+1(Hm ⊗BkKk))

The controller parameter can be rearranged asK∗
k = arg minKk

norm (Kk[h
(1), h(2), · · · , h(N)]+ [δ

(1)
k , δ

(2)
k , · · · , δ(N)

k ]), and there-
fore K∗

k = −[δ
(1)
k , δ

(2)
k , · · · , δ(2N)

k ] [h(1), h(2), · · · , h(N)]†. Simi-
larly, we haveL∗

k = arg minLk
norm (Lk[ ν

(1)
k , ν

(2)
k , · · · , ν(N)

k ]−

[ κ
(1)
k , κ

(2)
k , · · · , κ(N)

k ]). By using the Moore-Penrose pseudo
inverse, we can easily determine the estimator parameter asL∗

k =
[κ

(1)
k , κ

(2)
k , · · · , κ

(N)
k ][ν

(1)
k , ν

(2)
k , · · · , ν

(N)
k ]†. With the designedK∗

k

and L∗
k, it follows from (20) and (22) that the performance index

J1 < 0. Therefore, the multi-agent system achieves theH∞ consen-
sus performance constraint over the finite horizon[0, T ]. The proof
is now complete.

Finally, let us outline the algorithm as follows,

Algorithm 1:
Step 1. Setk = T , thenPT+1 = QT+1 = 0 are available.
Step 2. Calculate the matricesΦk+1, Ωk+1 and Πk+1 by (22), re-

spectively.
Step 3. If Φk+1 andΩk+1 are all positive definite, then we can obtain

the controller gainKk and estimator gainLk by (24) and step
to the next procedure, else jump toStep 6.

Step 4. Solve the backward RDEs of (20) and (21) to getPk andQk.
Step 5. If k 6= 0, setk = k− 1 and go back toStep 2, else turn to the

next step.
Step 6. If Φk+1 ≤ 0, or Ωk+1 ≤ 0, or Πk+1 ≤ 0 or P0 ≥ γ2W ,

this algorithm is infeasible. Stop.

IV. N UMERICAL EXAMPLE

To illustrate the effectiveness of the obtained theoretical results,
we apply the event-based consensus control to an example system
by numerical simulation in this section.

Consider a network of four agents, whose topology is repre-
sented by the graphG = (V, E ,A) with the set of the nodes
V = {1, 2, 3, 4}, set of agentsE = {(1, 2), (1, 3), (2, 1), (2, 3),
(3, 1), (3, 2), (3, 4), (4, 3)}. The individual dynamics of agents are
given by (7) with the following parameters

Ak =

[

0.98 + 0.04 sin(0.12k) 0.4
0.15 −0.75 + 0.2 cos(0.1k)

]

Bk = [ 0.8 + 0.2 sin(0.4k) 0.5 ]T Ek = 0.04

Ck = [ 0.82 0.62 + 0.35 cos(0.3k) ] Mk = [ 0.7 − 0.64 ]

Dk = [0.16 + 0.05 cos(0.3k) 0.18 ]T

The process and measurement disturbances belonging toL2[0, T ]
are selected as random variables uniformly distributed in the region
[−0.05, 0.05] and [−0.5, 0.5], respectively. In this simulation, we
choose the thresholdsσ = 0.28, the scalarsε1 = 0.01 andθ = 1.8.
The H∞ performance indexγ, the positive definite matrixW and
the time horizonT are taken as5,diag2{2.8, 2.8}, 80, respectively.
The initial positions of four agents are uniformly distributed between
−5 and 5. According to Theorem 1, theH∞ performance index
for the multi-agent system can be guaranteed with the controller
parametersKk and estimation parametersLk computed in each
iteration. Simulation results are presented in Figs. 1-4. Figs. 1-2
depict the state trajectories ofxi(k) (i = 1, 2, 3, 4) whose j-th
element is denoted byx(j)

i (k) (j = 1, 2). The consensus error̄z(k)
can be found in Fig. 3 from which we can see that the time-varying
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Fig. 1. The state trajectoriesx(1)
i (k)
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Fig. 2. The state trajectoriesx(2)
i (k)
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Fig. 3. The consensus error̄zi(k)
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Fig. 4. The triggering instants

multi-agent system achievesH∞ consensus over a finite horizon. In
addition, Fig. 4 shows that the execution frequencies (for information
broadcast and actuator adjustments) are dramatically decreased. As
a result, the superiority of the proposed event-based mechanism is
clearly shown.

V. CONCLUSIONS

This paper has addressed the consensus problem for discretetime-
varying multi-agent systems with external disturbances. An event-
based estimator-based output feedback protocol has been proposed
to generate the control signals. Subsequently, by utilizing the H∞

analysis techniques, a set of RDEs has been derived to determine
whether theH∞ performance constraint is met, and then the ap-
propriateH∞ controller as well as the estimator parameters have
been designed under the worst situations. In the end, an illustrative
example has been presented to demonstrate the effectiveness of the
theoretical results proposed in this paper.
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