FINAL VERSION

Finite-Horizon #., Control for Discrete Time-Varying
Systems with Randomly Occurring Nonlinearities and
Fading Measurements

Derui Ding, Zidong Wang, James Lam and Bo Shen

Abstract—This paper deals with the ., control problem for a class
of discrete time-varying nonlinear systems with both randanly occurring
nonlinearities and fading measurements over a finite-horian. The system
measurements are transmitted through fading channels desibed by a
modified stochastic Rice fading model. The purpose of the adessed
problem is to design a set of time-varying controllers suchHhat, in the
presence of channel fading and randomly occurring nonlinesties, the
Hoo performance is guaranteed over a given finite-horizon. The rodel
transformation technique is first employed to simplify the aldressed
problem, and then the stochastic analysis in combination wh the
completing squares method are carried out to obtainnecessary and
sufficientconditions of an auxiliary index which is closely related tothe
finite-horizon H performance. Moreover, the time-varying controller
parameters are characterized via solving coupled backwardrecursive
Riccati difference equations (RDEs). A simulation examplés utilized to
illustrate the usefulness of the proposed controller desigscheme.

Index Terms—Hoo control, finite horizon, fading channels, randomly
occurring nonlinearities, recursive Riccati difference guations.

. INTRODUCTION

Since networks may greatly decrease the need for hardwénagy
the cost of installation as well as implementation, the aede on
networked systems has been gaining momentum in the pase@s.y
Many important results on filter/controller design probtermgainst
network-induced phenomena have been reported in thetliterssee
[3], [6], [11], [19] and the references therein, where massults
have focused on communication delays, packet dropouts @ad
nal quantizations. Unfortunately, another important mekainduced
phenomenon, namely, channel fading, has not yet receivequate
attention in the context of filter/control designs. Rougbkfyeaking,
the fading phenomenon can be interpreted as a time-vargingom
change in the amplitude and phase of the transmitted sigies.
kind of unreliable channels stem mainly from multipath @Egation
(multipath induced fading) and shadowing from obstacldésctihg
the wave propagation (shadow fading), see [1], [2], [18] fioore
details. Since the fading phenomenon can seriously deghadggnal
quality, an issue of crucial importance is how to design atrobn
system whose performance is insensitive to the effectsecaby
the fading channels. Very recently, the networked contysitesns
with fading channels have received particular resear@ntdin and
some preliminary results have been reported in [5], [7]],[16] for
stability analysis, LQG control and Kalman filter problems.

In networked environments, a large class of nonlinearitan
be understood as the additive nonlinear disturbances dabge
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environmental circumstances [8], [9], [13], [14], [17], ®rde the
nonlinear disturbances may occur in a probabilistic way anel
randomly changeable in terms of their types and/or intgngihich
are customarily referred to as the randomly occurring mesaliities
(RONS). On the other hand, almost all real-world systemsrateed
time-varying since the system dynamics may experiencetaons
changes in their structure and parameters caused by tetmgera
changes of the operating point, aging of components, etf [h3
recent control literature, the research focus has beerlashifted
from conventional linear time-invariant (LTI) systems tonfinear
time-varying ones that can better reflect the reality, sep [].
Unfortunately, to the best of the authors’ knowledge, thétefin
horizonH ., control problem for discrete time-varying systems with
fading measurements has not been properly investigatedrsodt
to mention the case where RONs are also involved. It is, there
the purpose of this paper to shorten such a gap.

Summarizing the above discussions, it is of both theoretina
portance and practical significance to examine how the meamnt
signals transmitted through fading channels would infleetice
dynamic behavior of a discrete time-varying system over #efin
horizon. Therefore, the objective of this paper is to desigroutput
feedback controller, based on fading measurements, suaththb
Ho performance is guaranteed over a given finite-horizon fdassc
of discrete time-varying nonlinear systems. By employitackastic
analysis techniques, the explicit expression of controfjains is
characterized in terms of the solution to coupled recur§tiecati
difference equations (RDEs). Moreover, a simulation eXanip
provided to show the effectiveness of the proposed contesigen
schemeThe novelties of this paper lie in the following three aspect
1) both channel fading and randomly occurring nonlinea&stiare
considered in the design of the output feedback controtjetsan-
deeing the desired{, performance; 2) a necessary and sufficient
condition is provided for an auxiliary index which is clogetlated
to the desired finite-horizof{ ., performance; and 3) a suboptimal
controller design scheme is provided by developing a recerRDE
approach

Notation The notation used here is fairly standard except where
otherwise statedC o v is the space of vector functions ovigr, V).

I denotes the identity matrix of compatible dimensiotf., || A||r

and A" denote the transpose, the Frobenius norm and the Moore-
Penrose pseudo inverse of a matdxrespectivelydiag{. ..} stands

for a block-diagonal matrix.

Il. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following discrete time-varying stochastjstem
defined onk € [0, N

Tht1 = Az + aphi(zr) + Brur + Dywi, 1)
zr = Lyxy,
with measurement
yr = Crxi + Epvg (2

wherex), € R™* represents the state vector that cannot be observed
directly, y € R"™ is the measurement output, € R" is

the controlled output, andvy, and vy € Ly Ny are the external
disturbancesAy, By, Ck, Di, E; and L are known real-valued
time-varying matrices with appropriate dimensions. Theclsastic
variable oy, is a Bernoulli-distributed white noise sequence taking
values of0 or 1 with the probabilities Proa, = 0} =1 —a

and Profay 1} = a. The nonlinear vector-valued function
hr : R™ — R"™ js assumed to be continuously differentiable in
x and satisfies the following sector-bound condition

(hi(z) — )" (hi(z) — Wpz) <0,

@)



where ®;, and ¥;, are known matrices with compatible dimensionawhere|\:ck||[20,N] =

with &, > W, for all k.
It follows easily from (3) that

N
e (Bt ) <o

Then, denoting (hi) = hi(z) — 3(®x + i)z and N, = £ (®) —
U;.), one hasA ™ (hi ) A(hy) < 2T N;! Nz, immediately. Therefore,
there exists at least a functid®y, , satisfyingA(hy) = Oy, and

@kT.'ka,,: < Nk.TNk. Furthermore, the sector-bound condition can

be transformed into the sector-bound uncertainties desttrby

Dy + W
hi(z) = % T+ Fr o Nizk 4

with Fy, o := O N, ' satisfying Fyl , Fr, . < 1.
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fo;o |lzx||? for any vector sequences,.

To cope with the parameter uncertainties in (7), a conveniey
is to regard them as one of the sources of the disturbancesefbie,
what we need to do is to reject the influence from all the digtoces
to the controlled output according to the prescriBéd requirement.
For this purpose, we rewrite (7) as follows:

Tht1 = (Jka + {%’kKkﬁcﬁk) Tk
+ (o — @)szzifk + B K0, 6Tk

S - ©)
+ (@kKkOé"k =+ _@k)nk + %kKkekgknh
2k =LiTy,
where e = i (enanFroNezn)')', D = (D & '),

& = diag{&,0}, § = [0 0] andfy = [vr 0]. Here, ey is a
positive function representing the scaling of the perttidoa which

is introduced to provide more flexibility in the controlleesign.

We are now in a position to introduce the fading measuremenfg!rthermore, we introduce the followirgxiliary index

Let the number of pathg, be given. Considering the fading channels,E { ||z ||f ~ } < E{7°||7k

the measurement signal received by the controller is destriby

Ly
k=Y Viyk—i + M& ®)
i=0
with ¢, = min{¢, k}, where ¥, (i = 0,1,...,£;) are the

channel coefficients which are mutually independent ane tai-
ues on|0, 1] with mathematical expectations; and variances);.
&k € 12(]0, +00);R™) is an external disturbanc@/ is known real-
valued matrix with appropriate dimensions. For simplicitg will set
{Wetker—e,-11 = 0, e, {zrtrei—e,—1) = 0 @nd{ve re(—¢,—1] = 0.
For the given receiver model (5), we consider the followingpot
feedback controller for the discrete time-varying nordinesystem

Q):

14

ur = Ky = Z'l%‘chykfi + Kiék. (6)
i=0
Setting Zxr = [xf, 21 1, Tt o,.. 21 o7 and n =

(Wi, Vi, Vk—1, - - - 5 Vk—t, Ek] T,
(1) and (6) as follows:

Try1 = (G + Br K6k + (o — &)
+ Ozkék):fk + B K0, 6Lk %
+ (Br K06 + D) + B K vr i,
2r = LyTr,
wheredy, = [ (93 — Jo)I (9 —91)] (95 — 901 ],
o, = { ka 8 } A = diag{.#x,0,0,...,0},
= |Av+asn Q0 o], o=10 9 1]
-1
Be=[BF 0 0 ... 0]", 2 =diag{Ds,0,0,...,0},
6 = diag{C’k,Ck,l,. . .,Ck7(}7 Ve = [ 0 Y. 0 ],
& = diag{O, FEy, Ekfh oo By, I},
Li=[Lxy 0 0 0 ], ©r = diag{®%..,0,0,...,0},
My, = (P, + V) /2, 9= [ Yol 011 0ol ]

Our aim in this paper is to design a finite-horizon output ek
controller of the form (6) such that, for the given disturban
attenuation levely > 0, the positive definite matriX/” and the
initial statex, the controlled output;, satisfies the followingH .
performance constraint:

E{llzelfo,n} < ¥llmellfo.n +7°E {a Wao} (®)

we obtain an augmented system from

IIfo,n)
— &y’ [lerRiZnl|fo, N b + 7 E{Z6 Wo },

with 8, :=[ N 0 0 ]. It is worth emphasizing that (8) is
satisfied if (10) holds, see [10] for more details.

(10)

Il1. M AIN RESULTS

In this section, let us investigate both the analysis andh&gis
problems for theH ., controller design of system (1) with fading
channels (5). The following four lemmas will be used in diggy
our main results, where the proofs of Lemma 2 and Lemma 3 have
been moved to the appendices for clarity of presentation.

Lemma 1: [15] Let &, V and VW be known nonzero matrices
with appropriate dimensions. The solutighto n}}n lUXW — V|
is UTVYWH.

Lemma 2:For the external disturbances and the initial value
Zo, let z, be the corresponding solution of system (9) defined on
[0, N]. Then, we have

J1(Zo, M)
= 2Nl 1fo, 51 + a7 lleReznl[fo,n }
R ) Riti—Pr  Rita Tk (11)
- Z % _R22 ~

k=0 k+1 Mk

Ty ~ T _
+E {»’Co PoZo — SCN+173N+1£CN+1} .

Furthermore, if|R§2| # 0 for all k € [0,N], by selectingij
(R#21) M (RyA1) "z, and denotingi, = K 9%6%Zx, one has

Fo (k3 i) = E{ll2nlfo,n) + laellfo, v}

-] =[]

k=0

T ~ -~ _T _
+E {550 QoTo — Tn41 QN+1$N+1}

(12)

wherea = O_é(l — 5() {’Pk}o<k<1\r+1 and{Qk}O<k<N+1 are two

families of matrices with partitioning?, = [OU]eH o (O =
P or Q), and '
kal _ { AV +££[’k — O Sk+1 ]
* Sk+1 7

I}, = diag{do, V1, ..., 0} @ (Ki BL Pii1BeKy),
I, = [0 diag{do,D1,...,9,} 0 0]
® (K. Bi Piy1BuKi),
I}, = diag{0,Jo, 71, ...,9¢,0,0} ® (Ki BEPiliByKy),
Enpy = diag{do, 01, ...,0:} @ (K{ BE Qi1 BiKy),
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Ekt1 = [0 diag{do,V1,..., 9.} 0 0] by using the completing squares method, it follows from Learn
® (Ki Bi Qiy1BrKy), that
iy = diag{0, Jo, V1, ..., 0,,0,0} @ (K B{ Qi1 Bk Ky), NACST )
'R;EH = (szk + gngkﬁ%k)T'PkJrl (Jka + {%’kKkﬁ%k) . . N .
+ &y Pryrh + G W1 G + a7 i Re + Li; Lk, =B {"”0 Qoo — xNHQN“”“} +> E{xk (At
12 > Jeo \T k=0
Ricer = (o + BKDG) Prr + LT L, — Q= S (821)  (Sh) )T
X (B K08, + D) + € U116k, + (@ — L) TS (a ﬂ*)}
s - k— Uk k+1(Uk — Uy 17
Riil = '721 — (Bp K068, + .@k)T'Pk+1 N (1
o s -
X (%k{(’je”ﬁk + D) = &ic k1165, <E {fE)FQoi“o — TN QN+1J?"N+1} + ZE{fZ(Akﬂ
Api1 = (BrKibé, + T) (R (Ria)” . . s k=
Apt1 = (S + Ak+1)TQk+1(J4fk + Akg1) + 54<QZCTQ1€+1<Q7; + Ly L = Ska1(Siegr) (Sea)” — Qk)
+ %kTEiH%k + 2‘5,35@1&(72%11)71(73%1? + HKkﬁ(gk + (Sl§+1) k+1HFHSk+1HFkaH }
+ R12 R22 1T£T:3 é" R22 —1 R12 T7
e (RE) T8 Sk Be(Rid) ™ (Rid) wherea;, = —(Sz,1) ' (Sk11)" k. Furthermore, the controller pa-

Sk = (e + M) QuiiBe,  Sipr = B QB+ 1. rameterk,, can be selected to satisfy (15) and (16c) simultaneously,
Lemma 3:Given the disturbance attenuation levet> 0 and the Which ends the proof.

positive definite matrixiV’. For the augmented system (9) with any Clearly, it is generally difficult to solve the optimizatigroblem

nonzero {7 fo<k<n € Lo N}, the following two statements are (16c). For the convenience in application, the expressibrthe

equivalent: parameterK, can be acquired by using the Moore-Penrose pseudo
()  The auxiliary index (10) is satisfied. inverse in the following theorem. _
(i)  There exists a set of real-valued matricé&, o<x<n, Theorem 2:For the given disturbance attenuation leyet 0 and

positive scalars{eyo<x<ny and matrices{Py}o<r<ny1 POSitive definite matrixi’, the closed-loop system (7) satisfies the
(with the final conditiorPy 41 = 0) such that the following #c performance constraint (8) for any nonzero disturbanceesecg
backward recursive RDE: {nkYo<k<n € Lo, ny, if there exists a set of solutionSex, Ak, o,
n 12 99 1 19 T P, Qk, Kk)}ogkgj\r (Wlth A > 0 and Er > 0) satisfying the
Rit1 + Rit1(Ret1)” (Ret1)” =Pr  (13)  following recursive RDEs:

ives = = 1,5
’ RZ,>0 and 2y, 14 Rib + R (REL) T (R =P, (18a)
k+1 > and Py <~°W, (14) A T 51 2 \—1,&1 T _
A1+ Ly L — Sp1(Skg1)” (Skg1)” = Qi,  (18b)
where the corresponding matrix parameters are defined imizegh )
It should be pointed out that Lemma 3 provides a necessary atPiect to
sufficient condition of the auxiliary index (10). Such a citiwh

serves as a key to solve the addressed stochastic disterbtien- 7?]:; 1= Qn1 = 02’ 5 (192)
uation problems. In the next stage, we shall proceed to aattié Rit1 >0, Po <7 W, Siyr >0, (19b)
design problem of the controller (6) such that the closexblsystem K; = TLHFkH(ﬁ%)T, (19c)
(7) satisfies theH ., performance requirement (8). Wi, < 611, (19d)

Theorem 1:For the given disturbance attenuation leyet 0 and
positive definite matrix¥, the closed-loop system (7) satisfies thavhere
H o performance constraint (8) for any nonzero disturbancaessg s 1, - 1,212 T
{nkYo<k<n € Ly, n if there exists a set of solutionSex, Pr, Qk, _1% [ 2% Ak %i}, A;H %(Rkﬂ) (Ra3a)"
Ki)}Yo<k<n With e, > 0 satisfying (13) and the following recursive Ric1 = (e + %kKW‘fk) Prs1%e, U=[1 0 0],

RDE: RiZ1 =T — G Pres 1% — od” u

Apsr +LFLe = SEa(SE) M (ST = Qo (15) Sk = (o + Aw) Qk+1%k,
Api1 = (o + ]\kﬂ)TQkH(Wk + Apt1)

+ &Jf:‘r Qk+1&{~k + (ngEIlc+1(€k7
Tip1 = — (SE41) " Bi Quar(I + Ge(RE1) 7 G Prsr) i,
Tt = I+ (Sii1) "B Qv 1% (Rev1) "G Prs1 B,

W =V Meéit (0T KT Ko
where corresponding matrix parameters are defined in Lemma 2 + diag{0, Jo, . . . ,9¢,0} ® (K;TK;))(Q@M
Proof: Firstly, if there exists{P:}o<r<n satisfying (13) and

(16b), it can be easily seen from Lemma 3 that the system (@)d the other corresponding matrix parameters are defineith as
satisfies the auxiliary index (10) and therefore the preifpd Lemma 2.
Ho performance (8) is satisfied for the closed-loop system (7). Proof: Denoted;, = ,\k(Zf:O qgi;KkEk—ikai"‘Kkgk) where
In this case the worst-case disturbance can be expressgd @s )\, > 0 is introduced to offer more flexibility in the controller dgs.
(RN (Rid) "z Next, selecting

Next, by employlng the worst-case disturbance, we aim t@igeo
a design scheme of the controller paramekgr. For this purpose, Cr = [wr Uk (EkakaNk:ck)T]T,

subject to
Prni1 = 9Ony1 =0, (16a)
Sii1 >0, RiZ, >0, Py <~°W, (16b)
Ki = argmin || Kx0%k + (Sia1) " (Sesn) " || (160)
k

[



4 FINAL VERSION

we rewrite (9) as follows: .

Closed-loop system outputs

Zror1 = (o + BoK D) Br + (i, — Q) iy,
+ B K9 CrTr + G1Cr, (20)

2k = LpTk.

PYS i Open-loop system outputs

It can be easily seen that the nonzero disturbance sequence
{Ck}o<r<n belongs toLy n). On the other hand, it follows from
Lemma 1 that (19c) is the solution of the optimization prable

The system output z

1?{1:1 | Thir Kx06k — Tt ||

which can be rewritten as

Hll(in HKk’g(gk + (S£+1)71(Sé+l)T|’F' (21) ° ° 10 ' Timzco(k') ® % % ©
k

According to Theorem 1, if there exists a set of solutionsbang Fig. 1. The system output.
the recursive RDEs (18a) and (18b) with (19a)-(19d), one has

E {2

bt} < B{ Gk Iony — Sl o

(22) Let the nonlinear vector-valued functiofy (zx) be
_ a72||eka:Ek||ﬁ),N]} +~°E {:E?;W:EO} )

I

—0.60z}, + 0.30x% + tanh(0.30z})
0.60x7 — tanh(0.20x7)
) hk(:ck) = 0< k< 157
E . 1 1
{llzxllo.n } 0350} — tanh(0.252) | (o gy
0.5$k

Furthermore, in light of (19d), the above inequality yields

< B{3 111 + 7 151 o,y — Sl 1o,
@3) where 2%, (i = 1,2) denotes thei-th element of the system state

_ a72||eka:Ek||ﬁ),N]} +~%E {:E?;W:EO} L, : T
xk. The probability of RONs is taken as = 0.10. The order of
< E{¥|Iiiel[fo,n) — @7 llexRezel|fo,n } +7°E {i*OTWi*o} the fading model is¢ = 2 and channel coefficients?, ¥+ and
Y7 obey the Gaussian distributiod (0.9, 0.1%), A(0.2,0.5%) and
which implies that the closed-loop system (7) achieves #e  N(0.2,0.5), respectively. Meanwhile, it is easy to see that the

performance constraint (8). The proof is complete. constraint (3) can be met with
Remark 1:In this paper, we examine how the channel fading and )

randomly occurring nonlinearities influence thé., performance —0.30  0.30 ] 0<k<15
over finite-horizon[0, N]. It is worth mentioning that the conditions o, = L 0 060 )7 "7 ’
in Lemma 3 and Theorem 1 are obtained mainly by the “comgetin 0.10 0 ] 15 <k < 41
the square” technique which results in little conservati§ompared L 0 050 ]’ - '
to existing literature, our results have the following #hdistinguish- [ —0.60 0.30 ] 0<k<l5
ing features: 1) the system under investigation is in therdte time- U, — | 0 0.40 |’ - ’
varying form; 2) the technology of model transformationnisptoyed k= 035 0 ] 15 <k <41
to reduce the complexity of system analysis; and 3) this pape 0 050 |’ - ’

represents one of the first attempts to address both chaadiegfand
RONS for the#{, control problems by using the backward recursive In this example, the}{.. performance levely, positive definite
RDEs. Furthermore’ in Theorem 2, all the System parame‘[besl matrix W and time-horizonV are taken a$.98, diag{0.50, 050}
probability for channel coefficients as well as RONs are otfig in  and40, respectively. Using the given algorithm and Matlab softya
the backward recursive RDEs. the set of solutions to recursive RDEs in Theorem 2 are obtbamd
Remark 2:In the case of the time-varying systems without RONghe controller gain matrices are shown in Table I, whereA,. and
a RDE-based condition of tH .. control can be easily deduced fromdx are selected as, = 1.0, A, = 2.5 and 6, = 0.25, respectively.
Theoreml as long as the terms. ., 6.9 P11, ay?e2RIR, I the simulation, the exogenous disturbance inputs aectel as
andas/, Qj11.47 are removed fromw,, R}, and A 1. Further-
more, in case of no fading channels, the corresponding tsesah
be obtained from Theorem 1 by settifig= 0.

wy, = 5sin(k), v = 0.8 cos(0.7k), &, = 0.48 cos(0.2k).

The simulation results are shown in Fig. 1 and Fig. 2, whege Fi
plots the output trajectories of the open-loop and closeq-lsystem,
1IV. NUMERICAL EXAMPLE and Fig. 2 depicts the measurement outputs and the receiyeals
by controller, respectively. The simulation results hassftmed that
Consider system (1) with the fading measurement (5) with the designed controller performs very well.

It is interesting to see the relationship between the distuce
attenuation levely and the probabilityx. For the same parameters
Ak, € anddy, the permitted minimumy is shown in Table II. It is
Cr = [0.65 —0.70], D) =[-0.02 0.015]", easy to find that the disturbance attenuation performanteziceates
E, =0.01, L, =[0.20 0.20]. with increasedx.

A= 0.42 + sin(2k — 1)  —0.40 } By = { 0.85 ] 7

—0.40 4 e~ °F 0.85 —0.65
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The signal y; and

— = Measurement yj

Received signal g

5 10 15 20 25 30 35 40
Time (k)

Fig. 2. The measurement signal and the received signal.

TABLE |
THE DISTRIBUTED STATE ESTIMATOR GAIN MATRICES
3 4 -

Ky, -0.0757 -0.2549 -0.1898 -0.1938 -0.2574 -

TABLE Il
THE PERMITTED MINIMUM ~y

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14

Qi

vy 094 095 09 098 099 1.00 1.02 1.03

V. CONCLUSIONS

In this paper, we have investigated the finite-horiZén, control
problem for a class of discrete time-varying systems wittirfg
channels and randomly occurring nonlinearities. By empipythe
completing squares method and the stochastic analysigitees,
some sufficient conditions have been provided to ensure ttieat
close-loop system satisfies thé., performance constraint. Further-
more, the desired controller gains can be obtained by pltivo

coupled backward recursive RDEs.

APPENDIX|: PROOF OFLEMMA 2

Along the trajectory of system (9), it can be derived that

E{Zk+1Prr1Tk41 — Tk Prk }
= E{z}, (F + BiuKi9Ck)" Pri1 (Fh + BiuKi9Cr) Tn
— T Prir + 224 (A + B K06, Py 1 (B K106
+ _@k)ﬁk + ffd<r2{;T73k+1J4{~kfk + ff%jﬁfffr{%g
X Pri1 By K9 Cuin + 221 6 9 Kif Bi Prya
X By K10k Enii + T &L 08 K& B Pry 1 Br K10k Exine
+ 7k (Bu K108, + D) Py (B K106, + -@k)ﬁk}
Taking (24) into consideration, it follows that
E{lealfm} =3 E{at £l cumn} +E{af Pozo

— Zn 1 PraZna} + Z:;O E{Ef [(ssz

+ BrKx9%:)" Py (o + Bu K0

+ & Pry1h + G M1 G — pk} h

+ 257 [(m + BoKi96) Prosr(BuKubEe + )
+ G i+ i [(BeKi0 + 5 P

X (BLKr0E, + Di) + ggﬂhl&]ﬁk}

= E{z Pozo — i11:7+1PN+1fN+1} + E{v* |} lfo, 3
(25)
- ||5ka$k||0N } +ZE{ Th 77k Q’L Th Uk] }
k=0

11

Similarly, noticing thatﬂ;c = K, 9%,%r, one has
E{E£+1Qk+1jk+1 - ngkEk}

= E{i{ (WkT Qi1 + Gy Qry19h + C Ery1Ch
- Qk)i“k + 223 A Qpsr Brtun, + s, Bi Qps1 B
+ 20F [T Qur1 (BeKr0E, + D) + 6L EL 16
+ 2uk BY Qi1 (BrE 108 + D )i
+ i [(BeKw08 + 90 Quss (B0, + D)
+ (DEICTEZHéSk]ﬁk}

Moreover undeﬂRk+1| # 0 for all k € [0, N], by selectingij, =
(R721) " (Ri21) 7y, it is easy to obtain that

E{llzllfo,n }

N
= > E{llall* + laxl® - llaxl*} + E{z5 Qozo

k=0
N
— ZN 1 QnniEN } + ) B{Z Ay
k=0
+ 225 (e + Miy1) Qi1 Brin + Uy B Q1 Bre }
N
=E {ngofo - 511;7+1QN+155N+1} — Z]E{HH’CHQ}
k=0

N
+ 3 B{al (A + LE L)+ 28 (o + Drsr)”
k=0

X Q1B + ﬂf(@EQkH«@k + I)ﬂk}

N
=K {:E?;Qoi:o - :EJA}H QN+153N+1} — ZE{”ﬁkHz}
k=0

T _
Tk w3 Tk
el =[]}
with 2% = Apyr +£££k - (h +Ak+1) Q1B
BEQ 1By + 1
Obviously, equalities (11) and (12) are guaranteed by (28§)(@6),
respectively. Therefore, the proof is complete.
APPENDIXIl: PROOF OFLEMMA 3

(i) = (i). For non-negative definite matrice§Py }o<r<n+1

satisfying the recursive RDE (13), it follows from Lemma ath
E {l|2kllfo.x} — E {7117k lfo,x — &W2||€kai’k||[20 N}

=K {:i:(:)F"PO:EO - 511;{+17)N+1EN+1} ZE{S% Rk+1

— Pr)Tk + 254 Ri5 17k — ﬁkT-RkHﬁk}



N
Z{ (R4 = Pr+ R (R ) (REZ) )
=0

— (7 — ) "R (e — k) }
+E {igpoio — 2_3%+1'PN+127N+1}
wherefj; = (Ri%,)~ (Rk+1)

SinceR;? > 0 and Py < W, for any nonzero{j. }o<k<n €
Lio,n, it can be derived from the final conditidRy+1 = 0 that

E {||zxlfo.n } — v’E{z6 W0}
- E{’Y2||77k||[2o,N] - @’Y2||5kafk||[20,N]}
<E {sz||[20,N]} — E{Z{ PoZo}
= B{v? |17 170,57 — 87 [lexRuZi|[fo,n1 }
N
—E{ > G — i) "RE A (e — i)} < 0.

k=0

27)

(i) = (ii). We proceed to show that “if (ii) is not true, then (i) is
also not true”. For convenience, let us provide an expraskiothe
condition and conclusion of this proposition, respectivel

e The IF statement (i.e., the condition that (ii) is not trugyje to

R3.1 =~*I > 0, Py can be calculated from the recursion (13). It
is easy to see that, by the same procedure, the recursion RBE (

can be solved backward wheR;% | # 0 for all k € [0, N — 1].
It means that the recursion RDE (13) fails if there exists esdm
satlsfylng|72k 11| = 0, which fails without the condition (14).

In short, in terms of (14) and the backward recursion charaaft
(13), the if statemeritcan be divided into three cases:

a) R, > 0 for all k € [0, N — 1], but the initial condition
Po < v*W can't be satisfied;

b)  there exists &g such that|R}? +1| =0andR:; >0
(ko < k < N). It means thatRkO+1 has at least one zero
eigenvalue;

C) there exists &o such that i koﬂ is neither positive semi-

definite nor positive definite; iR, > 0 (ko < k < N),
that IS,Rk0+1 has at least one negative eigenvalue.

Furthermore, combining b) and c), one has that, for sem&;2, >

0 (ko < kE < N) and Rkoﬂ has at least one zero or negative

eigenvalue denoted as,, < 0.
e The THEN statement (i.e., the conclusion that (i) is not )true
There existyZo,7) # 0 such that

E {llzllfo,n} = E {2 I7klfo.n) — av°|lexRul|fo,n }

28
+W2E{:E(7;W:EO}. (28)
First, denote
(@0, ) = E{ 2o,y = 7711 lfo,
2 2 2 T (29)
+ ay ||ekagzk||[O,N}} —v°E {gzo W:EO} .
Case a) We can chooségj), = 7, and then obtain
j(‘f07 ﬁ)
N
= > E{z; (Rit1 — Pr + RiZ1 (R (R T) 2
k=0 (30)

— (e — %) TR (e — i)} — VQ]E{»’E(:)FWJ_?O}
+ IE{:CO Poxo — CCN+1’PN+1f'N+1}
= E{ig(Po - ’yzW)i’o}.
Obviously, there always exists & # 0 satisfying J (zo,n) > 0,
even if Py — 4> has at least one non-negative eigenvalue.

FINAL VERSION

Case b)and Case c¢) We assume that there exists a non-positive
eigenvalue ofR7%, at time ko, and design the special sequence
(Zo,m) # 0 as follows:

wk(m k:k07
To=0 and 7, = M, ko <k <N, (31)
0, 0 <k < ko,

wherey, is the eigenvector oR,m+1 with respect to\g,. For the
purpose of simplicity, denot§ := {7, fo<r<n-
The rest of the proof follows readily from that of Lemr2an [4].
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