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An Integrated Approach to Global Synchronization
and State Estimation for Nonlinear Singularly
Perturbed Complex Networks

Chenxiao Cai, Zidong Wang, Jing Xu, Xiaohui Liu and Fuad Esaddi

Abstract—This paper aims to establish a unified framework proven to be of major concern to excite the collective beatravi
to handle both the exponential synchronization and state és  of complex dynamical networks [24], [25], and a rich body of
mation problems for a class of nonlinear singularly perturbed jisaratyre has been available so far. For example, a sufficie

complex networks (SPCNs). Each node in the SPCN comprises " o . .
both “slow” and “fast’ dynamics that reflects the singular condition for global synchronization and stability anddylsas

perturbation behavior. General sector-like nonlinear function is been derived in [19], [38], [39] based on a reference state
employed to describe the nonlinearities existing in the netork. and Lyapunov stability theory. Using the Lyapunov func-
All nodes in the SPCN have the same structures and properties tjonal method and Kronecker product technique, the glgball
By utilizing a novel Lyapunov functional and the Kronecker - qyhnnential synchronization and synchronizability haeerb
product, it is shown that the addressed SPCN is synchronized L .

if certain matrix inequalities are feasible. The state esthation StUd'eO_' "_q [27] for general dynamical networks. On the Other
problem is then studied for the same complex network, where hand, it is often the case that the complex network consists
the purpose is to design a state estimator to estimate the meork  of a large number of nodes and only partial information
states through available output measurements such that dymics  about the network nodes is measureable through the network
(both “slow” and “fast”) of the estimation error is guarante ed outputs. In such a case, the state estimation problem for

to be globally asymptotically stable. Again, a matrix inequlity | tworks b d ilabl ts b
approach is developed for the state estimation problem. Two complex networks based on avallable measurements becomes

numerical examples are presented to verify the effectiverss imperatively important and has stirred quite a lot of resear
and merits of the proposed synchronization scheme and state attention, see [9], [25], [32], [33], [36] and the refereace

estimation formulation. It is worth mentioning that our main  therein. However, it is worth noting that, in almost all reteal
results are still valid even if the “slow” subsystems withinthe results, the node system in a complex network has been
network are unstable. . . . .
implicitly assumed to beegular, that is, the dynamics of the
Index Terms—Complex network, exponential synchronization, states of each node system evolves in the same time scale.
Kronecker product, singularly perturbed system, state esmation On the other hand, in practice, many dynamical systems
possess two-time-scale characteristics, namely, anaittien
of ‘fast’ and ‘slow’ dynamics such as aircraft and racket
|. INTRODUCTION systems [34], electric power systems [1], [29] and biolagic
The past few decades have witnessed a surge of resea@y$tems [37]. Such kind of systems is governed by both fast
outputs on the dynamics analysis of complex networks d@gd slow dynamics, and customarily referred to as the singu-
primarily to their pervasive applications in a variety ofysital larly perturbed systems (SPSs). In [34], a singularly peed
systems and engineering plants [8], [10], [12], [18], [18)], Structure has been assumed by artificial insertion of a small
[40] such as the internet, neural networks and genetic ngpit-valued parameter with highest derivative or some ef th
works, etc. An increasing research interest has been dktmtestate variables of the nonlinear dynamical equations, evtier
the synchronization and stabilization problems for dyreahi four different structures of identifying the singular petiation
complex networks with each node representing a dynamig@rameter have been presented in terms of the parameters
system [12], [32], [38]. The synchronization phenomenos h@f the nonlinear dynamical system. In [43], a differential
geometric control approach has been provided to deal with
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networks with imperfect measurements [33], [35], uncertaestimation of the SPCNs is discussed in Section IV where the
complex networks [21], [31] as well as complex networks witetate estimator is designed. In Section V, two numerical ex-
various kinds of transmission delays [9], [15]. It is notbée amples are given to demonstrate that our results are relevan
that, for some complex networks such as power networkmgularly perturbed dynamical networks. Finally, cosauns
and neural networks, the node systems are often subjectate drawn in Section VI.
singular perturbations. For example, in [43], the spedrad s Notations: The notations in this paper are standard.
larly perturbed property of the classical distributionweatks Throughout this paper, for real symmetric matricEsand
has been fully discussed that has led to a precise contigl the notationX < Y (respectively,X < Y) means that
with help from the singular perturbation approach, and thke matrix X — Y is negative semi-definite (respectively,
slow and the fast two-time-scale characteristics have beeegative definite)l,, is the identity matrix of ordem. R™
illustrated for a DC motor and a synchronous generator [AndR™*™ denote the:.-dimensional Euclidean space and the
Furthermore, the neural network based control and obserget of all real matrices with dimension x m, respectively.
design problems have been investigated in [22] for a claBs A is a square matrix\max(A4) (respectively, Amin(A))
of singularly perturbed nonlinear systems with guaranteegeans the largest (respectively, smallest) eigenvalut dhe
H, control performance. In [4], the model predictive contrahotation A ® B stands for the Kronecker product of matrices
problem has been handled for nonlinear singularly perdirbel and B. In symmetric block matrices, we use an asterisk
systems with application on a large-scale nonlinear reactd = 7 to represent a term that is induced by symmetry. The
separator process network which exhibits two-time-scale tHermitian part of a square matrid is denoted byHe(M) =
havior. Unfortunately, a literature search reveals thtteli M + M7T. The superscriptT” denotes matrix transposition
work has been devoted towards the dynamics analysis issunl diad- - - } means a block-diagonal matrix. Matrices, if not
of the singularly perturbed complex networks especiallgwh explicitly stated, are assumed to have compatible dimessio
the singular perturbation phenomenon occurs on each nddealgebraic operations.
system. It is, therefore, the main focus of this paper totsmor
such a gap by initiating a major study on the exponential || ProBLEM FORMULATION AND PRELIMINARIES
synchronization and state estimation problems for a cléss o ) i ,
nonlinear singularly perturbed complex networks (SPCNSs). Consider a T‘O”"”eaf singularly pertu_rbed_complex net\_/vork
In this paper, we investigate the exponential synchroitnat mode_l conS|s_t|ng oFY Im_early coupled |dent|ca_l nodes with
and state estimation problems for a class of nonlinear SPCM diagonal inner coupling, where each node is(an+ m)-

with each node subjecting to both ‘slow’ and ‘“fast Olyn(,jlmicgjlimensional dynamical singularly perturbed system given a

All nodes in the SPCN are of the same structures and prop HOWS:

ties. Rather than the commonly used Lipschitz-type fumgtio ) N 2;(t)

a more general sector-like nonlinear function is employe}Eﬂ ez(t) } = f(zi(t), zi(t)) +1(¢) +Czdij@[ (1) ] 1)
to describe the nonlinearities existing in the network. B J=1

utilizing a novel Lyapunov functional and the KroneckeHere P= 1,2 N.om(t) = [ o m o T ]T c
product, the addressed synchronization problem is shown G ' e b "

be converted into the feasibility problem of a set of matrik andzi(t) = [ i 220 Ema ] €R™ are, respec-
inequalities. The subsequent state estimation probletneis t tVely: the ‘slow” and ‘fast’ state vectors of thgh node. The
dealt with for the same complex networks. Through availabf@nstant (0 < e <1) is the singular perturbation parameter.
output measurements, a state estimator is designed toaésting (z;(t), 2;(¢t)) = [ h(xi(?) + gzi(? ] where h(z;(t)) €
the network states such that the dynamics of the estimati@g andg(z(t)) € ng”(az;lr(e)go?tinzlj(()u)sly differentiable vector-
error is guaranteed to be globally asymptotically stableo T valued norilinear functionsll € R™™ and G € R™*™
simulation examples are provided to show the usefulness S‘H

(1)

the proposed global synchronization and estimation sceem@'e constant matrices(t) = [ Lo (£) ] is an external input

It is worth mentioning that our main results are still valicea T

if the ‘slow subsystegms within the network are unstable, VECtO" Whereln(t) = [ L) L) - L] €
The main contributions of this paper are outlined as folR" Im(t) = [ I"H(t). Lnya(t) Lnym(t) ] <

lows: 1) the exponential synchronization and state estonat X Futhermore,c_ > 0 is the coupling strength constant.

problems are addressed, for the first time, for a class & = diag{I'II} is a constant matrix linking the cou-

general nonlinear SPCNs that allow directed and weightdfed variables withl" = diag{1,72,---, 7.} and Il =

topologies; 2) a unified framework is established for thelag{m1, 72, -, mn}, which implies that theth state vari-

addressed synchronization and problems for the addressje of theith node of the network is only affected by
SPCNs exhibiting both the slow and fast dynamics; and )¢ 7th state variables of other nodes of the network=(
Sector-like nonlinearities enter into the system modeltaed 1 2:--- 7,7 + 1,---,n 4+ m). The coupling matrixD =
impacts on the synchronization and estimation performancgi;)vxn is the Laplacian matrix representing the structure
are analyzed The rest of this paper is organized as followsf the network, in which the off-diagonal elements (i 7# j)
Problem formulation is presented and some preliminaries &€ defined as follows:

introduced in Section Il. In Section I, the globally expan { d;; = dj; > 0, if the connection from node j to 7 exists

tial synchronization of the SPCNs is studied. Later, théesta| d,;; = 0, otherwise
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which means that the network topology could be directamith z;, y; € R® (i = 1,2,---,N). If W = W7 and each
and weighted. The diagonal elements of the matfixare row sum of W is zero, then
determined by the following diffusive coupling conditions

[42]: dWePy=— Y wyle—z)" Ply—y;). (7)
1<i<j<N
N
dy = — Z dij, i=1,2,--- N. @ In this paper, our main aim is to study the synchronization

problem for the SPCN (3) by deriving sufficient conditions

J=1j#i . . .
) o ) under which the network (3) is guaranteed to be exponential
Thus, the Laplacian matrip is a zero row-sum matrix. ~  synchronized. Furthermore, we will extend the resultsiobth
For notational convenience, let us define the following, design the desired state estimator for the same complex
notations: network model through available network measurements.
oy — | () [0
vilt) = [ zi(t) ]  Be = [ 0 el } ’ [1l. SYNCHRONIZATION ANALYSIS
Y(t)y=[yl(t) vI@®) - vk }T, In the section, the globally exponential synchronization
T T o T  problem for the SPCN (3) by the Lyapunov functional method.
@) =17 ) M (=0) T FHv) 17 Theorem 1:Let Assumption 1 and Assumption 2 hold.
I =117 17 - 17 ] (i) For a givene > 0, the network (3) can reach globally

exponential synchronization if there exist two scalérs> 0
4nd 02 > 0, three positive definite matrice®, € R™"*",
P; € R™*™ and R € R™*™, a matrix P, € R™*™ such

(In@E)Y () =F(Y®)+1¢t) +c¢(D®O)Y(t). (3) that the following linear matrix inequalities (LMls) (88X

and then the network (1) can be rewritten in the followin
compact form by means of the Kronecker product:

hold:
The nonlinear vector-valued functions-) andg(-) are as- P, ePT
sumed to satisfy the following sector-like nonlinear fuoos E.pP. = E. [ P, P2 } 0 (8)
which are more general than the traditional Lipschitz-type ’
ones. MT * * * "
Assumption 1: [25], [26] The nonlinear functioni(-) and e.i. ) ?T % 6*1 * * 0
-) are continuous and satis &LI) = —O01dn * * ;
g( ) fy jT 0 0 _521771 *
x1"xz2 <0, @) 0 0 eb P, -R
1 Te <0, (5) ©
for any z;(t),z;(t) € R" (i, =1,2,---,N), where wherel <i < j < N and
— T », r~
X1 = h(xi(t)) = h(z;(t)) — Bi(z(t) — ;(t)) g = CNdij(Plg +I P - 51TB1 - 52TD1’T
X2 = h(@it) = hla; () = Ba(wi(t) — (1)) # = PH+PG+eNd;(B 1+ Fy),
1/)1 = g(xl(t)) _ g(xj(t)) _ Dl(xi(t) -z (t)) 9 = R+ He(~eP2H + P3f + c]\[dingﬂ),
Y2 = g(@i(t) — g(@;(t)) — Da(wi(t) — x;(t)) & = PitaBy, F =P +0:Ds,
‘n and B, = He(BTBy)/2, B, = (BT + BI)/2,
Here, By, B, € R™*™ and Dy, D, € R™*™ are constant ~ ~
matrices. v ne Dy = He(D{D2)/2, D;=(Df +Dj)/2.

For the ‘fast’ part of the singularly perturbed compleXii) Let Py = P.|.—o and Ey = E |.—o. If there exist two
network (1) or (3), as conventionally done in [11], we havecalarsé; > 0 and d, > 0, three positive definite matrices
the following assumption. P e R Py € R™*™ R € R™™ and matrix P, €

Assumption 2:The ‘fast’ subsystem of every node is stableéR™*"™ such that
i.e. the state matrixz is Hurwitz. T

Furthermore, the following definition and lemma are pro- Eoby = Py Eo 20, (10)
vided for subsequent technical development of the paper. Q0,4,7) = Q&4,5)e=0<0, 1 <i<j<N (11)

Definition 1'. The complex _netwc_)rk (3) s sa|q .t9 be gIOb'hoId, then the network (3) can reach globally exponential
ally exponentially synchronized if, for any initial values

_ o : N synchronization for sufficiently smadl > 0.
%Z(>O)O(Z T_>162éﬁa.é]i)6 tsrlljecrﬁ tﬁzltst constants < ¢ < 1, Proof: (i) According to Assumption 1, it follows readily

from (4) that

loe(t) = 05 (®)] < B © L[ (BT BB B BDR ] <
_ i >
holds for allt > T, anye € (0,¢*] and anyi,j = 1,2,--- , N. (B1 + B2)/2 In
Lemma 1 [25] Let;/V = (wy)vxn, P € RY, T where.;;(t) = zi(t) — a;(t) or, equivalentl
(2T 27 - 2% ] andy=[of vI - o%] L= () — e (t) |0 Y Y.
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< (2i(t) = 2i(1) T R(z:(t) — 2 (1))

e By B, ] t) <0 12 +p5(t) i R '[eP, P53 |pi(t). (20)
Lij() i _BQT I, | Li(t) <0. (12) Pij P 2 3 | pij(t)-
Similarly, we have from (5) that For the term of the external disturban@d ™ (t)(W ®
B BT POYI(t)YT(t), one has
T 1 —L2
;5 (t) DT 1, #ij(t) <0, (13) w PT - wnPT 1(¢)
- - T o . . . .
whereseyt)— | 0 =20 S e 1 I
” 9(wi(t)) — gla;(1) |° wni P o FE L)
To deal with the synchronization of the network (3), we ZN wi; PTI(t) 0
consider the following Lyapunov function: B =1 _J ‘ . 1)
V(Y (t) = e"YT(t)(W @ E.P.)Y (1), (14) Y w}'vj PTI(1) 0
N__ll N_—ll :i Noting that the coupling matrix) satisfies the diffusive
where W = is a coupling condition (2), it follows thaW D = N D and
-1 -1 - N-=1], 4 (W® PT)(ecD®©)=cND® (PIo) (22)
zero row-sum matrix. Then, the derivative of (14) along the hich lead
trajectories of (3) is which leads to
. T T
V() = ne"fyToe)(W ® EP)Y (1) 2 HWer )“<DT® oY (1)
— ent[yT( )(W ® 77E P )Y(t) =2 Z CNd”I/U( )P?@Vw(t) (23)
1<i<j<N
+2y ()W @ PT)[F(Y (1)) P

+ I + (D ® O (1] (15) thaStubstituting (16)-(23) into (15), it yields from (12) and3|1

Referring to the structure of matrik¥ and according to V(Y(t < ont T (\nE. P.vs (t
Lemma 1, we can obtain that ¥t)le) = Z i (OnEcFevi; (¢)

1<i<j<N
A = — WijV;; EcP.v;; X T
1 15;@1 56 (t) +(z;(t) — :Uj(t))T { 2 ] pij(t)
= VT' el elVij\l), 1
— 19;@ L(tmEePevij(t) (16) +p3;(t) [ 1122 } (zi(t) — z;(1))
i _21§;§Nwijy£(t)P€Tpij(t) +0i;(t) { ellj;T } R™'[ ePy P3 |pi(t)
=2 2 R L A [SORIT)
2 > vimP! [ e ] (z:(t) = 2 (£)X17) 1<N<d ) - z(tg?l)ﬂé f;:rg }f)mt)
1<i<j<N c Uylj sz
where A, = YT (6)(W @ nE.P.)Y (t), Ay = 2YT(1)(W ® +(2i(t) = ()T R(2i(t) — 2(t))
t) :| 7 _51Lij( )MLZJ( ) 52%1-](0]\7%”(0]
= Z Cij t)T(evivj)Cij (t)v (24)

PR D), vs0) = )~ () = | 70~ D0
)
)

h(x;
ii(t) = (1) — i(t) = and, 1<i<j<N
pitt) = Fn(0) = Fs) = | Bl ol =
consequently, where
205 (P pij(t) = 2(xi(t) — ;)" [ Pv PI ] pij(t) M= { _%T _IBQ ] N = { _DﬁlT _ID2 } :
+2(zi(t) = z(t)" [ €Pr P3| pis(t). (18) ? x‘(;; () 2
For any real vectors:, b and any matrixR > 0 of = 2(t) —zj»(t)
compatible dimensions, we have the following elementary Gij (t) = h(z;(t)) — h(x;(t))
inequality ., . . g(zi(t)) — g(z;(t))
2a"b<a"R'a+b"Rb (19) o . . .
and therefore Y(e,i,j) = , ?;B 22 : :
1 102 1
2(2i(t) — 2z (1)" [ P2 P3| pis(t) Po+6:Df 0 ePsRT'Py ke
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o = nP, + cNd,;jHe(P.T') — 5By — 62D1, to estimate the node states through available network tutpu
B — enPL + PLH + PTG + ¢Ndy;(PIT1 + eT'T PT), Suppose that the output vector of tlth node of the network

P NPy + R+ He(c Pyl + PyG -+ eNdy, Pyll). (3) is described by
k1= €PIR™IPy — 011, Y;(t) = Ciys(t) = [ 68” CO } { :cgg } ; (28)
_ P3R71P3 _ 521m 21 Zi

wherei = 1,2,--- | N, Cp; € Ri>™ andC,; € R2X™ ([} +

Using Schur complement; (e, 7, j) < 0 is equivalent to . .
g P (e i) g l, = 1) are known constant matrices af(t) € R! is the

o

2 * * * * measurement output of théh node.
BT . 9 * * * The state estimator is of the following form
P+ 6135 0 =011, * * <0. (25 . A . A
Py+6,DT 0 0 5yl ¥ (IN®E)Y (t) = F(Y(t))+]I(t)+c(D®@)Y(t)+K(@(t)—CY((Z%;,
v R where @(1) = [ Z1() 20 - R0
According to (9), there exists a small constapt> 0 C = diag{C;, C,, ---, Cy}, and K =
such that (25) holds. Hence, the inequality (24) results iag{K,, K., ---, Ky} are filter parameters to
V(Y ()l < 0, which implies V(Y (¢)) < V(Y(0)). be designed. Here,K; = diag{K,; K.;} and
Therefore,e” YT (t)(W @ E.P.)Y (t) is bounded and it can Kk, ¢ Rnxll Kzz e R™*2 (j=1,2,--- N).
be obtained that Lete(t [ ey - k() ] 2 f/( t) =Y ()
i')\min EePe 7 t) —uy,;(t 2 7 _ — i'l(t) ( ) L em(t)
WigAmin (BP)lyi(t) = (0)] them y(> ym [ jo i

it
T ~
< D0 wili®) =) ER i) = v®)  andpet)) 2 BV (1) = F(Y(2)). Then, from (3) and (29),
1si<jsN we obtain the following the state error dynamics:
=YT(t)(W® EP)Y(t)=O(e ™). (26)
In @ B)é(t) = —KCe(t) + F(e(t)) + ¢(D ® O)e(t). (30
Hence, there exist constanis> 0 and 8 > 0 such that (U Je) e(t) (e(t) +l Je(t)- (30)
For convenience of development in the sequel, let

lys(t) — y; (1) < Be™". (27)
= T 1 e A_l
According to Definition 1, it can be concluded that the Az = Tdiag{ln,elm, -~ In,eln}T
globally exponential synchronization of the network (3nca = diag{ln,  In,€lpm, - €lp}, (31)

be achieved under the condition of (9).

(ii) Similar to [11], [44], we can choos®. such that, for
e = 0, the functionalV (Y (¢t)) makes sense witlE, = E,
and P. = P, in the descriptor case (i.e.= 0 in (3)). If the
‘reduced-order’ LMIsQ(0,4,5) < 0 (1 <i < j < N) hold
for somed,, 2, Py and R, then for sufficiently smalk, the
full-order LMIs (9) hold for the samé;, 2, Py, P>, Ps
andR. Then, in view of (i) in this theorem, the network (3) is Asé(t) = _TKCe(t) + TF(Y(t)) + cT(D ® O)e(t),
globally exponential synchronized. This completes theofiro

m €
Remark 1:In Theorem 1, the synchronization problem is [ Inn 0 ] [ éo(t) ]
+

whereT = T\T»---Ty is a product of a series of row-
switching elementary matrices; € RN (nm)xNntm) (; —
1,2,---,N), Az = T(In® E.)T . According to the proper-
ties of the row-switching elementary transformation, oas h
T-1 = T. Hence, we have the following equivalent form of
the system (30)

studied for a new type of complex networks with singular
perturbations, where the main result established involles

the information about on the system parameters including = {
those reflecting the slow and fast dynamics as well as the
nonlinearities. Due to the general nonlinearities intamwiiin - where
the model, a quadratic Lyapunov function is used to derive

S
N

F G
—_
L —
D
w8
—~
~+ ‘o

the sufficient conditions that can be checked efficientlythia kg = —KCp +cDQT,
Matlab LMI Toolbox. It would be a possible topic of research kg = —K,C, +cDRII,
i . ; ) T .
Fo use non_quadrat_lc Lyapunov functions or direct mathemat ea(t) = [ eI(t) eLt) - ely(t) ] e RN,
ical analysis techniques in order to reduce the unnecessary r T’ T . Nom
conservatism. e:(t)=1[ eh(t) elo(t) -+ ely(t) ]| eRM™,
chm - diag{Kzlcmla Km20m27 Tty KINOmN}a
IV. STATE ESTIMATION K.C, = diag{K.1C.1, K.2C.o, -+, K.nC.n},
For the complex network (3), sometimes, we can only h(ez1(t)) + He 1 (t)

know the partial information about the states of the some i (1 e (1) —
network nodes from the network outputs. However, in order (ea(t)) + He:(t) =
to make use of the networks in practice, it becomes necessary h(ezn(t)) + He.n ()

h(eza(t)) + He,a(t)
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sufficiently small ¢ > 0 if there exist two scalars
g(ex1(t)) 9 > 0 and 4 > 0, matrix Py = P =
g(emg(t)) P1 0 . T .
= + (In ® Ge(t). P, P, with Py = Py = diag{Pyi1, P12, , Pin} >
glean(t)) 0, Py = diag{Py,Ps, - ,Pon}, P = Pz =
_ ) . diag{Ps1,Ps32,--- ,P3sn} > 0, Py € R™" Py €
The next goal is to choose a suitabl§ such thatY'(t) gmxn  p,. ¢ Rmxm (i =1,2,---,N) and matrixQ =
asymptotically approachés(t). From Assumption 1, it is €asy diag{Q1,Q, - ,Qn} > 0 with Q;, € R™™ (i =
to verify that 1,2,---,N) satisfying the following LMIs:
T - -
4 — ; _ 4
i | | B o] ey <o e VAT ol
e A(0) = A©)lo <0, (38)
~6x(t) DlT —Ds ~€x(t) S O’ (34) WhereEO _ EE|€:O-
dlea()) DY I || 3e=(®) - | _ _ o
Proof: (i) Consider the following Lyapunov functional:
where .
N Vie(t)) = e (t)EcPee(t), (39)
- —_—— . T
Bl = diag{Bl, By, -, Bl}, _ IN” 0 _ Pl EPZ T
. whereE. = | " eInm | P. = P, Py |’ P1 =
S e P, > 0, Pl = P3 > 0. Differentiating (32) with respect to
By = diag{5, BZ’N' o Bah along the trajectories of (32), we obtain
~ = = = 1T
D, = diag{D:, D1, ---, D1}, ' _ ex(t) (| ks O ex(t)
1 1 N 1 V(e(t))|(32) 2 ez(t) ] PE 0 K4 ez(t)
DQ = diag{Dg, Dz, e, DQ} |: {L(ew(t)) +,Ii[€z(t) :|) . (40)
glex(t)) + Ge.(t)

F = —ePyK,Cp — CTKTP, + cePy(D®T)
+e(D @I P, + H'Py + GT'Ps,
4 = Q+He(—P3K.C. + cP3(D@TI) + Py H + P3G).

(i) For given K, = diag{K,1, K2, -, Kun}
and K, = diag{K.1, K.o, -, K.n}, the error sys-
tem (30) or (32) is globally asymptotically stable for

For the error system (30) or (32), we have the following

Due to (19), there exists a matr@ > 0 (Q € RVN™mxNm)

result.
Theorem 2:(i) Let Assumptions 1 and 2 hold. For givensuch that
€ > O; Kx == diag{th Kx27 ) KIN} and KZ = t T iL t +I:I t
diag{K,1, K., -, K.n}, the error system (30) or 2[ 218 } PET[ ~Ezmgt;;+éeez((t)) }
(32) is globally asymptotically stable if there exi%t two : 9l Hea®) :
- _ | Pr oePy =2eTt)[ P, PY [ les(t }
scalarsg; > 0 and d; > 0, matrix P. = P, P, ] O [P Py ] g(ex(t))
with Py = diag{Pi1, Pi2,---,Pin} > 0, Po = T ﬁ(em(t))
diag{P21,P22, - 7P2N}l P; = diag{Pu,PgQ’ .. 7P3N} > +2e;, (t) [ Py Ps ] [ g(ew(t)) ]
0, P, € R, Py € R™" Py € R™™ (i = T %
1,2,---,N) and matrixQ = diag{Q1,Q2,---,Qn} > 0 42 { e (t) ] pr [ H }ez(t)
with Q; € R™*™ (4 = 1,2,---,N) such that the following 2(?) G
LMIs hold: (e (t
<2l(t)[ P1 PL] [ géz 83 } + el () Qe (t)
EP. >0, (35) i . ’ T
& * * * * + h(ex(t)) epg Q! epg h(ex(t))
7 9« x * (s (1)) Ps Ps g(ex(1))
Ale)=| Pi+aBE 0 —8ilnn £ | <0 T -
Ps +52D§ 0 * —02INm * —+2 |: ew(t) :| PT |: }:'[ :| ez(t)
0 0 P Ps3 -Q ex(?) e
(36)Hence, it follows that
here :
w V(e(t)l(s2)
E. diag{INnaele}u ~ ~ <9 em(t) PT K3 0 em(t)
& He(—PleCm + cPsq (D &® F)) — 01By — 62Dy, - ez(t) € 0 kg ez(t)



FINAL FILE 7

~ T —1 T
2T ([ B, pT 1] Mex(t)) [ o T P; 0 0 P
dote o 1| e =le, O [0 e le
+e§(t)Qez (t) T p-1 0
- - + ! - 42
Pl TR g [ E ] et SACEE )
glea(t) . Pf Ps gea(t)) where x; = diag{-K,C,,—K.C.} and kg =
ex(t) | H diag{—P1 K,C,, —PsK,C.}.
+2 P. | 5 |est) . : .
ex(t) G Substituting (42) into (36) and using Schur Complement
ea(t) T B, B, ex(t) Lemma, the following results can pe ea§ily accessible from
—01 B(e ) _RT T (e (1)) Theorem 2 and therefore the proof is omitted.
* oo N * Theorem 3:(i) Let Assumption 1 and Assumption 2 hold.
5 { ex(t) ] [ D;  -Ds ] [ ex(t) } For a givene > 0, if there exist two scalarg, > 0 andd; > 0
- T -
g(ew (t)) _]D)Q INm g(em(t)) and matricesPE — Pl EPQ with
= 9T MY P2 Ps
wheredy = [ eg(t) GZ(t) ET(em(t)) gT(em(t)) ]T and Pl = diag{Pll, Plg, s ,PlN} > O,
& FT P yoBy P4 oD, Py = diag{Ps1, Po, -+, Pon},
x 9 0 0 P3 = diag{ P31, P2, -+, P3n} >0,
M = T ~—1 (41) .
* * K5 EPQQ P3 Q_dlag{Qla Q27"' 7QN} > Oa
* * * ke Ym - dlag{ymlv 2y """ 7YmN}7
with k5 = —51[Nn+62P§Q71P2, Kg = —52]Nm+P3Q71P3- Y, = dlag{Yzl, 22, 7YzN}
According to Schur Complement Lemma{ < 0 is equiv-
alent to (35), which implies thatg;(¢t) — v:(¢)|| — 0 (¢t —
00, i =1,2,--- ,N). such that the following LMIs
(ii) Along the similar line as in the proof of (ii) of Theorem
1, we can obtain a descriptor case when 0. The ‘reduced- EP. > 0, (43)
order’ results (37) and (38) hold naturally and the proof is Ale) < 0O (44)
therefore omitted. [ |

From Theorem 2, it is still very difficult to find a global hold, where
solution to the nonlinear inequality (36) in order to selant
appropriate state estimator for system (3). Next, let usigeo ~ ©
a procedure for constructing the state estimator for sy¢gm &

e

He(—Ysz + CPl (D X F)) — 511@1 — 52]]3)1,
cePy(DT) + (D@ )Py + H'Py + GTPy,

To this end, it follows from (19) that G = Q+He(=Y.C, +cPs(D®II) + Py H + P5G),
0 —eCTKTPY —PIK.C. . .
[ Py K,C, — CTKTP, 0 ] then the system_(29) is a stateT esumatqr of the complex
T network (3). In this case, the estimator gain matrices can be
_ [ 0 P} ] [ -K,C, 0 } chosen as(, = P;'Y, andK, = P;'Y..
P, 0 0 -K.C: (i) Under Assumption 1, from the conclusion in (i),
N _K.C 0 Tro PT the system (29) becomes a _sfcate estimator of the_ com-
0 _K.C, P, 0 plex neMork (3) for all sufficiently smalle > O-If
AT . - there exist two scalarg; > 0, 6o > 0 and matrices
[ €P; } [Pl 0 } [ 0 Py } Po = Peemo, P| = Py = diag{Pi1, P2, -+, Pin} >
0 P?Tl P2 0 0, P2 = diag{le,ng,--- ,PQN}, P:?Z; = P3 =
P1 0 diag{Pgl,P32,~-- ,PgN} > 0 with P; € Rnxn, Py €
th [ 0 PJ’” R™Xn Pyoe R™m (; = 1,2,--- N), and Q =
i & * * * * * * * * ]
j gf * * * * * * *
P + 611@%; 0 —01INn * * * * * %
Py + 52}13)5 0 0 —ol Ny % * * * *
Ale) = 0 0 P, P; —Q % % X
-Y.Cy 0 0 0 0o -k * * *
0 -Y.C, 0 0 0 0 —Ps3 * *
0 Pl 0 0 0 0 0 —P =
L P- 0 0 0 0 0 0 0 —P3 |
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diag{@1,Q2,- - ,Qn} > 0 with Q; € R™™ (; = 61 = 0.8036, 05 = 1.2475.
1,2,---,N) satisfying the following LMIs:
. Whene = 0, the results are:
EoPy = Py Eg>0 45
N 0=0 =" (45) 1.2731
whereE, = E.|.—¢. Under such conditions, the estimator gain P 1.8325 —0.2454
matrices of the system (3) can be parameterizedias= 37| —0.2454 15545 |’

Remark 2:In Theorem 1 and Theorem 3, the exponential _0.7387  7.9770
synchronization and the state estimation problems are thor 51 = 0.7918. 65 — 1.2100
oughly investigated for a class of general nonlinear SPCNs e R '
that allow directed and weighted topologies. Within a udifieTherefore, according to Theorem 1, we can conclude that
framework, the existence of the desired synchronizatiah athe complex dynamical network (1) with given parameters is
estimation is guaranteed through solving a set of matrgjobally exponentially synchronized, which is further ified
inequalities, and both the slow and fast dynamics are hendlgy the simulation result shown in Fig. 1. The figures display
using an integrated matrix analysis method. Especiallg, tthe synchronization behavior very well for all the states of
sector-like nonlinearities in the system model do have amajetwork (1).

impact on the synchronization and estimation performancesyext, let us validate the theoretical results for the state
as the sector bounds are explicitly reflected in the obtainggtimation problem. Whea= 0.05 and

existence conditions. 0.9 ) 01
C“_{o.z]’ Oﬁ_[o.z}’ Oxf’"[o.s}’

In this section, two numerical examples are presented to Ca = [ 21 }’ Caz = [ 11 ]v Ces = [ 0.5 1 ]v
nization and state estimation problems for the nonline&$P 5nq (44) as
(). To better demonstrate the effectiveness of the caiténio

PY, andK, = P;'Y.. . [ 7.6175  —0.7387 ]

V. NUMERICAL EXAMPLE

systems with different orders of the slow and fast states afe _ 0'1332 0'05’90 0 1(;0 40 0(319 4 8 8
chosen to verify the required performances. v 0 0 0 0 0.2492  0.0214
Example 1:Consider the network model (1) with three nodes,
where and
0.2688 0 0
_ o o | -3 =3 0.1299 0 0
n=1m=2 H=[1 0‘5]’G_{3 —5}’ K o— 0 03795 0
= 0 01722 0
-02 01 01 0 0 0.5369
D=| 01 -02 01 |[,I=]-5], 0 0 01176
0.1 0.1 -0.2 . . . .
06 0 Whene = 0, we get the following estimator gain matrices
Il = [ 0 —=05 } ;=02 0.1193 0.0365 0 0 0 0
_ _ _ K, = 0 0 01644 0.0459 0 0
Let the nonlinear vector-valued functions be given by 0 0 0 0 0.2398 0.0153
h(@i(t)) = 222, (t)e 00 45, and
2 —0.0321; () 0.2733 0 0
g(z14(t)) = { w1, (te 0.03x ,(3—5 } ,1=1,2,3. 0.1274 0 0
—x1;(t)e” 00T K = 0 03840 0
| s . . e 2 0 0.1683 0
t can be verified that the following coefficients are satifie 0 0 0.5445
ASSUmption 1. 0 0 0:1033
By — -4, By— —4. Dy — [ -2 } Dy = { _i ] ) Ac<_:ording to Theprem 3, the system (29) becomes a state
—2 - estimator of the singularly perturbed complex network (4) o

When e = 0.05, by using the Matlab LMI Toolbox, a (3). The numerical simulation validates the theoreticalites
feasible solution is found based on the LMI (9) as follows: perfectly. Fig. 2 shows the evolutions of the states and thei
estimators of node 1, respectively. From the three figutes, i
1.2748 } , noticed that the state estimation approaches the origjstdis
0.3216 state asymptotically. Specifically, the estimate erroess&iown
P = { 1.8713  —0.2518 } clearly in Figs. 3 for all states of node 1.
—0.2518  1.5679 |~ Example 2:Next, an complex network with unstable “slow”
R [ 7.7185  —0.7465 } subsystems is selected to demonstrate that the proposed syn

P =3.3147, P, = {

—0.7465 8.0241 chronization and estimation schemes still work well in such
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an unstable case. Similar to Example 1, the system parasneterd
are chosen as follows:

3

1 )

n—2,m—1,N—3,H—{

K, =

0.0835 0.1226
0
0

0
0

0 0 0 0
—0.0242 0.1708 0 0
0 0 —0.0030 0.0816

1 0 Whene = 0, we get the following estimator gain matrices
G_—Q,F_[ ],H 0.5,
0 —0.6 0.1712  0.1642 0 0 0 0
0.1186 0.0535 0 0 0 0
—-0.2 0.1 0.1
_ 0 0 0.2512  0.0736 0 0
D=1 01 —02 01 },¢c=02 Ke=1 9 0 00641 01025 0 0
01 01 -02 0 0 0 0  0.8698 —0.1519
2 (£)—0.0121;(t) 0 0 0 0 0.0247  0.1081
ha) = | 20 e T2
x5 (t)eV-0%r2lt) 4+ 5 and
g(z(t)) = [ —z1(t)e 00320 ] i=1,23. 01226 0.1299 0 0 0 0
K, = 0 0 0.0401  0.1942 0 0
It can also be checked that 0 0 0 0 0.0415 0.1253

-3 0.2
Bl:[ 0 -4

|

0

-3 0.2
-2

Di=[1 02],Dy;=[08 02].

|\

Solving LMIs (9), we have the following results. When=

0.2,
P = [ 3.4927  —1.9848 }
—1.9848  8.6963 |’
Py = —0.4450 0.1889 |,
Py = 7.3937 |,
R=[16.3262 |, 6, =3.0873, &, = 11.8949.
Whene = 0,
P - [ 0.7153  —0.5602 ]
—-0.5602 2.0382 |’
Py = —0.2516 —0.0594 ],
Py =1 21082 |,

R=[ 45913 ], & = 0.6737, &, = 3.5950.

According to Theorem 3, the system (29) becomes a state
estimator of the singularly perturbed complex network (1)
or (3). Fig. 5 depicts the evolutions of the states and their
estimators of node 1, which shows that the estimated state
asymptotically tends to the original state. Furthermohe, t
estimation errors of states (¢), x21(¢t) andz11(t) are shown

in Fig. 6.

VI. CONCLUSIONS

In this paper, we have investigated the exponential synchro
nization and state estimation problems for a class of neatin
SPCNS with each node subjecting to both ‘slow’ and ‘fast’
dynamics. By utilizing a novel Lyapunov functional and the
Kronecker product, the addressed synchronization prohbsn
been solved by checking the feasibility of a set of matrix
inequalities. The subsequent state estimation problenthieas
been dealt with for the same complex networks. Through-avail
able output measurements, a state estimator has beenelbsign
to estimate the network states such that the dynamics of the
estimation error is guaranteed to be globally asymptdtical

According to Theorem 1, we can conclude that the completable. Two simulation examples have been provided to show

dynamical network (1) is globally exponentially synchrzed

the usefulness of the proposed global synchronization and

with given parameters. Also, the simulation result shown iestimation schemes. Our main results are still valid even if

Fig. 4 illustrates that all states of network (1) are synaoired
even if the ‘slow’ subsystems are unstable. Next, let usudisc

the state estimation case. Wheg-= 0.2 and

[ 09 0.3 ]
Ca1 = | 02 08 |’
.
Caz = | 02 0.7 |’
[ 0.1 0.7 ]
Cas = | 0.8 02 ]’
[ 2 1 0.5
Czl—_1:|1022—|:1:|70z3_|:1:|7
we solve (43) and (44) to obtain
0.1384 0.1615 0 0 0 0
0.1186 0.0045 0 0 0 0
K 0 0 0.2420 0.0117 0 0
= 0 0 0.0308 0.0684 0 0
0 0 0 0 0.8594 —0.1554
0 0 0 0 0.0253  0.1036

the ‘slow subsystems within the network are unstable.

It is worth mentioning that, in general, the slow dynamics
could be either stable or unstable. Our main results for
synchronization and state estimation problems are valid fo
both the stable and unstable casedjich has been con-
firmed through our two example©n the other hand, in
the derivation of our main results, we do need the technical
assumption that that the fast dynamics is stable. In fact, if
the fast dynamics is unstable, then the boundary layer dause
by the fast dynamics doesn’'t decay and the corresponding
synchronization/estimation problems cannot be dealt With
the unified approach since the fast and slow dynamics will
operate on two distinctively different scales. We are auttye
developing more general techniques that would avoid the
restrictive assumption and the results will appear in thar ne
future. Also, it would be interesting to employ more up-iatel
techniques (e.g. data-driven techniques [45], [46] andyuz
control approaches [2], [3], [5], [14]) to enhance the picadt
relevance of the main results.
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