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Abstract—This paper develops a long term transmission expan-
sion optimization methodology taking the probabilistic nature of
generation and demand, spatial aspects of transmission invest-
ments and different technologies into account. The developed
methodology delivers a stepwise investment plan to achieve the
optimal grid expansion for additional transmission capacity be-
tween different zones. In this paper, the optimization methodology
is applied to the Spanish and French transmission systems for
long term optimization of investments in interconnection capacity.

Index Terms—Transmission System Expansion Planning,
Transmission System Optimization, Optimal Cable Routing,
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I. INTRODUCTION

The European electricity sector is currently facing major
changes and challenges. Due to the European 20-20-20 targets,
the share of generation from renewable energy sources in the
total generation keeps increasing steadily. This has a major im-
pact on the generation mix and the way the transmission grid is
operated. By the end of this decade, the total installed capacity
of wind power plants is expected to reach 18.9% of the total
installed generation capacity in Europe [1]. Including solar
generation, hydro generation and other renewable sources, the
total share of installed generation capacity from renewable
energy sources will reach 54.4% by 2020 [1]. In 2014, 79.1%
of new installed generation capacity used renewable energy
sources [2].

The increased power flows and their volatility in the Eu-
ropean transmission network makes significant investments
inevitable. ENTSO-E estimates that 52300 km of new or
refurbished extra high voltage routes will be required in
the coming decade, equal to an investment volume of 104
billion € [3]. As transmission grid planning over long time
horizons is subjected to a large number of uncertainties, robust
optimization methodologies need to be developed, allowing for
the analysis of many different scenarios and help to minimize
investment risks. At the same time, these methods must be
computationally feasible.
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In general, transmission system investment optimization
is a difficult task due to the non-linear, non-convex and
mixed-integer nature of the optimization problem [4]. The
liberalization of the electricity market and increased use of
energy from renewable energy sources increase the level of
complexity in determining the optimal location and size of
new investments. In the literature, a large number of transmis-
sion system optimization methodologies exist, as extensively
outlined in [4] and [5]. These methodologies can be classified
in several ways as proposed in [4].

The first possible classification is the formulation of the
optimization problem [4]. Mathematical optimization methods
include linear programming [6]-[8], quadratic programming,
non-linear programming [9], integer programming and mixed-
integer programming [10]-[14] and their combinations. For
high dimensional non-convex problems these methods become
computationally expensive and have been enhanced by heuris-
tic methods [15]-[17]. The most popular include sensitivity
analysis [18], [19], genetic algorithms [20]-[25], simulated
annealing [26]-[28], tabu search [29], [30] and particle swarm
optimization [31], [32].

Another possible classification is the time horizon of the
used methodology. Static optimization methodologies deliver
only the solution for a specific time point of the planning
horizon, whereas dynamic tools provide a sequence of opti-
mal investments over the entire time horizon [4]. The most
popular approaches for dynamic optimization methodologies
use dynamic programming [33]-[35] and several heuristic
approaches [11], [28], [36]-[41]. Nevertheless, dynamic plan-
ning methodologies including multiple time steps are still not
sufficiently developed and need often major simplifications
[42].

The assumed structure of the power system is a third
possibility to classify transmission expansion optimization
methodologies. The majority of the reviewed literature de-
scribes methodologies where the planning is carried out by
a single entity. In case several planning entities are simulated,
mostly game theory based methods are used [43]-[46].

Above mentioned types of transmission system expansion
optimization methodologies can be defined in a determin-
istic way as well as using probabilistic approaches [47]-
[50]. Depending on the used solution methodology, planning
horizon and power system structure, still major simplifications
have to be made in order to solve this complex optimization
problem. Most successful optimization methodologies achieve
scalability by decomposing the problem at hand into different
layers [7], [51], [52]. By using decomposition methods the



optimization problem divided into several virtually decoupled
layers. The different optimization problems are solved in a
more simplified and efficient way. Eventually, these layers
have to interact with each other, exchange dedicated informa-
tion and solve the expansion problem iteratively. [53] provides
different decomposition methods and several applications of
these for power system optimization including transmission
expansion planning.

A key short-coming of available planning methodologies
is that spatial aspects of transmission assets and the use of
different technology options for new investments are not taken
into account, especially in dynamic planning methodologies.
This work provides a methodology to determine optimal
time points, rating, location, routing and technology of new
transmission investments in a given area, taking into account
spatial aspects. As a result, a detailed and optimized stepwise
investment plan for a defined planning horizon is obtained. The
developed methodology can be used by transmission system
operators to efficiently analyse different future scenarios in
order to reduce risk for future investments. This work extends
the static model presented in [54] to a pseudo-dynamic model.
The use of the A* shortest path algorithm has been introduced
to improve the computational efficiency and enable practical
applications. The formulation presented makes it possible to
assess the effects of delays in corridor availability, availability
of transmission technology and constraints on investments.

The paper is is organized as follows. Section II illustrates
the structure of the proposed long term planning methodology.
Section III describes the optimization of network topology
and investment time points. Section IV explains how the opti-
mization of transmission routes and technologies is performed.
In Section V a simple case study is provided to illustrate
the working principle of the developed algorithm. Section VI
shows the application of the methodology to a larger case
study. Finally, in Section VII conclusions are drawn.

II. PROPOSED LONG TERM PLANNING METHODOLOGY
AND OPTIMIZATION METHODOLOGY

The methodology illustrated in this paper uses two itera-
tive optimization layers consisting of dynamic optimization
of investments and an optimization of used technology and
transmission routes considering spatial aspects. Fig. 1 shows
the structure of the proposed long term transmission expansion
optimization methodology. The different building blocks of the
methodology are discussed briefly in the following paragraphs.
The main focus of this paper is on the third block, the
substation level.

A. Interconnection level

The interconnection level determines the capacity needs
between multiple zones, considering future generation and
demand scenarios to enable long term security of supply. The
objective of the optimization is to find the best interconnection
capability between multiple zones maximizing social welfare.
The output of the interconnection level is the optimal in-
terconnection capacity and generation cost information. The
determination of the interconnection level is not in the scope
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Fig. 1: Structure of the proposed long term transmission expansion optimiza-
tion methodology

Abstract Network

Existing grid

Fig. 2: Principle of network abstraction [56]

of this work as a large number of such market based tools
exist [55].

B. Network Abstraction

Using the input coming from the interconnection level, an
optimization algorithm can be written to determine optimal
location and rating of new assets to achieve the desired
interconnection power. If the existing transmission system is
modelled with its full detail and technology selection, while
route and timing of the investments are optimized, the number
of variables becomes a burden. Therefore, an abstraction from
the existing network is created to decouple the optimization of
technology, topology, routing and timing of new investments
from the existing network.

The principle of the network abstraction is shown in Fig. 2.
In the abstract layer, the existing network is presented as
a possible set of allowable injections and absorptions. The
allowable injections and absorptions are determined consid-
ering probabilistic distribution of generation and demand as
well as existing line limits. The determined injection capa-
bilities indicate the maximum amount of power which can
be imported or exported in a particular node of the system
without causing any overload situations in the existing network.
By doing so, a set of selected nodes can be used for the
further optimization at substation level, rather than the entire
set of nodes. The calculation methodology for the network
abstraction is briefly illustrated in Appendix A of this paper.
More detailed information can be found in [54], [56], [57].
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C. Substation level

At the substation level, which is described in the remainder
of this paper, the optimization of new investments is carried
out. The optimization determines for each time point of the
planning horizon which substations to connect, which technol-
ogy (AC, DC, overhead lines, underground cables) and power
rating to use such that the desired interconnection capability
is achieved in the economically most feasible way.

The optimization considers area dependent installation costs
and finds the cheapest transmission route in combination with
the technology. This way, soft constraints such as social and
environmental impact can be included in these area dependent
costs as illustrated in Section VI. Using different constraints,
the impact of construction delays and availability of multi-
terminal HVDC operation is analysed.

Fig. 3 shows the structure of the investment optimization.
The investment optimization uses iteratively an MILP opti-
mization and a shortest path algorithm. In the initial step,
average transmission system costs are calculated. The costs
are calculated using the optimal routing algorithm described in
Section IV with a low spatial resolution only for all possible
branches and a few chosen power ratings (STEP 0, Fig. 3).
The average costs for other all power ratings are linearly
approximated. Using these costs as input, a mixed integer
linear problem (MILP) is solved where the topology (which
substations/nodes are connected with each other), power rating
and time point of new grid investments are determined (STEP
1, Fig. 3). The objective of the optimization is the minimization
of total transmission system costs over the planning horizon.
The problem formulation is provided in Section III.

Using the provided topology and power ratings, the trans-
mission technologies and routes of each selected branch are
optimized, taking into account area dependent installation
costs (STEP 2, Fig. 3). The objective is the minimization of
the costs separately for each selected branch. This procedure
is based on an optimal routing algorithm which is explained
in Section IV.

The original selection of ratings must be revisited in the
next iteration. Therefore the average costs are updated (STEP

3) with the minimum costs obtained by the optimal routing
algorithm (STEP 2) and fed into the MILP optimisation (STEP
1). In order to avoid that the algorithm gets stuck in a local
optimum, penalty functions are used for branches and power
ratings which have not been selected. The following penalty

functions are used
civs - (L+earp) @ it caipr <0
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where cj;g and cis are the costs of not selected branches
in iterations z and z + 1 respectively, and ¢g; 7y is the average
of the relative cost differences between iterations z and z — 1
for the branches selected in iteration z. The steps 1 to 3 are
repeated until the relative cost difference cq;ry between two
iterations is below a certain threshold € or a maximum number
of iterations have been reached. For the calculations shown in
this paper, € is defined as 1075,
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III. OPTIMIZATION OF INVESTMENT TIME POINTS AND
GRID TOPOLOGY

This section shows how the optimization of the grid
topology and investment time points delivering a stepwise
investment plan are carried out using mixed-integer linear
programming (MILP). Equation (III) shows the objective
function of the MILP problem statement. The objective of
the optimization problem is the minimization of transmission
system costs over the entire planning horizon consisting of
investment and installation costs. The search space consists of
Ng =2 Np - Ni - N; binary decision variables, where NV}, is
the number of possible branches, Vi the number of possible
power ratings and [V, is the number of investment time points.
Uiji is a binary decision variable defined for each possible
branch ¢, power rating 7 and time point ¢. As each branch can
carry power flows in both directions, two decision variables
U;;t and U, are used to account for different power flow
directions.
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Vector k contains all possible power ratings of transmission
paths. Vector C contains costs for each transmission path,
power rating and investment time point. For instance C1 23
is the investment costs of path 1, using power rating 2, at
investment time point 3. The elements of C are defined sepa-
rately for each optimization time point ¢. As future expenses
are worth less in today’s currency, the elements of C are
depreciated over time using (3) and (4), where ¢ is a user
defined discount rate.
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As the interest rate is greater than zero, future costs are
always lower than the costs at the starting year of the planning
horizon. Thus, the optimization solver postpones more expen-
sive investments as long as possible, as they have a higher
depreciation. The investments can only be postponed as far as
the optimization constraints, which are shown (5) - (10), allow
it.
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Constraint (5) states that the sum of power ratings of

tie lines between zones must be greater or equal than the
desired interconnection power P;™*¢" for each time step of
the planning horizon. 1 is a vector indicating tie lines between
the considered zones as defined in (11) and k is the vector of
possible power ratings.

1
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Constraint (6) states that the maximum power injection
capabilities of candidate nodes may not be exceeded. A%, IC
is defined as a (Ny - N¢) X (N - Ni, - N;) matrix, Ny being
the number of candidate nodes. The elements of A%,
contain the matrices A5~ which indicate the change in
the injection capabilities of candidate nodes depending on the
power ratings of possible branches at each time point (12).
The size of A, is Ny x (Np, - Ni). The binary decision
variables U are defined separately for each time point and a
specific branch can only be selected at one specific time point.
By defining A%, as given in (12), the selected branches
of each time point influence the maximum power injection
capabilities from the time point they have been selected to
the end of the planning horizon. Hence, their presence to the
end of the planning horizon is ensured using constraint (6). A
brief description of the calculation methodology for A%y, ~
has been provided in Appendix A. Detailed information about
the calculation can be found in [54], [56], [57].

if branch 7 is a tie line
otherwise
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Usually, transmission system operators have to find the
necessary capital for transmission system investments on the
capital market. The amount of capital made available for
transmission system operators is determined by their financial
status and is limited for a certain investment period. Constraint
(7) takes the limitation of capital availability into account and
states that the sum of investments in a particular time step
may not be higher than a defined maximum investment C;.
The 1 x N; vector C; contains the maximum investments per

term which can have different values at each investment time
point as shown in (13). By varying the elements of Cy, several
different investment sequences and grid configurations can be
obtained. This helps the grid planner to analyse the effects
of capital availability on the final grid configuration and on
the total net present value of investment sequences in order to
prioritize investment decisions and reduce investment risks.

C, = ELCZ, . .,CNt] (13)

Transmission system investment projects face very often
delays due to internal and external factors. Internal factors
include delays in the supply chain for equipment as well as
delays in construction due to unforeseen technical or geograph-
ical obstacles. External factors include delays in the planning
and permission process, mostly due to public resistance, policy
or financial issues. It is important to analyse the effect of
possible delays on the final transmission grid topology and the
resulting costs in order to identify priority corridors. Constraint
(8) includes possible delays in the optimization model. The
constraint states that certain transmission paths can only be
built after a pre-defined time point of the planning horizon.
U(Z and U, are a sub-set of the binary decision variables U™
and U~ respectively, defining transmission paths facing delays.
The vector tq; assigns time points to each element of the sub-
sets U}, and U, from where on connections on these paths
may be established. For instance, to determine how long the
construction of a line can be postponed, the time point in the
delay vector can be increased step by step, until no feasible
solution is found or the connection becomes obsolete in the
final grid topology. This way a prioritization of different paths
can be determined and justified.

Another interesting aspect in long term planning is tech-
nology availability. Depending on technology availability, the
final grid topology and the final investment costs can be
different. Constraint (9) has been introduced in the problem
formulation to analyse the effect of availability of meshed
HVDC configurations. The constraint states that for all time
points ¢ which are smaller than a defined time point tzv pc
no multi-terminal or meshed HVDC configuration is possible.
U,j'v 40 and U, . indicate the decision variables of paths which
are built in HVDC and E},,4. is an incidence matrix. Ejqc
has the size Ny x Ny, where Ny is the number of candidate
nodes and N, is the number of possible branches. For instance,
the elements E,, ; and E,, ; of Egypc are 1 if branch 7 is an
element of U,!, , and U, ;. and connects nodes m and n. All
other elements are zero. This way, only one HVDC connection
can be connected to one single node. This constraint is relaxed
after the defined time period ¢z pc such that more HVDC
connections can be established the nodes m and m. Similar
to the line delay constraint, the variation of {5y pc can be
used to investigate until when the technological maturity of
multi-terminal HVDC configurations must be reached so it is
still economically feasible to build such configurations.

Constraint (10) states that the maximum power rating of a

connection path may not exceed a pre-defined maximum rating
K.
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Fig. 4: Creation of a weighted directed graph by discretizing a spatial map

IV. OPTIMIZATION OF TECHNOLOGY AND ROUTING

In transmission investment planning, it is not sufficient
to consider only overhead lines for this purpose. Due to
increased public opposition, permissions to build overhead
lines (OHL) are hard to obtain [58]. When it comes to AC
underground cables (UGC), the possible transmission distance
is limited due to the high cable capacitance and the resulting
charging currents. Therefore, the possibility of using HVDC
transmission has to be considered during the optimization
process.

The route and transmission technology are interdependent.
Additionally, the installation costs for different technologies
depend on the type of soil, land acquisition costs and other
factors. It is therefore important to optimize the cabling
option (OHL vs. UGC), technology (HVAC vs. HVDC) and
the transmission route at the same time. In the developed
algorithm, a map of the considered installation area containing
all candidate nodes is discretized to a grid of spatial points
pi = [, Y] of size N x N, as shown in Fig. 4. The number of
chosen nodes and their horizontal and vertical position depend
on the desired spatial resolution and the size of the area. All
points p; = [z, y;] are distributed in equal distance from each
other.

To be able to optimize the technology together with the
cabling option, the four technologies of AC OHL, AC UGC,
DC OHL and DC UGC must also be represented, as well
as the effect of creating hybrid options such as AC with
DC and OHL with UGC. Therefore, the optimal routing and
technology problem is formulated around a weighted graph
G = (V, &) having four technology layers and weighted edges
signifying costs. This means that for each technology option
a separate discretization is performed. For every spatial point
p, there are four associated vertices ) representing possible
technologies. A full set of edges £ between vertices associated
with adjacent spatial points correspond to cables or lines of a
given technology. There are also edges between the vertices
associated with different technologies at the same spatial point
p that correspond to mechanical or electrical conversions
necessary to join dissimilar technologies. This means that for a
graph with N, - N, nodes, (10 - N, - N, — 3 - (N; + N,) +2)
edges exist.

The graph cost function W (p;,&;) can take on a differ-
ent positive value for every edge j and represents the cost
associated with progressing spatially or switching between
technologies:

W (pi, &) = (C“w (i, &) + ™ (&) - w(Pi)) d(&;)+w ™M (g5) (14)

where ¢ (p;, &;) and ¢! (&;) correspond to both location
and technology dependent investment and installation costs,
respectively. w(p;) is a spatial weighting factor to take the
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Fig. 5: Creation of a weighted directed graph containing four technologies as
input for the shortest path algorithm [54]

change of installation costs in different areas into account.
d(&;) is the spatial distance associated with the edge, and
wsWeh (£, is a technology conversion cost. The cost factors
are also dependent on the optimal capacity K determined by
the other sub-problem, but this is omitted as the quantity is
fixed for a given iteration.

In (14), ¢ (p;, &) and ¢ (E ;) are given in €/km for
a defined reference area. The spatial weight w(p;) defines
the relative difference of installation costs in a certain area
compared to the reference area.

The weighting factor ws*#ch(&;) is assigned to each edge
of the graph to represent costs of technology switch in the
weighted graph. Fig. 5 shows how the technology switch is
realized. The four technology maps are connected at each
vertex x;/y; to each other. In case of a switch from AC to DC
or DC to AC, the edge is weighted with the cost of an HVDC
converter. In case of a switch within the same technology to
a different cabling option, the weight is determined using the
necessary number of cable systems and conductors per cable
system (Fig. 5). If there is no switch in technology or cabling
option, w;vih is zero.

Including the above mentioned costs into a weighted graph,
the shortest distance between the starting point and the ter-
mination point of a path can be determined using shortest
path algorithms. If the weights assigned to the edges of the
graph are costs per km of transmission line, the shortest
path algorithm delivers the minimum transmission system cost
between two vertices (15).

As all four technology layers are interconnected, the shortest
path algorithm delivers the minimum transmission system cost

msin Cequip = Z W (E)

£ €S

15)

where S is a sequence of edges corresponding to the
lowest cost or “shortest” path. Although Dijkstra’s shortest
path algorithm [59] has been used in previous work [54], in
this work the heuristic A* algorithm has been implemented
which has proven to be computationally more efficient [60].
The A* algorithm is described in the Appendix B.
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Fig. 6: Simple case study to demonstrate working principle

V. CONCEPT CASE

In this section, the developed methodology is applied to

a very simple case to demonstrate the working principle.

The case study consists of four nodes and four different
areas as shown in Fig. 6. Nodes 1 and 2 belong to the
same transmission zone, whereas nodes 3 and 4 form another
transmission zone. It is assumed that in node 1, 2 GW can be
injected and absorbed. Nodes 2, 3 and 4 can inject and absorb
1 GW, IGW and 2 GW respectively. For the sake of simplicity
it is assumed that the injection and absorption capabilities do
not change which means that Ay, = 0.

Two different technology options have been used in this
simple case having the same investment costs but different
installation costs in each area. The investment costs are
calculated using

Ciny = P/1500 + 1; (16)

where C;,, is given in €/km and P is the power rating

MW . For a 1500 MW link, the costs would equal to 2 €/km.

The basic installation cost is assumed to be 1 €/km. This
means that the total costs of both links would be 3 €/km in the
base installation area. The specific weights for the installation
costs and the resulting costs per km for a 1000 MW, 1500 MW
and 2000 MW are given in Tab. I. For the sake of simplicity, it

is assumed that there is no additional cost of technology switch.

During the optimization, the power rating of each path can be
multiples of 100 MW. It is assumed that the maximum power
rating of one path, K, is 3 GW.

TABLE 1
SPECIFIC WEIGHTS FOR INSTALLATION COSTS

Technology Area Specific ~ C1gt, cigt, cLet,

weight [€/km] [E€/km] [€/km]
Technology 1  Area 1 1 2.67 3 333
Technology 1  Area 2 2 3.67 4 4.33
Technology 1  Area 3 3 4.67 5 533
Technology 1  Area 4 4 5.67 6 6.33
Technology 2  Area 1 1 2.67 3 3.33
Technology 2  Area 2 2 3.67 4 4.33
Technology 2  Area 3 1 2.67 3 333
Technology 2  Area 4 2 3.67 4 4.33
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Fig. 7: Stepwise investment plan for case 1: base case

The optimization is performed for three time steps in years
0, 5 and 10. In year O, at least 1 GW needs to be accomplished
between both transmission zones. In years 5 and 10, the total
capacity should be at least 2 GW and 3 GW respectively. A
discount rate of 5% is used to account for depreciation.

Four different cases are analysed to show the working
principle of the methodology. In case 1, which is the base
case, only constraints regarding maximum power injection
capabilities and maximum power per path are considered. The
stepwise investment plan for case 1 is shown in Fig. 7. In year
0 of the investment time horizon, a 2 GW link between nodes
1 and 4 is established. Technology 1 is used in Area 1, where
it is cheapest. In Area 4, technology 2 is preferred. At year
5 of the investment time horizon, no new connection is built.
In this case it is cheaper to oversize the connection between
nodes 1 and 4 in year 0. In the last step of the planning horizon,
a 1 GW link is established between nodes 2 and 4. In Area
2, technology 1 is used, whereas technology 2 is preferred
for Area 3. The total costs are given in Tab. II. Further, the
costs per time step (non-discounted and discounted costs), the
calculation time and number of iterations of the developed
methodology, the calculation time using brute force approach
to determine global optimum and the net present value (NPV)
of the global optimum are provided in Tab. II. Appendix C
provides extra information about convergence behaviour be-
tween the MILP routine and the optimal routing calculation.
The base case which only considers maximum power injection
capabilities is obviously the cheapest possible option. All other
cases put additional constraints on the optimization problem
such that the obtained costs can only be equal to or higher
than the costs of the base case. In the base case, 267.3 € of
net present value were invested in year 10.

In case 2, the available capital of year 10 is limited to 200 €.
Fig. 8 shows the optimal investment plan in this case. In year
0, a 1 GW connection is established between nodes 1 and 3.
In year 5, a 2 GW connection is built between nodes 2 and
4. As the power injection capability of node 2 is only 1 GW,
another transmission link of 1 GW between nodes 1 and 2 is
needed. Tab. II shows that the total NPV of case 2 is 38.2
€ (4.73%) higher than in the base case.

In case 3, the maximum amount of investments of year 0O



TABLE II
TOTAL COSTS AND CALCULATION TIMES FOR THE
DEVELOPED METHODOLOGY AND GLOBAL OPTIMUM

Case Year Costs  Discounted costs  teqre  Niter tgi‘;zul Global optimum
[€] [€] [s] [s] €]
Case 1 0 540,7 540.7 - - - -
Case 1 5 0 0 - - - -
Case 1 Year 10 4463 267.3 - - - -
Case 1  Total NPV — 808 399.7 10 1924.2 808
Case 2 Year 0 266.7 266.7 - - - -
Case 2 Year 5 749 579.5 - - - -
Case 2 Year 10 0 0 - - - -
Case 2 Total NPV - 846.2 443.6 10 19322 846.2
Case 3 Year 0 266.7 266.7 - - - -
Case 3 Year 5 366.7 283.7 - - - -
Case 3 Year 10 446.3 267.3 - - - -
Case 3 Total NPV - 817.7 438.8 10 1894 817.7
Case 4 Year 0 366.7 366.7 - - - -
Case 4 Year 5 266.7 206.3 - - - -
Case 4 Year 10 446.3 267.3 - - - -
Case 4  Total NPV - 840.3 392 10 1866 840.3
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Fig. 8: Stepwise investment plan for case 2: capital restriction

are limited to 400 €. The maximum investment constraint of
year 10 is relaxed again. In this case, we can see that in all
investment time steps connections of 1 GW are established
(Fig. 9). In year 0, node 1 is connected with node 3. In year 5,
nodes 2 and 4 are connected. In year 10, node 1 is connected
with node 4. In this case, the most expensive connection is
established at the latest stage of the planning horizon as the
depreciation is the highest. Still, in case 3, the NPV of the total
investments are 9.7 € higher than in the base case (Tab. II).

In case 4, the connections between nodes 1 and 3 as well as
between nodes 1 and 4 are not allowed before year 5. In this
case, we can see that in year 0, nodes 2 and 4 are connected
with a 1 GW link which is the cheapest option for this case.
In year 5, the connection of nodes 1 and 3 is established and
in year 10, nodes 1 and 4 are connected (Fig.10). In fact, the
same grid topology is obtained as in case 3, except that the
order of investments in year O and 5 are switched. In this case,
the costs are 22.6 € higher than in case 3, as the the more
expensive link between nodes 2 and 4 has to be built in year
0 and as such cannot be depreciated.

Tab. II shows that the global optimum is reached in all
investigated cases with a significantly shorter computation
time. Tab. II also shows that the calculation time depends
mainly on the optimal routing algorithm, rather than the MILP
part of the process. In the brute force case, the minimal costs
of each possible path and power rating are calculated resulting
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Fig. 9: Stepwise investment plan for case 3: limitation on maximum invest-
ment by owner
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Fig. 10: Stepwise investment plan for case 4: delay of corridor availability

in 180 optimal routing calculations (6 possible paths and 30
possible ratings). In that case, the MILP problem is solved only
once. In the iterative approach, the optimal routing algorithm
is only used links and power ratings selected by the MILP
optimization of the first iteration. The costs of chosen paths
and ratings are updated for the next iteration.

In the following section, the developed methodology is
applied to a larger case study and the effect of different
constraints on the obtained results is discussed qualitatively.

VI. APPLICATION TO A LARGER SYSTEM

In this section, the developed methodology is applied to
a case study to show possibilities of application and the
capabilities of the methodology. The selected case study aims
to analyse different scenarios for long term and large scale
transmission system investments. The starting point of the case
study is the roadmap for a low-carbon economy in Europe for
2050 established by the European Climate Foundation [61],
[62]. The roadmap states that by 2050 additional 33 GW
of transmission capacity between the Iberian peninsula and
France would enable economically a more efficient use of for
power generation, especially solar and wind resources [61].

In order to determine area dependent installation costs, geo-
graphic information about the Iberian peninsula and France has
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Fig. 11: Population density and elevation map of the Iberian peninsula and
France

been derived from the Socio-economic Data and Applications
Centre. In order to weight social impact, a population density
map is used whereas an elevation map is used to reflect the
topographic properties of the area of focus (Fig. 11). The
total spatial weight W, is determined by combining the
information of both maps

Qe * Welevation + Qp - Wpopulation

Wiot =
Qe + ay

a7

where, a. and a, indicate how much the elevation and
population density contribute to the total spatial weight W;;.
Tab. IIT shows optimal solutions for different combinations of
ae and ay,.

The European transmission grid model according [65] pro-
vides a sufficiently accurate representation of the European
high voltage transmission grid. To limit calculation time,
only the Spanish and French transmission grids are used
in the calculation of maximum power injection capabilities
(Fig. 12). The neighbouring transmission grids of Portugal,
Italy, Germany, Switzerland, Belgium and UK have been
represented using equivalent injections on border nodes. A
total of 34 candidate nodes have been selected depending
on their injection capabilities and locations. As shown in
Fig. 12, candidate nodes have been geographically spread in
both countries. Out of the 34 candidate nodes, 18 are situated
in France whereas 16 candidate nodes have been selected in
Spain.

The probability distribution of loads is simulated by scaling
hourly load values of the Spanish and French transmission
grids available in [66], [67] to the transmission grid model
used and using the demand values provided in [65] as the
mean values of the probability distribution. The generation
profile of wind farms is simulated using randomly generated
and Weibull distributed wind speeds and applying them to a
wind farm power output curve as given in [68] and using the
provided generation values of [65] as maximum generation
values.

Fig. 13 shows the obtained power injection and absorption
capabilities after application of the calculation methodology
provided in [56], [57]. The figure shows that in nodes 26, 28
and 31 the most amount of power can be imported whereas

Fig. 12: Structure of the used network. Circles indicate chosen candidate nodes
[65]

nodes 6, 10, 26, 28 have the highest power export capacity.

The following paragraphs show possible future grid expan-
sion options to establish 30 GW of additional interconnection
capacity between Spain and France. Following optimization
parameters remain unchanged in all scenarios:

o The total interconnection power is established in four
investment time steps, t = [0 10 20 30] years

o The interconnection power per time step is P/"t¢T =
[8 16 23 30] GW

o The new connections can be built in multiples of 500 MW

o The used discount rate is 3% per year, without accounting
for inflation and price increase of equipment

Fig. 14 shows the optimal investment plan if the maximum
power rating per path K is restricted to 3 GW. In the first
investment time step, most investments are established using
HVAC technology (Fig. 14). Candidate nodes in both zones
which are closest to each other are connected first. With
advancing time, the total length of new built connections
increase. In this scenario, 1301 km, 1530 km, 1658 km and
2835 km of new lines are built at each time step. Under
the taken assumptions, most interconnections are established
using overhead line technology. During the entire planning
horizon, only one underground cable connection appears using
HVDC technology (Fig. 14b). HVAC technology is preferred
to connect nodes close to each other, whereas for longer
distances HVDC technology is used. As HVDC overhead
lines require less conductors, the cost per km of HVDC over-
head line is less than HVAC overhead lines. With increasing
transmission distance, cost savings of using HVDC overhead
lines overweights costs of HVDC converters making HVDC
economically more feasible.

The total net present value of the grid expansion equals
8224 M£. If the costs are broken down by time step, we can
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Fig. 13: Maximum power import and export capabilities of candidate nodes

see that discounted investments worth 1895 M€, 2138 M€,
1864 M<€, 2327 M€ are required in the four time steps. The
net present value is spread approximately equally over the
planning horizon.

Fig. 15 shows the optimal investment plan if links with a
maximum rating of 5 GW can be established. In this case,
the number of necessary links is reduced to 15 instead of 17.
Tab. III shows that the total investment cost is decreased if
transmission links with 5 GW are used. The total investments
decrease to 7408 G€ equal to a cost saving of 9.91%. Tab. III
further shows that the required length of new lines is approx-
imately 2000 km less if links with a capacity of 5 GW are
used. This has a positive impact on maintenance decreasing
operational costs. Under the assumptions, only overhead lines
are used in this configuration.

Although any link can be built with a rating of 5 GW,
only one transmission link is actually built with a capacity
of 5 GW connecting nodes 4 and 33 via an HVDC overhead
line. The reason is that the use of larger links is limited by
the maximum power injection capability of candidate nodes.
In case larger links would be connected, overload situations
in the underlying network may occur. Tab. III shows that a
further increase in maximum link capacities does not improve
the optimal solution. Even if links with a capacity of 8 GW
are allowed, the economically best solution is still achieved

i

(a) Optimal grid expansion ¢ = 0 (b) Optimal grid expansion ¢ = 10
years - years

3 1 € R el 7 2
(c) Optimal grid expansion ¢ = 20 (d) Optimal grid expansion ¢ = 30
years years

Fig. 14: Optimal investment plan for K = 3 GW. Red colour indicates
HVAC, white colour indicates HVDC. Solid lines indicate underground cables,
circles indicate overhead lines

using 5 GW.

Tab. III shows the optimal solutions in case the multi-
terminal HVDC constraint and spatial weights are varied.
Significant cost savings can be achieved if multi-terminal
operation of HVDC links becomes possible in early stages of
the planning process. The table shows that similar solutions
are achieved when spatial weights are varied.

TABLE III
COMPARISON OF DIFFERENT MAXIMUM POWER RATINGS
PER PATH

K Ciot [M€]
tavpc=0 trvpc=10

ltot [km]

tevpc=20  tavpc=0 tavpc=10 tmvpc=20

8224
7898
8220

10920
8010
8220

11387
8179
8536

7054
6789
7376

9517
6846
7376

8939
7334
7034

7408
7469
7548

7629
7570
7548

8446
7756
71755

5098
5332
4913

4840
4688
4913

5846
5209
5291

7408
7469
7548

7629
7570
7548

8061
7756
71755

5098
5332
4913

4840
4688
4913

4847
5209
5291

The optimal solution obtained with transmission paths of
5 GW contains 4 HVAC connections established in the first
time step of the planning horizon between nodes 12 and 17,
12 and 23, 14 and 20, 13 and 22 (Fig. 15a). In case these
connections cannot be built in the first 10 years, the investment
plan shown in Fig. 16 becomes economically more feasible.
In this option, the connections between nodes 12 and 17,
14 and 20, 13 and 22 are established in the second step of
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Fig. 15: Optimal investment plan for K = 5 GW. Red colour indicates
HVAC, white colour indicates HVDC. Solid lines indicate underground cables,
circles indicate overhead lines

the planning horizon. The connection between nodes 12 and
23 is not established at all. The total net present value of
investments considering line delays equals 7515 M€, which
is 1.01% higher than the solution without delay. In the optimal
investment plan including line delays, 13 transmission paths
are established instead of 15. The total length of new built lines
is approximately 300 km less. In this case, a detailed analysis
of expected transmission losses and maintenance costs should
be conducted in order to assess potential cost savings due to
shorter lines versus the 1.01% investment cost increase.

VII. CONCLUSION

This paper proposes a transmission system expansion op-
timization methodology considering temporal and spatial as-
pects. The methodology delivers the optimal time point, lo-
cation, rating, technology and routing of new investments.
This methodology can be implemented by transmission sys-
tem operators to determine optimal grid expansion plans for
different future scenario’s. The different building blocks of the
methodology can be included in existing transmission planning
tools or used as a standalone tool as demonstrated in this paper.

The calculation results confirm that in the early time steps
links with shorter distances and lower power ratings are pre-
ferred to realise a certain interconnection capacity. The more
expensive long distance and high power links are postponed
as long as possible. For the long distance and high power
transmission links, mostly HVDC technology is preferred as

10

0 (b) Optimal grid expansion t = 10
years

(a) Optimal grid expansion ¢t =
years

20 (d) Optimal grid expansion t = 30
years

(c) Optimal grid expansion ¢ =
years
Fig. 16: Optimal investment plan for K = 5 GW in case of line delays. Red

colour indicates HVAC, white colour indicates HVDC. Solid lines indicate
underground cables, circles indicate overhead lines

the cost savings of cheaper transmission lines overweight the
additional HVDC converter costs.

Cost savings can be achieved using transmission links with
higher capacities. Nevertheless, the underlying transmission
grid sets limits to the maximum capacity of such links. There-
fore, it is important to consider several scenarios regarding
link capacity in order to determine the economically most
beneficial option. Significant investment cost savings can be
achieved if multi-terminal HVDC operation is technically
feasible.

It should be noted that obtained results strongly depend on
used data. It is important to perform sensitivity analysis on
the used data and assumptions. Costs of different investment
plans may be close to each other although the obtained grid
topologies are very different. In such cases, the operational
costs such as transmission system losses and maintenance
costs can be decisive.

APPENDIX A
CALCULATION OF Py;prc AND Apypic

This section is based on [57] and briefly explains the
calculation of the Pprpre vector and the A%, matrix.
Prrprc illustrates the maximum power injection capabilities
whereas A5~ expresses how the maximum power injection
capability of certain nodes in the power system change due to
injections in other nodes. Py prc and A%y, are calculated

using a DC optimal power flow approach taking the probabilis-



tic nature of renewable generation and the behivor of loads into
account.

The maximum power injection capability (MPIC) is calcu-
lated using the objective function in (18), n4 being the number
of generators, f;(pi,) the generation costs of generator i as a
function of its power injection, py the power injection of the
investigated node x and K a scaling factor to combine the
two objectives of the optimization, namely the minimization
of total generation costs and maximization of the injection in
the investigated node x. The optimization constraints are the
flow limits of transmission lines, voltage magnitudes, voltage
angle limits, active and reactive power limits of generators, the
Kirchhoff equations and the system load-generation balance.
In case the absorption capability is calculated, pg can only
be negative, implying that a negative value of K needs to be
used.

min Y fo(vy) — Kpj (18)
i=1

Using probabilistic load and generation profiles and varying
node = between all nodes in the system, a range of possible
maximum power injections can be obtained for each node.
Fig. 13 shows such an example .

Let us consider a node z'. To see the change in the
MPIC of node x! depending on the injection in another
node x2, a generator is added in node x2. The generator has
negative production costs so it will be selected by the OPF
algorithm described above. The power rating of the generator
is varied among all possible power ratings used in the MILP
optimization. This way, the change in the MPIC of node z'
depending on the injection in node z? is calculated (A 2 1). In
case of absorptions, the additional generators are replaced by
loads. (19) shows the structure of A%p ;. The first index
indicates the affected node, the second index indicates the
effecting nodes and the third index indicates the power rating.

A1 Ai2 A1N1 A1,N,N
ot Az 11 Az Az N1 Az NN
AJ\ZPIC = . .
ANn11 AN AN,N1 AN,N,N
(19)
APPENDIX B

A* SHORTEST PATH ALGORITHM

The heuristic A* shortest path algorithm determines the
shortest path between a starting point X and an end point
Y by estimating the distance between a set A of neighbouring
candidate nodes and the end point [60]. As a greedy algorithm
that selects the first best answer in each step, A* can be faster
than the Dijkstra approach.

Starting from X, the initial set A of nodes are those directly
connected to X. Next, the algorithm determines a distance
estimate:

h(X,Y) = d(X, A) + h(A,Y) (20)

d(X, A) is the known distance between node X and the
nodes in set A. h(A,Y) is an estimate of the distance between
the nodes in set A and the end point Y.

From the nodes in set A, the one with the lowest distance
estimate h(X,Y") is chosen as the next node X, in the path.
The actual distances of all other nodes in set A to the starting
point are saved in set B. These distances are the minima. In the
next iteration, X,.,; is defined as the new starting point and
set A becomes the set of nodes directly connected to X, ezt
The estimates are recalculated for the nodes in set A. As some
nodes of set A can be part of set B, also the new estimates for
these nodes are calculated using the distances in the separate
set.

As long h(A,Y) underestimates the distance between the
actual node in set A and the end node (e.g. by using the
Euclidean distance), the algorithm converges to the shortest
possible path. The A* algorithm performs faster if the weights
of the graph edges have a large difference as the estimate
h(A,Y) has similar values for all nodes in set A if the
Euclidean distance is used. The algorithm also performs faster
if h(A,Y") overestimates the distance between node A and the
end node Y. In this case there is no guarantee of finding the
shortest path.

APPENDIX C
CONVERGENCE BEHAVIOUR

Tab. IV shows the chosen power ratings per iteration for
case 1 of the concept case shown in Section V. It is shown
that the optimal solution is first found in iteration 2. As
the convergence criterion is not met (Fig. 18) the penalty
functions as given in (1) are applied and the next iteration is
performed. Thus, the algorithm continues searching and finds
several other solutions until iteration 10 where the difference
of costs used for the MILP optimization and obtained form the
optimal routing algorithm are the same. At iteration 10, the
same topology as in iteration 2 is obtained. For branches and
power ratings which have been selected by the MILP routine
in previous iterations, no penalty functions are applied. Hence,
if a topology is found twice, the cost difference between the
MILP optimization and the optimal routing routine are the
same, leading to convergence and stopping the calculation.

TABLE IV
CHOSEN POWER RATINGS IN EACH ITERATION FOR CASE 1
Branch | Iteration

1 2 3 4 5 6 7 8 9 10

1-2 0 0 900 0 0 1000 100 1100 0 0

1-3 1000 0 1100 100 1200 1000 1000 1000 2000 0
1-4 1000 2000 0 1900 800 0 900 100 0 2000
2-3 0 1000 0 900 200 0 0 0 1000 1000
2-4 1000 0 1900 100 1200 2000 1100 2100 0 0
3-4 0 0 100 0 0 0 0 0 2000 0

Fig. 17 shows the evolution of the average costs used in
the MILP routine per iteration for case 1 of the concept case.
For the sake of simplicity only the costs of branch 1-3 are
shown which is one of the selected branches in the optimal
solution. The figure shows that in early iterations the costs
per MW behave linearly over the range of possible power
ratings. As soon as a small power rating is chosen by the
MILP algorithm (100 MW in iteration 4), the non-linearity of
the cost function due to the fixed part of the cost component
becomes visible. The costs calculated by the optimal routing
algorithm are approximately 5 times higher than the initially



assumed costs for that particular branch and power rating. The
figure also shows that costs determined by the optimal routing
algorithm for a specific power rating are not subject to the
cost update with penalty functions, as they are the theoretically
minimum cost for that particular branch and power rating. This
effect can be seen 1t 1000 MW. In iteration 1 the branch is

selected with a 1000 MW rating (lower cross at 1000 MW).

After calculating the costs with the optima routing algorithm
higher costs are obtained for this power rating (higher cross
at 1000 MW). From iteration 2 onwards all cost functions go
through this point as no penalty functions are applied to that
point.
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Fig. 17: Evolution of the costs for branch 1-3 over the iterations for case 1
of concept case

Fig.18 shows the relative difference between the objective
function value obtained by the MILP algorithm and the costs
calculated with the optimal routing algorithm for case 1 of
the concept case. The figure shows that the total costs are
underestimated by approximately 18 % in iteration 2 where
the optimal solution is found for the first time. As there is
a cost difference between the both solutions, the algorithm
applies the aforementioned penalty functions and carries on
with the search. We can see that after iteration 8§ there is a
steady decrease in the relative cost difference and eventually
eventually leading to convergence and finding the optimal
solution in iteration 10.
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