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Abstract. ChIP-sequencing (ChIP-seq) experiments are now routinely
used to study genome-wide chromatin marks in epigenetic research. How-
ever, due to the high cost and complexity associated with this technology,
it is of great interest to investigate whether the results produced by the
low-cost option of mRNA microarray experiments can be used in place
of ChlIP-seq data and what advantages can be achieved if both data
sources are combined together. Most comparative or integrated analyses
to date do not consider important features of ChIP-seq data, such as
spatial dependencies of counts for neighbouring regions of the genome
and the different efficiencies of individual ChIP-seq experiments. These,
if not accounted for, could lead to misleading results. In this paper, we
address these issues by applying a Markov random field model to ChIP-
seq data. We then investigate the correlation between the enrichment
probabilities around transcription start sites, estimated by the model,
and microarray gene expression values. In particular, we focus on the
protein Brd4 for which count data from ChIP-seq experiments as well as
mRNA microarray data are available at different time points at drug and
control conditions. The aim is to elucidate whether the binding of the
protein Brd4 at the transcription start site affects the mRNA expression
of the associated gene. Our preliminary results suggest that binding of
the protein is associated with lower gene expression, however, differen-
tial binding across different conditions does not show an association with
differential expression of the associated genes.
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1 Introduction

The development and maintenance of any organism is regulated by a set of
chemical reactions that switch specific loci of the genome off and on at strategic
times and locations. Epigenetics is the study of these reactions that control gene
expression levels and the factors that influence them. Although the relationship
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between epigenetics and phenotypes is not always straightforward, studying tis-
sues of affected and unaffected subjects and maintaining the study prospective
may help identify the differences between causal associations and non-causal as-
sociations [1]. DNA microarray and ChIP-seq technologies play a crucial role
in genome research understanding this relationship, by investigating structural
and functional characteristics of genomes. DNA microarray technology, which
enable measurement of expression level of a large number of genes simultane-
ously, has been used in functional genomic studies, system biology, epigenetic
research and so on. ChIP-seq, which is a comparatively new technology, has
been used to describe the locations of histone post-translational modifications
and DNA methylation genome-wide in many studies and to study alterations of
chromatin structure which influence gene expression levels.

Next generation sequencing has undoubtedly several advantages over microarray
experiments and it is often the choice for many studies. However, microarray ex-
periments still have a place in bioinformatics, due to the cost-effectiveness and
relative simplicity of this technique [2]. Hurd et al. [3] has predicted that in the
near future, these two technologies may also complement each other and form a
symbolic relationship. Integration of results from these two technologies might
open new doors for epigenetic research.

Several attempts have been made to combine protein binding and mRNA ex-
pression data over the years. Markowetz et al. [4] have explored how histone
acetylation around Transcription Start Sites (T'SSs) correlates with gene expres-
sion data. In their study, ChIP-ChIP is used for measuring acetylation levels.
Qin et al. and Guan et al. [5,6] have proposed a web-based server to analyse
interactions between transcription factors and their effect on gene expression, by
using information on bound and non-bound regions. Other attempts have also
been made to infer relationships between gene expression and histone modifica-
tion where absolute tag counts around a feature, such as promoter, is considered.
Hoang et al. [7] has shown how, incorporating the spatial distribution of enrich-
ment in the analysis, can improve the result. In general, it is absolutely vital
to measure the level of acetylation and probability of enrichment accurately in
order to find possible relationships between ChIP-seq and gene expression data.
There are several characteristics of ChIP-seq data that are needed to be con-
sidered while modelling such data before we attempt to combine it with gene
expression data.

In a typical ChIP-seq experiment, an antibody is used in the immunoprecipita-
tion step to isolate specific DNA fragments that are in direct physical contact
with a protein of interest. Figure 1 [14] gives an overview of how ChIP-seq tech-
nology works. Those fragments are called reads/tags. The reads are then mapped
back to the reference genome and the resulting mapped reads are further ana-
lyzed to find out peaks or enriched regions where the protein in question is ac-
tually bound. It is common to divide the genome into fixed sized windows/bins
and then summarize the counts per bin. Finally, a statistical model is used to
detect the windows with a significant number of counts, that is the regions that
are bound by the protein in question. While generating the data, some random
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Fig. 1. Schematic representation of ChIP-seq technology

DNA sequences are also collected with the bound sequences. These are usually
scattered across the genome and form a background noise. Due to the particular
antibody used and to the difficult protocol that each experiment needs to follow,
it is common to observe varying background to signal ratios for different ex-
periments. This poses an issue when multiple ChIP-seq experiments need to be
modelled together and when comparative analyses with other data sources need
to be carried out. Bao et al. [9] have proposed a mixture model where multiple
experiments can be modelled together while taking into account the efficiency
of individual experiments. However, there are other issues related to ChIP-seq
data. Due to an often ad-hoc division of the genome in fixed-size windows, it
is possible for an enrichment profile to cross neighbouring regions. This induces
spatial dependencies in the count data, which is often observed for ChIP-seq
data. All these issues are addressed in the approach proposed by Bao et al. [8].
In this proposed approach, a Markov random Field (MRF) model has been im-
plemented that accounts for the spatial dependencies in ChIP-seq data as well
as the different ChIP-seq efficiencies of individual experiments. In this paper, we
have adapted this model for the analyse ChIP-seq data for Brd4 protein.
Investigating enrichment around a feature in the genome such as promoter, TSS
etc is very common while studying relationships between binding of a protein/TF
and gene regulation. T'SS is where transcription of the genes into RNA begins,
therefore it is often considered in comparative analyses of binding and expression
data. After analysing the ChIP-seq data using the MRF model, we have used
the estimated probability of enrichment around the transcription start (T'S) and
performed comparative analysis on the associated gene expression data gener-
ated in the same biological condition.

In Section 2, we describe the data that has been used for this paper. We also give
a brief overview of the MRF model for ChIP-seq data and how the parameters
are estimated, as well as the differential expression analysis of the microarray
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data. In Section 3, we show our current results in comparing ChIP-seq and mi-
croarray data. Finally, we draw some conclusions in Section 4.

2 Data and Methods

2.1 Description of the Data

In this study, we have used the ChIP-seq data for the Brd4 protein provided by
Nicodeme et al. [11]. Illumina beadarray technology was also used to collect gene
expression data on the same experimental conditions as ChIP-Seq. The data was
collected from samples that are treated with a synthetic compound (I-BET) that,
by 'mimicking’ acetylated histones, disrupts chromatin complexes responsible for
the expression of key inflammatory genes in activated macrophages (Drug data)
and also from sample simulated with lipopolysaccharide (LPS) (control data).
The ChIP-seq data was collected at three time points: 0, 1 and 4 hours (0H,
1H, 4H) and microarray data at four time points (OH, 1H, 2H and 4H). For
the ChIP-seq data, one replicate is available for each condition, whereas three
replicates per condition are available in the microarray study.

2.2 Analysis of ChIP-seq data

The ChIP-seq reads are aligned against the mouse genome (version mm9) using
bowtie [10] and only uniquely mapped reads were retained for further analysis.
The reference genome was obtained from UCSC Genome Browser. The percent-
age of reads that are aligned ranges from 60.86% to 78.03%. In this experiment,
for simplicity, we have considered only Chromosome 1. So, we have selected only
those reads that are found in Chromosome 1 of the mouse genome. We have
divided the length of Chromosome 1 into 200bp windows and generated count
data per windows. These count data are then supplied as the input for MRF
model, described in the next section.

2.3 A brief description of MRF model

We have followed the methodology proposed by Bao et al. [8] for the analysis of
ChIP-seq data. Given the data, the model associates to each window a probabil-
ity of being enriched or not. Additional information such as enrichment informa-
tion of neighbouring regions is also considered while calculating this probability.
A brief overview of the model is given below.

Let M be the total number of bins and Y, the counts in the mth bin, m =
1,2,..., M, under condition ¢ and replicate r. In our case, the condition ¢ stands
for a particular protein and/or a particular time point, and r = 1,..., R, is the
number of replicates under condition c¢. The counts Y., are either drawn from
a background population (non-enriched region) or a from a signal population
(enriched region). Let X,,. be the unobserved random variable specifying if the



mth bin is enriched (X, = 1) or non-enriched (X,,. = 0) under condition c. A
mixture model for Y;,., is defined as follows [9]:

Yiner ~ pef(y]05.) + (1 — pe) f(y165.),

where p. = P(X,,. = 1) is the mixture portion of the signal component and
f(y,05) and f(y,05) are the signal and background densities for condition ¢
and replicate r, respectively. An attractive feature of this model is the fact that
the probability p. of a region being enriched does not depend on ChIP efficiencies.
However the parameters, signal and background distributions 65, and 2. depend
on ChIP efficiencies of replicates . This allows to combine multiple ChIP-seq
experiments, while accounting for the individual ChIP efficiencies.

As the signal and background densities can take any form, the signal can be
modelled using Poisson or Negative Binomial and their zero-inflated extensions
to account for the excess number of zeros typical of this type of data. So for the
mixture components f(y, 05.) and f(y,05), we consider:

Ymc|ch =0~ ZIP(Trw )\00) or ZINB(WC,[LQC, ¢Oc)7
YinelXme = 1 ~ Poisson(A.) or NB(pic, d1c)

In our study, we have used zero inflated negative Binomial for modelling the
background and Negative binomial for modelling the signal for all our ChIP-seq
datasets.

In order to account for spatial dependencies, the latent variable X,,., which
represents the binding profile, is further assumed to satisfy one-dimensional first
order Markov properties. Given the adjacent bins states, X,,_1,c =1, and ¢ = j,
with 4,7 € {0,1}

)/mcr|Xm—1,c = Z.a)(m+1,c = .] ~ pc,ijf(yv ofr) + (1 _pc,ij)f(ya 95)

Thus, the enrichment of a region depends on the state of the two adjacent regions.
All the parameters in this model are estimated using a Bayesian approach, which
is implemented in the R package enRich. The method returns the posterior
probability of enrichment for each region of the genome.

Finally to decide whether a region is enriched or not, a threshold is set on
these probabilities. Different criteria can be used to set this cut-off. In our study,
we set a cut-off corresponding to a chosen FDR. If D is the set of declared en-
riched regions corresponding to a particular cut-off on the posterior probabilities,
then the estimated false discovery rate for this cut-off is given by

FDR =72 :
Dl

In our study, we used this approach for all 200bp regions in Chromosome 1. We
then further refine the output to only consider the regions that contain T'Ss.
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2.4 Analysis of Microarray data

Microarray data have been preprocessed using the R package beadarray [12].
Then the processed data has been normalised and analysed for differential ex-
pression using the package limma [13]. This returns an adjusted p-value for dif-
ferential expression between drug and control using an empirical Bayes method.
We use these p-values to select the differentially expressed genes.

2.5 TSS selection

We have downloaded TSS information of the mouse genome (chromosome 1) us-
ing NCBI mm9 assembly. Each txStart (Transcription start) and txEnd (Tran-
scription end) coordinates are then linked with the associated genes. Many genes
have several T'SSs, and also some txStarts are at the same co-ordinate and others
may reside within 200 bp regions to each other. Firstly, we remove the dupli-
cate TSSs from the list. As we select enrichment probability within regions of
200bp, for each gene we select only one TSS within this window. From UCSC we
downloaded 55419 TSSs and retained 38156 after this selection. As we consider
only transcription start point for this experiment, we then retrieve the estimated
probability of enrichment from the ChIP-seq analysis per TS.

3 Results and Discussion

3.1 ChlIP-seq analysis

We have analysed the ChIP-seq data with both the latent mixture model and
the MRF model. For each condition, Table 1 shows the number of regions bound
by Bdr4 at 5% FDR. The efficiency for each experiment estimated by the model
is also given in the fourth column.

Table 1. comparison of mixture model and MRF model in terms of number of regions
bound by Brd4 at 5% FDR

Conditions MRF model |Mixture model| IP efficiency
0H control 3394 1475 0.8201
OH drug 3185 930 0.8501
1H control 3161 614 0.8937
1H drug 3265 926 0.8937
4H control 3354 1345 0.8347
4H drug 2810 281 0.7809

At 5% FDR, the MRF model produces more enriched regions for each con-
dition than the mixture model. By inspection of the regions detected by MRF



but not by the mixture model, we have found out that MRF can assign a high
probability to a region that has relatively low tag counts but has neighbouring re-
gions with a large number of counts, as it incorporates spatial dependency in the
model. On the other hand, the mixture model will assign a very low enrichment
probability to those regions, thus discarding potentially useful information.

3.2 Expression data versus enrichment probability

Nicodeme et al. [11] suggests that the impact of the drug I-BET on LPS-inducible
gene expression is highly selective and it has no effect on the expression of
housekeeping genes. Our key interest has been to investigate whether differential
binding or differential enrichment of the protein Brd4 around TSS between drug
and control data is associated with differential expression of the corresponding
genes.

12

1"

0

8 9 1
1 1

7
1
Log2(Expression values) at 4H control

Log2(Expression values) at 4H drug

'
1
°
°
$
%
3

Homo 0000 o

G-

° gg © -

T T T T T T T T T
0.92 0.94 0.96 0.98 1.00 0.0 02 04 06 08 1.0

Enrichment probability at TS at 4H control

Enrichment probability at TS at 4H drug

Fig. 2. Investing correlation between differential binding with differential expression
result. (Left) At time point 4H and for the drug condition, TS regions with very high
probabilities of enrichment are plotted versus the corresponding gene expression (log2)
values. (Right) The low expressed genes found in the left plot are investigated in control
data to check the effect of differential binding on regulation of genes.

At time point 4H, we select the T'Ss that have high probabilities of enrichment
in the drug condition (at 5% FDR) and isolate 115 regions. The left plot in Figure
2 shows the gene expression values (in the log scale) versus the probabilities of
enrichment for these regions. The plot shows a cluster of 84 genes in the bottom
right corner that have very low expression values (below the median overall
expression of 6.22). This was observed also at different time points. To find out
whether binding of Brd4 in those regions play any role in the down-regulation of
genes, we consider the binding and expression of these genes on the control data.
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The Right plot in Figure 2 shows that there is a small number of non-bound
regions. However, these genes do not have a significantly higher expression value
than in the drug samples. Thus, in this study, we found that differential bindings
did not play a direct role in down-regulation of genes between drug and control
experiments.

To investigate whether differential acetylation levels is associated with differ-
ential expression, we have selected differentially expressed genes at 4H between
drug and control with a 1% cutoff on the adjusted p-values. We have subtracted
expression values (log2) of control data from drug data (i.e. taking log ratios) and
have done the same with enrichment probabilities. In Figure 3, Left plot shows
the differential expression versus differential probability. Overall, few changes
are found in the probabilities of enrichment between different conditions, sug-
gesting that the genes are bound or not bound in both conditions and that the
probabilities are either close to 0 or close to 1. Therefore, the plot does not show
any association between differential probabilities of enrichment and differential
expression. However, we are considering using different measures of acetylation
levels than posterior probabilities. Similar results were obtained when comparing
two time points (1H and 4H, respectively), as shown in the right plot of Figure
3. Here there are some regions with different probabilities of enrichment, but
with no associated down or up regulation.

© S o
g -
k) 8
‘f 8
I - = -
= o
® . &
& ~ I o
2 ES
o o i i i
S o o C o @ 00 0,4 @ oo °
§ g ° ° ° ° 20 °
o
2 o S
] g
6 Lo
£ 8 S °
T = £ Y4 H
2 o
£ . °
< T 7 °
T T T T T T T T T
4 2 0 2 4 10 05 0.0 05
differential probability at 4H differential probability at 4H and 1H(drug)

Fig. 3. Investing correlation between differential probability with differential expres-
sion result. (Left) Plot for differential probability versus differential expression(log2)
between drug and control data at 4H. (Right) Plot for differential probability versus
differential expression(log2) between 4H and 1H for drug data.



4 Conclusion

In this study, we have investigated a possible association between gene expres-
sion and protein binding data, from mRNA microarray and ChIP-seq data re-
spectively. We have emphasized the need to account for important features of
ChIP-seq data in the detection of the enriched regions and have therefore opted
for the use of a Markov random field model for the analysis of ChIP-seq data.
Our results show that protein binding is associated with lower expression values,
but that differential binding between different conditions, e.g. drug and control
or different time points, is not associated with up or down regulation of the
corresponding genes.

A number of steps will be considered in the future to consolidate the research
in this study. Firstly, we will extend the analysis from Chromosome 1 to the
whole genome, to check whether the results generalise to this case, as well as to
different proteins (the data in [11] is for five proteins). Secondly, we will consider
different ways of measuring acetylation levels, while still considering the issue
of different ChIP efficiencies of individual experiments. Finally, we will consider
other chromatin markers, such as promoters, to explore a possible association
between these and gene regulation, as well as possible combinatorial patterns
between chromatin markers and gene regulation.
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