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Abstract

A mixed boundary value problem for the stationary heat transfer par-
tial differential equation with variable coefficient is reduced to some sys-
tems of direct segregated parametrix-based Boundary-Domain Integral
Equations (BDIEs). We use a parametrix different from the one em-
ployed by Mikhailov (2002) and Chkadua, Mikhailov, Natroshvili (2009).
Mapping properties of the potential type integral operators appearing in
these equations are presented in appropriate Sobolev spaces. We prove the
equivalence between the original BVP and the corresponding BDIE sys-
tem. The invertibility and Fredholm properties of the boundary-domain
integral operators are also analysed.

9.1 Preliminaries and the BVP

The domains. Let Ω = Ω+ be a bounded simply connected domain, Ω− :=
R3 r Ω+ the complementary (unbounded) subset of Ω. The boundary S := ∂Ω
is simply connected, closed and infinitely differentiable, S ∈ C∞. Furthermore,
S := SN ∪ SD where both SN and SD are non-empty, connected disjoint mani-
folds of S. The border of these two submanifolds is also infinitely differentiable,
∂SN = ∂SD ∈ C∞.

PDE. We consider the following partial differential equation:

Au(x) := A(x)[u(x)] :=

3∑
i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
= f(x), x ∈ Ω, (9.1)

where u(x) is an unknown function, a(x) ∈ C∞ is a variable coefficient and f
is a given function on Ω. It is easy to see that if a ≡ 1 then, the operator A
becomes the Laplace operator ∆.

Function spaces. We will use the following function spaces in this paper (see
e.g. [5, 3, 4] for more details). Let D′(Ω) be the Schwartz distribution space;
W s

p (Ω) and W s(S), s ≥ 0, the Sobolev-Slobodetski spaces; Hs(Ω) and Hs(S)
with s ∈ R, the Bessel potential spaces; the space Hs

K(R3) consisting of all
the distributions of Hs(R3) whose support is inside of a compact set K ⊂ R3;
Hs

loc(Ω
−) the spaces consisting of distributions in Hs(K) for every compact

K ⊂ Ω−, s ∈ R; H̃s(S1) = {g ∈ Hs(S) : supp(g) ∈ S1}; Hs(S1) = {g|S1
: g ∈
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Hs(S)}, where the notation g|S1
= rS1

g is used to indicate the restriction of the
function g from S to S1. Note that Hs

loc(Ω
−) = W s

2,loc(Ω
−) and Hr(S) = W r

2 (S)
for r ≥ 0). We will also make use of the space, see e.g. [2, 1],

H1,0(Ω;A) := {u ∈ H1(Ω) : Au ∈ L2(Ω)}

which is a Hilbert space with the norm defined by

‖ u ‖2H1,0(Ω;A):=‖ u ‖
2
H1(Ω) + ‖ Au ‖2L2(Ω).

Traces and conormal derivatives. For a scalar function w ∈ Hs(Ω±), s >
1/2, the trace operator γ± = γ±S , acting on w is well defined and γ±w ∈
Hs− 1

2 (S) (see, e.g., [5, 7]). For u ∈ Hs(Ω), s > 3/2, we can define on S the
conormal derivative operator, T±, in the trace sense:

T±[u(x)] :=

3∑
i=1

a(x)ni(x)

(
∂u

∂xi

)±
= a(x)

(
∂u(x)

∂n(x)

)±
,

where n(x) is the exterior unit normal vector to the domain Ω at point x ∈ S.
Moreover, for any function u ∈ H1,0(Ω;A), we can extend the definition

to the canonical conormal derivative T±u ∈ H− 1
2 (Ω), associated with the first

Green identity, cf. [2, 5, 7],

〈T±u,w〉S := ±
∫

Ω±
[(γ−1ω)Au+ E(u, γ−1w)]dx, for all w ∈ H 1

2 (S), (9.2)

where γ−1 : H
1
2 (S)→ H1(R3) is a continuous right inverse to the trace operator

whereas the function E is defined as

E(u, v)(x) :=

n∑
i=1

a(x)
∂u(x)

∂xi

∂v(x)

∂xi
,

and 〈, 〉S represents the L2−based dual form on S.

Boundary value problem We aim to derive boundary-domain integral equa-
tion systems for the following mixed boundary value problem. Given f ∈ L2(Ω),

φ0 ∈ H
1
2 (SD) and ψ0 ∈ H−

1
2 (SN ), we seek a function u ∈ H1(Ω) such that

Au = f in Ω, (9.3a)

rSD
γ+u = φ0 on SD, (9.3b)

rSN
T+u = ψ0 on SN , (9.3c)

where equation (9.3a) is understood in the weak sense, the Dirichlet condition
(9.3b) is understood in the trace sense and the Neumann condition (9.3c) is
understood in the functional sense (9.2).
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By Lemma 3.4 of [2] (cf. also Theorem 3.9 in [7]), the first Green identity
holds for any u ∈ H1,0(Ω;A) and v ∈ H1(Ω),

〈T±u, γ+v〉S := ±
∫

Ω

[vAu+ E(u, v)]dx. (9.4)

The following assertion is well know and can be proved, e.g., using the Lax-
Milgram lemma.

Theorem 9.1.1. The boundary value problem (9.3) has one and only one so-
lution.

9.2 Parametrices and remainders

Definition 9.2.1. Let P (x, y) ∈ D′(Ω) be a distribution of two variables. We
say that P (x, y) is a parametrix (or Levi function) for the operator A(x) if

A(x)[P (x, y)] = δ(x− y) +R(x, y), (9.5)

where δ(·) is the Dirac delta distribution and remainder R(x, y) possesses a weak
(integrable) singularity at x = y, i.e., R(x, y) = O(|x− y|−k) with k < 3.

The notion of parametrix is well known, see e.g. [6] and references therein.
For a given operator A, the parametrix is not unique. For example, the

parametrix

P y(x, y) =
1

a(y)
P∆(x− y), x, y ∈ R3,

was employed in [6, 1], for the operator A defined in (9.1), where

P∆(x− y) =
−1

4π|x− y|
is the fundamental solution of the Laplace operator. The remainder correspond-
ing to the parametrix Py is

Ry(x, y) =
3∑

i=1

1

a(y)

∂a(x)

∂xi

∂

∂xi
P∆(x− y) , x, y ∈ R3. (9.6)

In this paper, for the same operator A defined in (9.1), we will use another
parametrix,

P (x, y) = P x(x, y) =
1

a(x)
P∆(x− y), x, y ∈ R3, (9.7)

while the corresponding remainder is

R(x, y) = Rx(x, y) = −
3∑

i=1

∂

∂xi

(
1

a(x)

∂a(x)

∂xi
P∆(x, y)

)

= −
3∑

i=1

∂

∂xi

(
∂ ln a(x)

∂xi
P∆(x, y)

)
, x, y ∈ R3.
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Note that the both remainders Rx and Ry are weakly singular:

Rx(x, y), Ry(x, y) = O(|x− y|−2).

This is due to the smoothness of the variable coefficient a.

9.3 Volume and surface potentials

The volume parametrix-based Newton-type potential and the remainder poten-
tial are respectively defined, for y ∈ R3, as

Pρ(y) :=

∫
Ω

P (x, y)ρ(x) dx

Rρ(y) :=

∫
Ω

R(x, y)ρ(x) dx.

The parametrix-based single layer and double layer surface potentials are
defined for y ∈ R3 : y /∈ S, as

V ρ(y) := −
∫
S

P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
S

T+
x P (x, y)ρ(x) dS(x).

We also define the following pseudo-differential operators associated with
direct values of the single and double layer potentials and with their conormal
derivatives, for y ∈ S,

Vρ(y) := −
∫
S

P (x, y)ρ(x) dS(x),

Wρ(y) := −
∫
S

TxP (x, y)ρ(x) dS(x)

W ′ρ(y) := −
∫
S

TyP (x, y)ρ(x) dS(x),

L±ρ(y) := T±y Wρ(y).

The operators P,R, V,W,V,W,W ′ and L can be expressed in terms the vol-
ume and surface potentials and operators associated with the Laplace operator,
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as follows

Pρ = P∆

(ρ
a

)
, (9.8)

Rρ = −∇ · [P∆(ρ)∇ ln a] , (9.9)

V ρ = V∆

(ρ
a

)
, (9.10)

Vρ = V∆

(ρ
a

)
, (9.11)

Wρ = W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
, (9.12)

Wρ =W∆ρ− V∆

(
ρ
∂ ln a

∂n

)
, (9.13)

W ′ρ = aW ′∆
(ρ
a

)
, (9.14)

L±ρ = L̂ρ− aT±∆V∆

(
ρ
∂ ln a

∂n

)
, (9.15)

L̂ρ := aL∆ρ. (9.16)

The symbols with the subscript ∆ denote the analogous surface potentials
for the constant coefficient case, a ≡ 1. Furthermore, by the Liapunov-Tauber
theorem, L+

∆ρ = L−∆ρ = L∆ρ.
Using relations (9.10)-(9.16) it is now rather simple to obtain, similar to

[1], the mapping properties, jump relations and invertibility results for the
parametrix-based surface and volume potentials, provided in Theorems 9.3.1-
9.3.8, from the well-known properties of their constant-coefficient counterparts
(associated with the Laplace equation).

Theorem 9.3.1. Let s ∈ R. Then, the following operators are continuous,

P : H̃s(Ω) −→ Hs+2(Ω), s ∈ R, (9.17)

P : Hs(Ω) −→ Hs+2(Ω), s > −1

2
, (9.18)

R : H̃s(Ω) −→ Hs+1(Ω), s ∈ R, (9.19)

R : Hs(Ω) −→ Hs+1(Ω), s > −1

2
. (9.20)

Corollary 9.3.2. Let s > 1
2 , let S1 a non-empty submanifold of S with smooth

boundary. Then, the following operators are compact:

R : Hs(Ω) −→ Hs(Ω),

rS1
R : Hs(Ω) −→ Hs− 1

2 (S1),

rS1T
+R : Hs(S1) −→ Hs− 3

2 (S1).
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Theorem 9.3.3. Let s ∈ R. Then the following operators are continuous:

V : Hs(S) −→ Hs+ 3
2 (Ω),

W : Hs(S) −→ Hs+ 1
2 (Ω).

Theorem 9.3.4. Let s ∈ R, the following operators are continuous:

V : Hs(S) −→ Hs+1(S),

W : Hs(S) −→ Hs+1(S),

W ′ : Hs(S) −→ Hs+1(S),

L± : Hs(S) −→ Hs−1(S).

Theorem 9.3.5. Let ρ ∈ H− 1
2 (S), τ ∈ H 1

2 (S). Then the following operators
jump relations hold:

γ±V ρ = Vρ,

γ±Wτ = ∓1

2
τ +Wτ,

T±V ρ = ±1

2
ρ+W ′ρ.

Theorem 9.3.6. Let s ∈ R, let S1 and S2 two non-empty manifolds with
smooth boundaries, ∂S1 and ∂S2, respectively. Then, the following operators
are compact:

rS2V : H̃s(S1) −→ Hs(S2),

rS2
W : H̃s(S1) −→ Hs(S2),

rS2
W ′ : H̃s(S1) −→ Hs(S2).

Theorem 9.3.7. Let S1 be a non-empty simply connected submanifold of S
with infinitely smooth boundary curve, and 0 < s < 1. Then, the operators

rS1
V : H̃s−1(S1) −→ Hs(S1),

V : H̃s−1(S) −→ Hs(S)

are invertible.

Theorem 9.3.8. Let S1 be a non-empty simply connected submanifold of S
with infinitely smooth boundary curve, and 0 < s < 1. Then, the operator

rS1
L̂ : H̃s(S1) −→ Hs−1(S1)

is invertible and the operator

rS1(L± − L̂) : H̃s(S1) −→ Hs−1(S1)

is compact.
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9.4 Third Green identities and integral relations

In this section we provide the results similar to the ones in [1] but for our,
different, parametrix (9.7).

Let u, v ∈ H1,0(Ω;A). Subtracting from the first Green identity (9.4) its
counterpart with the swapped u and v, we arrive at the second Green identity,
see e.g. [5], ∫

Ω

(A(v)u−A(u)v) dx =

∫
S

[
T+(v)u− T+(u)v

]
dS(x). (9.21)

Taking now v(x) := P (x, y), we obtain from (9.21) and (9.5) by the standard
limiting procedures (cf. [8]) the third Green identity for any function u ∈
H1,0(Ω;A):

u+Ru− V T+u+Wγ+u = PAu in Ω. (9.22)

If u ∈ H1,0(Ω;A) is a solution of the partial differential equation (9.3a), then
from (9.22) we obtain:

u+Ru− V T+(u) +Wγ+u = Pf inΩ, (9.23)

1

2
γ+u+ γ+Ru− VT+(u) +Wγ+u = γ+Pf on S, (9.24)

1

2
T+(u) + T+Ru−W ′T+(u) + L+γ+u = T+Pf on S. (9.25)

For some distributions f , Ψ and Ψ, we consider a more general, indirect
integral relation associated with the third Green identity (9.23):

u+Ru− VΨ +WΦ = Pf in Ω. (9.26)

Lemma 9.4.1. Let u ∈ H1(Ω), f ∈ L2(Ω), Ψ ∈ H−
1
2 (S) and Φ ∈ H

1
2 (S)

satisfying the relation (9.26). Then u belongs to H1,0(Ω,A) and solves the
equation Au = f in Ω, and also the following identity is satisfied,

V (Ψ− T+u)−W (Φ− γ+v) = 0 in Ω. (9.27)

Proof. To prove that u ∈ H1,0(Ω;A) we take into account that by hypothesis
u ∈ H1(Ω), and so there is only left to prove that Au ∈ L2(Ω).

Due to (9.8), (9.10) and (9.12), equation (9.26) implies

u =Pf −Ru+ VΨ−WΦ

=P∆

(
f

a

)
−Ru+ V∆

(
Ψ

a

)
−W∆Φ + V∆

(
∂ ln a

∂n
Φ

)
. (9.28)

We note that Ru ∈ H2(Ω) due to the mapping properties (9.20). Moreover, V∆

and W∆ in (9.28) are harmonic potentials, while P∆ is the Newtonian potential

for the Laplacian, i.e. ∆P∆

(
f

a

)
=
f

a
. Consequently, ∆u =

f

a
−∆Ru ∈ L2(Ω).

Hence, Au ∈ L2(Ω) and u ∈ H1,0(Ω;A).
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Since u ∈ H1,0(Ω;A), the third Green identity (9.23) is valid for the function
u, and we proceed subtracting (9.23) from (9.26) to obtain

W (γ+u− Φ)− V (T+u−Ψ) = P(Au− f). (9.29)

Recalling again the relations (9.8), (9.10) and (9.12), and applying the Laplace
operator to both sides of (9.29) we obtain

Au− f = 0, (9.30)

i.e., u solves (9.3a). Finally, substituting (9.30) into (9.29), we prove (9.27).

Lemma 9.4.2. Let Ψ∗ ∈ H− 1
2 (S). If

VΨ∗(y) = 0, y ∈ Ω (9.31)

then Ψ∗(y) = 0.

Proof. Taking the trace of (9.31)gives:

VΨ∗(y) = V4
(

Ψ∗

a

)
(y) = 0, y ∈ Ω,

from where the result follows due to the invertibility of the operator V4 (cf.
Theorem 9.3.7).

9.5 BDIE system for the mixed problem

We aim to obtain a segregated boundary-domain integral equation system for
mixed BVP (9.3). To this end, let the functions Φ0 ∈ H

1
2 (S) and Ψ0 ∈ H−

1
2 (S)

be respective continuations of the boundary functions φ0 ∈ H
1
2 (SD) and ψ0 ∈

H−
1
2 (SN ) to the whole S. Let us now represent

γ+v = Φ0 + φ, T+(v) = Ψ0 + ψ on S, (9.32)

where φ ∈ H̃ 1
2 (SN ) and ψ ∈ H̃− 1

2 (SD) are unknown boundary functions.
To obtain one of the possible boundary-domain integral equation systems we

employ (9.23) in the domain Ω and (9.24) on S, substituting there γ+u = Φ0 +φ
and T+u = Ψ0 + ψ and further considering the unknown functions φ and ψ
as formally independent (segregated) of u in Ω. Consequently, we obtain the
following system M12 of two equations for three unknown functions,

u+Ru− V ψ +Wφ = F0 in Ω, (9.33a)

1

2
φ+ γ+Ru− Vψ +Wφ = γ+F0 − Φ0 on S, (9.33b)

where
F0 = Pf + VΨ0 −WΦ0. (9.34)
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We remark that F0 belongs to the space H1(Ω) in virtue of the mapping
properties of the surface and volume potentials, see Theorems 9.3.1 and 9.3.3.

The system M12, given by (9.33a)-(9.33b) can be written in matrix notation
as

M12X = F12, (9.35)

where X represents the vector containing the unknowns of the system,

X = (u, ψ, φ)> ∈ H1(Ω)× H̃− 1
2 (SD)× H̃ 1

2 (SN ), (9.36)

the right hand side vector is

F12 := [F0, γ
+F0 −Ψ0]> ∈ H1(Ω)×H 1

2 (S),

and matrix operator M12 is defined by:

M12 =

[
I +R −V W

γ+R −V 1

2
I +W

]
. (9.37)

We note that the mapping properties of the operators involved in the matrix
imply the continuity of the operator

M12 : H1(Ω)× H̃− 1
2 (SD)× H̃ 1

2 (SN ) −→ H1(Ω)×H 1
2 (S).

Theorem 9.5.1 (BDIE-BVP Equivalence). Let f ∈ L2(Ω). Let Φ0 ∈ H
1
2 (S)

and Ψ0 ∈ H−
1
2 (S) be some fixed extensions of φ0 ∈ H

1
2 (SD) and ψ0 ∈ H−

1
2 (SN )

respectively.

1. If some u ∈ H1(Ω) solves the BVP (9.3), then the triple (u, ψ, φ)> ∈
H1(Ω)× H̃− 1

2 (SD)× H̃ 1
2 (SN ) where

φ = γ+u− Φ0, ψ = T+u−Ψ0, on S, (9.38)

solves the BDIE system M12.

2. If a triple (u, ψ, φ)> ∈ H1(Ω) × H̃−
1
2 (SD) × H̃

1
2 (SN ) solves the BDIE

system then u solves the BVP and the functions ψ, φ satisfy (9.38).

3. The system M12 is uniquely solvable.

Proof. First, let us prove item 1. Let u ∈ H1(Ω) be a solution of the boundary
value problem (9.3) and let φ, ψ be defined by (9.38). Then, due to (9.3b) and
(9.3c), we have

(ψ, φ) ∈ H̃− 1
2 (SD)× H̃ 1

2 (SN ).

Then, it immediately follows from the third Green identities (9.23) and (9.24)
that the triple (u, φ, ψ) solves BDIE system M12.
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Item 2. Let the triple (u, ψ, φ)> ∈ H1(Ω) × H̃− 1
2 (SD) × H̃ 1

2 (SN ) solve the
BDIE system. Taking the trace of the equation (9.33a) and substract it from
the equation (9.33b), we obtain

φ = γ+u− Φ0 on S. (9.39)

This means that the first condition in (9.38) is satisfied. Now, restricting
equation (9.39) to SD, we observe that φ vanishes as supp(φ) ⊂ SN . Hence,
φ0 = Φ0 = γ+u on SD and consequently, the Dirichlet condition of the BVP
(9.3b) is satisfied.

We proceed using the Lemma 9.4.1 in the first equation of the systemM12,
(9.33a), with Ψ = ψ + Ψ0 and Φ = φ+ Φ0 which implies that u is a solution of
the equation (9.3a) and also the following equality:

V (Ψ0 + ψ − T+u) +W (Φ0 + φ− γ+u) = 0 in Ω. (9.40)

In virtue of (9.39), the second term of the previous equation vanishes. Hence,

V (Ψ0 + ψ − T+u) = 0 in Ω. (9.41)

Now, in virtue of Lemma 9.4.2 we obtain

Ψ0 + ψ − T+u = 0 on S. (9.42)

Since ψ vanishes on SN , we have Ψ0 = ψ0, and equation (9.42) implies that u
satisfies the Neumann condition (9.3c).

Since every solution of the BVP is a solution of the BDIEs M12, then the
BDIEs has at least one solution. However, every solution of the homogeneous
BDIEs can, by item 2, be related with solution of the homogeneous BVP, which
can be only the trivial solution. This implies that the homogeneous BDIE
solution can be only trivial, which completes the proof of item 3.

Lemma 9.5.1. (F0, γ
+F0 − Φ0) = 0 if and only if (f,Φ0,Ψ0) = 0

Proof. It is trivial that if (f,Φ0,Ψ0) = 0 then (F0, γ
+F0−Φ0) = 0. Conversely,

supposing that (F0, γ
+F0 − Φ0) = 0, then taking into account equation (9.34)

and applying Lemma 9.4.1 with F0 = 0 as u, we deduce that f = 0 and VΨ0 −
WΦ0 = 0 in Ω. Now, the second equality, γ+F0 − Φ0 = 0, implies that Φ0 = 0
on S and applying Lemma 9.4.2 gives Ψ0 = 0 on S.

Theorem 9.5.2. The operator

M12 : H1(Ω)× H̃− 1
2 (SD)× H̃ 1

2 (SN ) −→ H1(Ω)×H 1
2 (S),

is invertible.

Proof. Let M12
0 be the matrix operator defined by

M12
0 :=

[
I −V W

0 −V 1

2
I

]
. (9.43)

The operator M12
0 is also bounded due to the mapping properties of the oper-

ators involved. Furthermore, the operator
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M12 −M12
0 : H1(Ω)× H̃− 1

2 (SD)× H̃ 1
2 (SN ) −→ H1(Ω)×H 1

2 (S)

is compact due to the compact mapping properties of the operators R and W,
(cf. Theorem 9.3.2 and Theorem 9.3.6).

Let us prove that the operatorM12
0 is invertible.For this purpose, we consider

the following system with arbitrary right hand side F̃ = [F̃1, F̃2]> ∈ H1(Ω) ×
H

1
2 (S) and let X = (u, ψ, φ)> ∈ H1(Ω)× H̃− 1

2 (SD)× H̃ 1
2 (SN ) be the vector of

unknowns
M12

0 X = F̃ . (9.44)

Writing (9.44) component-wise,

u− V ψ +Wφ = F̃1, in Ω, (9.45a)

1

2
φ− Vψ = F̃2, on S. (9.45b)

Equation (9.45b) restricted to SD gives:

−rSD
Vψ = rSD

F̃2. (9.46)

Due to the invertibility of the operator V (cf. Lemma 9.3.7), equation (9.46)

is uniquely solvable on SD. Equation (9.46) means that (Vψ + F̃2) ∈ H̃ 1
2 (SN ).

Thus, the unique solvability of (9.46) implies that φ is also uniquely determined
by the equation

φ = (2Vψ + 2F̃2) ∈ H̃ 1
2 (SN ). (9.47)

Consequently, u also is uniquely determined by the first equation (9.45a) of the
system.

u = V ψ −Wφ+ F̃1.

Furthermore, since V ψ, Wφ ∈ H1(Ω), we have u ∈ H1(Ω).
Thus, the operator M12

0 is invertible and the operator M12 is a zero index
Fredholm operator due to the compactness of the operator M12 −M12

0 . Hence
the Fredholm property and the injectivity ofM12 due item 3 of to Lemma 9.5.1
imply the invertibility of operator M12.
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