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Abstract 39 

Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when 40 

conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited 41 

varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased 42 

exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males 43 

cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 44 

40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a 45 

commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) 46 

(P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs 47 

in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve 48 

for Trec of 38.5°C and 39.0°C, duration Trec ≥ 38.5°C and ≥ 39.0°C, and change in muscle temperature, between 49 

VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly 50 

increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of 51 

perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change 52 

in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once 53 

systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT 54 

conditions and is likely to be modulated by large, rapid changes in core temperature.  55 

Key words: Heat stress, Heat strain, Heat-shock protein, Hyperthermia, Core temperature 56 

 57 

Introduction 58 

The human 72kDa heat shock protein (Hsp72), HSPA1A (Kampinga et al., 2009) is the highly  inducible 59 

isoform of a large family of proteins with an important role as a molecular chaperone maintaining cellular 60 

homeostasis, particularly in response to thermal stimuli (Mizzen & Welch, 1988). Research has identified 61 

extracellular changes in Hsp72 concentration within whole blood (Marshall et al. 2006; Yamada et al. 2007; 62 

Ogura et al. 2008; Magalhães et al. 2010; Périard et al. 2012), and intracellular changes in total protein 63 

expression and/or gene transcription in monocytes and systemic tissue (McClung et al. 2008; Selkirk et al. 2009; 64 

Magalhães et al. 2010; Amorim et al. 2011) in response to thermal and exercise stress. Hsp72 binds with high 65 

affinity to the plasma membrane (Asea et al., 2000) and up-regulates expression of pro-inflammatory cytokines, 66 

tumour necrosis factor-α, interleukin-1β and interleukin-6 in human monocytes. Circulating extracellular heat 67 
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shock protein 72 (eHsp72)  acts as an inflammatory molecule and induces cytokine production in immune cells 68 

(A Asea, 2006). The precise biological role of eHsp72 in response to exercise-heat stress has not been fully 69 

elucidated; it is believed to contribute to the exercise-related inflammatory reaction (A Asea, 2003). 70 

Acknowledgements have been made by Ogura et al., (2008)  that body temperature elevation, and increased 71 

circulating catecholamines by supplementation (M Whitham, Walker, & Bishop, 2006) or exercise response 72 

(Martin Whitham, Laing, Jackson, Maassen, & Walsh, 2007), in addition to thermal change increase eHsp72. 73 

Acute exercise-heat stress presents both thermal and sympathetic challenge and as such, changes in 74 

concentration might be used to describe the magnitude of stress presented to an individual or system exercising 75 

in different environments.  76 

eHsp72 has been detected in peripheral circulation of healthy individuals (Pockley, Shepherd, & Corton, 1998) 77 

and is known to increase in response to single bouts of exercise (Walsh et al. 2001; Febbraio et al. 2002a; 78 

Fehrenbach et al. 2005). Thermal, oxidative, metabolic and chemical stresses are well reported stimuli for 79 

increased concentrations of intracellular (iHsp72), and eHsp72 (Welch 1992; Morimoto, 1994). Exercise in hot 80 

and humid environments increases physiological strain on the body in comparison with temperate conditions 81 

(Galloway and Maughan 1997). Combined with exercise (exercise-heat stress), environmental manipulation to 82 

induce hyperthermia (Fehrenbach et al. 2001; Oishi et al. 2002; Moran et al. 2006; Whitham et al. 2007; 83 

Sandström et al. 2008; Iguchi et al. 2012) have been reported as stimuli for further increasing eHsp72 compared 84 

to exercise alone. Indeed a strong relationship exists between plasma eHsp72 and core temperature (Ruell, 85 

Thompson, Hoffman, Brotherhood, & Richards, 2006; Sandström et al., 2009). 86 

Repeated daily exposure to exercise and/or environmental stress results in sequential (i.e. day-on-day) increases 87 

in eHsp72 expression (Sandström et al., 2008). In vivo, such a paradigm is utilised in the attainment of a heat 88 

acclimated (HA) phenotype (Magalhães et al. 2010; Lorenzo et al. 2010; Lorenzo et al. 2011; Hom et al. 2012), 89 

with increases in iHsp72 expression accompanied by “classic” physiological adaptations (e.g. cardiovascular 90 

stability; reduced core temperature at rest and during exercise; more rapid sudomotor onset and efficiency; etc.) 91 

(Garrett et al., 2011). The response of eHsp72 to environmental factors has not been uniform, with significant 92 

increases (Whitham et al. 2007; Yamada et al. 2007; McClung et al. 2008; Magalhães et al. 2010; Périard et al. 93 

2012), or no change (Marshall et al. 2006; Watkins et al. 2007; Hom et al. 2012) from rested basal values 94 

reported. 95 



4 

 

Exercise-heat stress research has largely implemented experimental designs where exogenous (external) factors 96 

of exercise intensity and exercise-heat stress conditions are controlled to elicit and measure changes in 97 

endogenous (internal) response. It is likely that endogenous factors are more relevant signals for stress response 98 

than exogenous variables; eHsp72 accumulation being one indicator of stress (Ruell et al., 2006). Establishment 99 

of appropriate endogenous markers and apparent minimum endogenous criteria for eHsp72 release could 100 

facilitate economical prescription of repeated exercise-heat sessions with intent of inducing the HA phenotype, a 101 

similar notion has been proposed by Gagnon et al,. (2013), with regards to investigating heat balance. More 102 

efficient procurement of HA typically achieved through exercise-heat stress exposures (≥30°C) of ≥60 min and 103 

repeated for 5 – 14 sessions (Garrett et al., 2011) would allow researchers and practitioners to prepare 104 

individuals most effectively for subsequent work in conditions presenting thermal challenge. At present the 105 

magnitude of expression has not yet been reported directly comparing changes in human eHsp72 following 106 

identical exercise in graded exogenous environments with description of changes eHsp72 compared with 107 

established endogenous physiological and thermal markers (peak and mean heart rate, core, and muscle 108 

temperature). The introduction of novel markers (rate of increase and change in core temperature, area under the 109 

curve (AUC) for core temperatures of 38.5°C and 39.0°C, duration spent exercising with core temperature ≥ 110 

38.5°C and ≥ 39.0°C) may identify additional criteria for the prescription of exercise-heat stress based upon 111 

analysis of the acute response to stress.  112 

The aim of this study was to determine whether increased concentration of eHsp72 were correlated to 113 

endogenous markers of heat strain, and to identify the most appropriate markers for exercise-heat administration 114 

in humans. It was hypothesised that a minimum endogenous criteria exists for the appearance of eHsp72 into 115 

extracellular spaces during acute exercise-heat stress, and that only exercising in very hot conditions would 116 

provide sufficient internal systemic strain for such appearance. 117 

Methods 118 

Volunteers 119 

Ten healthy males (mean ± SD age 21.0 ± 0.5 years, height 172.1 ± 13.9 cm, nude body mass 71.1 ± 8.0 kg, 120 

body fat 14.7 ± 4.1%, peak oxygen uptake ( O2peak) 3.81 ± 0.60 L.min
-1

) volunteered to participate in the 121 

study.  122 
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The confounding variables of smoking (Anbarasi, Kathirvel, Vani, Jayaraman, & Shyamala Devi, 2006), 123 

caffeine (Lu, Lai, & Chan, 2008), glutamine (Singleton, KD. 2004), generic supplementation (Hillman et al. 124 

2011), thermal exposures (Selkirk et al., 2009), hypoxic exposures (Taylor, Midgley, & Chrismas, 2010), 125 

hyperbaric exposures (Taylor, Midgley, Sandstrom, Chrismas, & McNaughton, 2012) and alcohol (Taylor, 126 

Midgley, Chrismas, et al., 2010) were all controlled in line with previous work in the field (Taylor et al., 2011). 127 

Each volunteer was given instructions for dietary requirements in accordance with published guidelines and 128 

requested to maintain identical diets in the immediate 48hrs prior to each experimental session (Canada, 2009).  129 

Participants were instructed to drink at least 500 ml of water 2 h before all exercise bouts (Sawka et al., 2007).  130 

A urine refractometer (Alago Vitech Scientific, Pocket PAL-OSMO, UK) was used to measure the hydration 131 

levels of the participants prior to commencement of each trial. A participant was deemed to be euhydrated if 132 

urine osmolality was <600 mOsm·Kg
-1

 H2O. This experimental control was not violated for any participant for 133 

any of the experimental procedures.  134 

After a full description of experimental procedures the protocol was approved by the institutional ethics 135 

committee and all subjects completed medical questionnaires and provided signed informed consent following 136 

the principles outlined by the Declaration of Helsinki of 1975, as revised in 2008.  137 

Preliminary Testing 138 

Prior to undertaking the experimental trials of the study, volunteers attended the laboratories whereby their 139 

anthropometric data was collected for height (cm) using a fixed stadiometer (Detecto Physicians Scales; Cranlea 140 

& Co., Birmingham, UK), and body density using calipers (Harpenden, Burgess Hill, UK) and a four site skin 141 

fold calculation (Durnin & Womersley, 1974). Following determination of body density, % body fat was 142 

calculated according to the method described by Siri (1956). Nude body mass (NBM) was recorded to 0.01 kg 143 

from digital scales (ADAM GFK 150, USA). 144 

O2peak was determined as a means for estimating pre testing aerobic capacity and exercise intensity for the 145 

subsequent testing protocols. Volunteers performed an incremental O2peak test on a cycle ergometer (Monark 146 

e724, Vansbro, Sweden) at a starting intensity of 80W in temperate laboratory conditions (20°C, 40% relative 147 

humidity (RH)). Resistance was applied to the flywheel to elicit an increase of 24 W.min
-1

 whilst the volunteer 148 

was informed to maintain a constant cadence of 80 rpm. The O2peak was considered as the highest O2 149 

2maxOV
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obtained in any 10 s period and in line with the end-point criteria guidelines of the British Association of Sport 150 

and Exercise Sciences (Winter, 2007). Expired metabolic gas was measured using online gas analysis (Metamax 151 

3X, Cortex, Germany). All preliminary testing was performed on the same ergometer (Monark, e724, Vansbro, 152 

Sweden). Heart rate (HR) was recorded during all exercise tests by telemetry (Polar Electro Oyo, Temple, 153 

Finland). Power outputs corresponding to 50% O2peak were calculated from the O2: power output 154 

relationship. Saddle position was adjusted by the volunteer to their preferred cycling position and remained 155 

unchanged for all trials. During all trials volunteers wore shorts, socks, and shoes. 156 

Experimental Protocol 157 

Volunteers presented to the laboratories 60 min prior to testing. Time of day for testing was held constant (10:00 158 

± 01:00 h) to control for the effects of daily variation in performance (Drust, Waterhouse, Atkinson, Edwards, & 159 

Reilly, 2005) and HSP expression (Sandström et al., 2009; Taylor, Midgley, Chrismas, et al., 2010). 160 

Following determination of NBM and hydration status the volunteer then inserted a disposable rectal thermistor 161 

(Henleys Medical, UK, Meter logger Model 401, Yellow Springs Instruments, Yellow Springs, Missouri, USA; 162 

accuracy ±0.20°C) 10 cm past the anal sphincter for measurement of rectal temperature (Trec). Intramuscular 163 

temperature (Tmu) was recorded using a muscle temperature probe (Ellab Medical Precision Thermometer, 164 

Copenhagen). A 2-g sample of an anaesthetic cream (EMLAi Cream 5%; AstraZeneca Ltd., Bedfordshire, UK) 165 

was applied to the right vastus lateralis muscle 30 min before measurement of resting muscle temperature. With 166 

participants seated with the lower leg supported at 90°, a needle (18 G 1.5 inches; BD Microlance 3, Drogheda, 167 

Ireland) and a sterile, flexible muscle temperature probe (medical precision thermometer; Ellab, Copenhagen, 168 

Denmark) were inserted 4 cm into the belly of the vastus lateralis until a constant temperature was recorded. 169 

After removal of the needle, pressure and small adhesive bandage were applied to the entry site to prevent 170 

bleeding in accordance with methods described by Duffield et al. (2010). 171 

Volunteers mounted the cycle ergometer located inside a purpose built environmental chamber with temperature 172 

and humidity controlled using automated computer feedback (WatFlow control system; TISS, Hampshire, UK), 173 

and were instructed to perform 90 min of continuous cycling exercise at 50% O2peak (50% O2peak = 174 

1.90±0.30 L.min
-1

, Power at 50% O2peak = 120 ± 26 W) in either temperate (TEMP; 20.3°C ± 0.4°C, 51.9 ± 175 

14.0%  RH; wet globe bulb temperature (WGBT) 15.8°C), hot (HOT; 30.2°C ± 0.1°C, 52.7 ± 3.0% RH; WGBT 176 
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24.5°C) and very hot (VHOT; 40.2°C ± 0.4°C, 39.0 ± 7.8% RH; WGBT 31.6°C) conditions. The sequence was 177 

decided by latin square design.  178 

During each testing session HR, rating of perceived exertion (RPE, (Borg, Ljunggren, & Ceci, 1985)), thermal 179 

sensation (TSS, (Gagge, Stolwijk, & Saltin, 1969)) and Trec were recorded. Tmu was measured immediately 180 

before and after the cessation of each trial. Later, sweat rate was calculated, derived from a change in NBM. 181 

Heat strain was calculated using Physiological Strain Index (PSI) (D S Moran, Shitzer, & Pandolf, 1998) as 182 

follows: 183 

PSI = (5 * (Trec1 - Trec0)/ ((39.5 - Trec0)) + (5 * (HR1 - HRo) * (180-HR0)). Where O indicates basal values and 1 184 

indicates experimental values. 185 

The Trec area under the curve (AUC) was calculated using a modification to the trapezium rule (Hubbard et al., 186 

1977) when Trec exceeded 38.5°C (Cheuvront et al., 2008) and 39.0°C. AUC for Trec >38.5°C or AUC for Trec 187 

>39.0°C was calculated as:  188 

AUC Trec ≥38.5°C (°C.min
-1

) = ∑ time interval (min) x 0.5 [°C > 38.5°C at the start of exercise-heat stress + °C 189 

> 38.5°C at the end of exercise-heat stress]. 190 

AUC Trec ≥39.0°C (°C.min
-1

) = ∑ time interval (min) x 0.5 [°C > 39.0°C at the start of exercise-heat stress + °C 191 

> 39.0°C at the end of exercise-heat stress]. 192 

In compliance with ethical approval, exercise was terminated if a subject attained a Trec of 39.7°C. 193 

Blood Sampling and Analysis 194 

Venous blood samples were taken immediately pre- and post- and 24 hr post-test TEMP, HOT and VHOT 195 

exercise. A 10 ml whole blood sample was drawn from the antecubital fossa. Each sample was divided equally 196 

into 5 ml tubes (Starstedt, Germany) containing EDTA as anticoagulant. Whole blood samples were centrifuged 197 

(Eppendorf 5804 R Centrifuge) at 4,500 rpm for a period of 15 min to separate plasma. Plasma was pipetted 198 

(Eppendorf Research/Research Pro) into 1.5 ml microtubes (Eppendorf) and stored at -86
°
C (Sanyo Ultra Low, 199 

VIP Series) until analysis which utilised a commercially available HSP70 high sensitivity enzyme 200 

immunometric assay kit (Enzo Life Sciences, Michigan, USA). Quantitative determination of the inducible 201 
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Hsp72 was performed according to manufacturers’ guidelines. Incubation of the 96 well kit, including the 202 

required quality control standards was performed on an orbital shaker (Heidolph Titramax 1000) at 600 rpm, 203 

and read by a platereader using absorption at 450 nm (Elx 800 Universal Microplate reader, Bio-Tek 204 

Instruments). Plasma Hsp72 concentrations were corrected for changes in venous plasma volume (Dill & 205 

Costill, 1974) with haemoglobin collected in duplicate using a microcuvette and analysed using a B-206 

Haemoglobin Photometer (Hemocue Limited, Ängelholm, Sweden) and haematocrit collected in triplicate (~50 207 

µl) with glass capillary tubes and analysed following centrifugation at 12-14000 rpm for 3 min (Haemotospin 208 

1300 Centrifuge, Hawksley & Sons Ltd, West Sussex, UK). 209 

Accuracy of the sample data was ensured by plotting a graph for linearity between known sample concentrations 210 

and optical density. A linear trendline and equation was used to translate raw plate reader result into Hsp72 units 211 

(ng.mL
-1

). The intra/inter-assay variability was 10.5/17.36%, respectively. The assay sensitivity is described by 212 

the manufacturer as 0.09 ng.ml
−1 

and the detection range of the assays were 0.20-12.5 ng.ml
-1

 for Hsp72. 213 

Statistical Analysis 214 

All statistical calculations were performed using PASW software version 18.0 (SPSS, Chicago, IL, US). All 215 

outcome variables were assessed for normality of distribution and sphericity prior to further analysis and 216 

deemed plausible in all instances unless otherwise stated. A two-way (time x trial) repeated-measures Analysis 217 

of Variance (ANOVA) was performed to test significance between and within trials. One-way ANOVA with 218 

repeated measures was used to compare physiological, perceptual and thermal data between exogenous 219 

environments, bonferroni pairwise comparisons compared between separate exogenous temperature conditions.  220 

Stepwise multiple regression analysis was performed for the six dependent variables which yielded the strongest 221 

relationship to the increase in eHsp72 concentration (rate of change in Trec (°C.hr
-1

), peak Trec (°C), mean Trec for 222 

the final 60 min (°C), duration Trec ≥39.0°C (min), change in Trec (°C), duration Trec ≥38.5°C (min)). Nine 223 

volunteers’ data were used for the model as no eHsp72 was detected for one volunteer. Data was reported as 224 

mean ± SD, with two tailed significance was accepted at p < 0.05. 225 

Results 226 

Physiological and Perceptual Measures 227 
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Mean duration for VHOT trial lasted only 86.5 ± 7.5 min in comparison to TEMP and HOT owing to two 228 

participants terminating early as Trec reached 39.7°C. No difference (f = 2.194, p  = 0.140) was reported for the 229 

duration exercising in each exogenous temperature condition see table 1.  230 

Peak (f = 28.650, p < 0.001) and mean (f = 19.951, p < 0.001) HR were significantly higher in HOT than TEMP 231 

conditions (141 ± 16 and 132 ± 13 b.min
-1

; p < 0.001), whilst VHOT was significantly higher than TEMP (p = 232 

0.001 and p = 0.001) and HOT (p = 0.018 and p = 0.045) see figure 1.  233 

Calculated sweat rate was significantly different between conditions (f = 4.204, p = 0.032).   VHOT (15.8 ± 4.3) 234 

was significantly greater (p = 0.042) than TEMP and HOT conditions, no difference existed between TEMP and 235 

HOT (p = 0.153), see table 1. 236 

Perceptual measures RPE and TSS demonstrated significant difference between conditions (RPE f = 103.360,  p 237 

< 0.001)  (TSS f = 71.602,  p < 0.001) (table 1), with peak scores significantly increasing from TEMP to HOT 238 

(p = 0.021 and p < 0.001); VHOT was significantly higher (p = 0.008 and p < 0.001) from TEMP and HOT 239 

trials. Mean RPE was significantly different between conditions (f = 22.946, p < 0.001), but only significantly 240 

greater between VHOT and TEMP and HOT conditions (p = 0.003). Mean TSS was significantly different 241 

between all conditions (f = 76.518, p < 0.001), TEMP was significantly lower than HOT (p = 0.000) and VHOT 242 

was significantly greater from TEMP (p < 0.001) and HOT (p = 0.001).  243 

Temperature Measures 244 

Table 2 reports the values for peak Trec, statistically different between all conditions (f = 59.838, p < 0.001).  245 

TEMP was significantly lower than HOT (p = 0.002); VHOT was significantly higher than TEMP (p < 0.001) 246 

and HOT (p < 0.001). Mean Trec for the time between 30 and 90 min was significantly different (f = 35.906, p < 247 

0.001) with HOT significantly higher than TEMP (p = 0.028) and VHOT significantly higher than TEMP (p < 248 

0.001) and HOT (p < 0.001).  249 

The change in Trec was significantly different between conditions (f = 33.621, p < 0.001), but post hoc analysis 250 

only observed significantly greater differences between VHOT, and TEMP and HOT (p < 0.001). This was also 251 

true of the rate of Trec increase (f = 37.475, p < 0.001), where VHOT elicited a significantly greater rate 252 

compared to TEMP and HOT (p < 0.001).  253 
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Area Under Curve for Trec of 38.5°C (f = 4.045, p = 0.035) and 39.0°C (f = 7.163, p = 0.005)  (°C.min
-1

) were 254 

significantly different between conditions overall, VHOT was significantly greater compared with TEMP and 255 

HOT (p = 0.003 and p = 0.013), but no difference was observed between TEMP  and HOT. 256 

Duration spent with rectal temperatures of ≥38.5°C (f = 18.475, p < 0.001) and ≥39.0°C (f = 9.631, p = 0.001) 257 

(min) displayed significant main effect difference but was not different between TEMP and HOT, however 258 

VHOT was significantly longer than TEMP and HOT (p = 0.014 and p = 0.06). 259 

Main effect for end Tmu was observed as significant (f = 36.381, p < 0.001). Significant difference was also 260 

found between TEMP and HOT (p = 0.001); VHOT was significantly higher from TEMP (p < 0.001) and HOT 261 

(p = 0.003). The change in Tmu was only significantly greater between VHOT, and TEMP and HOT (p = 0.003) 262 

despite overall difference (f = 26.836, p < 0.001). Thermal data for each trial is presented in table 2. 263 

Overall difference was observed for peak (f = 76.949, p = 0.000) and mean PSI (f = 21.278, p < 0.001) with 264 

significantly higher values observed between VHOT, and both TEMP and HOT conditions (p < 0.001 and p = 265 

0.005, respectively), see table 1. Peak PSI was also significantly lower in TEMP compared to HOT (p = 0.003), 266 

no significant difference was observed for mean PSI (p >0.05).  Figure 1 details the change in HR, Trec and PSI 267 

for each condition over time. 268 

Extracellular HSP70 expression 269 

No difference (f = 1.677, p = 0.218) was reported in eHsp72 expression (ng.mL
-1

) for pre testing expression 270 

during TEMP, HOT and VHOT experimental sessions. eHsp72 expression (ng.mL
-1

) was observed as 271 

significantly different for the main effect (f = 5.928, p = 0.012) with the significant difference observed as an 272 

increase from pre to post VHOT (0.266 ± 0.094 to 0.724  ± 0.444). Following post hoc analysis no difference 273 

was found for the effect of temperature or condition in TEMP (p = 1.000) and HOT (p = 0.766) (0.349 ± 0.135 274 

to 0.342 ± 0.165, and 0.299 ± 0.122 to 0.376  ± 0.226 respectively). No significant difference (p > 0.05) was 275 

observed between pre and 24hrs post in any exercise-heat condition. eHsp72 data presented as a percentage 276 

change from baseline, in line with previous work, for post (TEMP -1.9%; HOT +25.7%; VHOT +172.4%) and 277 

24hrs post (TEMP -8.6%; HOT 2.6%; VHOT 17.1%) are presented in figure 2.  278 

Relationship between eHSP70, Temperature and Physiological measures 279 
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Rate of change in Trec (r = 0.702), peak rectal temperature (r = 0.655), mean Trec for the final 60 min (r = 0.651), 280 

duration Trec ≥39.0°C (r = 0.635), change in Trec (r = 0.632), peak PSI (r = 0.603), duration Trec ≥38.5°C (r = 281 

0.559), and peak HR (r = 0.327), were submitted to a stepwise multiple regression to predict post exercise-heat 282 

exposure. The first predictor variable to enter the model was rate of change in Trec; the second and final 283 

predictor variable to enter the model was change in Trec. The adjusted R
2
-value for this model was 0.473 and 284 

standard error of the estimate 0.228. 285 

Discussion 286 

The aim of this study was to determine the endogenous effects of exercise matched for power output and 287 

duration in three exogenous thermal environments on the plasma eHsp72 concentration responses. Significant 288 

changes in concentration occurred only pre to post in the VHOT group, supporting the hypothesis that 289 

endogenous thermal and physiological strain elicited only in VHOT conditions provided sufficient stimuli for 290 

eHsp72 response during exercise-heat stress. This is in line with other authors with similar experimental designs 291 

to the present study (McClung et al. 2008; Magalhães et al. 2010; Périard et al. 2012). Established endogenous 292 

physiological and thermoregulatory parameters, particularly those less commonly reported in literature 293 

determining eHsp72 changes (rate of Trec increase, area under the curve (AUC) for Trec of 38.5°C and 39.0°C, 294 

duration Trec ≥ 38.5°C and ≥ 39.0°C), taken during each condition were analysed to determine whether they 295 

could be used to describe more effectively internal heat strain leading to increased eHsp72 concentration.  296 

The physiological and thermoregulatory responses to each exercise-heat stress condition were as expected for 297 

matched exercise in increasing thermal environments (Galloway & Maughan, 1997; Maughan et al., 2012). Data 298 

observed three levels of strain between TEMP, HOT and VHOT conditions for peak HR, Trec, PSI, and end Tmu 299 

suggesting that each exogenous condition was placing independent magnitudes of strain. Other 300 

thermoregulatory data (change in Trec, rate of Trec increase, AUC for Trec of 38.5°C and 39.0°C, duration Trec ≥ 301 

38.5°C and ≥ 39.0°C, and change in Tmu) however were in agreement with the experimental rationale, 302 

describing two levels, where VHOT was different from TEMP and HOT, but no difference was observed 303 

between TEMP and HOT. The thermal and physiological data suggests that VHOT was of greater exercise-heat 304 

stress than TEMP and HOT; an observation paralleled by the increased concentration of eHsp72 being only 305 

reported in VHOT pre to post exercise. Regrettably, no data was collected that measured skin temperature, this 306 

addition in future research studies would allow for the calculation of whole body temperature (Burton, 1935)  307 

and the inclusion of this descriptor of endogenous strain. The observation from regression analysis that the rate 308 
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of increase, and the delta change in Trec are important factors in changing eHsp72 expression is in line with the 309 

observations of Périard et al. (2012) for whom exercising at 75% O2peak, revealed a relationship emerged 310 

between eHsp72 and the rate of increase in Trec. The authors surmised that this was possibly due to a greater 311 

metabolic demand and energy conversion increasing Trec (i.e., intensity dependent). In the present study it 312 

appears despite a lower intensity of work the exogenous conditions were sufficient to elicit different endogenous 313 

responses and eHsp72 concentrations. As only two (rate of change in Trec, and change in Trec) of seventeen 314 

initial dependent variables (table 1 and 2) were accepted into the regression model, it remains that changes in 315 

eHsp72 concentration is multi-factorial and that whilst ensuring endogenous thermal strain is of sufficient onset 316 

and magnitude, these determinants are only elements determining the change in concentration. These 317 

observations do however, give greater insight into means for facilitating the most economical prescription of 318 

thermal and exercise intensity components of repeated exercise-heat sessions.  319 

The present study reported eHsp72 as only increasing immediately following the VHOT trial, with values 320 

returning to baseline within 24 hrs (Figure 2). Increased systemic eHsp72 has been shown to be exercise 321 

intensity and duration dependant in temperate conditions (Fehrenbach et al., 2005), with the addition of thermal 322 

stress (evidenced by increase Trec) further increasing the magnitude of response (Marshall et al. 2006). 323 

Consequently, a heat storage independent threshold of 38.5°C (Trec) has been postulated (F. T. Amorim, 324 

Yamada, Robergs, Schneider, & Moseley, 2008) and demonstrated central to the magnifying influence of 325 

thermal stress on eHsp72 concentrations (F. T. Amorim et al., 2008), compared to moderate intensity matched 326 

exercise. Data from present study supports this “minimum endogenous criteria” notion (table 2). VHOT elicited 327 

a greater internal temperature, rate of internal temperature rise and a greater duration at critical Trec than TEMP 328 

and HOT, which is, supportive of the existence of minimum endogenous criteria for the induction of eHsp72 329 

into the circulation during exercise heat stress as suggested by Amorin et al., (2008). Supporting the absence of 330 

eHsp72 increases in TEMP and HOT, Trec of 37.90 ± 0.29°C and 38.35 ± 0.52°C, respectively in the present 331 

study, parallel exercise induced changes in Trec data (mean maximum Trec 38.48°C) resulting in no change in 332 

basal eHsp72 reported by others (Hom et al, 2012), during treadmill walking at 33°C, 30-50%RH. The present 333 

study supports the notion (Amorin et al 2008) that mean Trec must exceed >38.5°C to initiate increases in 334 

eHsp72, with increases in Trec, even within a thermally challenging environment insufficient to induce such 335 

elevations without Trec >38.5°C.  336 
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Mechanistically, temperatures >38.5°C at the hepatosplanchnic viscera are perhaps the most important, with 337 

duration and magnitude or eHsp72 release dependant on the magnitude and duration above this element of the  338 

“threshold” (Rhind 2004; Selkirk et al, 2008, 2009). However, recent evidence (Périard et al., 2012) suggests 339 

that the same eHsp72 expression is yielded by short (27.2  min) and longer duration (58.9 min) trials by 340 

increasing exercise intensity (from 60% to 75% of O2peak) with this similarity in eHsp72 expression despite 341 

differences in peak and mean Trec (39.0°C and 39.7°C respectively). The data from Periard et al (2012), at least 342 

superficially, indicates that both magnitude and duration above >38.5°C is irrelevant within normal 343 

physiological boundaries (i.e. non-life threatening physical and occupational pursuits) and that it is exceeding 344 

Trec of >38.5°C that is the most potent stimuli of increases in eHsp72 when combined with exercise stress.  345 

Attenuation of release may likely occur once Trec returns below “minimum endogenous criteria”, although the 346 

precise duration taken for full cessation of Hsp72 release requires further elucidation – the presented data 347 

suggest this occurs sometime between immediately and 24 hr post exercise (figure 2). This pattern of elevation 348 

and return to baseline in VHOT, as observed during the first tolerance test by Magalhães et al. (2010)  or, 349 

observed reduction following elevation (Marshall et al. 2006; Périard et al. 2012) from baseline, highlights the 350 

transient eHsp72 response to stress followed by removal from the circulation. However, caution must be 351 

exercised when inferences to a critical endogenous criteria model is made across a broad demographic of 352 

exercise capacities (i.e. untrained through to highly trained) as such differences are known to influence eHsp72 353 

release kinetics and magnitudes within thermally challenging environments (Selkirk et al 2008, 2009). 354 

Therefore, future work should tightly control this potentially confounding variable. 355 

Hepatosplanchnic and brain tissue, and peripheral blood mononuclear cells appear the principle sources of 356 

Hsp72 release into the systemic circulation (Febbraio et al., 2002; Johnson & Fleshner, 2006; G I Lancaster & 357 

Febbraio, 2005; G I Lancaster et al., 2004). Concise reviews of the proposed active and passive mechanisms of 358 

eHsp72 release are presented by Lancaster and Febbraio (2005), Fleshner and Johnson (2005) and Asea (2007). 359 

Briefly, it is proposed (Multhoff & Hightower, 1996) that exosomes secreted following the fusion of 360 

multivesicular bodies with the plasma membrane, provide the secretory pathway for cells to actively release 361 

Hsp72 (Lancaster and Febbraio 2005). It has also been proposed (Ogawa et al., 2011) that eHsp72 is triggered 362 

by circulating ATP during exercise. Further to this, it has been reported (Johnson & Fleshner, 2006) that 363 

hormone receptor mediated pathways exist allowing elevation of eHsp72 during stress. Authors demonstrated 364 

that norepinephrine may stimulate a receptor-mediated exocytotic pathway of eHsp72 release. An indirect 365 
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consequence of exercising at an elevated temperature is that of elevated cardiovascular demand and associated 366 

α-adrenergic stimulation as a means for maintaining work rate and required demands to exercising muscle, 367 

whilst attempting thermoregulation. VHOT elicited the greatest heart rate response to the exercise presented, as 368 

such this indirect measure of sympathetic activity occurring through physiological and thermal strain, supports 369 

this release mechanism. This mechanism is further evidenced by the work of Whitham et al., (2006)  whom 370 

observed caffeine supplementation and increase plasma catecholamines as elevating eHsp72. Périard et al. 371 

(2012) commented that the release of eHsp72 into extracellular locations is likely to originate from varied 372 

tissues and cell types, each potentially affected by specific mechanisms of release and various inducing factors.  373 

The significance of a post-exercise increase in eHsp72 remains unclear, proposed immunological functions 374 

(Campisi, Leem, & Fleshner, 2003) as a signal for cytokine and inflammatory pathways in response to 375 

unaccustomed systemic or whole body stress ( a Asea et al., 2000). Appear most relevant whereby VHOT 376 

exercise-heat stress in that trial was of a magnitude sufficient to induce an immunological response which the 377 

TEMP and HOT trials were not (figure 2).  378 

The degree of hyperthermia during exercise-heat stress, be it induced by exogenous environment or prescribed 379 

workload, has so far been proposed central to whether Hsp72 is expressed/released, or not. It has been 380 

demonstrated that participants exposed to temperatures similar to that of VHOT (Magalhães et al., 2010; 381 

McClung et al., 2008; Yamada et al., 2007) where mean calculated heat stress was 32.46°C (WGBT), elicited 382 

largest increases in Hsp72. Marshall et al. (2006) used a greater calculated exogenous heat stress than VHOT 383 

(33.1°C WGBT) combined with lower (38% and 42.5% O2peak) exercise intensity, eliciting core temperatures 384 

of 38.2°C. No change in eHsp72 was observed, suggesting that the exercise intensity/workload was insufficient 385 

in their experiment to elicit the desired thermal response, and is not presenting sufficient exercise-heat stress. 386 

In a matched thermal environment, exercise intensity contributes to the rate of temperature increase and the 387 

degree of hyperthermia (Mora-Rodriguez et al. 2008). Whilst exercise intensity alone has been associated with 388 

increased iHsp72 (Milne and Noble 2002; Liu et al. 1999), and eHsp72 (Whitham et al. 2007; Périard et al. 389 

2012) responses to hyperthermia and the sympathetic adrenergic stimulation of exercise offers a further insight 390 

into eliciting the greatest response based upon endogenous criteria. Whitham et al. (2006) demonstrated 391 

increased eHsp72 was associated with higher plasma levels of catecholamines and heart rate, whilst it has also 392 

been observed that following passive heating, neither epinephrine nor norepinephrine were solely responsible 393 

for eHsp72 release (Whitham et al. 2007). 394 
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The most recent, and most explicit evidence from exercise-heat stress (Periard et al. 2012) suggests that the 395 

same eHsp72 expression is yielded by short (27.2 min) and longer duration (58.9 min) trials by increasing 396 

intensity (from 60 % to 75 % of O2peak). This similarity was despite differences in core temperature (39.0°C 397 

and 39.7°C respectively) albeit with both groups passing the proposed 38.5°C threshold (F. T. Amorim et al., 398 

2008). Potential explanation could be reflected by the difference in AUC in the 60% trial, from the 75% trial, or 399 

that eHSP72 increases at a maximal rate after an exercise intensity threshold has been achieved, either 400 

alongside, or in the absence of thermal strain. Johnson and Fleshner (2006) identified α-adrenergic stimulation 401 

as responsible for Hsp72 release into the circulation, this alongside the work of Whitham et al. (2006, 2007) 402 

suggest a requirement for individuals to be presented with sustained physiological challenge during exercise – 403 

heat stress (Johnson et al. 2005). Exercise intensity, or α-adrenergic stimulation is potenitally required to be 404 

above an intensity threshold to elicit significant eHsp72 response with the greater exercise intensity data from 405 

Periard et al. (2012) leading to data contrasting that of Marshall et al. (2006). The extent to which the adrenergic 406 

contribution is required is difficult to determine precisely,  407 

 408 

from the present study it appears with only the VHOT trial eliciting changes in eHsp72 that a mean HR, an 409 

indirect measure of sympathetic activation, of 153 ± 14 b.min
-1

 is required from the intensity 50% of O2peak. 410 

The intensity of this trial may however be of greater physiological strain as a result of the increased 411 

thermoregulatory requirements which are known to increase proportionally to the ambient conditions (Galloway 412 

& Maughan, 1997; Maughan et al., 2012). Periard et al. (2012) reported HR values greater than the present 413 

study reflecting the elevated work intensity. As with the analysis of Periard et al. (2012), our regression analysis 414 

deemed HR responses insufficient predictor elements of change in eHsp72 concentration. The significant 415 

difference in HR between VHOT and, TEMP and HOT alongside elevated eHSP72 in only VHOT despite 416 

matched power, is therefore explained by the elevated cardiovascular consequence of increased thermal strain 417 

whilst maintaining power output, rather than the thermal strain being a the primary mediator of eHsp72 418 

response.  419 

 420 

Magalhães et al. (2010) observed only the first of two heat stress tests separated by 10 days of HA as reporting 421 

increases in eHsp72. Authors speculated that the higher iHsp72 observed following translocation of heat shock 422 

factor-1 and trimeric activation of the heat shock element promoter region of HSPA1A after HA, may have 423 

elicited increased cellular tolerance, which in combination with reduced Trec and HR adaptations made through 424 
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HA, are likely to have protected participants from the same degree of cardiovascular instability and thermal 425 

strain during the second heat stress test exercise bout, and, thus, a mechanism involving release of eHsp72 to 426 

induce an inflammatory response was inhibited. 427 

 428 

Present data fails to elucidate the precise minimum requirement for sympathetic contribution to Hsp72 429 

transcription or translocation as identified by other research (Johnson & Fleshner, 2006) through exercise or 430 

supplementary pathways. Analysis of plasma catecholamine response would’ve contributed towards this known 431 

mediator regulating the release of Hsp72 in the present study. It is well reported that elevated temperature, 432 

derived from external environment, passively or through active means, leads to elevated cardiac strain (HR) and 433 

as such these two fundamental variables cannot be divided when considering the whole body response to 434 

exercise heat stress. As regression analysis has failed to accept HR as a predictor of eHsp72 in favour of thermal 435 

markers as such we cannot ignore the identification of previous discussed endogenous thermal markers despite 436 

early research demonstrating increases in eHsp72 independent of changes in core temperature as a consequence 437 

of increased plasma catecholamines. Our data acknowledges the role of HR, and more specifically the elevated 438 

cardiac contribution to exercise in the VHOT condition in comparison to HOT and TEMP conditions. It is 439 

therefore proposed that sympathetic activity, most rudimentarily measured from exercising HR is an important 440 

component of the minimum endogenous criteria for increasing eHsp72 during exercise-heat stress alongside the 441 

thermal criteria. Rather than the heat directly modulating elevated eHsp72 expression, it appears to be indirectly 442 

modulating it through via increased HR, a simple marker of adrenergic/catecholamine contribution to exercise-443 

heat stress. 444 

It has been reported recently that core temperature (Ruell et al. 2006; Periard et al. 2012), rate of core 445 

temperature increase (Periard et al. 2012), and interestingly, aerobic capacity (Périard et al. 2012) are 446 

endogenous factors relating to Hsp72 increases in line with the data presented within this study. In light of this, 447 

further work appears warranted to determine the role parasympathetic/sympathetic drive has in determining 448 

eHsp72 release during exercise-heat stress in individuals not acclimated to the strain presented.  449 

It is known that training status influences the basal and eHsp72 stress response to exercise-heat stress. In 450 

addition, prior HA, or progress towards the phenotype via endurance training may elevate the immune response 451 

threshold for inducement of eHsp72 via exercise-heat stress. Njemini et al., (2004) also observed that 452 

inflammatory status, and it’s variable nature is also linked to eHsp72.  Selkirk et al., (2008, 2009) acknowledged 453 
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that the threshold for enhanced iHsp72 response, endotoxin leakage and inflammatory activation during 454 

exertional heat stress, in similar exogenous conditions to the present study, occurs at a lower temperature in 455 

untrained compared with trained subjects and support the endotoxin translocation hypothesis of exertional heat 456 

stroke, linking endotoxin tolerance and heat tolerance.  457 

This individual and changing threshold along a continuum modulated by thermotolerance, inflammatory, and 458 

training status, suggests that prescription of exercise-heat stress exposure, administered controlling only simple 459 

parameters such as exogenous environment and work rate, may ultimately fail to stress sufficiently some 460 

individuals. The present data can therefore be used as a guide towards acute exercise heat stress prescription. It 461 

is also important to consider that parameters appropriate for acute interventions shift with repeated exposures, as 462 

the HA phenotype and concurrent acquired cellular thermotolerance is enhanced (Sandström et al. 2008; 463 

Magalhães et al. 2010; Hom et al. 2012). Based upon these comments and the observation from the regression 464 

analysis that the rate of increase in Trec (VHOT 1.56 ± 0.53 °C.hr
-1

) and the delta change in Trec (VHOT 2.22 ± 465 

0.65°C), it may be more appropriate to implement an isothermic (controlled hyperthermia) model of exercise-466 

heat exposure (Garrett et al., 2012, 2011) where the rate of heat production can be accelerated (F. T. Amorim et 467 

al., 2008) and proposed minimum endogenous temperatures targeted (F. Amorim et al., 2011). This model 468 

requires greater exercise intensity during the early stages of the exposure, thus ensuring a more rapid increase in 469 

Trec and consequently greater change in Trec, followed by a reduction in workload once a desired temperature has 470 

been achieved. The benefit of the isothermic model of exercise-heat stress is that specific endogenous 471 

temperatures can be targeted, rather than being an uncontrolled response varying on an individual basis, with the 472 

potential for more individualised prescription. This model of clamping at  a set core temperature is an effective 473 

means for mediating increases of circulating stress hormones, which subsequently contribute to induction of 474 

circulating cytokine release (Rhind et al., 2004). 475 

The duration in which individuals are in a state of hyperthermia may also be a contributing factor towards 476 

increasing eHsp72 concentrations and as such be reflective of a greater overall “dose” of endogenous strain in 477 

comparison to a short exposure to extremes of either variable. The more rapid increase in core temperature 478 

during the isothermic model could be implemented to ensure a greater percentage of the total exposure time is at 479 

or above the desired endogenous threshold for eHsp72 release. Whilst eHsp72 is a useful marker for describing 480 

stress it should be noted that no direct role exists between secreted eHsp72 and attainment of HA. Future work 481 

should consider the iHsp72 response to exercise-heat stress which might provide greater insight into acquired 482 
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cellular thermotolerance and the acquirement of HA. Within these experimental designs the confounding 483 

variable of training status and its influence on the prescription of the stress should be controlled to assess the 484 

most effective means for increasing iHsp72 gene expression and total protein in tandem with measures of 485 

eHsp72. Such data should be used to assess the global HSP response in line with the proposed eHsp72 centric 486 

minimum endogenous criteria. 487 

In summary, it appears likely that a minimum endogenous criteria contributes to the multifactorial release of 488 

eHsp72 into the circulation during acute exercise-heat stress, a pathway that may differ from pathological stress 489 

resulting in systemic inflammation. Our data observed the endogenous requirement for release as being a 490 

minimum core temperature peak of 39.2°C, a change of 2.2°C from baseline, or achieving a mean of 38.6°C for 491 

a period of 56.5 min following a rate of increase of 1.6°C.hr
-1

 alongside heart rate requirements of 153 ± 492 

14b.min
-1

.  493 
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