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a b s t r a c t

Sustainability considerations in manufacturing scheduling, which is traditionally influenced by service ori-

ented performance metrics, have rarely been adopted in the literature. This paper aims to address this gap

by incorporating energy consumption as an explicit criterion in shop floor scheduling. Leveraging the vari-

able speed of machining operations leading to different energy consumption levels, we explore the potential

for energy saving in manufacturing. We analyze the trade-off between minimizing makespan, a measure of

service level and total energy consumption, an indicator for environmental sustainability of a two-machine

sequence dependent permutation flowshop. We develop a mixed integer linear multi-objective optimization

model to find the Pareto frontier comprised of makespan and total energy consumption. To cope with com-

binatorial complexity, we also develop a constructive heuristic for fast trade-off analysis between makespan

and energy consumption. We define lower bounds for the two objectives under some non-restrictive condi-

tions and compare the performance of the constructive heuristic with CPLEX through design of experiments.

The lower bounds that we develop are valid under realistic assumptions since they are conditional on speed

factors. The Pareto frontier includes solutions ranging from expedited, energy intensive schedules to pro-

longed, energy efficient schedules. It can serve as a visual aid for production and sales planners to consider

energy consumption explicitly in making quick decisions while negotiating with customers on due dates.

We provide managerial insights by analyzing the areas along the Pareto frontier where energy saving can be

justified at the expense of reduced service level and vice versa.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Scarcity and likely future shortages of key materials and energy

resources used in modern manufacturing have come into the focus

of public interest. This challenge necessitates resource-efficient engi-

neering, as the transition from a linear to a circular economy has al-

ready begun (Sun, 2013). We need innovative resource-efficient and

low-carbon economy solutions for conserving resources, maximiz-

ing recovery of materials, reusing, and recycling as well as mini-

mizing waste to respond to and pro-actively prepare for significant

scientific and technological challenges of sustainable manufacturing.

Manufacturers feel the pressures of public awareness of sustainabil-

ity, increasing energy costs, and growing energy security concerns.

Therefore a new line of research has been rapidly developing for the
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eduction of energy and power consumption in manufacturing with-

ut compromising service levels.

Sustainable manufacturing is substantiated by concepts such as

onservation of energy, material and value added products, waste

revention and environment protection. The manufacturing indus-

ry as a whole uses massive amounts of energy and contributes to

6% of global CO2 emissions (OECD-IEA, 2007). In the UK, indus-

ry’s energy consumption accounts for 16% of the total consumption

MacLeay, Harris, & Annut, 2014). This is equivalent to 194 million

etric tonnes of CO2. To put this figure into perspective, it corre-

ponds to greenhouse gas emissions from 451 million barrels of oil

EPA 2013). Moreover, according to the Department of Energy & Cli-

ate Change (DECC), the total demand for energy in the UK was

lightly above the total supply in 2012 (DECC, 2013), which resulted

n importing energy to satisfy the demand. Although the current oil

rices suggest an abundance of resources for energy, the increas-

ng trend in population, energy consumption and wastage of energy

uts the world at risk of facing an energy crisis in the near future as

s evidenced by the European Union’s developing contingency plans
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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gainst any kind of energy supply outage (Reuters, 2015). This is why

anufacturing companies are obliged to not only make efforts to

educe their environmental impact but also to proactively consider

ikely energy shortages in their operations. One way to do this is by

sing highly effective ways of reducing their electrical energy con-

umption (Duflou et al., 2012). Examples of such ways include selec-

ively shutting down machines during idle time (Mouzon & Yildirim,

008; Mouzon, Yildirim, & Twomey, 2007) where feasible or operat-

ng them at speeds allowed by the set service level targets.

Our research is novel in its integration of energy considerations

nto the shop floor scheduling. We leverage variable processing times

ith different energy consumptions to analyze the trade-off between

akespan and energy consumption in a two-machine sequence de-

endent flowshop scheduling problem. Our research is inspired in

art by similar trade-offs between speed and fuel emissions in vehi-

le routing (Demir, Bektaş, & Laporte, 2014; Jabali, Woensel, & de Kok,

012) and maritime transportation (Psaraftis & Kontovas, 2013; Qi

Song, 2012). We argue that in flowshop manufacturing, there is

trade-off between optimizing makespan (which is dependent on

rocessing and setup times) and energy consumption. Therefore, an-

lyzing the trade-offs in an efficient way can support decision mak-

ng when scheduling manufacturing operations in this setting. To the

est of our knowledge, this problem has not been addressed in the

xtant literature. This paper aims to close this gap in an attempt to

romote the notion of green scheduling in manufacturing.

In this paper we address the trade-off between energy consump-

ion and service level in shop floor manufacturing. We develop a

athematical model to minimize makespan, a measure of service

evel and total energy consumption, an indicator of environmental

ustainability in a two-machine permutation flowshop scheduling

roblem that is characterized by sequence dependent setups. Two-

achine flowshop scheduling problems have many real world ap-

lications including metalworking (Uruk, Gultekin, & Akturk, 2013),

rinted circuit board (PCB) manufacturing (Sabouni & Logendran,

013) and shampoo industry (Belaid, T’kindt, & Esswein, 2012) among

thers. As a result, two-machine scheduling problems have attracted

ignificant attention from practitioners and researchers. From the

950s when Johnson developed one of the first algorithms for two-

achine flowshop scheduling (Johnson, 1954), the problem has been

idely studied in the literature from different perspectives. A recent

earch on Scopus1 using the keywords “scheduling OR sequencing”

ND “flowhsop OR ‘flow shop’ ” AND “two-machine” found more than

30 articles. More interestingly, we observed that more than 50% of

hese research papers have been published in the last 10 years, which

hows a growing attention to this problem in recent years. These

ypes of problems are observed in industrial applications (e.g. metal

rocessing, brake manufacturing and electronics), finance, informa-

ion processing, health care, cosmetics, and satellite imaging, where

t is essential to explicitly consider the setup times in scheduling the

roduction/service systems because of their significant impact on op-

rational costs (Gharbi, Ladhari, Msakni, & Serairi, 2013). Schedul-

ng problems with sequence-dependent setups have attracted atten-

ion from many researchers due to their importance to industry and

ecause of the challenges they present to solution methodologies

Zhu & Wilhelm, 2006). Examples of sequence-dependent schedul-

ng problems can be found in metalworking (Baghaei, 2013), furniture

anufacturing (Agnetis, Detti, Meloni, & Pacciarelli, 2001) and paint

hops (Mansouri, 2005).

Energy consumed during manufacturing depends on power, pro-

essing time, and machine-specific properties such as operating

peed. The transition to more energy-efficient processes will require

ubstantial investment and a change of mindset. If the ideas pre-

ented in this paper are taken up by the scheduling practitioners
1 Conducted on 27 July 2015.

u

a

n the manufacturing sector, it will be possible to make decisions

ncluding both service level and environmental considerations in sec-

ors such as electronics (Trovinger & Bohn, 2005), paper (Pinedo,

012) and textiles (Clark, Almada-Lobo, & Almeder, 2011). An aspect

f these ideas that may be appealing to scheduling practitioners is

hat they are process-oriented; they do not require huge investments

n machine redesign or product redesign, which may be very difficult

or small and medium-sized enterprises. Considering the high pres-

ure on the environment from fossil-based energy sources, reducing

nergy consumption on the shop floor is attractive to manufacturers

ot only environmentally but also economically as well. That is why

n increasing number of scientists are working on saving energy and

educing carbon emissions in manufacturing operations (Liu, Zhang,

ang, Chen, & Huang, 2013). The contributions of this paper can be

ummarized as follows:

• introducing the concept of green scheduling as a new approach to

shop floor scheduling;
• developing a novel multi-objective mathematical model, taking

into account energy consumption as an explicit decision criterion

by leveraging variable processing times;
• defining lower bounds on total energy consumption and

makespan for benchmarking;
• developing a new heuristic algorithm to find a good approxima-

tion of Pareto optimal solutions in a short amount of time;
• validating the performance of the heuristic algorithm through

comprehensive experiments and benchmarking with CPLEX

based on three performance metrics: accuracy, diversity and car-

dinality of the Pareto frontiers;
• providing the managerial implications of green scheduling

for production planners and sales managers of manufacturing

companies.

The remainder of the paper is organized as follows. Section 2 re-

iews the relevant literature. Section 3 develops the mathematical

odel and the lower bounds for the two objectives. The constructive

euristic is described in Section 4. The experimental setup is pre-

ented in Section 5, followed by the presentation and discussion of

esults in Section 6. Finally, Section 7 concludes the paper and iden-

ifies future research directions.

. Literature review

Energy consumption and carbon footprint have rarely been con-

idered explicitly in the literature on shop floor scheduling. There

ave been a few conceptual research papers in recent past in an at-

empt to incorporate such metrics with conventional performance in-

icators for shop floor manufacturing (e.g. makespan, total tardiness,

ean lateness, combined earliness-tardiness and total flow time in

okotoff, 2010). Recently, Zhang, Zhao, Fang, and Sutherland (2014)

onsidered energy cost and carbon footprint under varying energy

rice based on the time of use. The traditional scheduling litera-

ure assumes fixed processing times for operations with some ex-

eptions in parallel and hybrid flowshop scheduling problems (e.g.

ehnamian & Fatemi Ghomi, 2011). However, Ding, Song, and Wu

2015) considered variable processing speeds in a permutation flow-

hop scheduling problem. It is therefore realistic to assume vari-

ble machine speeds since Ahilan, Kumanan, Sivakumaran, and Dhas

2013) showed that the processing time and energy consumption of

NC machines can vary significantly by changing cutting speed, feed

ate, depth of cut and nose radius. As a result, relaxing the assump-

ion of fixed processing time provides the opportunity to save energy

y extending processing times or to improve customer service level

y shortening processing times.

Our study brings together two lines of literature: sustainable man-

facturing and multi-criteria decision making. Within the sustain-

ble manufacturing literature, we focus on energy considerations in
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scheduling, specifically in sequence dependent flowshop schedul-

ing. The main objective of sustainable manufacturing is to lower the

environmental impact linked to manufacturing (Despeisse, Ball, &

Evans, 2012). There are both economic and environmental benefits

associated with sustainable manufacturing, due to energy reduction

and waste minimization. Research on embedding energy considera-

tions into scheduling is rather limited. In a recent work, Ding et al.

(2015) considered machine speed and energy consumption whilst

minimizing makespan. Indeed, the authors called for an extension of

their model to accommodate machine setup times since they can-

not be ignored in many production environments (Ding et al., 2015).

Among the existing work, Mouzon et al. (2007) proposed several

dispatching rules and a multi-objective mathematical programming

formulation for scheduling jobs on a single CNC machine so as to

minimize energy consumption and total completion time. This work

focused on turning machines off at idle times to save energy but did

not consider energy savings during machine operation. In a subse-

quent work, Mouzon and Yildirim (2008) developed a metaheuristic

algorithm that minimizes two conflicting objectives of total energy

consumption and total tardiness on a single machine using multi-

objective optimization. This work also focused on turning machines

off during idle times to minimize energy and total tardiness, but en-

ergy consumption during machine operation was not addressed.

Fang, Uhan, Zhao, and Sutherland (2011) developed a multi-

objective mixed integer linear programming formulation including

completion time and energy considerations with a varying opera-

tion speed on a single machine. They included operation speed as

an independent variable that can be changed to affect the peak load

and energy consumption. Although they studied a flowshop environ-

ment with two machines, they did not consider setup times, which

have a direct impact on the makespan. In a similar work, Fang, Uhan,

Zhao, and Sutherland (2012) studied the permutation flowshop prob-

lem with peak power consumption constraints using a mixed in-

teger programming formulation. They did not consider setup times

but they considered both discrete and continuous processing speeds.

On the other hand, most practical problems involve both setup con-

siderations and multiple objectives (Cheng, Gupta, & Wang, 2000).

An extensive review of the scheduling literature on models with

setup times (costs) can be found in Allahverdi, Ng, Cheng, and Ko-

valyov (2008). We refer the readers to Yenisey and Yagmahan (2013)

for a state-of-the-art literature review of the permutation flowshop

scheduling problem that is drawing an increasing interest over time,

with specific focus on contemporary heuristic algorithms.

A relatively less studied area is the lower bounds for scheduling

with setup times. Gharbi et al. (2013) developed lower bounds for the

two-machine flowshop scheduling with sequence independent setup

times based on waiting time-based relaxation, the single machine-

based relaxation, and the Lagrangian relaxation. They suggested hy-

bridizing the single machine-based and the Lagrangian relaxation-

based lower bounds for sequence-dependent problems.

Complementary to the work of Mouzon and Yildirim (2008) and

Fang et al. (2012), Liu et al. (2013) analyzed energy consumption in

permutation flowshop scheduling in two phases: during machine op-

eration and machine idling. They developed a branch-and-bound al-

gorithm based on the NEH Heuristic (Nawaz, Enscore, & Ham, 1983)

to solve the permutation flowshop problem with idle energy mini-

mization. Different from our study, their objective was to minimize

the total wasted energy consumption as the weighted sum of idle

times on each machine.

Diaz, Redelsheimer, and Dornfeld (2011) showed that machining

time dominates energy demand and specific energy consumption

of a machine tool is affected by the processing speed. Similarly, for

parallel machine scheduling problems in the computing field, en-

ergy consumed increased with higher execution speeds of proces-

sors (Fang & Lin, 2013), where jobs executed at a higher machine

speed for time saving incurred a greater energy cost. In parallel,
hilan et al. (2013) developed neural networks to predict machin-

ng parameters on CNC turning machines. In an experimental de-

ign, they examined the effect of turning parameters (cutting speed,

eed rate, depth of cut and nose radius) on power consumption and

urface roughness. They were able to develop a non-linear paramet-

ic equation to estimate power consumption based on various levels

f machining parameters and found a positive relationship between

ower consumption and cutting speed, feed rate and depth of cut.

his power consumption estimation could then be used in scheduling

roblems that consider power consumption explicitly, such as those

tudied by Mouzon et al. (2007); Fang et al. (2011); Liu et al. (2013),

r this study.

Energy consumption and its associated cost is also studied by con-

idering aspects that are outside the decision space of the manufac-

urer, such as peak and off-peak times set by energy providers. In line

ith this, Luo, Du, Huang, Chen, and Li (2013) studied machine elec-

ricity consumption costs in a hybrid metalworking flowshop. They

sed constant power/speed ratios in order to optimize the electricity

onsumption by machines during peak and off-peak hours and rec-

mmended combining fast and slow operating machines to achieve

igher energy efficiency.

Minimizing energy consumption is desirable not only for cost

inimization purposes but also for environmental sustainability.

ong and Zhou (2013) approached this problem from the emissions

rading viewpoint, where they built optimal emissions trading and

roduction policies for a manufacturer who could choose between a

reen and a regular production technology. They found that the opti-

al technology selection is determined by the relationship between

he additional cost per energy consumption allowance saved and the

rading prices, whereas in other cases it also relies on the allowance

evel of energy consumption.

To summarize, minimizing energy consumption in manufacturing

s a multifaceted issue related to machining parameters, specificities

f operations, the nature of the problem at hand, and external vari-

bles. New capabilities of advanced manufacturing technologies that

llow processes to be executed at variable speeds and different en-

rgy consumption levels highlight the need for considering energy

onsumption in scheduling explicitly.

. Problem definition

We address a two-machine permutation flowshop scheduling

roblem with sequence dependent setup times where machines have

ariable speed. Based on the recommendations made by Ibrahimov,

ohais, Schellenberg, and Michalewicz (2014) we build a model that

s representative of reality with reasonable assumptions and approx-

mations. The general flowshop scheduling problem consists of n jobs

hat are to be processed on m machines sequentially with fixed, non-

egative processing time for all jobs (Tiwari, Chang, Tiwari, & Kol-

anoor, 2014). Setup times are anticipatory, i.e. a setup can be started

efore the corresponding job becomes available on the machine.

e adapt Graham’s three-field notation (α|β|γ ) (Graham, Lawler,

enstra, & Kan, 1979) for scheduling problems (T’kindt & Billaut,

006). The α field describes the shop (machine) environment. The β
eld describes the setup information, other shop conditions, and de-

ails of the processing characteristics. Finally, the γ field contains the

bjective to be minimized. The two-machine flowshop scheduling

roblem to minimize makespan (or Cmax) and total energy consump-

ion with sequence-dependent setup times is denoted as F2|STsd|Cmax,

EC. We refer to this problem as Problem P in this paper. Problem P is

P-hard because the single objective problem F2|STsd|Cmax is known

o be NP-hard (Gupta & Darrow, 1986a). Table 1 introduces the in-

exes, parameters and variables used in the mathematical modeling

f Problem P. We first provide basic definitions of multi-objective op-

imization in Section 3.1.
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Table 1

Indexes, parameters, and variables of the mathematical model.

Indexes

i Index for machines; i = 1, 2

j, k Index for jobs; j, k = 1, . . . , n

� Index for processing speeds

Parameters

n Number of jobs

pij Processing time of job j on machine i

v� Processing speed factor; � = 1, 2, 3 for fast, normal and slow speeds respectively

sijk Sequence dependent setup time for changing from job j to job k on machine i

(for j = k, sijj denotes the setup time for job j if it is the first job in the sequence)

λ� Conversion factor for processing speed �

ϕ i Conversion factor for idle time on machine i

π i Power of machine i

M A very large number (set to 1,000,000)

Positive variables

cij Completion time of job j on machine i

oj Setup offset for job j on the second machine (in case j is the first job in the sequence)

θ i Idle time on machine i

Cmax The makespan, the completion time of the last job on the last machine

TEC Total energy consumption

Binary variables

ζ j 1 if job j is the first job, 0 otherwise

xjk 1 if job j is scheduled immediately before job k where j �= k

yij� 1 if job j is processed at speed � on machine i, 0 otherwise
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.1. Multi-objective optimization

A Multi-objective Optimization Problem (MOP) seeks to deter-

ine a vector of decision variables within a feasible region to min-

mize a vector of objective functions that usually conflict with each

ther. Without the loss of generality, an MOP can take the form:

in { f1(x̃), . . . , fη(x̃)} subject to x̃ ∈ �, where x̃ is the vector of deci-

ion variables and � is the set of feasible solutions. A decision vector

˜ is said to dominate a decision vector ỹ (also written as x̃ � ỹ) if and

nly if: fs(x̃) ≤ fs(ỹ); ∀ s ∈ {1, . . . , η} and ∃ s ∈ {1, . . . , η} | fs(x̃) <

fs(ỹ) for a problem with all objectives to be minimized. All feasi-

le solutions that are not dominated by any other feasible solution

re called non-dominated or Pareto-optimal. These are solutions for

hich no objective can be improved without at least one other objec-

ive being deteriorated.

Among the most common approaches to solve MOPs are: sequen-

ial optimization, weighting method, ε-constraint method, goal pro-

ramming, goal attainment, and distance-based and direction-based

ethods (Collette & Siarry, 2004). Scheduling with respect to multi-

le decision criteria is indeed an MOP. Readers are referred to T’kindt

nd Billaut (2006) for a comprehensive survey on the theory and ap-

lications of multi-objective scheduling.

.2. The MILP model

We present the mixed integer programming model with objec-

ives of minimizing Cmax and minimizing TEC in Eqs. 1–13.

in Cmax (1)

in TEC (2)

ubject to:

(1 − ζ j) + oj ≥ s2 j j − c1 j ∀ j (3)

1 j ≥ p1 j

v�

y1 j� + s1 j jζ j ∀ j, � (4)

2 j ≥ c1 j + oj + p2 j

v�

y2 j� ∀ j, � (5)
ζk + M(1 − x jk) + cik ≥ ci j + pik

v�

yik� + si jkx jk ∀ i, j, k, � | j �= k

(6)

max ≥ c2 j ∀ j (7)

j

ζ j = 1 (8)

l

yi j� = 1 ∀ i, j (9)

k

x jk = 1 ∀ j | j �= k (10)

j

x jk = 1 ∀ k | j �= k (11)

i = Cmax −
∑

j

∑
�

pi j

v�

yi j� ∀i (12)

EC =
∑

i

∑
j

∑
�

πi pi jλ�

60v�

yi j� +
∑

i

ϕiπi

60
θi (13)

i j ≥ 0, oj ≥ 0, θi ≥ 0, TEC ≥ 0, ζ j ∈ {0, 1},
jk ∈ {0, 1}, yi j� ∈ {0, 1} (14)

We follow a ‘TSP-like’ approach for constructing a feasible sched-

le for the two machine sequence dependent setup problem as an ex-

ension to the work of Gupta (1986) and Gupta and Darrow (1986b).

he objective Functions 1 and 2 seek, respectively, to minimize Cmax

or makespan) as a measure of service level and TEC, a sustainability

etric. Since we assume anticipatory setups, Constraint 3 calculates

he setup offset duration for the first job to ensure that the comple-

ion time on machine 2 is delayed. Constraint 4 determines the com-

letion time of the first job on machine 1. Constraint 5 warrants the

ompletion time of jobs on machine 2 as greater than or equal to the

ompletion time on the first machine plus their processing time in

he second machine. Constraint 6 ensures that the completion times

f successive jobs are in an increasing order in such a way that it ac-

ounts for setup changeover and completion time of the preceding
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Table 2

Setup and processing times on Machines 1 and 2.

s1jk M1 s2jk M2

J1 J2 J3 J4 J5 J6 J1 J2 J3 J4 J5 J6

J1 1 10 18 1 2 1 J1 1 2 6 5 5 20

J2 15 20 11 16 16 13 J2 10 2 4 4 11 10

J3 10 15 7 9 20 13 J3 1 4 9 2 9 8

J4 9 13 14 17 14 17 J4 15 8 10 14 3 7

J5 16 10 12 14 11 7 J5 1 19 5 7 11 3

J6 8 20 11 20 5 12 J6 17 15 9 1 12 14

p1j 1 10 9 7 8 3 p2j 7 3 2 1 10 2

Cmax (minutes) 90.575.2

T
E
C

(k
w

h)
52

.4
76

.1 J1-J6-J5-J3-J4-J2

J1-J6-J5-J2-J3-J4

Fig. 1. Pareto front of an example found using ε-constraint approach on CPLEX.
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job. Note that with Constraints 5 and 6, the completion time of a

job on machine 2 is determined as its processing time on machine

2 plus the maximum of its completion time on machine 1 and setup

time for changing over from its predecessor job in machine 2. Cmax

is calculated in Constraint 7 as the completion time of the last job

on machine 2. Constraint 8 warrants that there is only one first job.

Constraint 9 guarantees that exactly one speed factor is selected for

each job. The feasibility of the sequence is maintained by Constraints

10 and 11 which produce a sequence of jobs. Note that the decision

variable ζ j determines the first job in the tour and all the completion

time calculations are done accordingly. It should be noted that Con-

straint 6 is only binding for consecutive jobs, which are defined by

xjk decision variables. For non consecutive jobs, this constraint will

be non-binding because of the presence of the big M. In our model,

the last job is paired with the first job and the completion time for

the last job is unaffected by the relation because of the big M in Con-

straint 6. Idle times on the machines are calculated by Constraint 12.

Constraint 13 computes TEC in kilowatt hour. Finally, Constraint 14

represents the nonnegativity and binary constraints for the decision

variables. The total number of variables in the model is n2 + 9n + 3

and the total number of constraints are 6n2 + 14n + 7.

3.3. The conflict between the objectives

To demonstrate the conflict between minimizing Cmax and TEC, we

solved a small problem with six jobs through ε-constraint approach

using CPLEX 12.5. In this approach, minimizing Cmax was considered

the objective and TEC as a constraint. In this example, processing

speed factor was v� = {1.2, 1, 0.8} for processing at fast, normal, and

slow speeds, respectively. The conversion factor, which we used to

approximate the energy consumed during the operation, was λ� =
{1.5, 1, 0.6} for fast, normal, and slow processing speeds, respectively.

The two machines had the same power (π1 = π2 = 60 kw) with the

same conversion factor for idle times (ϕ1 = ϕ2 = 0.05). Processing

times at normal speed and setup times for each job on each machine

are given in Table 2. Fig. 1 represents the Pareto optimal frontier. It

shows that optimal Cmax and TEC are found in two different schedules

as an evidence that Objectives 1 and 2 cannot be optimized simulta-

neously and therefore a multi-objective optimization approach must

be adopted.

3.4. Lower bounds for Cmax and TEC

In this section we develop lower bounds for the two objectives,

namely Cmax and TEC of P. In order to do this, we define a sequence

independent sub-problem and use its properties to develop lower

bounds for Problem P, which was defined in Section 3.

Definition 1. Problem Psi is a sequence-independent version of Prob-

lem P in which jobs are processed following the shortest possible

setup changeover from preceding jobs (including the same job to ac-

count for the first job in the sequence). The setup time for job k on
achine i in Problem Psi is computed as follows:

ik = min
j

(si jk) | si jk ∈ Problem P (15)

The single objective version of problem Psi can be solved in poly-

omial time using Yoshida & Hitomi’s (1979) algorithm. This algo-

ithm is an extension to Johnson’s (1954) algorithm for two machine

owshop scheduling to minimize Cmax with sequence independent

etups.

efinition 2. Sσ,ṽ and Sσ,ṽ
si

denote the solutions for Problems P and Psi

espectively with sequence σ and speed vector ṽ. The corresponding

bjective vectors of these solutions are represented by: (Sσ,ṽ → Cmax,
σ,ṽ → TEC) and (Sσ,ṽ

si
→ Cmax, Sσ,ṽ

si
→ TEC) respectively (where x →

should be read ‘y of x’).

efinition 3. S
σ,ṽ1
si

and S
σ,ṽ3
si

represent two extreme sets of solutions

or problem Psi in which jobs are processed at the fastest and slowest

peeds respectively as follows:

σ,ṽ1

si
: pv1

ik
= pik/v1, ∀ i, k (16)

σ,ṽ3

si
: pv3

ik
= pik/v3, ∀i, k (17)

efinition 4. Optimal objective values of problems P and Psi are de-

oted by: (P → C∗
max, P → TEC∗) for problem P and (Psi → C∗

max, Psi →
EC∗) for problem Psi.

emma 1. For any sequence σ and speed vector ṽ, Cmax of problem Psi is

ess than or equal to the Cmax of Problem P. In other words Sσ,ṽ
si

→ Cmax ≤
σ,ṽ → Cmax.

roof. Let [k] denote the job in position k of the sequence σ . Consid-

ring Eq. (15), we have: si[k] + pi[k] ≤ si[k−1][k] + pi[k], ∀ k = 1, . . . , n.
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nowing that Cmax is a regular (non-decreasing) objective function

Koulamas & Kyparisis, 2005), it can be concluded that Sσ,ṽ
si

→ Cmax ≤
σ,ṽ → Cmax. �

orollary 1. Minimum Cmax in problem Psi (or Psi → C∗
max) is achieved

hen jobs are processed according to speed vector ṽ1 (i.e. fast speed) in

hich vik = v1 ∀i, k. In other words: Psi → C∗
max = S

σ ∗,ṽ1
si

→ Cmax where
∗ represents the optimal sequence in problem Psi found by Yoshida &

itomi’s (1979) algorithm.

emma 2. Psi → C∗
max is a lower bound for Cmax of Problem P.

roof. From Lemma (1) we can see that P → C∗
max = Sσ ∗,ṽ → Cmax ≥

σ ∗,ṽ
si

→ Cmax ≥ Psi → C∗
max which concludes the proof. �

emma 3. For any sequence σ and speed vector ṽ, we have Sσ,ṽ
si

→
EC ≤ Sσ,ṽ → TEC.

roof. It is known that the processing energy requirement of so-

utions Sσ,ṽ and Sσ,ṽ
si

are equal. The difference between the energy

onsumption of the two solutions is due to the likely difference be-

ween their idle energy consumption. Solution Sσ,ṽ
si

has less idle time

ompared to Sσ,ṽ because minimum setup times have been consid-

red in Problem Psi (see Eq. 15). Therefore it can be concluded that:
σ,ṽ
si

→ TEC ≤ Sσ,ṽ → TEC. �

emma 4. S
σ ∗,ṽ3
si

→ TEC is a lower bound for P → TEC if min
i

{(λ1 −
2)πi, (λ2 − λ3)πi} ≥ max(ϕ1π1, ϕ2π2).

roof. Let τ ∗
t denote the optimal sequence that minimizes TEC in

roblem P. It is obvious that P → TEC ≥ P → TEC∗. According to

emma (3), P → TEC∗ = Sτ ∗
t ,ṽ → TEC ≥ S

τ ∗
t ,ṽ

si
→ TEC. To conclude the

roof, it is sufficient to show that S
τ ∗

t ,ṽ
si

→ TEC ≥ S
τ ∗,ṽ3
si

→ TEC under

he conditions set out for λ�’s and ϕi’s. We know that processing en-

rgy consumption could be reduced by changing elements of speed

ector ṽ, from v1 to v2 and from v2 to v3. However, such speed alter-

tions will prolong jobs’ processing times and possibly increase idle

imes. As such, saving in processing energy is likely to increase idle

nergy consumption. To guarantee that speed alterations will not in-

rease TEC, it is necessary to make sure that the saving in processing

nergy compensates for (i.e. is greater than or equal to) the increase

n idle energy consumption. For operations on machine 1, any speed

eduction for J1[k] will affect idle time before J2[k] on the second ma-

hine. The resultant extra idle time will be equal to the difference in

he processing time of J1[k]. The maximum amount of extra idle time

ill be observed when there is no idle time before J2[k]. Meanwhile, if

he idle time before J2[k] is less than the extension in processing time

f J1[k], the extra idle time on machine 2 will be less than maximum,

ut in this case, Cmax is likely to be increased, which in turn increases

he idle time on machine 1. In all cases, the maximum idle time that

s possible to be added on both machines will be equal to the ex-

ended processing time of J1[k]. On the other hand, speed reduction

n machine 2 may affect Cmax and thereby, idle time after comple-

ion of the last job on machine 1. Extending the processing time of

2[k] could increase Cmax up to the difference in the processing time

f J2[k]. In order for the saved energy in processing to compensate for

he increased idle energy consumption, it is sufficient that: min
i

(λ1 −
2)πi ≥ (ϕ1π1 ∧ ϕ2π2) and min

i
(λ2 − λ3)πi ≥ (ϕ1π1 ∧ ϕ2π2). These

onditions could be unified as: min
i

{(λ1 − λ2)πi, (λ2 − λ3)πi} ≥
ax(ϕ1π1, ϕ2π2). Incidentally, there is no need to include (λ1 − λ3)

ecause it is clear that (λ1 − λ3) ≥ min{(λ1 − λ2), (λ2 − λ3)}. Under

his condition we will have: P → TEC ≥ P → TEC∗ ≥ S
τ ∗

t ,ṽ
si

→ TEC ≥
σ ∗,ṽ3
si

→ TEC which concludes the proof. �

It should be noted that the conditions stated in Lemma 4 are not

estrictive in practice as the idle energy consumption factors of ma-
hine tools are usually much less than the difference between pro-

essing energy conversion factors. For instance, for a problem in-

olving a small (15kw) and a large (75kw) CNC machine, with typ-

cal conversion factors λ̃ = {1.3, 1.0, 0.72} (Ahilan et al., 2013) and

onversion factors for idle energy consumptions ϕ̃ = {0.05, 0.05}
Mouzon et al., 2007), we can observe that the condition is easily

atisfied: min{(1.3 − −1.0) × 15, (1.3 − −1.0) × 75, (1.0 − −0.72) ×
5, (1.0 − −0.72) × 75} = 4.2 > max{0.05 × 15, 0.05 × 75} = 3.75.

. Constructive heuristic

As discussed earlier in Section 3, Problem P is NP-hard and there-

ore exact optimization methods are not applicable to solve medium

nd large sized instances. In this section we develop a constructive

euristic to find an approximation of Pareto frontier of Problem P

n reasonable time. The constructive heuristic includes a schedul-

ng procedure (called Schedule Development Heuristic - SDH) and

local search, which are executed iteratively on all possible speed

ectors. For a given speed vector, the scheduling heuristic SDH con-

tructs a near-optimal sequence with respect to Cmax. For this heuris-

ic, we adapted the idea of the dominance rules proposed by Gupta

nd Darrow (1986a) for single speed two-machine sequence depen-

ent flowshop scheduling to minimize Cmax and extended them to

ccount for variable speeds of Problem P defined in Section 3. As de-

ailed in Algorithm 1 , the SDH procedure is implemented in four

ain steps. At the beginning, all search parameters are initialized in

tep 0. The jobs are then sequenced in Step 1 using the speed vec-

or �̃ =
[
δi j

]
, i = 1, 2; j = 1, . . . , n, where δij denotes the processing

peed factor of job j on machine i; δi j ∈ {v1, v2, v3} representing fast,

ormal and slow speeds, respectively. In each iteration, one job is se-

ected from the set of jobs that are not sequenced (represented by

) and placed at the end or beginning of partial sequences σ 1 or σ 2

espectively. This continues until (n − 1) jobs are attached to partial

equences σ 1 or σ 2. In Step 2, the final sequence is created as σ 1-

-σ 2, where ω includes only one job at this stage. The jobs are then

cheduled according to the sequence σ and speed vector �̃ in Step

. The start and finish times for all jobs on both machines are cal-

ulated in this step. Finally, a local search is carried out in Step 4 to

mprove the quality of the solution (see Algorithm 2). Starting from

he beginning of the sequence, the local search examines whether

emoving jobs from their position and inserting them in subsequent

ositions could improve Cmax. In an iterative procedure, the first job is

xamined for insertion in (n − 1) subsequent positions and inserted

n the best position that results in maximum reduction in Cmax or

emained in its current position if its move doesn’t lead to any im-

rovement in Cmax. The second job is then examined for insertion in

he (n − 2) subsequent positions and so on and so forth. Based on a

iven vector of processing speed factors, the SDH schedules the jobs

nd calculates Cmax and TEC. The Constructive Heuristic (CH) seeks

nergy efficient schedules in an iterative loop. It starts with an initial

chedule in which all jobs are run at the fast speed. In the iterative

oop, jobs are selected at a time with the shortest processing time for

peed reduction by one level (i.e. from fast to normal and from nor-

al to slow). The SDH (Algorithm 1) is then run to obtain an efficient

olution. Algorithm 3 provides details of the CH.

. Experimental setup

In practical manufacturing environment, the scale of scheduling

roblems is generally large (Zhang & Wu, 2010). We used the design

f experiments to derive valid statistical inferences from the exper-

mental observations. We designed our experiments to generate se-

uence dependent Taillard-based problem sets as is frequently stud-

ed in the literature (Ruiz, Maroto, & Alcaraz, 2005; Ruiz and Stützle,

008; Vallada and Ruiz, 2011).
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Algorithm 1: The schedule development heuristic SDH.

input : vector of jobs processing speed factors on the two machines
output: schedule S with near optimal Cmax and its associated TEC

begin
Step 0 (initialization)
let σ1 and σ2 be two partial sequences; d the last job in σ1 and e the first job in σ2;
let n1 and n2 denote the number of jobs in σ1 and σ2 respectively;
let ω denote the set of jobs not included in σ1 and σ2;
let δi j denote the processing speed factor of job j on machine i; δi j ∈ {v1, v2, v3};

let �̃ denote the vector of speed factors, �̃ =
[
δi j

]
, i = 1, 2; j = 1, . . . , n;

let J[k] denote the job in kth position of the sequence;

set σ1 = σ2 = ∅, n1 = n2 = 0, ω = {1, 2, . . . , n};
Step 1 (sequencing)
find job a such that A = p1a/δ1a + s1da − s2da = min

j∈ω
[p1 j/δ1 j + s1dj − s2dj].

find job b such that B = p2b = min
j∈ω

[p2 j/δ2 j].

if A < B then
let σ1 = σ1-a, n1 = n1 + 1;
go to Step 2;

else if A > B then
let σ2 = b-σ2, n2 = n2 + 1;
go to Step 2;

else
begin

if a �= b then
if min[(s1da + p1a/δ1a), (p2b/δ2b + s2be)] ≤ min[(s1db + p1b/δ1b), (p2a/δ2a + s2ae)] then

set σ1 = σ1-a, n1 = n1 + 1
end
else

set σ2 = b-σ2, n2 = n2 + 1;
go to Step 2.

end
else

if (s1da + p1a/δ1a) ≤ (p2a/δ2a + s2ae) then
set σ1 = σ1-a, n1 = n1 + 1;

end
else

set σ2 = b-σ2, n2 = n2 + 1;
go to Step 2.

end
end

end
end
Step 2 (stopping rule)
if (n1 + n2) < (n − 1) then

update ω and go to Step 1;
end
else

consider σ = σ1-ω-σ2 as the final sequence and go to Step 3;
end
Step 3 (scheduling)

schedule the jobs according to the sequence σ and the speed vector �̃;
let S denote the resultant schedule;
Step 4 (local search)
run local search (Algorithm 2) on schedule S;

end
report schedule S and its objective vector [S → Cmax, S → TEC].
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Table 3

Summary of experimental design.

Factor Levels Based on

Number of jobs: 20, 50, 80, 120 Naderi et al. (2009)

Processing time distribution: Unif(1, 99) Ruiz et al. (2005); Taillard (1990)

Sequence dependent setup time distribution which is ‘setup

to processing time ratio’:

Unif(1, 25), Unif(1, 50), Unif(1, 99), Unif(1, 125) Ruiz and Stützle (2008)

Machines’ power: 60 kilowatts Heidenhein (2011)

Idle time energy consumption: 0.05 Mouzon et al. (2007)

Processing speed: 1.2, 1, 0.8 Ahilan et al. (2013)

Conversion rate: LogN(6.395, 0.220), LogN(6.225, 0.229), LogN(5.804, 0.303) Ahilan et al. (2013)

Algorithm 2: Local search to improve Cmax.

input : schedule S
output: schedule S with likely reduced Cmax

let S1 = S, S2 = S;
let C∗

max = S → Cmax;
for k1 = 1 to n − 1 do

let k2 = k1;
while k2 < n − 1 do

swap job k2 and job k2 + 1 of S1 along with
their processing speeds;
calculate S1 → Cmax;
if S1 → Cmax < C∗

max then
let C∗

max = S1 → Cmax;
let S2 = S1;

end
let k2 = k2 + 1;

end
let S = S2

end
report schedule S and its objective vector
[S → Cmax, S → TEC]
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Algorithm 3: Constructive heuristic (CH) .

input : set of jobs
output: approximation of Pareto frontier (�)

begin
Step 0 (Initialization)
set iterator ρ = 0;
initialize the speed vector at fast speed

�̃ρ :
[
δi j = v1

]
; ∀i, j;

Step 1.
apply SDH (Algorithm 1) to schedule jobs using

speed vector �̃ρ; let Sρ denote the resultant
schedule;
let [k] denote the job in position k of Sρ and oi[k]

the operation in position k on machine i;
if Sρ is not dominated by � (i.e.
�Sμ ∈ � | Sμ � Sρ) then

set � = � ∪ Sρ

end
let Ons denote the set of operations with speed
levels other than slow (i.e. δi[k] �= v3; ∀i, k);

set iterator ρ = ρ + 1 and go to Step 2.
Step 2 (Finding energy efficient schedules)
while Ons �= ∅ do

find the operation oi[ξ ] such that

oi[ξ ] = min
k

[pi[k]/δi[k]];

update �ρ by decreasing the speed of
operation oi[ξ ] by one level (i.e.

δi[ξ ] : v� → v(�+1));

run SDH (Algorithm 1) using speed vector
�ρ , let Sρ denote the resultant schedule;
if Sρ is not dominated by � then

set � = � ∪ Sρ;
end
update Ons, let ρ = ρ + 1;

end
end
report set �.
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The data required for a F2|STsd|Cmax, TEC problem consist of the

umber of jobs (n), processing times of each job on each machine

pij), setup times for changing over from job j to job k on each machine

(sijk), processing speeds (v�) and the energy consumption conver-

ion factor corresponding to them (λ�), machines’ power consump-

ion (π i), and idle time conversion factor on each machine (ϕi). Con-

ersion factors are parameters that convert time (processing and idle)

o energy depending on speed. Table 3 summarizes our experimental

etting with the relevant references we used as the basis for setting

alues of the parameters. We generated 30 instances to test perfor-

ance of the algorithms for each job level and setup level. This re-

ulted in 4 × 4 × 30 = 480 instances.

In Table 3, we based the number of jobs in our experiments

n previous flowshop scheduling research by Naderi, Zandieh, and

oshanaei (2009). Following from the classical problem introduced

y Taillard (1990) and revisited by Ruiz et al. (2005) we used uni-

ormly distributed processing times in the experiments. In order to

ain insights about the impact of setup times, we followed the ‘setup

o processing time ratio’ investigated by Ruiz and Stützle (2008). We

ook the idle time energy consumption parameter from Mouzon et al.

2007). The work of Ahilan et al. (2013) was instrumental to estimat-

ng processing speed and the corresponding energy conversion rate,

hich followed lognormal distribution for each processing speed.

In accordance with Lemma 4 and also with the works of Ahilan

t al. (2013) and Mouzon et al. (2007), each problem set in the data set

atisfied the condition: min
i

{(λ1 − λ2)πi, (λ2 − λ3)πi} ≥ max(ϕ1π1,

π ).
2 2
.1. Performance metrics

Evaluating the performance of multi-objective algorithms has

een the subject of debate among researchers. Interested readers may

efer to Okabe, Jin, and Sendhoff (2003) for a critical overview of

he most common approaches to performance evaluation in multi-

bjective optimization. In this research, we used four metrics to com-

are the performance of the solution techniques: distance with the
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C

Table 4

Mean (standard deviation) of DLB as a percentage.

n Setup 25 Setup 50 Setup 99 Setup 125 All

4 7.91 (2.42) 9.06 (2.82) 10.39 (3.86) 10.48 (3.87) 9.46 (3.43)

5 7.71 (2.68) 9.16 (3.27) 10.37 (3.62) 10.90 (3.69) 9.53 (3.52)

6 8.13 (2.86) 9.31 (3.05) 10.44 (3.64) 10.79 (3.51) 9.67 (3.41)

All 7.92 (2.63) 9.18 (3.02) 10.40 (3.67) 10.72 (3.66) 9.55 (3.44)
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Fig. 2. CPU time of CPLEX for small problems.
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lower bound (DLB), diversity (DVR), spacing (SPC), and cardinality

(CRD) of the final frontier found by each algorithm.

DLB measures the solution quality of the Pareto frontier i.e. how

close the solutions on the Pareto frontier are to the lower bound of

the problem, whereas DVR, SPC and CRD reflect the spread and size

of the frontier respectively. A frontier with small DLB would be of lim-

ited practical use if it is spread in a very small region (low DVR and/or

SPC) with a limited number of solutions (low CRD). In contrast, a di-

verse Pareto frontier (with high DVR and/or SPC) and several solu-

tions (high CRD) will provide more flexibility for trade-off analysis by

decision makers to chose preferred solutions from a wider set. The

accuracy of Pareto frontier � is measured by its distance with lower

bound, denoted by DLB� and calculated as follows:

DLB� =
∑

ξ∈� min

{(
C

ξ
max − CLB

max

)/
CLB

max , (TECξ − TECLB)/TECLB

}
|�|

(18)

where CLB
max and TECLB are lower bounds for Cmax and TEC respectively

defined in Section 3.4. The diversity of Pareto frontier � is denoted

by DVR�, which represents the area covered by the objective values,

i.e product of the ranges for Cmax and TEC:

DV R� =
(

max
ξ∈�

C
ξ
max − min

ξ∈�
C

ξ
max

)
×

(
max
ξ∈�

TECi − min
ξ∈�

TECξ

)
(19)

In addition to DVR, we measure the spread of solutions along the

Pareto frontier using the spacing metric (SPC) as follows (Tan, Goh,

Yang, & Lee, 2006):

SPC� =
[

1

|�|
∑
i∈�

(
dξ − d

)2

]1/2/
d (20)

where dξ is the Euclidan distance between solution ξ and its clos-

est neighbor in the Pareto froniter � (in the objective space), d =
1

|�|
∑

ξ∈� dξ , and |�| denotes cardinality of the Pareto frontier. The

spacing metric gives a fair indication of how evenly the solutions are

distributed along the Pareto frontier (Tan et al., 2006).

Finally, the number of solutions in the frontier is considered as the

measure of cardinality of the Pareto frontier � denoted by CRD�:

RD� = |�| (21)

5.2. Implementation and setup

The constructive heuristic was coded in C++ and run on an Intel

Xeon CPU 3.50 GHz with 32.0 GB RAM under Windows 7 Enterprise.

Moreover, we used CPLEX 12.5 in Concert Technology to code the

MILP model in C++. Graphs and statistical analyses were performed

on a MacBook Pro with Intel Core i7 2.2 GHz processor and OS X ver-

sion 10.9.3 running RStudio version 0.97.551 and R version 3.0.3. For

fair comparison, we first solved all problems using CH and then al-

lowed CPLEX to run under ε-constraint for at least the same time that

CH had spent on that problem size. Our experiments showed that al-

lowing CPLEX to run for 7n seconds for a problem with n jobs gives

CPLEX comparable time to that of CH. To allow for exploration of the

Pareto frontier and to avoid spending too much time at any ε level, we

set a limit for 10% of the total time for each ε level before proceeding

with the reduced ε value. Incidentally, in deciding on the time spent

at each stage, there is a trade-off among the three performance met-

rics, i.e. DLB, DVR, and CRD. More time at any given ε level would

allow CPLEX to improve DLB but at the expense of less iterations and

hence lower DVR and lower CRD. We examined a number of values

and observed that 10% provides a fair opportunity for exploration and

exploitation of the search space at the same time. The best solution

found at each stage was archived and ultimately filtered to obtain the

set � by removing dominated solutions.
. Results and discussion

We solved 30 instances of small problems (4–6 jobs) to optimal-

ty using the parameter settings in Table 3. This helped demonstrate

he quality of the constructive heuristic in comparison to problems

here true Pareto frontiers could be found using exact optimization.

oreover, the true Pareto frontiers could serve a basis for assessing

ightness of the lower bounds developed in Section 3.4. We produced

0 instances for small and large problems; for each n and each Setup,

his resulted in a total of (3 + 4) × 4 × 30 = 840 problem instances.

he total number of replications, 30, provided a statistical power of

.862 at the significance level of 0.01 that can detect even a small

ffect size (0.20) as suggested by Cohen (1992). This power is compa-

able to the power in Shin & Benton’s (2004) study. For power calcu-

ation, we used G∗Power 3 (Faul, Erdfelder, Lang, & Buchner, 2007).

.1. Comparisons on small problems

Table 4 presents the mean and the standard deviation of the DLB

s a percentage. As the ‘setup to processing time ratio’ increases, the

verage DLB increases. Part of the gap is due to the factors that affect

roblem complexity, and part of it could be due to looseness of the

ower bound, which is defined in a conservative way; for each job,

t takes the shortest setup time from job k to job j. Then, it uses the

oshida & Hitomi’s (1979) algorithm to find Cmax. When the ‘setup to

rocessing time ratio’ is low, the lower bound is closer to the opti-

al solution. So for problem sets with a larger ‘setup to processing

ime’ ratio, the lower bound becomes much farther from the optimal

olution.

Fig. 2 shows the CPU usage of CPLEX for small problems. The ex-

onential increase in CPU time is visible in problems with even 4–6
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Fig. 3. Results for small problems.
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obs. We can also see the exponential growth in the CPLEX’s solution

ime.

Fig. 3 presents the comparison of DLB, DVR, SPC and CRD for small

obs together with the exponential increase in the average time re-

uired to solve the problems with 4, 5, and 6 jobs.

.2. Comparisons on large problems

We chose a full factorial design in which we tested the following

ombinations:

• Number of jobs. Four levels: 20, 50, 80, 120.
• Setup to processing time ratio. Four levels: U(1, 25), U(1, 50),

U(1, 99), U(1, 125).
• Algorithms. Two levels: CH and CPLEX.

Table 5 summarizes the mean and standard deviation of the DLB

chieved by CH and CPLEX for the same problem instances. Fig. 4

hows that variation of setup time has an impact on the DLB. In-

reasing setup time variation degrades the accuracy. However n does

ot affect the DLB as much, particularly for the CH algorithm as can

e seen in Table 5, for the same Setup to processing time distribu-

ion, the average DLB for each n is around the same figure; e.g. for

etup to processing ratio of 25% the minimum average DLB is 12.64%

nd the maximum average DLB is 12.86%. It should be noted that the

ower bound developed in Section 3.4 is rather conservative. Small

roblems solved to optimality have a DLB of approximately 9.5%

see Table 4). As such, part of the distances with lower bound (DLB)
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Table 5

Mean (standard deviation) of DLB as a percentage for CH and CPLEX.

Solution n Setup 25 Setup 50 Setup 99 Setup 125 All

CH 20 12.86(4.66) 14.37(5.82) 17.23(5.90) 17.94(5.39) 15.60(5.78)

50 12.70(4.45) 14.33(5.55) 16.72(5.32) 17.60(5.32) 15.34(5.47)

80 12.64(4.64) 13.85(5.44) 16.69(5.67) 18.92(6.14) 15.53(5.96)

120 12.77(4.71) 14.00(4.90) 16.90(5.08) 18.47(5.78) 15.54(5.55)

All 12.74(4.56) 14.14(5.37) 16.89(5.44) 18.23(5.62) 15.50(5.68)

CPLEX 20 10.78(3.62) 18.92(6.92) 22.68(8.37) 23.38(8.97) 18.94(8.76)

50 17.06(4.37) 22.79(8.56) 25.07(8.85) 26.15(9.02) 22.77(8.59)

80 19.36(5.61) 23.49(9.11) 25.88(9.18) 26.99(9.29) 23.93(8.84)

120 20.95(6.69) 23.82(8.92) 26.31(8.74) 27.08(8.80) 24.57(8.59)

All 17.00(6.43) 22.26(8.55) 24.98(8.79) 25.90(9.04) 22.55(8.94)
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reported in Table 5 could be attributed to the looseness of the lower

bound to gain a more realistic idea of the performance of the solution

methods. It should be noted that the true Pareto frontiers in our prob-

lem are unknown for large- even medium-sized problem instances

and cannot be found using exact optimization methods. As a result,

both CH and CPLEX (with limited execution time) find approxima-

tions of true Pareto frontiers.

To compare DVR of the two solution approaches, we first calculate

the ‘nominal diversity’ of each approach using Eq. 19. The ‘nominal
●
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Fig. 4. Comparison of DLB be

Table 6

Mean (standard deviation) of DVR as a percentage for CH

Solution n Setup 25 Setup 50

CH 20 1.34(0.60) 1.32(0.64)

50 8.03(3.24) 7.90(3.31)

80 20.42(7.88) 20.63(8.21)

120 45.92(18.45) 46.11(17.26)

All 18.92(19.82) 18.99(19.69)

CPLEX 20 0.00(0.00) 0.01(0.01)

50 0.01(0.01) 0.03(0.04)

80 0.11(0.38) 0.11(0.16)

120 1.82(4.47) 1.11(1.76)

(all) 0.47(2.32) 0.31(0.99)
iversity’ figures are then normalized using Eq. 22 for a given solu-

ion method (SM) where SM ∈ {CPLEX, CH} for each problem instance.

e report the mean and standard deviation of the diversity as a per-

entage in Table 6 and Fig. 5 for CH and CPLEX for the same problem

nstances.

V RSM = DV RSM

max(DV RCPLEX , DV RCH)
(22)

Table 7 and Fig. 6 report the performance of the CH and CPLEX in

erms of the spacing metric. Spacing is influenced by both the num-

er of jobs and the setup times for the CH. The heuristic shows bet-

er SPC for problems with larger setup to processing time ratios. In

he meantime, CPLEX performs better in terms of spacing when the

etup to processing time ratio is smaller. Overall, CH performs better

n terms of SPC compared to CPLEX.

Table 8 and Fig. 7 report the number of non-dominated solutions

ound by the CH algorithm and the CPLEX for the same problem in-

tances. Cardinality is influenced by the number of jobs. The larger

he problem is, the more solutions both the CH and the CPLEX can

nd. CH was able to find more solutions in less time. However, these

olutions should be interpreted under the light of the diversity as

ell.

Table 8 suggests that CRD decreases as the setup to processing

ime ratio increases. When the role of setup in total completion
0%
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40%

50%

20 50 80 120
Number of Jobs

D
LB
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XELPC)b(

tween CH and CPLEX.

and CPLEX.

Setup 99 Setup 125 All

1.24(0.65) 1.30(0.83) 1.30(0.68)

7.60(2.72) 7.96(3.38) 7.87(3.14)

20.98(8.79) 20.94(8.73) 20.74(8.31)

49.24(20.78) 48.25(21.27) 47.38(19.31)

19.76(21.66) 19.61(21.39) 19.32(20.60)

0.01(0.01) 0.01(0.02) 0.01(0.01)

0.03(0.04) 0.03(0.03) 0.02(0.03)

0.10(0.12) 0.19(0.26) 0.13(0.25)

2.19(3.95) 6.59(12.80) 2.94(7.37)

0.58(2.16) 1.71(6.93) 0.77(3.87)
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Fig. 5. Comparison of DVR between CH and CPLEX.

Table 7

Mean (standard deviation) of SPC.

Solution n Setup 25 Setup 50 Setup 99 Setup 125 All

CH 20 0.63(0.12) 0.70(0.16) 0.91(0.29) 1.04(0.28) 0.82(0.28)

50 0.64(0.09) 0.75(0.14) 1.06(0.29) 1.32(0.33) 0.94(0.36)

80 0.64(0.12) 0.83(0.20) 1.18(0.26) 1.46(0.28) 1.03(0.39)

120 0.62(0.07) 0.79(0.12) 1.21(0.24) 1.51(0.35) 1.03(0.42)

All 0.63(0.10) 0.77(0.16) 1.09(0.29) 1.33(0.36) 0.96(0.37)

CPLEX 20 0.47(0.46) 0.50(0.48) 0.48(0.55) 0.44(0.45) 0.47(0.48)

50 0.33(0.41) 0.44(0.44) 0.35(0.48) 0.30(0.48) 0.35(0.45)

80 0.49(0.42) 0.44(0.42) 0.30(0.34) 0.50(0.58) 0.43(0.45)

120 0.74(0.46) 0.47(0.45) 0.36(0.49) 0.42(0.49) 0.49(0.49)

All 0.50(0.46) 0.46(0.45) 0.37(0.47) 0.41(0.50) 0.44(0.47)
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ime is significant, the number of alternative solutions becomes more

estricted.

.2.1. Paired comparison of algorithms

We compare the performance of CH and CPLEX on the four perfor-

ance metrics (DLB, DVR, SPC, and CRD) using the non-parametric

ilcoxon signed rank test instead of the paired Student’s t-test be-

ause the metrics were not normally distributed for each level of n

nd each level of Setup. We report the mean rank difference in the

espective performance followed by the probability that this differ-

nce is different from zero in parentheses. In these comparisons we

ssumed a significance level of 0.01. Table 9 shows the comparison

f DLB, DVR, SPC and CRD performance of CPLEX and CH. In terms of

LB, CH performs worse than CPLEX only for problems with 20 jobs

nder the setup to processing time ratio of 25%. In terms of DVR, CH

erforms better than CPLEX in all cases. In terms of SPC, there is no

ifference between CH and CPLEX for problems with 20, 80 and 120

obs under setup to processing time ratio of 25% and also for problems

ith 20 jobs under setup to processing time ratio of 50%. In terms of

RD, CH performs better than CPLEX in all cases.

.2.2. Analysis of variance (ANOVA)

We conducted two-way ANOVA on DLB, DVR, and CRD perfor-

ance of CH to reach further insights about the effect of n, the ef-
ect of Setup and the interaction between n and Setup. We report the

ource of variation in performance (Source), degrees of freedom (Df),

um of squares (SS), mean squares (MS), F statistic (F), and the proba-

ility that the F statistic is greater than the critical F (Pr(>F)). Similar

o the t-tests, we used a significance level of 0.01. Table 10 shows the

wo-way ANOVA with n (4) × Setup (4) conducted on DLB, DVR, SPC,

nd CRD.

It was found that n did not have a statistically significant impact

n DLB with F(3, 464) = 0.06 and p = 0.983. Setup had a statistically

ignificant impact on DLB with F(3, 464) = 26.62 and p = 0.000. The

nteraction was not statistically significant, with F(9, 464) = 0.15 and

p = 0.998. In terms of the impact on DVR, n had a statistically sig-

ificant impact with F(3, 464) = 431.33 and p = 0.000. Setup on the

ther hand did not have a statistically significant impact on DVR with

(3, 464) = 0.19 and p = 0.904. The interaction was not statistically

ignificant, with F(9, 464) = 0.18 and p = 0.996. When the ANOVA

as done for the SPC, it was found that n with F(3, 464) = 22.96

nd p = 0.000, Setup with F(3, 464) = 235.29 and p = 0.000, and

he interaction term with F(9, 464) = 5.02 and p = 0.000 had a sta-

istically significant impact. Finally, n had a statistically significant

mpact on CRD with F(3, 464) = 231.58 and p = 0.000. Setup also

ad a statistically significant impact on CRD with F(3, 464) = 239.46

nd p = 0.000. The interaction was also statistically significant, with

(9, 464) = 13.674 and p = 0.000. Fig. 8 presents the main effects

lots of n and Setup for DLB, DVR, SPC and CRD of CH.

.3. Practical implications

To demonstrate the application of the concept of green schedul-

ng in providing managerial insight, we solve two problems with 20

obs as examples of medium size problems with different setup to

rocessing time ratios using the CH developed in this paper. Fig. 9

llustrates the Pareto frontiers of these problems, called ‘a’ and ‘b’.

roblem ‘a’ has a setup to processing time ratio of 99% whereas the

ame ratio in problem ‘b’ is 125%.

The Pareto frontier of problem ‘a’ includes 29 non-dominated

chedules found by the CH in 12.81 seconds. The solutions along the

rontier range from a1 with 2,637 kilowatt hours energy consump-

ion for completion of the jobs in 1,983 minutes, to a29 which can
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Fig. 6. Comparison of SPC between CH and CPLEX.

Table 8

Mean (standard deviation) of CRD.

Solution n Setup 25 Setup 50 Setup 99 Setup 125 All

CH 20 37.53(6.54) 31.30(7.61) 25.53(6.80) 22.03(7.85) 29.10(9.26)

50 69.27(9.55) 52.13(8.06) 38.23(10.21) 35.73(11.07) 48.84(16.52)

80 88.53(12.19) 62.53(12.15) 43.40(11.22) 42.00(14.36) 59.12(22.59)

120 102.10(21.46) 71.40(12.97) 52.30(11.07) 47.67(19.53) 68.37(27.17)

All 74.36(27.82) 54.34(18.23) 39.87(13.85) 36.86(16.73) 51.36(24.75)

CPLEX 20 2.97(1.10) 3.13(1.25) 2.97(1.59) 2.87(1.25) 2.98(1.30)

50 2.93(1.53) 3.07(1.64) 2.53(1.22) 2.33(0.84) 2.72(1.36)

80 3.43(1.28) 3.20(1.06) 2.87(1.01) 2.90(1.27) 3.10(1.17)

120 3.97(1.72) 3.43(1.68) 2.50(0.97) 3.00(1.23) 3.22(1.51)

All 3.32(1.47) 3.21(1.42) 2.72(1.22) 2.77(1.18) 3.00(1.35)
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Fig. 7. Comparison of CRD between CH and CPLEX.
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Fig. 8. Main effects plots for DLB, DVR, SPC and CRD.
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omplete the jobs with 1,911 kilowatt hours within 2,435 minutes.

rom solution a1 to a29, there is 27.5% potential for energy saving

t the cost of 22.8% longer makespan. On average, 1.61 kilowatt hour

nergy could be saved per minute of extended completion time. This

ndex can provide insight to sales and production managers for fast

rade-off analysis between energy consumption and service level in

egotiation with customers on a range of service levels when due

ate is not fixed (Yue, Xia, Tran, & Chen, 2009). There are areas along

he frontier with potential for energy saving and areas for faster de-

ivery without compromising too much on the environmental impact

f operations. For instance, moving from a9 to a10 can save more than

3 kilowatt hours at the expense of only 0.08 minute delay. Also, sig-

ificant saving in energy can be achieved by transition from a17 to

18. A slight 13 minutes increase in Cmax in this transition will save
68kilowatt hours energy. On the other hand, transition from sched-

le a20 to schedule a19 will reduce makespan by 41 minutes and

ncreases energy consumption by only 3 kilowatt hours. Such infor-

ation is also valuable for production managers to realize areas for

nhancing customer service when it is possible, with minimal impact

n carbon footprint of manufacturing.

The Pareto frontier of Problem ‘b’ was found in 12.71 seconds.

ompared to problem ‘a’, it offers less potential for energy sav-

ng. As can be seen, there is marginal difference between b1 with

EC = 1, 884 kilowatt hours and Cmax = 1, 765 minutes to b27 with

EC = 1, 767 kilowatt hours and Cmax = 2, 483 minutes. From b1 to

27, only 6.2% energy could be saved at the expense of 55.7% longer

ompletion time. The average potential for energy saving is 0.16 kilo-

att hours per minute. In this problem, customer service could be
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Fig. 9. Pareto frontier of two example problems with 20 jobs found by CH.

Table 9

Wilcoxon signed rank test for CH and CPLEX on DLB, DVR, SPC and CRD.

Metric n Setup 25 Setup 50 Setup 99 Setup 125

DLB 20 0.018 (0.042) –0.052 (0.000) –0.053 (0.000) –0.052 (0.000)

50 –0.046 (0.000) –0.082 (0.000) –0.082 (0.000) –0.083 (0.000)

80 –0.066 (0.000) –0.096 (0.000) –0.089 (0.000) –0.078 (0.000)

120 –0.081 (0.000) –0.096 (0.000) –0.094 (0.000) –0.082 (0.000)

All –0.048 (0.000) –0.081 (0.000) –0.080 (0.000) –0.074 (0.000)

DVR 20 0.013 (0.000) 0.013 (0.000) 0.012 (0.000) 0.012 (0.000)

50 0.079 (0.000) 0.078 (0.000) 0.076 (0.000) 0.078 (0.000)

80 0.201 (0.000) 0.203 (0.000) 0.206 (0.000) 0.204 (0.000)

120 0.446 (0.000) 0.448 (0.000) 0.463 (0.000) 0.409 (0.000)

All 0.155 (0.000) 0.157 (0.000) 0.158 (0.000) 0.154 (0.000)

SPC 20 0.159 (0.058) 0.220 (0.022) 0.486 (0.001) 0.629 (0.000)

50 0.356 (0.001) 0.326 (0.001) 0.753 (0.000) 1.061 (0.000)

80 0.151 (0.061) 0.402 (0.000) 0.894 (0.000) 0.967 (0.000)

120 −0.119 (0.230) 0.323 (0.001) 0.898 (0.000) 1.163 (0.000)

All 0.137 (0.003) 0.318 (0.000) 0.763 (0.000) 0.947 (0.000)

CRD 20 35.000 (0.000) 28.000 (0.000) 22.500 (0.000) 19.000 (0.000)

50 66.000 (0.000) 49.000 (0.000) 36.000 (0.000) 32.500 (0.000)

80 84.000 (0.000) 58.500 (0.000) 40.000 (0.000) 39.000 (0.000)

120 97.500 (0.000) 67.500 (0.000) 50.000 (0.000) 42.500 (0.000)

All 71.000 (0.000) 51.000 (0.000) 37.000 (0.000) 33.000 (0.000)

Table 10

Analysis of variance on DLB, DVR, SPC, and CRD for CH.

Df Sum sq Mean sq F value Pr(> F)

DLB Corrected model 15 0.23 0.02 5.42 0.0000

n 3 0.00 0.00 0.06 0.9829

Setup 3 0.23 0.08 26.62 0.0000

n ∗ setup 9 0.00 0.00 0.15 0.9981

Residuals 464 1.31 0.00

Corrected total 479 1.54

DVR Corrected model 15 14.97 1.00 86.41 0.0000

n 3 14.94 4.98 431.33 0.0000

Setup 3 0.01 0.00 0.19 0.9042

n ∗ setup 9 0.02 0.00 0.18 0.9964

Residuals 464 5.36 0.01

Corrected total 479 20.32

SPC Corrected model 15 42.32 2.82 54.66 0.0000

n 3 3.55 1.18 22.96 0.0000

Setup 3 36.43 12.14 235.29 0.0000

n ∗ setup 9 2.33 0.26 5.02 0.0000

Residuals 464 23.95 0.05

Corrected total 479 66.26

CRD Corrected model 15 225202.31 15013.49 102.11 0.0000

n 3 102149.06 34049.69 231.58 0.0000

Setup 3 105625.04 35208.35 239.46 0.0000

n ∗ setup 9 17428.22 1936.47 13.17 0.0000

Residuals 464 68221.77 147.03

Corrected total 479 293424.08

s

B

s

c

7

m

significantly improved by moving from right to left along the Pareto

frontier with minor increments in energy consumption. As an exam-

ple, choosing schedule b25 instead of b26, will lead to 168 minutes

faster delivery at the expense of only 10 kilowatt hours extra energy

consumption.

As it can be seen, the trade-off between Cmax and TEC can dif-

fer significantly from problem to problem. The difference could be

expressed using the shadow price of respective objectives (Balbás,

Galperin, & Guerra, 2005). For example in problem ‘a’ and from the

TEC point of view, the shadow price of TEC when moving from sched-

ule a10 to a9 is 0.0018 minutes per kilowatt hour. On the other hand

and from the Cmax standpoint, the shadow price of moving from
chedule b25 to b26 in problem ‘b’ is 0.059 kilowatt hour per minute.

y exploring the shadow prices of Pareto optimal schedules with re-

pect to Cmax and TEC, the high impact moves on either objective

ould be identified.

. Conclusion

This paper addresses the sequence dependent two-machine per-

utation flowshop scheduling problem with service level and energy
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onsumption concerns bridging the sustainable manufacturing and

ulti-criteria decision making literature. A mathematical model in-

orporating machine running speed is developed to explicitly con-

ider energy saving by considering alternative processing times. Since

t is not possible to solve this mathematical model in a reasonable

ime frame for medium- and large-sized problem instances, a con-

tructive heuristic is developed to assist shop floor operations man-

gers in their daily scheduling problems.

The theoretical contribution of this paper is threefold. First, we

evelop a mathematical model that combines the two major con-

erns in the shop floor: service level and energy consumption. Us-

ng variable speed and anticipatory setup times, the model aims to

inimize both Cmax and TEC which are conflicting in nature. Second,

lthough the lower bound we developed for this model is conser-

ative, it is still informative for it is applicable to all problems with

arious ratios of setup to processing time. A possible venue for ex-

ending our work is to tighten this lower bound. Third, we develop a

onstructive heuristic that runs within acceptable time frame espe-

ially with large problems that are not uncommon in real life. There

s still room for improving this heuristic further in terms of its run-

ing speed and solution quality. Extending the current mathematical

odel to m-machine permutation flowshop problem with the same

air of objectives and developing efficient solution methods to find

ood approximations of Pareto frontiers for large problem instances

s another interesting area for future research.

In terms of managerial implications of this work, production plan-

ers can use this model and the heuristic algorithm to make a trade-

ff between Cmax and TEC. This trade-off is likely to prove more use-

ul in particular when setup times of the problems are smaller than

he processing times. This includes for instance, the sequencing of

he paint shop in mixed model assembly lines as one of the most

nergy consuming operations in car manufacturing, with significant

otential for reducing the environmental impact of the automotive

ndustry (Hope, 2014). In our experimentation we explained key ob-

ervations regarding the parameters that might influence the effi-

iency and effectiveness of the solution methods. It would be a rel-

vant extension to explain the behavior of the solution methods by

nterpreting the underlying reasons for the difference in their perfor-

ance. Another relevant problem is the scheduling of machine shops

o minimize peak power consumption. This will have not only an eco-

omic return but also an environmental benefit through reducing

arbon emissions by decreasing the need for electric power across

he manufacturing sector. An extension to this aspect could consider

ther service-oriented performance metrics.
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