

Abstract—This paper examines the triangulation problem

approached from the perspective of a fixed stations network. An
initial state A of n sensors (SRs) and m transmitters (TRs).might
change from its initial state to a new state B and m +1 transmitters
The fixed stations /sensors should recognize the new state B and find
the new transmitters that entered in the area by finding with
triangulation procedures the positions of the new transmitters. Cases
of misinterpretation of data and accuracy problems when more than
three lines intersect are explored.

 It is also shown that when there is a high number of transmitters
and a lot of readings the data analysis procedure becomes more
complex and software architecture needs adaptation.

Keywords— Fixed Stations Network, Sensors, Intersection lines

Triangulation, Polygons triangulation. Pseudo-Triangulation
Transmitters.

1 .INTRODUCTION

Triangulation problem is still under examination and a lot of research
is still ongoing as triangulation is used in many applications like GPS
positioning, Areas of Mobile phone technology, Robotics position
finding etc. Yet the ability to detect the existence of a possible
intersection between pairs of objects can be important in a variety of
problem domains such as geographic information systems,
CAD/CAM geometric modelling ,networking and wireless
computing.[1]
 In many cases we have a number of transmitters and a number of
sensors which have to acquire and interpret data. But relative
positioning of the transmitters is strongly related with a right
triangulation procedure in order to have correct data analysis and
extract right information. Intersection detection is complex problem
and algorithms are used to speed up the process are still being
explored for various applications, [2].
 The software which has been designed allows the user to enter an
amount of sensors and a set of data for each sensor. Those data are
the bearings that each sensor detects a transmitter in the area. In
addition an extra parameter of accuracy is entered which is common
for all sensors, meaning that this accuracy is fixed with the
assumption that it is the average error of detection for the Fixed
Sensors Network.

2. Triangulation Problem

The triangulation problem is not new in the computing technology as
it is used in many applications. Relative bearings between sensors
will intersect at certain points. A Network of SRs and TRs is depicted
in Fig 1

University of Brunel London
TEI of CRETE

Fig 1

where this status is before the application of the triangulation
procedure. By depicting the relative set of bearings for each sensor
we see a complex web like the one that appears in Fig 2.

 Fig 2

After applying the triangulation procedure we will have many correct
triangulations (TNs) and many pseudo triangulations – (PTNs) as at
long distances the segments of intersection have areas of uncertainty
like in Fig 3.In this depiction SRs areas of bearing appears as sectors
with the assumption that there will be a minus –plus amount of
accuracy in relative bearings, Fig.4.This assumption is applied in the
software which is designed.

Fig 3

Automatic Triangulation Positioning System

for wide area coverage from a Network of Stations in Fixed Positions

Marios Sfendourakis Rajagopal Nilavalan Emmanuel Antonidakis

Fig 4

which doesn’t allow to exact correct data. In addition minimum
errors at long distances can create areas of uncertainty like in Fig 5
where we can’t have accurate results of positioning.

2.1 Intersection Area

Intersection area of two SRs is depicted in Fig.4

Fig 5

2.2 Triangulation rejection Code

For the rejection of a triangulation we use the following hypothesis
which uses Polygons centroids in combination with triangles
centroids.

Hypothesis
-C 1 C 2 C3 are the Centroids of the three Polygons A,B,C
respectively Fig.5
-Triangle C1 C2 C3 Centroid Point is D
B1 B2 B3 are the closest points of polygons C1 C2 C3 to the point D
and they form the triangle B1 B2 B3.

Triangle B1 B2 B3 Centroid is E
Condition 1
POLYGONS A, B, C - ‘’HAVE NOT COMMON POINTS’’
Condition 2
D AND E - ‘’ARE BOTH INSIDE ‘’ Triangle B1 B2 B3
Condition 3
D AND E ARE NOT COMMON POINTS OF POLYGONS A, B
AND C

Fig 6

We define the triangle D1 D2 D3 Fig.7 which is formed by the
following rule:
-D 1 is the maximum diagonal distance point in Polygon A and point
B 1
-D 2 is the maximum diagonal distance point in Polygon B and point
B 2
-D 3 is the maximum diagonal distance point in Polygon C and point
B 3
We divide the area of the two triangles, Formula 1.

Formula 1

-If 0< λ ˂ 1 and λ close to 1, then the triangle B1 B2 B3 lies
within the triangle D1 D2 D3 and we don’t have triangulation Fig.5

Fig 7

-If λ is close to 0 The triangle B1 B2 B3 lies within the triangle

D1 D2 D3 and the Centroid point E lies within the common area of

triangulation and we have a triangulation Fig. We also see that the

area of triangle B1 B2 B3 is much lower than the area of the

triangle D 1 D 2 D 3.

Condition three should also be true or D will be very close to E.

Fig.6

2.3 Real triangulation

In this case all three polygons intersect and they have common area
which is shown in following fig.6.This case is considered as a real
triangulation.

Fig 7

3. Software architecture

The Software starts with the acquirement and storage of the data in a
set of arrays. This is achieved by prompting the user to enter the
number of sensors and their coordinates and then the data for each
transmitter that has been detected in the area. The language used is
JAVA and the arrays are two dimensional and dynamic. By that way
the user can create a Network of the scale that he wants. At this point
for each Sensor the maximum number of allowed bearings detected is
defined by the programmer. This parameter can change if more data
are required for analysis. Details concerning the software code are
beyond the scope of this paper. Software architecture is shown in
fig.8

Fig. 8

3.1 Software functions

The Software uses Veness [3] formulas in order to calculate relative
bearing and distance between SRs and TRs. Coordinates of
intersection points are calculated as pairs between SRs and then the
software search for triangulations were three, or more than three lines
converge from different SRs.

3.3 JavaScript Code for calculations

Veness [3] provides code for implementation and calculations
between geographical points. During this research the following code
has been used:

 Intersection of two paths given start points and bearings

 Bearing between two points when their coordinates are
known.

Fig. 9

(a)

(b) (c)

Fig. 10

3.3 Intersection between Sensors Routine

The routine which used is the following:

 if (CheckBrng1 == θ13 - x || CheckBrng1 == θ13
+ x
 ||
 (θ13 - x < CheckBrng1) && (CheckBrng1 <
θ13 + x)

 &&
 (CheckBrng2 == θ23 - x || CheckBrng2 ==
θ23 + x ||
 (θ23 - x < CheckBrng2) && CheckBrng2 <
θ23 + x))

where CheckBrng1 and CheckBrng2 are the bearings θ13 , θ23
from Sensor 1 Coordinates ,Point 1 and Sensor 2 Coordinates Point 2
related with the intersection point Point 3 as it is depicted in Fig 9,
Fig 10 (a),(b),(c). Point 3 is defined as an intersection between a
bearing of SR1 or a bearing from SR2 and a bearing from another
SR’s set. That point is on the boundaries defined by the green
colored polygon Fig 10.That polygon is the common area of
intersection between the two SRs.

4. Pseudo-triangulation cases

Triangulations are shown with a circle with a cross inside. The
colorless ones are considered pseudo-triangulations.

4.1 Pseudo-triangulation case 1

A set of sensors are used for each triangulation. A sensor located on
the direction between another sensor in the set and the intersection
point must be excluded from the set. The following figure shows that
SR4 should be excluded from the triangulation of TR2 since SR2 is
included. Also SR 4 should be excluded from the triangulation of
TR1 since SR7 is included, see Fig 11.

Fig.11

4.2 Pseudo-triangulation case 2

There is false transmitter detection due to the extending of
intersection lines. Not all crossings of 3 lines are considered
triangulation points, Fig 12

Fig.12

4.3 Pseudo-triangulation case 3

When two TRs fall into the intersection polygon of two SRs then it
cannot be differentiated that there are two TRs. Only when there are
different sensors near the two TRs then they may be able to be
differentiated, Fig 13 (a), (b).

(a) (b)

Fig. 13

4.4 Pseudo-triangulation case 4

There are more complicated cases where a mixture of the above
and more may happen as the scale of the NFSs increases Fig 14.

Fig. 14

4.4 Pseudo-triangulation case 5

In the following Fig 15 SR 1 and SR 2 detect on TR at the same
bearing. Other TRs should reveal that at that bearing there are more
than on TRs on the same line.

Fig. 15

4.5 Ways to tackle the Pseudo-triangulation cases

As it was obvious in all the pre-mentioned cases of PT the software
should tackle with them with a combination of ways in order to
minimize false triangulations and PTRs. Ways to tackle these cases
are under testing and already are showing positive results.

4.5.1 Partioning of the search area

Fig. 16

4.5.2 Rejection of Sector to Sector bearings

By adequate software programming in order to avoid sector to sector
bearings the results are more promising while false triangulations of
SR to SR are rejected Fig 17. In other words the SRs search for
bearings which are out from other SRs region.

Fig. 17

 Conclusion

As a conclusion we can mention that a triangulation problem is
becoming high complicated when we have a large number of sensors
and transmitters. The software of the FSN which will have to deal
with the triangulation problem should be designed to deal with cases
of inaccuracies and false detections. It needs to be tested and
configured in order to avoid triangulation cases that are problematic
and lead the user to misinterpretation of readings. This research
shows that there are relative sensors bearings and data readings that
have to be checked in a case by case basis.

 Future work might involve the inclusion of more parameters of
the sensors like power and antenna size which will lead to new sets
of data and additional software architecture in order to acquire
correct interpretation of acquired data and avoid cases of false
triangulations.

ACKNOWLEDGMENT

M.S. thanks his Prof Nila Nilavalan and Prof. Emmanuel
Antonidakis for their support and their guidance in this research.
Their contribution added valuable knowledge to my research and

REFERENCES

[1] Chaman L Sabharwal1, Jennifer L Leopold2, Douglas McGeehan3
Triangle-Triangle Intersection Determination and Classification to Support
Qualitative Spatial Reasoning Missouri University of Science and
 Technology Polibits, Research Journal on Computer Science and
Computer Engineering with Applications Issue 48 (July–December 2013),
pp. 13–22, 2013

[2] N. Eloe, J. Leopold, C. Sabharwal, and Z. Yin,“Efficient Computation
of Boundary Intersection and Error Tolerance in VRCC-3D+ ”, Proceedings
 of the 18h International Conference on Distributed Multimedia Systems
(DMS’12), Miami, FL, Aug. 9- 11, 2012, pp. 67 – 70, 2012.

[3] Veness, Chris.2007a. Calculate distance, bearing and more between two
latitude/longitude points. Available at http://www.movable-type.
co.uk/scripts/latlong.html

