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Robust H~, Filtering for Stochastic Time-Delay
Systems With Missing Measurements
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and Xiaohui Liu

Abstract—In this paper, the robust H, filtering problem is
studied for stochastic uncertain discrete time-delay systems with
missing measurements. The missing measurements are described
by a binary switching sequence satisfying a conditional probability
distribution. We aim to design filters such that, for all possible
missing observations and all admissible parameter uncertainties,
the filtering error system is exponentially mean-square stable,
and the prescribed H ., performance constraint is met. In terms
of certain linear matrix inequalities (LMIs), sufficient conditions
for the solvability of the addressed problem are obtained. When
these LMIs are feasible, an explicit expression of a desired robust
H , filter is also given. An optimization problem is subsequently
formulated by optimizing the H ., filtering performances. Finally,
a numerical example is provided to demonstrate the effectiveness
and applicability of the proposed design approach.

Index Terms— H , filtering, missing measurements, parameter
uncertainty, robust filtering, time-delay systems.

1. INTRODUCTION

N most literature concerning filtering techniques, it is im-

plicitly assumed that the measurements always contain con-
secutive useful signals (see, e.g., [1], [2], [9], and [10]). How-
ever, in practical applications such as target tracking, there may
be a nonzero probability that any observation consists of noise
alone if the target is absent, i.e., the measurements are not con-
secutive but contain missing observations. The missing obser-
vations are caused for a variety of reasons, for example, the
high maneuverability of the tracked target, a failure in the mea-
surement, intermittent sensor failures, network congestion, ac-
cidental loss of some collected data, or some of the data may
be jammed or coming from a very noisy environment, etc. Note
that in network signal transmissions, the missing observation is
also called dropout or intermittence (see [13] and [22]).

Manuscript received March 16, 2005; revised June 26, 2005. This work was
supported in part by the Engineering and Physical Sciences Research Council
(EPSRC) of the U.K. under Grant GR/S27658/01, the Nuffield Foundation of
the U.K. under Grant NAL/00630/G, the Alexander von Humboldt Foundation
of Germany, the National Natural Science Foundation of China (NSFC) under
Grant 60474049, and the Fujian Provincial Natural Science Foundation of China
(FPNSFC) under Grant A0410012. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Mariane R. Pe-
traglia.

Z. Wang and X. Liu are with the Department of Information Systems and
Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K. (e-mail:
Zidong.Wang @brunel.ac.uk).

F. Yang is with the Department of Information Systems and Computing,
Brunel University, Uxbridge, Middlesex, UB8 3PH, U.K., and also with the
Department of Electrical Engineering, Fuzhou University, Fuzhou 350002,
China.

D. W. C. Ho is with the Department of Mathematics, City University of Hong
Kong, Kowloon, Hong Kong.

Digital Object Identifier 10.1109/TSP.2006.874370

The filtering problem for systems with missing measurements
has received much attention during the past few years. Basically,
there have been two ways to model the missing measurement
phenomena, i.e., using binary switching sequence and using
jump linear systems. The binary switching sequence is speci-
fied by a conditional probability distribution and enters into the
system observation. It can be viewed as a Bernoulli distributed
white sequence taking on values of 0 and 1. Much work has been
done on such a model. As early as in [15], the optimal recur-
sive filter was obtained for systems with missing measurement.
The results in [15] were generalized in [12] and [16], where
the least mean-squared error recursive estimator was investi-
gated over the class of linear filters, when the binary switching
sequence was not necessarily independent and identically dis-
tributed (i.i.d.). A similar model was employed in [25] to study
the filter design problem with error variance constraints. Re-
cently, the finite-horizon robust filtering problem has been con-
sidered in [26] for discrete-time stochastic systems with prob-
abilistic missing measurements subject to norm-bounded pa-
rameter uncertainties. The statistical convergence properties of
Kalman filter with missing measurement have been addressed
in [22], and the existence of a critical value has been shown for
the arrival rate of the observations. Another way is to model
the missing measurement as a Markovian jumping process. The
filtering problem with missing measurement has been studied
in [4] and [23], and the filters guaranteeing expected estima-
tion error covariance have been designed based on jump Riccati
equations. In [18] and [19], an incompleteness matrix has been
introduced to quantify the missing data, and the robust filtering
problem with missing data has been investigated in terms of a
recursive state estimator involving a jump Riccati differential
equation and jump state equations.

On the other hand, it has now been well known that time de-
lays exist in many practical systems and are often a primary
source of instability and performance degradation. For example,
the current networks themselves are dynamic systems and in-
duce possible delays via network communication due to limited
bandwidth. Obviously, the network delay and data transmission
loss are two main problems that deserve much research atten-
tion in networked operation systems. Recently, more and more
efforts have been focused on the problem of H, filtering for
various time-delay systems, and many approaches have been
proposed, including the Riccati equation approach [17], [21],
[27], the linear matrix inequality (LMI) approach [5]-[8], [11],
[14], [28], and the polynomial equation approach [29]. Unfor-
tunately, up to now, in almost all existing works dealing with
the filtering problem for time-delay systems, the measurement
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missing phenomena have seldom been taken into account. For
discrete-time systems in the simultaneous presence of time de-
lays, missing measurements, and parameter uncertainties, the
problem of robust H, filtering has not been fully investigated
and remains to be challenging.

In this paper, we study the robust H, filtering problem for
a class of uncertain discrete time-delay systems with missing
measurements. The missing measurement is modeled as a
Bernoulli distributed white sequence with a known condi-
tional probability distribution that enters into the observation
equation. A sufficient condition for the existence of a feasible
solution to the problem is derived, which guarantees that the
filtering error system is exponentially mean-square stable and
the filtering error satisfies the H, robustness performance con-
straint, for all possible missing observations and all admissible
parameter uncertainties. An LMI approach is developed to de-
sign the expected filters, and the effectiveness of the proposed
method is illustrated by means of a numerical example.

Notation: The notation used here is fairly standard. R™ and
R™*™ denote, respectively, the n-dimensional Euclidean space
and the set of all n x m real matrices. The notation X > Y
(respectively, X > Y), where X and Y are symmetric ma-
trices, means that X — Y is positive semidefinite (respectively,
positive definite). The superscript “I”” denotes the transpose.
E{xz} stands for the expectation of the stochastic variable .
Prob{ - } means the occurrence probability of the event “-”. If A
is a matrix, Amax(A) (respectively, Amin(A)) means the largest
(respectively, smallest) eigenvalue of A. [5[0, o) is the space of
square integrable vectors, and 1T is the set of positive integer.
In symmetric block matrices, “x” is used as an ellipsis for terms
induced by symmetry. Sometimes, the arguments of a function
will be omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of uncertain discrete time-delay
systems:

Thtl1 = (A + AA)LL’k + (Ad + AAd):Ekfd + Bwy,
2z = Cop + Cywp_qg + Dwy, (D
T = ¢, k=-d,—d+1,...,0

where x;, € R™ is a state vector; z;, € R" is the signal to be esti-
mated; wy, € R is the disturbance input belonging to I3[0, c0);
and A, Ay, B,C, C4, and D are known real constant matrices
with appropriate dimensions. AA and A A, are unknown ma-
trices describing parameter uncertainties, the integer d > 0 is a
time delay, and ¢, is a real-valued initial function on [—d, 0].

In this paper, the parameter uncertainties are assumed to be
of the form

[AA AAy| = HF,[E1 Es) 2)

where H, E1, and E, are known real constant matrices of appro-
priate dimensions, and F}, represents an unknown real-valued
time-varying matrix satisfying

F.Fl <1 3)
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The measurements, which may contain missing data, are de-
scribed by

Yk = YkCoxp + Dowy, 4)

where the stochastic variable v, € R is a Bernoulli distributed
white sequence taking the values of 0 and 1 with

Prob{vy, =1} = E{v} := 8 5)
Prob{ve =0} =1 -E{w}:=1-7 (6)

and 8 € R is a known positive scalar. y; € RP is the measured
output vector, wy, is defined in (1), and C5 and D5 are known
real constant matrices of appropriate dimensions.

Remark 1: The system measurement mode (4), which can
be used to represent missing measurements or uncertain obser-
vations, was first introduced in [15] and has been subsequently
studied in many papers (see, e.g., [16], [22], [25], and [26]).

Consider the following filter for system (1) and (4):

(N

ZTpt1 = G + K (yr — BC23x)
2, = Lxp

where Z;, is the state estimate, Z;, is an estimate for zj, and G,
K, and L are filter parameters to be determined.
By defining

R T A 0 | H
”k_[gek}’ A‘{/&K@ G—ﬂKOJ’ H‘{o]’

_ A, -
Aa= [ 01} L =0 (8

E,=[E 0],
we have the filtering error dynamics as follows:

{ﬁk+1 = Any, + (7 — B) A1 + AaZnk—q + Bwy 9)
Zk =2k — 2k = O + CyZng—q + Dwy,

where

J [A+AA 0

| BKCy G- PBKC,

| 4 0

T |BKCy G- BKC,

+[€I}Fk[E1 0] := A+ HF,E1, (10)
[ o o0 (A +AA,
Al__Kcz 0} Ad_[ 0 }

= “(ﬂ + [ﬂFkEZ = Ag+ HFEy,  (11)
B—: B C=[C -L, Z=[ 0. (12

T |KDy|" T T '

Since the filtering error system (9) contains the stochastic
quantity (i.e., ), we need to introduce the notion of stochastic
stability in the mean-square sense for the filtering error system.
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Definition 1: The filtering error system (9) is said to be expo-
nentially mean-square stable if, with wy, = 0, there exist con-
stants & > 0 and 7 € (0, 1) such that

E{[ln]*} < ar” kelt.

sup  E{||n[|*}. (13)
<i<0

Assumption 1: System (1) is exponentially mean-square
stable for the whole uncertain domain (2).

Similar to [9], Assumption 1 is made based on the fact that
there is no control in the system model (1); therefore, the orig-
inal system (1) to be estimated has to be exponentially mean-
square stable for the whole uncertain domain (2), which is a
prerequisite for the filtering error system (9) to be exponentially
mean-square stable.

With Definition 1, our objective is to design the filter (7) for
the system (1) such that, for all possible missing measurements
in (4), the filtering error system is exponentially mean-square
stable, and H, robustness performance constraint is satisfied.
More specifically, we aim to design a filter such that the filtering
error system satisfies the following requirements (Q1) and (Q2),
simultaneously:

Ql) the filtering error

mean-square stable;

Q2) under the zero-initial condition, the filtering error Zj, sat-

isfies

system (9) is exponentially

S E{IZPY < 7> E{lJwel?} (14)
k=0 k=0

for all nonzero wy, where v > 0 is a prescribed scalar.

The design problem stated above will be referred to as the
robust H, filtering problem with missing measurement.

III. H., FILTERING PERFORMANCE ANALYSIS

In this section, we will provide an H, performance analysis
result for the filtering error system (9), which will be used for the
filter design in the next section. Before proceeding, we introduce
the following useful lemma.

Lemma I1: Let©y = [nF nl_,, ... ,nF_,]* where ny is de-
fined in (8). Consider a Lyapunov functional

k—1

Vi(Or) =nf P+ > 0 Z7QZn;
i=k—d

15)

where P and @ are positive definite matrices, and Z is defined

in (12). If there exists a scalar ¢ > 0 such that
E{Vit1(Or41) | Ok} = Vi(Ok) < —¢lln|®  (16)

then the dynamics of the process 7 is exponentially mean-

square stable.
Proof: Tt follows readily from (15) that

k—1
Vk(Gk) S )\max( )”nk” +)\max ZTQZ Z ||771 |2 (17)
i=k—d
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which, together with (16), shows that for any scalar 4 > 1

E{t"" Vit1(Or1)} — E{u* Vi (Ok)}
= Mk'i'l [E{Vi+1(Ok+1)} — E{Vi(O1)}]
+ 18 (= DE{Vi(04)}

Sﬂk[—l“/)-i-(u ) max( )][E{||77k|| }
k—1

+ (= DAmax(27QZ) Y E{|lmil*}. (18)

i=k—d

For any integer N > d + 1, summing up both sides of (17)
from 0 to N with respect to k, we have

E {1V Vir(On)} — E{Vo(O0)}

N-1
Z pFE {IImk 1%}
_N 1 k-1
> E{Imil*} (19)
k:O i=k—d
where
a(p) = —pp + (1 = 1) Amax(P)
b(p) = (1 = DAmax(Z27 QZ). (20)

Note that ford > 1

N—1 k-1
Z uE {Jlnil*}
k=0 i=k—d
—1L11Nd11+(i N—-1 N-1
< Y+ D> >+ > Z)ukE{llmllz}
k=0 1=0 k=i+1 1=N—d k=i+1
- plp = 1) =
< E {|In: L) 1'E {||mi]?
= Z Ul == 2w )
( d—1 ]\7 1
+ = ZN[E{HULH 1 @D
Then, it follows from (19) and (21) that
E{n"Vn(On)} — E{Vo(O0)}
b(p)(pu? —1)d
< MU= DTy e {f?)
n—= —d<i<0
N-1
) > uPE {|Inkl”} 22)
k=0
where
20b(p)(pn® — 1
C(u)za(u)+L-
p—1
Since ((1) = —¢ < 0 and lim, . ((p) = 400, there

exists a scalar pg > 1 such that {(ug) = 0. Therefore, we can
obtain from (22) that, for any integer N > d + 1

E {1 VN(On)} — E{Vo(©0)}

< dAmax(ZTQZ) (u§ — 1) 52P<0|E {Iml*}. @3)
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Since

E {10 VN (On)} > Amin(P)|Inn ] (24)

and

E{Vo(00)} < dmax(Amax(P),
Ao 77Q2)) sup E {2} @5)
—d<i<0

therefore, it follows from (23) that (26), shown at the bottom of
the page, holds. Finally, it follows easily from Definition 1 that
the dynamics of the process 7, is exponentially mean-square
stable. The proof is complete. [ |

The following theorem provides sufficient conditions under
which the filtering error system (9) is exponentially stable in
the mean-square sense and the filtering error 2y, satisfies the H,
disturbance attenuation level given in (14).

Theorem 1: Given a scalar v > 0 and the filter parameters
G, K, and L. If there exist positive-definite matrices P = PT >
0and Q = QT > 0 satisfying (27), shown at the bottom of the
page, where

Y =ATPA+27QZ - P+ (1-pB)BATPA, +CTC, (28)

then the filtering error system (9) is exponentially mean-square
stable and the filtering error zj, satisfies (14).

Proof: Define the Lyapunov functional in (15) and cal-
culate the difference of the Lyapunov functional from (9) with
wy, = 0, as follows:

AVi := E{Viq1(Ok41)|Ok } — Vi(Or)
=E {1 Pisr } + i (Z7QZ — P,
— a2 QZmk—a
=np ATPAn +nf ATPAyZni_q
+f_ ZT AT P An + E {(v — B)*} nf ATP Ay
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Noting that

E{(w— 08} =1-0)p

we have (31), shown at the bottom of the page. It follows from
(27) that there exists a positive scalar ¢ > 0 such that

(30)

ATPA+ZTQZ - P+ (1- B)BATPA,  ATPA, }
ATPA ATPA;-Q
—I 0
< [ 0 0} (32)

and subsequently
E{Vit1(Ok41)|Or} — Vi(Or) < =l m. = —pllme]|*.
(33)

We can verify from Lemma 1 that the filtering error system (9)
is exponentially mean-square stable.
Next, for any nonzero wy, (34), shown at the bottom of the
next page, follows from (9) and (31), where X is defined in (28).
It can be seen from (27) and (34) that

E{Vit1(Ok4+1)[Or} — E{Vi(Or)}
+E{Zl %} — VE {wiw,} <0. (35
Now, summing up (35) from 0 to co with respect to % yields

> E{Vig1(Ox41)|Ok} — E{Vi(04)}

+E{zf %} — VE{wiwi}] <0 (36)

ie.,
STE{IENPY <) E {JlwelP}HE{Vo}—E{Vc}. (37)
k=0 k=0

Since the system (9) is exponentially mean-square stable, it is
straightforward to see that

+ 0l ZTATPAZneg+ il (ZTQZ — P = _ =
i Ad DTt (2207 = Py SE{EI) <L E{wl?) 68
— Ng—a?” QZMk—a- (29) k=0 k=0
— d/\max(ZTQZ) lj/d -1)+ d max )\max(P)7 )‘max(ZTQZ)
E{llnvlI?} < ng™ [ (ko= 1) T (P)( ) sup E {llmill?} - (26)
. ATPA;+C*Cy ATPB+CTD
ATPA+CIC ATPA,—Q+CIC, ATPB+CID <0 27)
BTPA+DTC  BTPA,+DTC, DTD+ BTPB -~
me 1" [ATPA+27QZ — P+ (1-B)BATPA, ATPA, e
AVk=| g ATPA ATPA, - Q| |z ' GD
Nk—d d d d Nk—d
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under the zero initial condition. This completes the proof.

1V. H,, FILTER DESIGN

According to H, performance analysis conducted in the pre-
ceding section, we are now in the position to provide a solution
to the H, filtering problem for stochastic time-delay systems
with missing measurements. Before giving our main result, we
introduce the following well-known lemmas.

Lemma 2 (S-procedure) [3]: Let M = M7T,H and E be
real matrices of appropriate dimensions, with F' satisfying (2),
then

2583

B Q= Q7 > 0, real matrices Q;, Q> and @3, and a real scalar

e > 0 such that LMI (42), shown at the bottom of the page,
holds, where o; = [(1 — 3)3]'/2. Moreover, if (42) is true, the
desired filter parameters are given by

G=X3'Q1(S — R) ™ X15 + BKC, (43)
K=X3'Q (44)
L=Q3(S - R)_1X12 (45)

where the matrix X5 comes from the factorization  — RS~! =
X12YL < 0.
Proof: We now prove that (42) is the sufficient condition

M+HFE+ETFTHT <0 B9 for the system (9) to be exponentially mean-square stable and
if and only if there exists a positive scalar ¢ > 0 such that also achieve the Hoo-norm constralpt (14). Using the Schur
complement [3] to (27) and performing the congruence trans-
M+ l HHT + cETE < 0, (40) formations, we can show that (27) is true if and only if the fol-
€ lowing inequality holds:
or equivalently B B B
- -pP 0 PA PA;, PB 0
Mo H el 0 I c Ca D 0
H —el 0 < 0. 41 ATP C«T —P+ZTQZ 0 0 QIA’{P
eE 0 —el ATp cT 0 —Q 0 o [<%
In the following theorem, it is shown that the addressed filter BTp DT 0 0 —~2I 0
design problem is solvable for all admissible parameter uncer- 0 0 a1 PA, 0 0 -pP
tainties and missing measurements if an LMI is feasible. (46)
Theorem 2: The system (9) is exponentially mean-square
stable and the H.,-norm constraint (14) is achieved for all Note that (46) can be written in the form of (39) as
nonzero wy, if, for the given scalar v > 0, there exist pos-
itive definite matrices R = RT > 0,8 = ST > 0, and M+ HFE+ETFTHT <0 (47)
E{Vit1(0r+1)|0k} — E{Vi(O1)} + E{Z] %} — v’E {wiwi}
m ] 5 ATPA;+CTCy ATPB+CTD M
=E{ | Zni_a ATPA4CYC ATPA,—Q+CTey AYPB+CID Znh—q (34)
wy, BTPA+DTC  BTPA;+DTC; DTD+ BTPB—~2I wy,
r—S =S 0 SA SA SAy SB 0 0 SH 0 0 7
* —R 0 (RA+pBQ:Cy+ Q1) RA+BQ:Cy RA; RB+QsDy 0 0 RH 0 0
. (C—Q3) C Cy D 0 0 0 0 0
* * * =S =S 0 0 0 «aCTQY o0 <ET Q@
* * * * —R 0 0 0 o CTQY o eET Q
* * * * * -Q 0 0 0 0 eEI o0
* * * * * * —2I 0 0 0 0 0 <0
* * * * * * * -S -S 0 0 0
* * * * * * * * -R 0 0 0
* * * * * * * * * —el 0 0
* * * * * * * * * * —eI 0
L % * * * * * * * * * * —-Q

(42)
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where
-P 0 PA PA; PB 0
0 I C Cq D 0
M 4;P C: -P+2Z"QZ 0 0 AP
ATP Cf 0 -Q 0 0
BTP DT 0 0 =T 0
0 0 OllpAl 0 0 -P

H=[PH 0 0 0 0 07
E=[0 0 E; Ey 0 0]

By applying Lemma 2 to (47), we know that (47) holds if and
only if there exists a positive scalar parameter € such that the
LMI (48), shown at the bottom of the page, holds.

By Schur complement [3], (48) is equivalent to (49), shown
at the bottom of the page.

Recall that our goal is to derive the expression of the filter
parameters from (7). To do this, we partition P and P~! as

R X192 -1 |:S1 Y12:|
[XlTZ ng} ’ Yfg Yoo (50)

where the partitioning of P and P~ is compatible with that
of A defined in (10), i.e., R € R"*", X153 € R"*" X9y €
R"X",S € Rnxn,Ylg € Rnxn,ng € R™"*™, Define
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By applying the congruence transformations
diag{Ty,1,Ty,1I,1,T,1,1,1} to (49), we obtain (53), shown
at the bottom of the next page. Once again, performing the con-
gruence transformation diag{S,I,1,S,1,1,1,S,1,1,1,Q}
leads to (53) which, by Theorem 1, is a sufficient condition for
guaranteeing that the system (9) is exponentially mean-square
stable and the H_.-norm constraint (14) is achieved.

Furthermore, if the LMI (42) is feasible, we have

-S =S

25 Tal <o
or equivalently

S—t I

)

It follows directly from XX ! = I that ] — RS™! =
X12Y5 < 0. Hence, one can always find square and nonsin-
gular X1, and Y7 [20]. Therefore, (43)—(45) are obtained from
(52), which concludes the proof. [ |

Remark 2: The addressed robust H, filter can be obtained
by solving the LMI (42) in Theorem 2. Note that the feasibility
of LMI can be checked efficiently via interior point method [3].
It is interesting to discuss the extreme cases of 3 = Oand § = 1.

-1
T = [S T I } , Ty = [I RT } (51) Incase of 8 = 0, the true measurements are missing at Proba-
Yi 0 0 X bility 1, and the LMI (42) would have no solution if we require
which implies that PT; = Ty and T{f PT; = T{ Ts. a good filtering performance. In the exalpple provifled in Sec-
Now, define the change of filter parameters as follows: tion V, when 5 = 0 and v < 20, there is no solution to (42).
T On the other hand, in the case where 3 = 1, the missing proba-
Q1 = X12(G — BKC2)Y758 bility is zero, and oy = 0, the LMI (42) can be simplified to an
Q2 = X12K, Q3= LYF;S. (52) inequality similar to the one in [24].
[ -P 0 PA PA; PB 0 PH 0]
0 -1 c Ca D 0 0 0
ATp CT -P+77QZ 0 0 «aATP 0 eE]
ATp CT 0 -Q 0 0 0 ebT
~ . 4
BTP DT 0 o -1 o o o | (45)
0 0 a1 PA; 0 0 —P 0 0
H'™P 0 0 0 0 0 -l 0
0 0 el els 0 0 0 —el |
[-P 0 PA PA; PB 0 PH 0 0 ]
0 -1 c Cy D 0 0 0 0
4TP ct —P 0 0 awATP 0 eEl 27
AGP Cf 0 -Q 0 0 0 eEf 0
BTp DT 0 0 -2 0 0 0 0 < 0. (49)
0 0 a1PA 0 0 -P 0 0 0
HTP 0 0 0 0 0 -l 0 0
0 0 el el 0 0 0 —el 0
| 0 0 Z 0 0 0 0 0 -Q']
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Remark 3: Note that the LMI (42) is a delay-independent
sufficient condition. Since the Schur complement and the S-pro-
cedure do not bring the conservatism, the overall conservatism
actually results from the use of the Lyapunov stability theory.
In the case that the time-delay is known, a possible way to re-
duce the conservatism is to define a parameter-dependent Lya-
punov functional, and therefore develop delay-dependent con-
ditions (see, e.g., [9], [11], and the references therein).

Up to now, the filter has been designed to satisfy the require-
ments Q1) and Q2). As a by-product, the results in Theorem 2
also suggest the following optimization problem.

Pl1): The optimal H, filtering problem for uncertain sto-
chastic time-delay systems with missing measurements is de-
fined by

v subject to (42). 54

min
S$>0,R>0,Q0>0,Q1,Q2,Q3,¢
On the other hand, in view of (43)—(45), we make the linear
transformation on the state estimate
Tr = X122k (55)
and then obtain a new representation form of the filter as fol-
lows:

{ik = Lz, (56)

where

G=Q:i(S—-R)', K=Q», L=Q@Q3(S—R)' (57
We can now see from (57) that the filter parameters can be ob-
tained directly by solving LMI (42) without solving I - RS~! =
X12Y1€ for X12 in (43)—(45)

Remark 4: In many engineering applications, the perfor-
mances constraints are often specified a priori. For example, in
Theorem 2, the filter is designed after H,, performance is pre-

scribed. However, we could obtain an improved performance
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0 L L L 1 L L I L L
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B

Fig. 1. Probability 3 versus the optimal H, performance min-

V. ILLUSTRATIVE EXAMPLE

In this section, an example is presented to demonstrate the
effectiveness and applicability of the proposed method.

Consider the system described by (1) with parameters as fol-
lows:

[—09 0 —0.3 -01 0 O
A= 0 06 02|, Ag= 0 01 0
| 05 0 07 0 0 02
[0.5 0.2
0.2 0.5
E;=[01 0 0], Ey=[01 0 0],
C=[1 1 2], C4=[01 0 0.5], D=0.1.

The parameters of the output measurements with missing data
described by (4) are as follows:

by optimizing certain parameters involved in the design. The Co=[1l 2 1], Dy=0.1
aim of the problem (P1) is to exploit the design freedom to
meet the optimal H, performance. and 8 = 0.9.
—-S-t I 0 AS-t A Ay B 0 0 H 0 0
* —R 0 (RA+4+8Q:Co+@Q1)S™' RA+3Q.C: RA; RB+ Q2D 0 0 RH 0 0
* « I (C—Q3)5! C Cy D 0 0 0 0 0
* * * -5 —I 0 0 0 a, S71CT QL 0 eS'El ST
* * * * -R 0 0 0 a1 CTQT 0 eET I
* * * * * — 0 0 0 0 ¢eET 0
* * * * * *Q —~2] 0 0 0 02 0 <0
* * * * * * * -5t -1 0 0 0
* * * * * * * * —R 0 0 0
* * * * * * * * * —el 0 0
* * * * * * * * * * —el 0
* * * * * * * * * * * —-Q~ ]

(53)
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In this case, we would like to provide an optimal H, per-
formance for designing the filter, that is, we are interested in
the optimization problem P1). Solving (54) by using the LMI
ToolBox, we obtain the minimum value of -y as y,;n = 9.8669,
and

[19.4441  —2.4905 7.3716
R=|-24905 22.8446 —13.6501
| 73716 —13.6501  28.9698
[12.5872 —0.1249 3.7242 ]
S =1-0.1249 2.3690 —0.4767
| 3.7242  —0.4767 8.5188 |
[ 1.7339 —0.2341 0.4391 |
Q=|-02341 1.0196 —0.7775
| 04391  —0.7775  3.9319 |
[ 5.0702 0.8269  —0.9586
Qp= | 3.2624 —12.2390 5.0024
| —1.7325 13.8651 —9.8236
[ 0.3171
Qo= | —0.1183
—3.3411

Qs = [0.9963 1.0167 2.1820], & = 20.6692.

Hence, the H, robust filter is given by

—0.8445 —-0.0186 0.1855 0.3171
Tr41=[—0.3799 0.7515 0.3072| z+|—0.1183 |yx
—0.0048 —0.6286 0.0763 —3.3411
Zr =[—0.0984 —0.2021 — 0.2194]Z.

In order to understand how the missing measurement affects
the H. performance of the filtering process, we now illustrate
the interplay between the missing probability and the optimal
H, performance. The relationship of 3 versus v, is plotted
in Fig. 1.

The numerical results in this example show that the filter can
be easily obtained by solving an LMI using the Matlab LMI
ToolBox, and the optimal H, performance can be obtained by
solving the optimal H, filtering problem (54). Furthermore, the
results also indicate that the bigger the missing probability, the
poorer the H ., performance, which is reasonable.

VI. CONCLUSION

The problem of robust H, filtering has been considered in
this paper for stochastic uncertain discrete time-delay systems
with missing measurements. The robust H filter has been de-
signed in terms of a feasible LMI, which guarantee the filtering
error system to be exponentially mean-square stable and the fil-
tering error to satisfy H ., robustness performance constraint for
all possible missing observations and all admissible parameter
uncertainties. An optimal filter design problem is also provided
by optimizing the H filtering performances. Our method can
be extended to deal with the robust H, control problem.
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