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Abstract 

In the US, the shale gas revolution ensured that the development costs of unconventional 

natural gas plummeted to the levels of $2-$3/Mcf. This success has motivated the 

development of shale gas in other regions, including Australia and Europe. This study, 

focussing primarily on aspects of economic impact analysis, estimates the development costs 

of shale gas extraction in both Australia and Europe, based on both direct and fiscal costs, 

and also suggests policy initiatives.  

The increasing liquefied natural gas (LNG) developments in Australia are already straining 

domestic gas supplies. Hence, the development of more natural gas resources has been given 

a high priority.  However, a majority of the Australian shale resources is non-marine in origin 

and significantly different to the marine-type shales in the US. In addition, the challenges of 

high development costs and the lack of infrastructure, service capacity and effective 

government policy are inhibiting shale gas development. Increasing the attractiveness of low 

risk investment by new, local, developers is critical for Australian shale gas success, which 

will simultaneously increase domestic gas security. In the European context, unconventional 
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gas development will be challenged by direct, rather than fiscal costs. High direct costs will 

translate into average overall gas development costs over $13/Mcf, which is well over the 

existing market price.  

Keywords: Unconventional gas, Development costs, Shale gas, LNG 

1.0 Introduction 

The global energy sector is confronted with soaring energy needs of a growing population, 

improving standards of living and expanding economies of the world. Global energy 

consumption is projected to rise by 41% over the next two decades, while fossil fuels will 

still remain as the dominant form of energy, supplying around 80% of world energy 

consumption in 2040 (BP, 2014). Under this prolonged dependence on fossil fuels in 

conjunction with intensifying global concerns of increasing carbon emissions and climate 

warming, natural gas is becoming an important resource in catering to global energy needs. 

The International Energy Agency (IEA) (2014) asserts that world’s remaining recoverable 

gas resources are sufficient for over 230 years at the current production rates. Moreover, 

natural gas is the fuel of choice for power generation as gas-fired power plants have the lower 

capital costs with less than half of the CO2 emissions of coal-fired power plants (Dormer, 

2013; EIA, 2014a; Tay, 2014).  

In addition, the emergence of unconventional oil and gas has added a whole new dimension 

to the fossil fuel industry. The term “unconventional” refers to the requirement of some form 

of reservoir stimulation, which makes the recovery process more complex. The stimulation 

process is referred to as hydraulic fracturing, which leads to an increase in the permeability of 

the underground geological formations, such as shale, that are holding the oil and gas, easing 

the hydrocarbons out of entrapment and towards the well bore and, subsequently, the 

wellhead. The success of hydraulic fracturing and horizontal drilling has contributed 
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immensely to boosting the commerciality of low permeable oil and gas reservoirs that were 

previously identified as being non-economical to produce. The US shale gas revolution has 

also benefited from the favourable geology, availability of infrastructure, private mineral 

ownership, high liquid (oil) content, increased participation of small scale independent 

developers and less community resistance (Stevens, 2012). Motivated by the US success, 

many other countries around the world are trying to capitalise on shale oil and gas 

development. However, there are substantial differences in the geological, political, social 

and industrial situations elsewhere, compared to the US context.  

Putting aside the political incentives for such development and the not unreasonable 

argument that we should no longer be seeking new fossil fuel reserves if we are to mitigate 

climate change (McGlade and Ekins, 2015), any consideration to develop an unconventional 

oil and gas sector must also include an economic impact analysis that takes into account all 

technical, regulatory, policy and infrastructure requirements to support such an industry. Such 

an analysis is the subject of this paper, in relation to shale gas development only. 

2.0 Shale Gas Developments in Australia and Europe 

The term ‘unconventional gas’ refers mainly to shale gas, coal seam gas, hydrates and tight 

gas resources (ACOLA, 2013), the distinction being made as to the various formations from 

which they are extracted, such as coal and shale. Methane hydrates are developed through 

depressurisation, by drilling well bores and stimulation through sound waves and/or 

chemicals to release entrapped methane gas (Garratt, 2012). While conventional gas can be 

recovered by using traditional drilling techniques, unconventional gas recovery requires 

additional stimulation, mainly in the form of hydraulic fracturing. Hydraulic fracturing is a 

process of injecting high pressure fluids into the formation, consisting of water, proppants 

(sand or ceramic particles to prop open fractures) and chemicals (AEA, 2012), which all need 
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to be delivered from the well-head, adding to the complexity of the shale gas development 

process. In the US, shale gas reservoirs, or plays, are most commonly of marine origin. 

However, in Australia and Europe, Poland in particular, most of the shale plays are non-

marine in origin (EIA, 2013). Reservoir characterisation based on the total organic content 

(TOC), thermal maturity, gas content and brittleness is important in order to understand the 

production potential of these shale plays. Thus, geology and economics are the most critical 

elements that will need to be understood in the shale gas development process. It should be 

noted that, as yet, there are no commercially proven non-marine shale plays anywhere in the 

world. 

2.1 Australia 

The EIA has estimated Australian shale gas resources to be around 437 Tcf, mainly held in 

six reservoir basins (Table1) (EIA 2013). However, the challenging geology, lack of 

infrastructure and service sector and community concerns has resulted in high development 

costs. Therefore, the evaluation of reserves, which is an estimate of the amount of 

hydrocarbons that both technically and economically be expected to be produced will be 

critical (Deparment of Energy and Climate Change, 2013). The Australian east and west 

coast gas markets are currently focused on the export of LNG to Asia, due to Australia’s 

strategic location and the Asian gas-price premium. This has resulted in the domestic gas 

price reaching parity with the export price, which, although undesirable, may make some of 

the shale gas plays economically viable to develop. Nevertheless, whilst the Australian LNG 

projects have the advantage of lower transportation costs to the Asian markets compared to 

the US, the increasing costs of offshore natural gas extraction projects will make maintaining 

this competitiveness challenging, as those countries  with lower development costs and 

higher market efficiencies, such as the US, begin to export cheaper LNG. Unless there is an 
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extensive demand growth from the Asian countries, the higher costs will reduce the 

attractiveness of Australian LNG exports in the future.  

Table 1: Australian reservoir basins with estimated technically recoverable resources (EIA, 

2013) 

Basin Technically Recoverable (Tcf) 

Cooper 93 

Maryborough 19 

Perth 33 

Canning 235 

Georgina 13 

Beetaloo 44 

 

2.2 Europe 

In Europe, energy security is becoming of prime concern. The recent political unrest in the 

Crimea has led to an increase in interest in shale gas development (EURACTIV, 2014), 

particularly in Poland and the UK. The Ukraine, with 148 Tcf of technically recoverable 

resources, is preparing to initiate shale gas development to reduce its dependency on Russian 

gas imports. In contrast, some European countries have moratoria in place on hydraulic 

fracturing, such as France, Bulgaria and Germany, deterring any shale gas development 

plans. Even in Poland and the UK, full scale development of shale gas is at least 5-10 years 

away. At least 100 shale gas wells will be needed in each country to understand the 

commercial potential of these resources. In the European context, aside from the challenges 

of public opposition and concerns over inconsistent regulation and property rights, the key 

factor deterring investment is the direct development costs (Uliasz-Misiak et al., 2014). 



6 
 

Poland and the UK have introduced attractive fiscal policy regimes for shale gas 

developments for both the developers and affected communities. Table 2 lists the European 

shale gas resources as estimated by EIA in 2013, along with the energy security rankings. 

The energy security rankings reflect the need for more energy resources (the higher the 

number, the more urgent the need). Thus, shale gas could become one of the most viable 

resources to increase energy security in Europe. 

Table 2: European energy security rankings and technically recoverable shale gas resources 

(EIA, 2013; World Energy Council, 2014) 

European countries / Energy 

security rank 

Technically Recoverable (Tcf) 

Russia (2) 285 

Ukraine (54) 148 

Poland (32) 145 

France (41) 136 

Romania/Bulgaria (4/24) 37 

UK (9) 26 

Netherlands (55) 26 

Germany (27) 17 

Sweden (20) 10 

Spain (37) 8 

Lithuania/Kaliningrad (90) 2 

 

The following sections describe the current state of shale gas development commitments in 

Poland and the UK. 
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2.2.1 Poland 

To date, Poland has been successful in drilling about 40 exploration wells. Furthermore, there 

has been a great deal of encouragement from the government in the form of direct investment 

and tax incentives up to 2020. However, Poland suffered major setbacks in its bid to develop 

its shale gas resources, with the subsequent departure of two major international companies, 

namely, Exxon Mobil (in 2011) and Total (in 2013) (Natural Gas Europe, 2012, 2014). This 

was not an encouraging sign, since both companies highlighted the complexity of Polish 

shale geology, which is very deep, and the associated concerns over the high pressures and 

temperatures leading to reductions in the commercial potential of these shale plays, as behind 

their decisions to pull out. The hopes for development success now rest mainly with Chevron 

and Conoco Philips. 

2.2.2 UK 

Cuadrilla Resources has been active in shale gas development in the UK since 2010 (Selley, 

2012). However, the company suffered a major setback, when minor earthquakes were 

triggered in the Blackpool area, possibly related to their hydro fracturing activities (hydro-

fracking may act to lubricate active fault planes with stimulation fluids) (Mobbs, 2012). 

Fracking could stimulate minor earthquakes up to a magnitude of 3 on the Richter scale 

(AEA, 2012). According to Ohio Department of Natural Resources, an earthquake could be 

caused due to the nearby faults at near-failure state of stress (ODNR, 2012).   

In Sussex and Scotland, there are plans to develop shale oil and gas by IGAS Energy, 

Cuadrilla Resources, INEOS and Celtique Energie. However, in both regions, potential shale 

development plans has been met with severe community resistance. This led to impose a ban 

on fracking for shale gas in Scotland in early 2015 (CityA.M., 2015). The UK government is 

becoming more proactive in recognising the importance of shale gas for energy security and 

the potential to create jobs (UK Government, 2013), although other commentators doubt the 
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scale of the impact, given the rather low level of technically recoverable resources, as shown 

in Table 1 (McGlade and Ekins, 2015). Until now, only the Bowland basin is being tested for 

shale gas development, with four exploratory wells drilled by Cuadrilla Resources and 

another drilled by IGAS Energy.  

3.0 Economic Impact Analysis  

3.1 Methodology 

In this study, the economic impact analysis of unconventional gas resource development has 

been evaluated for Australia and Europe. Data inputs, such as the drilling and completion 

costs, royalties, income taxes, operational and other fiscal costs were used to estimate the 

costs involved in the development. Then, a sensitivity analysis was conducted to assess the 

effect of the major cost components on the breakeven gas price, followed by an annual 

Discounted Cash Flow analysis (DCA) to evaluate the potential of unconventional gas 

development in Australia and Europe. This study will contribute to the understanding of the 

market conditions necessary to commercially develop shale gas resources. The estimated 

ultimate recovery (EUR) of a shale gas well represents the accumulated sum of the gas 

produced throughout the well life. However, the EUR is subject to the Geology, 

Geomechanics and Petrophysical conditions of the formation, influencing the Initial 

Production (IP) and the decline of the gas production over time.  The analysis in this study 

will consider IP and decline data that are currently available for a limited number of 

Australian test wells listed in Table 3.  
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Table 3: Tests shale wells in the Cooper basin of South Australia (Beach Energy, 2011a, b; 

Tedesco, 2012) 

Vertical Well Initial 

Production 

(IP) (mmscf) 

Well Cost 

(million $) 

Completion 

time (days) 

Depth 

(m) 

Frack 

stages 

Moomba-191 3,000 10 26 3,010 3 

Holdfast-1 2,000 N/A 78 3,487 7 

Encounter-1 2,000 N/A 82 3,612 6 

 

A study conducted by Weijermars (2013) adopted a Discounted Cash Flow methodology to 

compare the economic viability of several shale gas plays in Continental Europe. The 

assumptions that were used include a uniform field development plan of 100 wells at 10 

wells/year over a decade. The DCA analysis was done based on the prevailing technological 

costs to estimate the EUR that needs to be achieved for these projects to become viable. 

Other factors relevant to the DCA are gas prices, taxes, depreciation and discount rate. These 

factors were simulated for different EUR values, where the sensitivity of Net Present Value 

(NPV) and Internal Rate of Return (IRR) to EUR were modelled for each play. Assessment 

of risks was done by simulating the spread of the NPV and IRR against the spatial spread of 

production volume probabilities P10-P50-P90. This study adopts a similar methodology to 

compare the Australian and European shale plays with the US shale plays. Further, inbuilt 

Visual Basic programming functions of Microsoft  Excel for cash flow modelling are used 

based on the annual averaged gas price projections and annual production volumes of a 

typical well. The annual non-discounted cash balance (A) is estimated with the following 

equation: 
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Equation 1: Annual non-discounted cash balance 

A = (P x Q) – Capex – Opex – (CR x P x Q) – (CT x Income)  

Where:  

P = Price of gas at the wellhead  

Q = Annual production  

CR = Royalty rate  

CT = Corporate tax rate  

The revenue stream (income) is estimated by: 

Equation 2: Revenue 

Income = (P x Q)(1-CR) – Opex – D(Capex) 

Where:  

D = Depreciation rate of Capex.  

The net present value (NPV) is estimated by: 

Equation 3: Net Present Value 

NPV =  

Where:  

F = Annual discount factor to account for time value of money over the duration from the 

year t=0 to t=n. 
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As an important input to derive the revenue, an inflation function price algorithm is used 

(Weijermars, 2013): 

Equation 4: Price with inflation 

pn = pi(1+r)n 

Where:  

pn = Wellhead gas price in year n  

pi = Initial gas price  

r = Annual inflation rate affecting gas price.  

3.1.1 Well Productivity  

Geology and Petrophysics are critical in evaluating suitable shale plays for exploration and 

development. Binnion (2012) mentioned that due to the complexity of geological plays, 

especially variations in in-situ stresses, even two wells in close proximity and a horizontal 

well at different stages can produce very different results (Binnion, 2012). Thus, studying any 

potential shale play leads to a long term learning curve that could only be refined by 

repeating the tests to acquire a sufficient dataset enabling statistically significant set of 

results.  

The well flow rates and corresponding cumulative production over the assumed 15 year well 

life was derived by fitting the equation to the estimated EUR data.  

Equation 5: Estimated Ultimate Recovery 

qn = qi(1+a)n 

Where: 
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qn = Flow rate in year n 

qi = Initial flow rate in year 1  

a = Annual decline rate (a negative fraction)  

The initial rate of production and the well decline rate are also different from one well to 

another (ACOLA, 2013). Therefore, the productivity of a play should ideally be taken as the 

aggregate production from all wells and the aggregated probabilistic range of the production 

will be the determinant for the required selling price of gas for the investment to become 

viable. This is based on the observation from the US shale plays, where the production of an 

individual well is somewhat uncertain, but aggregated investment in multiple wells provides 

a relative certainty to the production rates in the long run. 

3.1.2 Arp’s decline function 

Decline curve analysis is time tested and established engineering technique to determine the 

rate of production decline in oil & gas wells. Arps (1945) established the production decline 

curves by using empirical equations that grouped three most observable types of decline 

curves as exponential, hyperbolic and harmonic. The Arps well’s production rate (q) at time t 

is as follows: 

Equation 6: Arp’s well production rate 

 

Where: 

qi = Well’s production rate at time 0 

Di = Initial nominal exponential decline rate 
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b = Hyperbolic exponent 

A Shale gas well could be transformed from hyperbolic to exponential decline due to the 

changes of flow regimes. Shale reservoirs with transient flow regimes reach that stage in 

years as compared to the conventional wells that takes only months. Transient flow regime is 

caused by the flow of tight gas from fractures, tight zones or horizontal sections (Ryder Scott, 

2011). The b value (a measure of loss ratio for the production, between 0 and 1) defined by 

Arp’s does not exactly match with the actual field observations in shale plays where b value 

can reach as high as 2. However, a high b value tends to generate higher EUR than the actual 

value, especially in the early stages of production, as the value of b tend to diminish with 

time. In most cases, a D min value (the minimum decline final segment) is used at the 

exponential tail part of the curve, which can last up to 15 years in order to accurately derive 

at the right EUR for shale plays. Overstating the D min tends to underestimate the EUR while 

giving a D min that is too low can overestimate the reserves (Ryder Scott, 2011). Therefore, 

Arp’s method uses two segment analysis, those are the hyperbolic part, and the exponential 

tail end part of the curve to demonstrate the transient to boundary-dominated flow. It is 

important to note that the minimum ultimate decline rate is best found from the analogous 

reservoirs with long histories. Unfortunately, the required long-term observation to create the 

analogy is widely absent with emerging shale plays. In the absence of well-established values 

for both Australia and Europe, decline curves over the estimated well life are forecasted 

based on the average D and b values corresponding to the US plays (Table 4).  
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Table 4: D & b values of US shale wells (ACOLA, 2013) 

 

3.1.3 Fiscal costs 

ACOLA (2013) made comparisons between attributes of the US and Australian shale gas 

fiscal policy regimes. The main difference among the US and Australian taxation system is 

that the royalty in the US is directly paid to the private landowners (percentage of revenue 

normally between 12.5% and 25%), whereas respective state receives income in terms of a 

Severance Tax (calculation base differ for respective states). Corporate income tax (CIT) is 

payable to the US Federal government and state governments, whereby the Federal 

government receives 35%, whereas state government receive between 0%-12% (calculated 

based on EBIT). In the Australian context, developers are liable to pay the royalties and 

Petroleum Resources Rent Tax (PRRT) to the state governments and Federal government 

respectively. Royalty is payable to the state government, where resources are located based 

on the difference of the gross value at the wellhead and costs incurred to transport the gas to 

the point of sale (at the rate of 10% for the Cooper Basin in South Australia) and credited 

against PRRT, whereas PRRT is payable to the Commonwealth government, calculated as a 

percentage of the taxable profit (40%). The CIT for Australia is based on the net earnings, 

after PRRT deduction and depreciation of asset, calculated at 30% of EBIT. The analysis of 

 Haynesville 
Eagle 

Ford 
Woodford Marcellus Fayatteville Australia 

IP(mmscfd) 1690 1160 730 446 420 3000 

D 0.81 0.77 0.93 0.9 0.9 0.86 

b 0.01 0.02 0.51 0.56 0.47 0.31 
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Australian cash flow of shale resource development project is subject to the following fiscal 

conditions: 

Equation 7: State Royalties 

Royalty  = Wellhead gas price x Volume produced x rate (10% assumed for all basins) 

Equation 8: Petroleum Resource Rent Tax (PRRT) to the Federal Government 

PRRT   = Taxable profit x 40% 

  = (assessable receipt – deductible expenditure) x 40% 

Royalties paid to the state government can be credited against PRRT 

Depreciation 

Depreciation of an asset is used for corporate income tax deductions, since asset will decline 

in value over their effective life (EY, 2013). Depreciation of an asset in Australia is spread 

over the estimated useful life of the asset and the operator can get to choose between the 

‘diminishing value’ (DV) or ‘prime cost’ (PC) depreciation method deemed to best suit the 

economic activity.  

Equation 9: Prime cost depreciation 

 

Where: 

Asset’s cost  = CAPEX 

Asset’s effective life = Assumed to be 15 years in this analysis 
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The diminishing value method is where the asset decreases more in value in the early years 

and less in the later years, whereas the prime cost method assumes uniform depreciation of 

asset throughout the entire life of the asset (ATO, 2013). The formula for this method is: 

 

Equation 10: Diminishing value depreciation 

 

Where: 

Base value = CAPEX for the 1st year and CAPEX minus the cumulative depreciation 

of the asset in the previous year/s, for the 2nd year onwards 

The diminishing value method gives a higher amount of depreciation in the early years of the 

asset’s life. Some investors prefer this method over the prime cost method unless the 

expected revenue will increase substantially in the later years. For example, in the real estate 

industry, property investors use the prime cost method as the loss of value is more uniform in 

fact for their advantage, and properties doesn’t just loose the value within the initial years. 

Equation 11: Corporate Income Tax (CIT) 

CIT   = Taxable income x 30% 

Taxable income is the income received minus all other deductions expended in the process of 

generating the income, including state royalty, PRRT and depreciation in asset.  

Similarly, European fiscal costs are estimated based on the attributes listed in the Table 7. 
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3.2 Analysis 

Table 5 compares the development costs for Australia and Europe with those of the US. In 

this analysis, the estimation of European shale gas costs does not consider petroleum revenue 

tax and ring-fenced corporation tax that is applicable in the UK, as the UK government is 

considering large tax incentives for onshore shale gas development, bringing down the 

existing 62% tax applicable to conventional hydrocarbon operations to 32% for onshore shale 

gas fields (Mainwaring, 2013). In Poland, petroleum revenue taxes are not applicable, but 

already there are proposals to impose such taxes (Meurs, 2012). For European shale gas 

developments, a uniform depreciation of 10% has been assumed.  

Table 5. Comparison of the fiscal and development costs of the US, Europe and Australia 

(EY, 2013; Weijermars, 2013) 

United States Australia Europe 

Royalty  (12.5% - 30%) – Private  

owner 

Based on value of petroleum 

Royalty  (10% - 12.5%) – State revenue 

May be credited against PRRT 

Royalty  (0%-13%)                  

– Crown 

Income tax 

(35%  Federal) + (0-12% State) 

Income tax 

Earnings before interest and tax *30% 

Income tax 

19% - 30% 

Severance tax 

Up to 5% of revenue 

Petroleum resource rent tax (PRRT) 

PRRT Taxable profit  * 40% 
N/A  

Leasehold costs 

$5,000 per acre 

Land lease costs (State) + Native lands 

Up to 1-2% of revenue 

Land leasehold costs 

Up to 1-3% of revenue 

Depreciation 

Drilling and lease costs 

Depreciation 

Diminishing value or Prime cost 

Depreciation 

Uniform depreciation       
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3.2.1 Australia  

In the Australian context, the choice as to whether or not to develop a shale gas resource is 

predominantly dependent on the direct development costs, more so than the domestic gas 

price, which was one of the underpinning factors of the US shale gas revolution (Stevens, 

2010). The availability of other cheaper natural gas resources, in the forms of onshore 

conventional, offshore conventional and coal seam gas, is leading to the delay in 

commitments on shale gas assets. As reflected in the US shale gas revolution, shale plays 

require high activity levels and rapid well replacement procedures to benefit from the 

economies of scale. The distinctive difference of very much greater shale play depths            

(ca. 3-4000m) will require technological advances in hydro fracturing that will also delay any 

new investment. Therefore, shale gas development will need to be incentivised, particularly 

through the fiscal policy regime, to increase the attractiveness of investment. This could be 

achieved through rapid depreciation policies, a decrease in Petroleum Resource Rent Tax 

(PRRT) and royalty payments and income tax holidays. This would then make it attractive 

for local small scale developers to “learn by doing”, leading to more partnership agreements 

with customers, such as that between Strike energy and Orica for a to 20 year supply of gas 

(Stevens et al., 2013). Increasing the attractiveness of shale gas development for Australian 

(10%) 

Drilling and completion costs 

$3.5 to $7.0 M per well 

Drilling and completion costs 

$12 -16 M per well 

Drilling and 

completion   costs 

$ 8-24.5 M per well 

Operating costs 

$0.50 to $1.00 /Mcf 

Operating costs 

$1.00 /Mcf 

Operating costs 

$ 0.4 – 1.2 /Mcf 
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small scale developers could lead to not only an increase in the energy security of Australia, 

but also the development of a  strategic service sector (and the subsequent job opportunities) 

that could capitalise on shale gas development in the Asian region.  

Small-scale/ junior developers could be incentivised by a variety of mechanisms. Most 

importantly, long term sustainability of policy is vital for the industry. This study compares 

the single-well development using DCA for four alternative policy directions based on the 

current Australian context and a gas unit price of $9.57/Mcf, namely: 

1. 100% depreciation of exploration and development costs in the first year 

2. 70% depreciation of exploration and development costs in the first year, divided 

equally within the remaining well life (14 years) 

3. PRRT holidays – first 3 years  

4. PRRT holidays – first 5 years  

Table 6 lists the parameters used in the analysis. 

Table 6: Data table and DCA of an Australian shale well 

Drilling and Completion 

Costs 

$9,000,000 

State Royalties 10% 

Well Spacing 80 acres 

PRRT 40% 

Income Tax 30% 

Well life time 15 years 

Discount rate 10% 
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Figure 1. Annually Discounted Cash Flow of Australian shale gas developments based on 

fiscal policy incentives. 

 

As depicted in Figure 1, 100% depreciation of well drilling and completion costs has 

translated to a positive cash flow of $1,726,943, with a total fiscal cost contribution of 

$5,675,401 over the life-time of the well. Therefore, as depicted by these results and the US 

experience, this could become an attractive policy in encouraging further investment in shale 

gas development amongst small-scale developers. This would also be a more stable policy, 

especially since shale gas plays need rapid well replacement procedures. Thus, it will also be 

attractive for service companies, leading to higher economies of scale in the development, 

leading to lower gas development costs.  

 

 



21 
 

3.2.2 Europe  

In regards to Europe, direct development costs range from $8.1 - $24.5 million per well 

(Weijermars, 2013). As a result, the average gas unit price is approximately $13.32/Mcf. 

Using this price and direct development costs of $16.3M, it can be seen (Figure 2) that the 

US fiscal regime is much more favourable, due to the 100% depreciation of such costs (Table 

7 lists the parameters used in this analysis). However, the fiscal cost regime in Europe is 

becoming more conducive to shale gas development. Poland has already committed to a six 

year corporate tax-free period until 2020. The UK has proposed funding to local councils 

who commit to shale gas developments (UK Government, 2014). Questions have been raised 

about the economic implications of this, and the exclusion of any returns to landowners, 

where lateral drilling takes place only a short distance away from the main vertical drilling. 

However, the main challenge to the shale gas industry is the excessive direct costs, which are 

much higher than in the US. These costs will need to come down substantially if a European 

shale gas revolution is to occur. Gas costs should ideally not be too high relative to Qatar 

LNG, or even in comparison to Australian and US LNG. The main obstacles lie with the 

materials, infrastructure and services required for shale gas developments. As mentioned 

previously, shale gas developments need rapid well replacement procedures and benefit from 

economies of large scale production, as reflected in the US experience. Therefore, the 

development plans for shale gas in Europe must specifically look into the direct costs. Hydro 

fracturing requires large volumes of water, as well as proppants and other ingredients, such as 

guar gum. Therefore, there should be considerations as to how to develop local supply chains 

for these essential materials to avoid any bottlenecks, since the industry will otherwise be 

dependent on imports from elsewhere, such as China for proppants and India for guar gum. 

Reliance on imported services will reduce the attractiveness of the industry, which already 
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has to deal with community opposition and the challenges concerning inconsistent 

regulations across Europe.   

Table 7: Data table and DCA of European shale gas developments  

Drilling and Completion Costs $8,100,000 – 24,500,000 

State Royalties 6.5% 

Well Spacing 80 acres 

Income Tax 25% 

Well life time 15 years 

Discount rate 10% 

 

 

Figure 2. Comparison of DCA for Europe and the US based on a gas cost of $13.32/Mcf 
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4.0 Shale Gas Development Factors 

The US shale gas revolution benefited from a multitude of factors (Table 8). However, the 

same cannot be said for shale gas development in Europe and Australia. The main factors, 

covering geology, infrastructure, environmental regulation and community acceptance, will 

now be discussed in more detail, followed by an analysis of the policy implications. 

Table 8: Important factors for shale gas development in the US, EU and Australia 

Characteristics US    EU AUS 

Favourable geology Yes    No No 

Lots of drill core data to locate “Sweet spots” Yes    No Depends on the basin 

Weak environmental regulation for fracking Yes    No Depends on the state 

Tax credits + Intangible drilling cost expensing  Yes    No No 

Property rights to the landowner Yes    No No 

Pipeline access very easy – large network + 

common carriage 
Yes 

   No 
No 

Selling gas into a “commodity supply” very easy Yes    No No 

Dynamic and competitive service industry Yes    No No 

Population familiar with oil and gas operations Yes    No Depends on the basin 

Licensing large areas with vague work programs Yes    No Depends on the state 

Significant government investment in R & D Yes    No No 

High liquids content Yes    No Depends on the basin 

Started by rising gas prices and demand Yes    No No 
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Access to favourable finance Yes    No No 

Investment on shared infrastructure Yes    No No 

 

4.1 Geological complexities 

In Australia and Europe, the lack of understanding of the lithology of the local shale 

formations and the recoverable resource content are challenging the prospective shale gas 

development plans. In particular, technology successfully applied in the US may need to be 

customized for the non-marine shale plays of Australia and Europe. As an illustration, Figure 

3 compares the main geological parameters of the Cooper basin shales of South Australia 

with those in the US. It can be seen that there are distinct differences. The Cooper Basin shale 

plays, being non-marine in origin, are less brittle (higher clay content) and indicate much 

lower recoverable resource content (absorbed gas and TOC) (Regenauer-Lieb, 2014). In 

addition, these plays are dry (little or no liquid content) and have high carbon dioxide 

content, making development plans technically and economically challenging. Australian 

shale plays are also subjected to higher tectonic stresses compared to North American shale 

plays (ACOLA, 2013). Therefore, the effectiveness of using a similar technology to develop 

shale gas resources in Australia is uncertain, with no guarantee of long-term success.   

In the US, advancement of Horizontal drilling in 2003 elevated the production level to a new 

level and  launched the Barnett play shale development (EIA, 2011b), even though the 

technology was around for much longer (King, 1993). With the ability to drill through more 

shale rocks confined within a thin layer of formation spread over a wide area, the resulting 

wells are exposed to more formation volume as opposed to vertical wells. Vertical wells 

practically tap into a limited vertical formation volume, whereas the longest lateral of a 

horizontal well today could extends to over 3 km, enabling access to a wider pay zone, 

immensely improving the economics (O’Brien, 2013). In the US, there was an exponential 
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growth of horizontal shale wells, which led to increase the production of shale gas from         

1 bcf/day in 2003  to 5.5 bcf/day in 2010 (EIA, 2011a, b). This is also benefited by the slick 

water based stimulation fluids replacing previously used gel-based stimulation fluids (Wang 

and Krupnick, 2013). Commercialization of the method benefited from the advances in 

down-hole motors and down-hole telemetry. In addition, longer drilling laterals were made 

possible along with the multi stage stimulation (Halliburton, 2008).  

 

 

Figure 3. Comparison of Australian shale plays with the US shale plays (Agarawal et al., 

2012; Cardott, 2006; Curtis, 2002; Hexion, 2009; Kulkarni, 2011; Mckeon, 2011; Patterson, 

2012; Rajtar, 2010; Schulz and Horsfield, 2010; USDOE, 2009) 
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4.2 Infrastructure and accessibility  

Shale and tight gas developments require access to processing and transport infrastructure to 

refine and deliver the developed gas. However, in the initial phase, it will be challenging to 

develop such infrastructure, particularly in the remote regional areas of Australia, where 

sufficient gas or liquid recovery potential has yet to be proven. In comparison, the US already 

had a comprehensive gas pipeline network in place prior to shale gas development. As 

illustrated in Figure 4, although the US and Australia have a similar land area, the pipeline 

infrastructure is very different. In the US there are 480,000 km of natural gas transmission 

pipelines, compared to 25,000 km in Australia.  Europe has around 200,000km (APIA, 2015; 

Papadakis, 2005). Furthermore, in Australia and Europe, most of the pipelines are regulated 

by contract carriage, compared to the common carriage model adopted for the interstate 

pipelines of the US. Therefore, third party access will not be straightforward to an already 

limited pipeline network. A significant increase in gas pipelines and easy access are 

important for independent developers to effectively participate in the shale gas development 

process.  

Availability and shared access to pipelines and gas processing infrastructure have contributed 

significantly towards the shale gas revolution in the US. Figure 4 shows the potential 

Australian shale plays, along with the existing pipelines. While the infrastructure in the 

Cooper Basin is reasonably good, there are no pipelines connecting the Canning, Georgina, 

Pedrika and Officer Basins to the existing main transmission lines. Access is also constrained 

by the current regulatory regime for pipelines. Majority of the Australian gas pipelines are 

regulated through contracted carriage. To date, only six out of 14 major eastern gas 

transmission pipelines, two out of eight major western gas transmission lines and 10 

distribution networks are fully regulated for third party access (SCER, 2013). In addition, the 
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spread of other infrastructure, such as approach roads and processing plants (with shared 

access) are also vital to enhance the shale gas development potential of Australia. 

 

 

 

Figure 4. Comparison of Australia and US pipeline networks (EIA, 2014b; Rawsthorn, 2013) 
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4.3 Environmental impact, regulations and community acceptance 

Fracture stimulation uses about 10 – 20 ML of water per well (Stevens et al., 2013). Out of 

the injected water, only up to 25% returns to the surface that require cleaning and treatment 

(Haluszczak et al., 2013). The water consumption in stimulation could be minimised by using 

waterless fracking mechanisms (Goodman, 2012). However, such technologies are still at 

infancy. Further, methane losses during the development of shale gas could contribute to 

increase climate concerns (Stamford and Azapagic, 2014). These losses are dependent on the 

local conditions such as the depth of exploration, permeability and wellbore integrity. 

Therefore, the implementation of best development practices in wellbore development and 

abandonment is critical to minimise such losses. Based on the previous studies, a comparison 

of Greenhouse gas emissions from conventional, unconventional natural gas development 

and coal is illustrated in the Tables 9 -11. Due to the associated methane emissions from 

upstream activities, unconventional gas development has shown similar greenhouse footprint 

as coal. 
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Table 9: Life cycle Greenhouse gas emissions from conventional natural gas (kg CO2-e/kWh) 

(Agrawal et al., 2014; Burnham et al., 2012; Hardisty et al., 2012; Howarth, 2014; Jiang et 

al., 2011; PACE, 2009; Stephenson et al., 2011) 

Reference Region 

Greenhouse gas emissions 
Plant 

efficienc

y 

CH4 

emission 

rate Life 

cycle 

Upstrea

m 

Combustio

n 

Liquefactio

n and 

transport 

Howarth, 

2014 
U.S 

482~67

5 
108~301 374  41.8% 

1.7%~6

% 

Jiang et 

al., 2011 
U.S 475 106 369  50% N/A 

Burnham 

et al., 

2012 

U.S 635 167 468  33.1% 2.75% 

Stephenso

n et al., 

2011 

U.S 488 49 439  43% N/A 

PACE, 

2009 
U.S 474 7 361 106 N/A N/A 

Hardisty 

et al., 

2012 

Australi

a 
450 7 356 87 53% 0% 

Agrawal, 

2014 
India 584 129 455  42% N/A 
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Table 10: Life cycle Greenhouse gas emissions from unconventional natural gas (kg CO2-

e/kWh) (Burnham et al., 2012; Hardisty et al., 2012; Heath et al., 2014; Howarth, 2014; Jiang 

et al., 2011; Laurenzi and Jersey, 2013; Stephenson et al., 2011) 

Reference Type 

Greenhouse gas emissions 

Plant 

efficie

ncy 

CH4 

emission 

rate Life 

cycle 

Upstrea

m 

Combus

tion 

Liquefa

ction 

and 

transpor

t 

Howarth, 2014 U.S Shale 

gas 

573.1~77

2.1 

199.1~3

98.1 

374  41.8% 3.6%~7.

9% 

Jiang et al., 

2011 

U.S Shale 

gas 

499 130 369  50% 2% 

Burnham et al., 

2012 

U.S Shale 

gas 

599 130.2 468.8  33.1% 2.01% 

Stephenson et 

al., 2011 

U.S Shale 

gas 

499.2 60.5 438.7  43% 0.66% 

Heath et al., 

2014 

U.S Shale 

gas 

440 78 362  51% 1.3% 

Laurenzi et al., 

2013 

U.S Shale 

gas 

466 103 363  50% 1.4% 

Hardisty et al., 

2012 

Australian 

CSG 

540 62.1 405.5 72.4 53% 0% 
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Table 11:  Life cycle Greenhouse gas emissions from coal (kg CO2-e/kWh) (Burnham et al., 

2012; Hardisty et al., 2012; Howarth, 2014; PACE, 2009) 

Mine 

type 
Reference Region 

Greenhouse gas emissions 
Plant 

efficien
cy 

CH4 
emission 

rate 
Life 

cycle 

Upstre

am 

Combusti

on 

Surface 

Howarth, 2014 U.S 663 36 627 32.8% N/A 

Hardisty et al., 

2012 

Austral

ia 
1,026 61.3 964.7 33% 

0.0375 t 
CO2-e per 

ton of 
coal 

Austral

ia 
826 49.5 776.5 41% 

Austral

ia 
788 47.7 740.3 43% 

Undergr

ound 
Howarth, 2014 U.S 700 72 627 32.8% N/A 

Mixed 

Burnham et 

al., 2012 
U.S 1,036.5 52.1 984.4 34.1 

0.138 g 
CH4 per 

MJ of 
coal 

PACE, 2009 U.S 847.3 42.6 804.7 N/A N/A 

 

In Australia, the environmental regulations vary from state to state (Figure 5). In particular, 

there are moratoria on hydro fracturing in Victoria and New South Wales (The Australian, 

2014). Furthermore, the expansion of coal seam gas projects on the east coast has led to 

increased concerns over water pollution associated with all types of natural gas 

developments. Securing community acceptance for shale gas development is particularly 

challenging due to the lack of nationally harmonised regulatory regimes. As observed in the 
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US, shale gas development will require collaboration amongst developers, governments and 

communities. Thus, gaining the “social licence to operate” is vital for both Australia and 

Europe to increase the investment attractiveness of shale gas development projects.  

There are community concerns regarding the environmental impact of fracture stimulation. 

Ground water impacts, fugitive greenhouse gas emissions and minor earthquakes could arise 

due to the flow back of residual fluids from the drilling and stimulation processes. Therefore, 

operators and regulators need to be proactive in order to effectively engage with the 

community groups. More government funded research needs to be conducted to verify these 

effects and recommend good practice. The implementation of transparent mechanisms 

disclosing the types of chemicals used during the stimulation process and the adherence to 

well-defined regulatory procedures of well construction are important steps to winning 

community confidence.   
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Figure 5. Governing regulatory regimes for natural gas development in Australia (Brockett, 

2013) 

4.4 Natural gas markets 

Over the last decade, Australia has been successful in expanding LNG exports by attracting 

investments over $190 billion, equivalent to 70% of total global LNG investments 

(Macquarie Securities, 2012), into its LNG industry with seven LNG mega-projects currently 

under construction and is set to overtake Qatar to become world’s largest LNG exporter by 

the end of the decade (BP, 2014; Ripple, 2014). Currently, Australia is the world’s third 

largest LNG exporter after Qatar and Malaysia, accounting for 9.4% of the total global LNG 

trade in 2012. As depicted by the IEA statistics, almost 100% of Australian LNG has been 

exported to the Asian market (IEA, 2013). This is because Australia is strategically well 

positioned to cater to the well established markets of Japan, South Korea and Taiwan, as well 
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as to emerging markets, such as China and India (Leather et al., 2013). Japan, Korea and 

Taiwan, have been driving Asian LNG demand since the 1960s by consistently absorbing 

more than 70% of the global LNG trade until the early 2000s (Jacobs, 2011). However, since 

then, China and India have been increasing their participation in the Asian LNG market. 

These two emerging markets have rapidly increased their LNG demand and had an 11.2% 

(36 Bcm) share of global LNG imports by 2012. Therefore, Australian LNG export prices are 

linked to JCC (Japan Customs-Cleared Crude) oil price, which is usually the contract LNG 

price for Japan, China and Korea (PAJ, 2015). Thus, Asian LNG markets will be key for the 

development of Australian shale gas resources. Based on the development costs, Asian gas 

market prices over $ 15/ GJ could make it feasible to develop Australian shale gas resources.   

However, since the third quarter of 2014, global crude oil prices have drastically declined to 

under $50 a barrel, though, it has rebound to around $60 per barrel in May,2015 (NASDAQ, 

2015). This decline of oil prices have led to lower spot LNG prices in Japan (Table 12) 

(METI, 2015). It is forecasted that due to low oil prices, Australia is projected to incur a loss 

of 31$ billion in 2017 – 18 , when estimated based on the 2013-2014 oil price levels  (SMH, 

2015).  In addition, there are planned LNG exports from the US to be landed in the Asian 

markets from 2017 based on the Henry Hub prices. The US natural gas price is also on the 

decline with a price of around 2.5 $/mmbtu in May, 2015 (EIA, 2015; Naturalgasintel, 2015). 

This could further put a declining pressure on the Asian LNG prices. Already, Australian 

natural gas development costs are in the top of the range compared to the US, Mozambique 

and Qatar (Core Energy, 2013). Therefore, in the current context global LNG prices don’t 

have a positive outlook to develop emerging shale gas resources in Australia or Europe. 

Further, in Europe, cost of natural gas development is more than that of the renewables 

(Alberici et al., 2014). However, progressive development of these shale gas assets will still 

be important to enhance energy security.  
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Table 12: Spot LNG contract prices of Japan (METI, 2015) 
 

Year/Month Contract-based Price 
2014/03 18.3  
2014 /04 16.0  
2014 /05 14.8  
2014 /06 13.8  
2014 /07 11.8  
2014 /08 11.4  
2014 /09 13.2  
2014 /10 15.3  
2014 /11 14.4  
2014 /12 11.6  
2015/01 10.2  
2015/02 7.6  
2015/03 8.0  

 

Therefore, whether or not to invest in shale gas developments as an important LNG resource 

is dependent on the development costs of other resources, as the cheaper alternatives in CSG, 

offshore conventional and onshore conventional gas resources, rather than the Australian 

domestic gas price, which was one of the main factors of the US shale gas revolution in the 

context of declining domestic gas resources (Core Energy, 2013; Stevens, 2010). As reflected 

from the US shale gas revolution, shale plays require increased activity levels and rapid well 

replacement procedures to benefit from the economies of scale. The distinctive differences of 

greater depths and the requirements of hydraulic fracturing at such depths will further delay 

developments.  

5.0 Policy implications 

Sound policies are critical to attracting investment for shale gas development, particularly in 

regionally isolated areas. Development risks in these harsh environments need to be reduced 

through the development of new technologies and the lowering of the direct costs. Novel 

emerging technologies, such as enhanced recovery using supercritical carbon dioxide, could 

lead to increased recovery ratios, particularly from clay rich formations (Godec et al., 2013). 
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Up until now, US shales are often used as the prototype for shale and tight gas resource 

development elsewhere. However, achieving comparable recovery potentials is not feasible, 

particularly from non-marine shale formations, which are typically at greater depths and 

require higher upfront development costs.  

 

A commercial shale play will require a large number of wells to be in operation 

simultaneously, with the ability to replace wells in a short time span. Shale wells have a high 

production rate in the initial years, followed by a rapid decline. Unless new technologies 

emerge that are capable of addressing the rapid decline curve, developing new commercial 

plays will be a considerable challenge, particularly for those at greater depths. Therefore, 

policies need to be considered that will attract all levels of developers and encourage the 

formation of local supply chains and services and decrease the development timeframe of a 

well. Currently, development of a deep shale well (more than 3000m) takes about 4-6 months 

for drilling and completion, as observed in Australia, compared to 1-2 months in the US 

(Stevens et al., 2013). This is mainly due to the widespread collaboration between developers 

and service providers in the US that has led to low development costs.   

 

The fiscal policy regime in the US adapted as shale gas development progressed. In the initial 

period, 100% depreciation of well development costs in the first year was used to incentivise 

for small scale developers (Stevens, 2013). This reduced the investment risks of exploration 

and development and, hence, much well log data became available, enabling better 

identification of “sweet spots”. However, shale gas development has also benefited 

immensely from the private mineral ownership. The added financial incentive of acquiring 

royalties has encouraged private owners to release lands for shale gas developments. This has 
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led to such developments being widespread in the US, simultaneously fostering the growth of 

ancillary services and local supply chains.  

 

5.1 Policy recommendations 

If there are to be shale gas revolutions in Australia and Europe, all levels of developers need 

to be attracted towards shale gas development. The large scale portfolio-type developers with 

cheaper resource recovery assets will not set a high priority towards the development of 

expensive shale gas assets. Small scale developers with limited portfolio options or options 

only in shale gas will be more likely to develop these assets (The Australian Oil & Gas 

Review, 2014). Therefore, the implementation of new policy options is critical to attract 

investment towards shale gas development. This study suggests four main options; 

 

1. Expedited depreciation mechanisms 

2. PRRT and income tax concessions 

3. Play-based concessions and regulations 

4. Government sponsored research studies and acquisition of well log data 

 

 

 

5.1.1 Expedited depreciation mechanisms 

The capital allowance method of providing 100% depreciation will attract more exploration 

investment in emerging shale gas developments (ACOLA, 2012), which will lead to more 

test wells being drilled. However, access to transit and processing infrastructure will also be 

required. Policy should not only be about rapid depreciation, but must also provide other 

incentives, such as third party access to pipeline infrastructure.  
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5.1.2 PRRT and income tax concessions 

As observed from the US shale plays, development plans will depend mainly on the 

prevailing gas prices (Kaiser, 2012). Therefore, investment in dry shale gas developments 

will be highly volatile. In order to create some market stability and to minimise investment 

risks, tax incentives could be awarded to developers for a prescribed duration, thereby 

encouraging investment in exploration over this period. However, such concessions give less 

security compared to rapid depreciation, when the geological challenges are considered. 

 

 

5.1.3 Play-based incentives 

Play-based mechanisms could be considered for a new shale play. This would potentially 

attract new developers to a prospective regional play simultaneously, keeping existing 

developers motivated. In the Canning basin of Western Australia, the shale plays are 

struggling to secure the necessary drilling rigs to initiate developments. Though there is 

substantial dry gas potential, the initial phase of development will only be focused on shale 

oil. However, if a percentage of the funds earned from the oil sales could be spent on the 

development of the necessary infrastructure for a future shale gas play to operate, such as the 

roads and processing facilities, then this would be an important development.  

 

The investment in novel shale plays and the main infrastructure assets could be made tax free 

if the infrastructure is to be shared among new developers. Furthermore, the investment in 

regional shale plays could also be incentivised through the awarding of long term licenses. 

On the other hand, developers who do not deliver on agreed development programs will need 

their exploration licenses reviewed. However, imposition of direct penalties would not be 

advisable. Understanding the challenges of the geology, etc., of some of the plays requires 
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more research to be carried out before commitments can be made on commercial 

development plans. The development of test wells will still be important to identify the sweet 

spots in a candidate shale resource basin and to develop a sufficient database of well logs and 

seismic data. 

 

5.1.4 Government sponsored research studies and test well log data 

As reflected in the US shale experience, the US shale gas revolution was almost 30 years in 

the making. Much research was conducted by independent institutions to develop the viable 

technologies and methodologies required for shale gas recovery (Armour Energy, 2013). 

Though Australia and Europe can inherit these technologies from the US, there will still need 

to be some customising to best suit the local non-marine lithologies. Most of the US shale 

plays are shallow, more brittle and of marine origin. Small-scale developers with limited 

budgets will not be able to spend on the basic research and development activities. If the 

large scale portfolio developers are not interested in the development of new technology, the 

government will need to take the initiative. As an added benefit to the national economy, the 

developed shale gas resources could be made available for domestic consumption.  

 

6.0 Conclusions 

This paper has focussed on an economic impact analysis of potential shale gas developments. 

Unconventional gas development is economically challenging compared to conventional 

recovery, as it utilizes hydraulic fracturing technology. However, the shale gas development 

challenges vary for Australia and Europe. In Europe, it is more to do with the direct 

development costs rather than the fiscal costs, whereas in Australia, it is more about the fiscal 

regime. Europe and Australia can benefit immensely by collective learning of the challenges 

concerning shale gas development. Incentives based on fiscal policy regimes will be needed 
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to develop unconventional gas resources in the Australian context, whereas in the European 

context, the focus should be on reducing the direct development costs through incentivising 

local supply chains and increased activity levels. Energy security implications are also very 

different for Australia and Europe. As described in this study, Europe will need shale gas to 

fulfil primary energy needs, whereas Australia could use it as a swing supply source to 

maintain steady domestic gas prices with increasing LNG exports. Combinations of the 

proposed policy options need to be considered to successfully develop shale resources in 

Australia and Europe.  
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