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Non-Fragile State Estimation for Discrete
Markovian Jumping Neural Networks

Nan Hou, Hongli Dong∗, Zidong Wang, Weijian Ren and Fuad E. Alsaadi

Abstract

In this paper, the non-fragile state estimation problem is investigated for a class of discrete-time neural networks
subject to Markovian jumping parameters and time delays. In terms of a Markov chain, the mode switching
phenomenon at different times is considered in both the parameters and the discrete delays of the neural networks.
To account for the possible gain variations occurring in the implementation, the gain of the estimator is assumed
to be perturbed by multiplicative norm-bounded uncertainties. We aim to design a non-fragile state estimator such
that, in the presence of all admissible gain variations, the estimation error converges to zero asymptotically. By
adopting the Lyapunov-Krasovskii functional and the stochastic analysis theory, sufficient conditions are established
to ensure the existence of the desired state estimator that guarantees the stability of the overall estimation error
dynamics. The explicit expression of such estimators is parameterized by solving a convex optimization problem
via the semi-definite programming method. A numerical simulation example is provided to verify the usefulness
of the proposed methods.

Index Terms

Non-fragile state estimation; estimator gain variations; Markovian jumping; time delays; nonlinearity

I. INTRODUCTION

Research area of theoretical investigation, algorithm development and practical application of recurrent
neural networks (RNNs) has been growing in few recent decades. It is now clear that the internal states of
the RNNs exhibit rich dynamic temporal behavior that can be ideally to be exploited to process arbitrary
sequences of inputs. The popularity of RNNs in solving real-world problems (e.g. pattern recognition
and dynamic optimization) places an increasing demand for dynamic analysis of RNNs. This demand
generates new requirements for the stability synchronization analysis, state estimation and pinning control
for RNNs, which have led to a rich body of literature, see e.g. [3]–[5], [8], [15], [21], [33], [34]. For
example, in [21], the problem of globally asymptotic stability has been investigated for a kind of neural
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networks with discrete and distributed delays via the Lyapunov-Krasovskii stability theory and a linear
matrix inequality (LMI) approach. The robust state estimation problem has been studied in [8] for a class
of uncertain neural networks with time-varying delay.

In the context of neuron state estimation for RNNs, most results obtained so far have been based on the
assumption that the parameter of the estimator can be realized accurately [3], [5], [8]. In fact, due to the
complex and changeable environments (e.g. analogue-to-digital conversion, rounding errors, finite precision
or internal noise), the parameter implemented is not necessarily the same as the ideal value. In other words,
it is very often the case that the implemented parameters undergo certain drafts/variations/fluctuations
which might give rise to the fragility (performance degradation or even instability) of the underlying
systems. As such, the non-fragile issue has attracted a great deal of research attention in the past few
years for dynamical systems, complex networks as well as neural networks, see [2], [10]–[12], [16], [23],
[25] and the references therein. For example, a non-fragile H∞ controller has been designed in [11] for a
class of discrete system with randomly occurring gain variations, distributed delays and channel fadings.
In [23], the non-fragile Kalman filter has been obtained in terms of the solutions to the algebraic Riccati
equations.

As is well known, time delays occur inevitably in the neural networks, and the existence of time delays
could lead to the undesired oscillation and even the instability of the neural network, see e.g. [9], [14], [20],
[21], [37]. In this case, it is of great significance to research into the delayed neural networks and examine
how the delays have an impact on the dynamical behaviors. In [14], mixed time-delays (discrete and
distributed time-delays) have been considered in the neural network, and the problem of state estimation
has been solved via the Lyapunov stability theory and the LMI technology. On the other hand, the nonlinear
activation functions play an important role in the functioning of neural network. There are a variety of
types of activation functions dependent on the nature of the problem to be solved, and a commonly used
one is the sigmoid function. It is worth mentioning that, in [14], the activation functions have been allowed
to be non-monotonic, which are more general than the traditional Lipschitz-type conditions. Because of the
tighter bounds on the activation functions proposed in [14], less conservatism is expected in the stability
analysis of the RNNs.

In practice, neural networks may be subject to network mode switching, which is regulated by a
Markovian chain [13], [14], [19], [22], [24], [37]. For example, a Markov process governed continuous-
time discrete-state homogeneous Markov process has been utilized in [22] to generate the jumping
parameters in the discrete and finite state space, where the dynamics of the neural network can be
stochastically exponentially stable in the mean square and independent of the time delays as long as certain
conditions are met. In [13], both the stability and the synchronization problems have been analyzed for
the discrete-time Markovian jumping neural networks with mixed mode-dependent time-delays, where the
parameters of the neural network are changeable among modes in accordance with the Markovian chain
and the discrete/distributed time-delays are also dependent on the Markovian jumping mode. Nevertheless,
to the best of the authors’ knowledge, the non-fragile state estimation problem for discrete-time Markovian
jumping neural networks with time delays has not been adequately addressed in the literature yet, and the
purpose of this paper is therefore to shorten such a gap.

In this paper, we deal with the non-fragile state estimation problem for a class of discrete-time neural
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networks with Markovian jumping parameters and time-delays. To guarantee that the estimation error
dynamic is asymptotically stable, the Lyapunov functional method and some matrix analysis techniques
are employed to acquire the delay-dependent sufficient conditions. The results deduced are in terms
of LMIs, which can be solved conveniently by the standard simulation software. Note that the gain
uncertainties (multiplicative gain variations) are considered in the estimator of the neural networks with
Markovian jumping parameters and mode-dependent delays. A numerical example is utilized to represent
the usefulness of our research. The main contribution of this paper can be listed as follows. 1) The non-
fragile state estimation problem is, for the first time, investigated for a class of discrete-time Markovian
jumping neural networks with time delays. 2) Intensive stochastic analysis is conducted to obtain sufficient
conditions that guarantee the convergence of the estimation errors against the gain variations as well as
the nonlinear disturbances on the network outputs.

Notation: Throughout this paper, MT means the transpose of M . Rn means the n dimensional Euclidean
space and Rn×m is the set of all n×m real matrices. The set of all non-positive integers is denoted by
Z−. I and 0 denote the identity matrix and zero matrix, respectively. The notation P > 0 means that P
is a real symmetric and positive definite matrix. E{x} and E{x|y} represent, respectively, the expectation
of x and the expectation of x conditional on y. ∥x∥ stands for the Euclidean norm of a vector x. In
symmetric block matrices, the shorthand diag{A1, A2, · · · , An} represents a block diagonal matrix with
diagonal blocks being the matrices A1, · · · , An, and the symbol ∗ denotes an ellipsis for terms induced
by symmetry. If M is a symmetric matrix, λmax(·) and λmin(·) show the maximum eigenvalue and the
minimum eigenvalue. The symbol ⊗ denotes the Kronecker product. Matrices without explicitly stated
dimensions are supposed to be compatible for matrix operations.

II. PROBLEM FORMULATION AND PRELIMINARIES

The Markov chain θ(k) (k ≥ 0) takes values in a finite state space S = {1, 2, . . . , s} with transition
probability matrix Λ = [λij]s×s given by

Prob{θ(k + 1) = j|θ(k) = i} = λij, ∀i, j ∈ S,

where λij ≥ 0 (i, j ∈ S) is the transition probability from i to j and
∑s

j=1 λij = 1, ∀i ∈ S.
In this paper, we consider a discrete-time n-neuron Markovian jumping neural network described by

the following dynamical equation:

x(k + 1) = A(θ(k))x(k) + Ad(θ(k))x(k − d1(θ(k))) +W (θ(k))g(x(k))

+Wd(θ(k))g(x(k − d2(θ(k)))), (1)

y(k) = D(θ(k))x(k) + E(θ(k))h(x(k)), (2)

x(k) = ψ(k), ∀k ∈ Z−

where x(k) = [x1(k), x2(k), · · · , xn(k)]T is the neural state vector; g(x(k)) = [g1(x1(k)), g2(x2(k)),

· · · , gn(xn(k))]T represents the nonlinear activation function with the initial condition g(0) = 0; d1(θ(k))
and d2(θ(k)) denote the discrete time delays; A(θ(k)) = diag {a1(θ(k)), a2(θ(k)), . . . , an(θ(k))} describes
the rate with which the each neuron will reset its potential to the resting state in isolation when disconnected
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from the networks and external inputs; Ad(θ(k)) = diag {ad1(θ(k)), ad2(θ(k)), . . . , adn(θ(k))} is the
parameter matrix of the state time delays; W (θ(k)) = [wij(θ(k))]n×n is the connection weight matrix;
Wd(θ(k)) = [wdij(θ(k))]n×n is the discretely delayed connection weight matrix; y(k) is the output; h(x(k))
is the nonlinear disturbance on the output. ψ(k) is a given initial sequence. The nonlinear vector-valued
function h: Rn → Rn with h(0) = 0 is supposed to be continuous and satisfies the following sector-
bounded condition

[h(x)− h(y)− Φ(x− y)]T [h(x)− h(y)− Ω(x− y)] ≤ 0 (3)

for all x, y ∈ Rn, where Φ and Ω are real matrices of appropriate dimensions.
The nonlinear vector-valued function g(x(k)) satisfies:

∥g(x(k) + δ(k))− g(x(k))∥ ≤ ∥Bδ(k)∥ (4)

where, for all the system modes, B = diag {b1, b2, · · · , bn} > 0 is a known matrix and δ(k) is a vector.
The set S contains s modes of equation (1)-(2), for θ(k) = i, the system matrices of the ith mode are

denoted by Ai, Adi, Wi, Wdi, Di, and the time delays of the ith mode are represented by d1i, d2i.
As mentioned in the introduction, the actual state estimator experiences gain variations with times. To

cope with this problem, we consider a discrete-time state estimator in the following form:

x̂(k + 1) = Aix̂(k) + Adix̂(k − d1i) +Wig(x̂(k)) +Wdig(x̂(k − d2i))

+(Ki +∆Ki)(y(k)−Dix̂(k)− Eih(x̂(k))) (5)

where x̂(k) ∈ Rn is the state of the estimator and Ki is the matrix to be designed. ∆Ki quantifies the
gain variations corresponding to the following norm-bounded multiplicative form:

∆Ki = KiHkF (k)Ek, (6)

where Hk, Ek are known matrices with appropriate dimensions and F (k) is the unknown matrix satisfying
F T (k)F (k) ≤ I .

Remark 1: Due to a variety of reasons such as rounding errors and finite precision, the parameters of the
estimator might not be implemented accurately. In (5) and (6), ∆Ki (i ∈ S) is introduced in a multiplied
form with hope to account the gain variations in a realistic way. We aim to design a state estimator
that can achieve a satisfactory estimation performance even if the gains deviate from the expected values
within an admissible bound.

Letting e(k) = x(k) − x̂(k) and combining (1)-(2) with (5), we can easily obtain the following error
dynamics:

e(k + 1) =Aie(k) + Adie(k − d1i) +Wi(g(x(k))− g(x̂(k))) +Wdi(g(x(k − d2i))− g(x̂(k − d2i)))

− (Ki +∆Ki)Die(k)− (Ki +∆Ki)Ei(h(x(k))− h(x̂(k))).
(7)

Furthermore, denote η(k) =
[
xT (k) eT (k)

]T
, g(η(k)) =

[
gT (x(k)) gT (x(k))− gT (x̂(k))

]T
and h(η(k))

=
[
hT (x(k)) hT (x(k))− hT (x̂(k))

]T
. Combining the estimation error (7) with system (1)-(2), the

augmented system model to be considered is given as follows:

η(k + 1) = Aiη(k) +Adiη(k − d1i) +Wig(η(k)) +Wdig(η(k − d2i))−KiDiη(k)−KiEih(η(k)) (8)
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where
Ki = diag{Ki +∆Ki, Ki +∆Ki}, Ai = diag{Ai, Ai}, Adi = diag{Adi, Adi},

Wdi = diag{Wdi,Wdi}, Ei = diag{0, Ei}, Di = diag{0, Di}, Wi = diag{Wi,Wi}.

Definition 1: The error dynamic (8) is exponentially stable in the mean square if there exist positive
constants µ > 0 and 0 < α < 1 satisfying

E{∥η(k)∥2} ≤ µαk sup
i∈Z−

E{∥ψ(i)∥2}. (9)

The objective of this paper is to design a non-fragile state estimator for neural network (1)-(2). More
specifically, we are interested in finding an estimator described by (5) with allowable gain variations of
the form (6) such that the resulting system (8) is asymptotically stable. By constructing new Lyapunov-
Krasovskii functional, we will derive the sufficient conditions under which (5) becomes an asymptotic
state estimator of neural network (1)-(2) and the gain matrices Ki (i ∈ S) will also be given explicitly.

III. MAIN RESULTS

Before stating our main results, we introduce the following lemmas:
Lemma 1: (Schur Complement) [1] Given constant matrices S1, S2, S3 where S1 = ST

1 and 0 < S2 = ST
2 ,

then S1 + ST
3 S

−1
2 S3 < 0 if and only if[

S1 ST
3

S3 −S2

]
< 0,

[
−S2 S3

ST
3 S1

]
< 0. (10)

Lemma 2: (S-procedure) [1] Let L = LT , M and N be real matrices of appropriate dimensions with
F satisfying F TF ≤ I , then

L+MFN +NTF TMT < 0

if and only if there exists a positive scalar µ such that

L+ µ−1MMT + µNTN < 0 (11)

or, equivalently,

Π =

 L M µNT

MT −µI 0

µN 0 −µI

 < 0

For presentation convenience, we denote d̄1 = max{d1i|i ∈ S}, d1 = min{d1i|i ∈ S}, d̄2 =

max{d2i|i ∈ S}, d2 = min{d2i|i ∈ S}, λ = min{λii|i ∈ S}.
Firstly, we will derive a stability criterion for the discrete time Markovian jump neural network. The

following theorem presents a sufficient condition on the asymptotic stability of (8).
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Theorem 1: Let the parameters Ki (i ∈ S) be known. The augmented system (8) is asymptotically
stable if there exist a set of matrices P1i > 0 (i ∈ S), two matrices Q > 0, R > 0, and positive constant
scalars κ1i, κ2i, κ3i satisfying

Π̃i =



Π̃11i 0 0 0 0 κ3i
(I⊗(Φ+Ω))T

2
AT

i P̄i −DT
i KT

i P̄i

∗ −Q 0 0 0 0 AT
diP̄i

∗ ∗ κ2iB̄
T B̄ 0 0 0 0

∗ ∗ ∗ σ2R− κ1iI 0 0 WT
i P̄i

∗ ∗ ∗ ∗ −R− κ2iI 0 WT
diP̄i

∗ ∗ ∗ ∗ ∗ −κ3iI −ET
i KT

i P̄i

∗ ∗ ∗ ∗ ∗ ∗ −P̄i


< 0 (12)

where

Π̃11i = −Pi + σ1Q+ κ1iB̄
T B̄ − κ3i

I ⊗ (ΦΩ + ΩTΦT )

2
, Pi = diag{P1i , P1i}, P̄i =

s∑
j=1

λijPj,

ξ(k, i) =
[
ηT (k) ηT (k − d1i) ηT (k − d2i) gT (η(k)) gT (η(k − d2i)) hT (η(k))

]T
,

Si =
[
Ai −KiDi Adi 0 Wi Wdi −KiEi

]
, σ1 = (1− λ)(d̄1 − d1) + 1,

σ2 = (1− λ)(d̄2 − d2) + 1.

Proof: : Define the following Lyapunov function:

V (η(k), k, θ(k)) = V1(η(k), k, θ(k)) + V2(η(k), k, θ(k)) + V3(η(k), k, θ(k)) (13)

where

V1(η(k), k, θ(k)) = ηT (k)P (θ(k))η(k),

V2(η(k), k, θ(k)) =
k−1∑

l=k−d1(θ(k))

ηT (l)Qη(l) + (1− λ)

d̄1−1∑
m=d1

k−1∑
l=k−m

ηT (l)Qη(l),

V3(η(k), k, θ(k)) =
k−1∑

l=k−d2(θ(k))

gT (η(l))Rg(η(l)) + (1− λ)

d̄2−1∑
m=d2

k−1∑
l=k−m

gT (η(l))Rg(η(l)),

For i ∈ S, we have

E{V1(η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − V1(η(k), k, i)

=ξT (k, i)ST
i P̄iSiξ(k, i)− ηT (k)Piη(k),

(14)

E{V2(η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − V2(η(k), k, i)

=
N∑
j=1

λij

k∑
l=k+1−d1j

ηT (l)Qη(l) + (1− λ)

d̄1−1∑
m=d1

k∑
l=k+1−m

ηT (l)Qη(l)

−
k−1∑

l=k−d1i

ηT (l)Qη(l)− (1− λ)

d̄1−1∑
m=d1

k−1∑
l=k−m

ηT (l)Qη(l)
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=λii

(
k∑

l=k+1−d1i

ηT (l)Qη(l)−
k−1∑

l=k−d1i

ηT (l)Qη(l)

)
+ (1− λ)(d̄1 − d1)η

T (k)Qη(k)

+
N∑

j=1,j ̸=i

λij

 k∑
l=k+1−d1j

ηT (l)Qη(l)−
k−1∑

l=k−d1i

ηT (l)Qη(l)

− (1− λ)

k−d1∑
l=k−d̄1+1

ηT (l)Qη(l)

=[(1− λ)(d̄1 − d1) + 1]ηT (k)Qη(k)− ηT (k − d1i)Qη(k − d1i)− (1− λ)

k−d1∑
l=k−d̄1+1

ηT (l)Qη(l)

+
N∑

j=1,j ̸=i

λij

 k−1∑
l=k+1−d1j

ηT (l)Qη(l)−
k−1∑

l=k+1−d1i

ηT (l)Qη(l)


≤[(1− λ)(d̄1 − d1) + 1]ηT (k)Qη(k)− ηT (k − d1i)Qη(k − d1i),

(15)

and
E{V3(η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − V3(η(k), k, i)

=
N∑
j=1

λij

k∑
l=k+1−d2j

gT (η(l))Rg(η(l)) + (1− λ)

d̄2−1∑
m=d2

k∑
l=k+1−m

gT (η(l))Rg(η(l))

−
k−1∑

l=k−d2i

gT (η(l))Rg(η(l))− (1− λ)

d̄2−1∑
m=d2

k−1∑
l=k−m

gT (η(l))Rg(η(l))

=λii

(
k∑

l=k+1−d2i

gT (η(l))Rg(η(l))−
k−1∑

l=k−d2i

gT (η(l))Rg(η(l))

)

+ (1− λ)(d̄2 − d2)g
T (η(k))Rg(η(k)) +

N∑
j=1,j ̸=i

λij

 k∑
l=k+1−d2j

gT (η(l))Rg(η(l))

−
k−1∑

l=k−d2i

gT (η(l))Rg(η(l))

)
− (1− λ)

k−d2∑
l=k−d̄2+1

gT (η(l))Rg(η(l))

=[(1− λ)(d̄2 − d2) + 1]gT (η(k))Rg(η(k))− gT (η(k − d2i))Rg(η(k − d2i))

− (1− λ)

k−d2∑
l=k−d̄2+1

gT (η(l))Rg(η(l))

+
N∑

j=1,j ̸=i

λij

 k−1∑
l=k+1−d2j

gT (η(l))Rg(η(l))−
k−1∑

l=k+1−d2i

gT (η(l))Rg(η(l))


≤[(1− λ)(d̄2 − d2) + 1]gT (η(k))Rg(η(k))− gT (η(k − d2i))Rg(η(k − d2i)).

(16)

In terms of (14)-(16), we obtain

E{V (η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − V (η(k), k, i)

≤ξT (k, i)ST
i P̄iSiξ(k, i)− ηT (k)Piη(k) + σ1η

T (k)Qη(k)

− ηT (k − d1i)Qη(k − d1i) + σ2g
T (η(k))Rg(η(k))

− gT (η(k − d2i))Rg(η(k − d2i))

(17)
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Moreover, according to the constraint (4), it can be deduced that

∥g(η(k))∥ ≤ ∥B̄η(k)∥,

∥g(η(k − d2i))∥ ≤ ∥B̄η(k − d2i)∥,

with B̄ = diag{B,B}, and therefore,

κ1ig
T (η(k))g(η(k))− κ1iη

T (k)B̄T B̄η(k) ≤ 0

κ2ig
T (η(k − d2i))g(η(k − d2i))− κ2iη

T (k − d2i)B̄
T B̄η(k − d2i) ≤ 0.

(18)

On the other hand, it follows from (3) that

κ3i[h(η(k))− (I ⊗ Φ)η(k)]T [h(η(k))− (I ⊗ Ω)η(k)] ≤ 0. (19)

Combination of (17), (18) and (19) results in

E{V (η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − V (η(k), k, i)

≤ξT (k, i)ST
i P̄iSiξ(k, i)− ηT (k)Piη(k) + σ1η

T (k)Qη(k)

− ηT (k − d1i)Qη(k − d1i) + σ2g
T (η(k))Rg(η(k))

− gT (η(k − d2i))Rg(η(k − d2i))

− (κ1ig
T (η(k))g(η(k))− κ1iη

T (k)B̄T B̄η(k))

− (κ2ig
T (η(k − d2i))g(η(k − d2i))− κ2iη

T (k − d2i)B̄
T B̄η(k − d2i))

− [κ3ih
T (η(k))h(η(k))− κ3iη

T (k)(I ⊗ (Φ + Ω))Th(η(k)) + κ3iη
T (k)

I ⊗ (ΦΩ + ΩTΦT )

2
η(k)]

=ξT (k, i)Π̃iξ(k, i)

(20)

where Π̃i = ST
i P̄iSi +Πi with

Πi =



Π̃11i 0 0 0 0 κ3i
(I⊗(Φ+Ω))T

2

∗ −Q 0 0 0 0

∗ ∗ κ2iB̄
T B̄ 0 0 0

∗ ∗ ∗ σ2R− κ1iI 0 0

∗ ∗ ∗ ∗ −R− κ2iI 0

∗ ∗ ∗ ∗ ∗ −κ3iI


.

By applying Lemma 1 to (12), we can deduce that Π̃i < 0 (i ∈ S). For a sufficiently small scalar
σ0 > 0, one has

E{V (η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − V (η(k), k, i) + σ0E{∥η(k)∥2} ≤ 0

According to the definition of V (η(k), k, θ(k)), it is derived that

E{V (η(k), k, θ(k))}

≤
{
λmax(Pi) + λmax(Q)

[
d̄1 + (1− λ)

(d̄1 − d1)(d̄1 + d1 − 1)

2

]
+λmax(B̄

TRB̄)

[
d̄2 + (1− λ)

(d̄2 − d2)(d̄2 + d2 − 1)

2

]}
E{∥η(k)∥2} = ρ1E{∥η(k)∥2},

(21)
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and

E{V (η(0), 0, θ(0))} ≤ ρ1 sup
i∈Z−

E{∥ψ(i)∥2}. (22)

For an arbitrary scalar µ > 1, we can deduce that

µk+1E{V (η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − µkV (η(k), k, i)

=µk+1E{V (η(k + 1), k + 1, θ(k + 1))|η(k), θ(k) = i} − µk+1V (η(k), k, i)

+ µk(µ− 1)V (η(k), k, i)

≤δ(µ)µkE{∥η(k)∥2},

(23)

with δ(µ) = −µσ0 + (µ− 1)ρ1.
Summing the two sides of (23) from k = 0 to k = N − 1 leads to

µNE{V (η(N), N, θ(N))} − E{V (η(0), 0, θ(0))} ≤ δ(µ)
N−1∑
k=0

µkE{∥η(k)∥2} (24)

which is equivalent to

µNE{V (η(N), N, θ(N))} ≤ E{V (η(0), 0, θ(0))}+ δ(µ)
N−1∑
k=0

µkE{∥η(k)∥2} (25)

Letting

ρ0 =λmin(Pi) + λmin(Q)

[
d1 + (1− λ)

(d̄1 − d1)(d̄1 + d1 − 1)

2

]
+ λmin(B̄

TRB̄)

[
d2 + (1− λ)

(d̄2 − d2)(d̄2 + d2 − 1)

2

]
,

we have
E{V (η(N), N, θ(N))} ≥ ρ0E{∥η(N)∥2}. (26)

Furthermore, it is easy to prove that there exists µ0 > 1 so that δ(µ0) = −µ0σ0 + (µ0 − 1)ρ1 = 0. On the
basis of (22), (25) and (26), we have

E{∥η(N)∥2} ≤ c0(
1

µ0

)N sup
i∈Z−

E{∥ψ(i)∥2}, c0 =
ρ1
ρ0
, (27)

which indicates the mean square exponential stability, and the proof is now complete.
Now we are in a position to deal with the design problem of the state estimator. The following result

is derived from Theorem 1.
Theorem 2: There exists an asymptotic state estimator such that the augmented system (8) is asymp-

totically stable if there exist two sets of matrices P1i > 0, Xi, positive constant scalars φi(i ∈ S), two
matrices Q > 0, R > 0, and positive constant scalars κ1i, κ2i, κ3i satisfying

Π̃11i 0 0 0 0 κ3i
(I⊗(Φ+Ω))T

2 AT
i P̄i −DT

i X T
i 0 φiDT

i ET
k

∗ −Q 0 0 0 0 AT
diP̄i 0 0

∗ ∗ κ2iB̄
T B̄ 0 0 0 0 0 0

∗ ∗ ∗ σ2R− κ1iI 0 0 WT
i P̄i 0 0

∗ ∗ ∗ ∗ −R− κ2iI 0 WT
diP̄i 0 0

∗ ∗ ∗ ∗ ∗ −κ3iI −ET
i X T

i 0 φiET
i ET

k

∗ ∗ ∗ ∗ ∗ ∗ −P̄i −XiHk 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −φiI 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −φiI


< 0 (28)
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where
Mi = −P̄iK̄iHk, Ni =

[
EkDi 0 0 0 0 EkEi

]
, Xi = diag{Xi, Xi}.

Furthermore, the gain of the estimator is given by Ki = P−1
1i
Xi (i ∈ S).

Proof: From Theorem 1, it is derived that

Π̃i =

[
Πi ST

i P̄i

∗ −P̄i

]
< 0 (29)

Moreover, split Π̃i as follows
Π̃i = Π̄i +∆Πi (30)

with

Π̄i =

[
Πi S̄T

i P̄i

∗ −P̄i

]
, ∆Πi =

[
0 S̃T

i P̄i

∗ 0

]
, S̄i =

[
Ai − K̄iDi Adi 0 Wi Wdi −K̄iEi

]
,

S̃i =
[
−K̃iDi 0 0 0 0 −K̃iEi

]
, K̄i = diag{Ki, Ki}, K̃i = diag{∆Ki,∆Ki},

Hk = diag{Hk, Hk}, Ek = diag{Ek, Ek}, F(k) = diag{F (k), F (k)}, K̃i = K̄iHkF(k)Ek.

Noting that P̄iS̃i = MiF(k)Ni and denoting M̃i = [0 MT
i ]

T , Ñi = [Ni 0], we have

Π̃i = Π̄i + M̃iF(k)Ñi + Ñ T
i FT (k)M̃T

i < 0. (31)

According to Lemma 2, (31) is equivalent to

Π̄i + φ−1
i M̃iM̃i

T
+ φ−1

i (φiÑi)
T (φiÑi) < 0. (32)

Combine (30) and (32) with the usage of Lemma 1, we can see that the inequality (29) is feasible if
Πi S̄T

i P̄i 0 φiN T
i

∗ −P̄i Mi 0

∗ ∗ −φiI 0

∗ ∗ ∗ −φiI

 < 0 (33)

holds. Letting Xi = P̄iK̄i(i ∈ S), it is easy to see that (33) is equivalent to (28) and the proof is now
complete.

Remark 2: In Theorem 2, sufficient conditions are presented that ensure the dynamic system to be
asymptotically stable. It is noted that all the system parameters, the delay information, the bounds on the
gain variations as well as the jumping transition probabilities are all reflected in the main results. It is
shown that the feasibility of the non-fragile state estimator design problem can be readily checked by the
solvability of inequality (28). In the next section, a numerical simulation will be utilized to verify the
proposed method.
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IV. NUMERICAL EXAMPLE

In this section, we present an example to demonstrate the approach addressed. Consider a three-neuron
neural network (1)-(2) with the following parameters:

d1(1) = 2, d1(2) = 6, d2(1) = 1, d2(2) = 5, A(1) = diag{0.4, 0.3, 0.3}, A(2) = diag{0.5, 0.2,−0.3},

Ad(1) = diag{0.05, 0.01, 0.04}, Ad(2) = diag{0.03, 0.02,−0.01}, B = diag{0.2, 0.3, 0.1},

W (1) =

 0.2 0.2 −0.1

0 0.4 0.3

−0.3 0 0.2

 , W (2) =

 0 −0.2 0.1

0.1 0.2 0.3

0.1 −0.1 0.2

 , Wd(1) =

 0.2 0 0.1

0.1 0.2 0

0.1 0 0.1

 ,
Wd(2) =

 0.3 0.1 −0.1

0.1 0.2 0

0.1 0.2 0.2

 , D(1) =

[
1 0.8 0.7

0.5 −0.7 0.9

]
, D(2) =

[
−0.6 0.9 0.6

0.8 1 0.8

]
,

E(1) =

[
0.4 0.2 0.1

0 0.3 0.4

]
, E(2) =

[
0.2 0 0.1

0.4 0.4 0.3

]
, Hk = diag{1, 1}, Ek =

[
0.4 0.4

0.4 0.4

]
,

Φ =

[
−0.29 0.29

0 0.6

]
, Ω =

[
−0.6 0.29

0 0.4

]
, Λ =

[
0.6 0.4

0.5 0.5

]
.

Take the activation functions as follows:

g1(x1(k)) = −0.2tanh(x1(k)), g2(x2(k)) = 0.3tanh(x2(k)), g3(x3(k)) = 0.1tanh(x3(k)).

in which xl(k) (l = 1, 2, 3) represents the l-th element of the system state x(k). Meanwhile, the nonlinear
vector-valued function h(x(k)) is chosen as

h(x(k)) =

 −0.6x1(k) + tanh(0.3x2(k)) + 0.3x3(k)

0.6x2(k)− tanh(0.2x3(k))

tanh(0.3x1(k)) + 0.3x2(k)

 ,
With the above parameters, by using the Matlab LMI Toolbox, we solve the LMIs (28) and obtain the

feasible solution as follows:

P11 =

 2.2901 0.2480 0.3279

0.2480 2.1991 0.4568

0.3279 0.4568 0.7215

 , P12 =

 0.5058 0.6416 −0.1061

0.6416 3.4805 0.5923

−0.1061 0.5923 2.5076

 ,

Q =



0.3130 0.8064 0.1840 −0.0020 −0.0003 −0.0010

0.8064 4.1512 0.8091 −0.0040 −0.0018 −0.0012

0.1840 0.8091 1.2084 0.0355 0.0115 0.0075

−0.0020 −0.0040 0.0355 0.3631 0.5922 0.1459

−0.0003 −0.0018 0.0115 0.5922 4.1258 1.1988

−0.0010 −0.0012 0.0075 0.1459 1.1988 0.7853


,
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R =



1.1090 0.1122 −0.1198 −0.0014 −0.0007 −0.0012

0.1122 1.0793 0.1618 0.0024 0.0029 0.0012

−0.1198 0.1618 0.6710 −0.0006 0.0004 −0.0009

−0.0014 0.0024 −0.0006 1.0969 0.0705 −0.0692

−0.0007 0.0029 0.0004 0.0705 1.0937 0.0892

−0.0012 0.0012 −0.0009 −0.0692 0.0892 0.8489


,

X1 =

 3.5552 5.4237

3.1330 3.3232

3.7760 4.4454

 , X2 =

 −0.1555 0.5270

−0.1802 0.7601

−1.2481 −0.3058

 ,
φ1 = 1.9261, φ2 = 4.6476, κ11 = 4.7167, κ21 = 7.4847, κ31 = 5.4295,

κ12 = 4.1119, κ22 = 7.5078, κ32 = 2.7628.

It follows from Theorem 2 that (5) becomes an asymptotic state estimator of the neural network (1)-(2)
with the given parameters, and the estimator gain matrices are calculated as

K1 =

 0.0085 0.0159

0.0037 0.0023

0.0461 0.0529

 , K2 =

 −0.0628 0.0945

0.0160 0.0061

−0.0562 −0.0096

 .
Next, a simulation is given to further verify the stability of neural network (1)-(2) and the performance of
the estimator (5). Figure 1 represents the switching of the system modes. Figure 2 depicts the estimation
error with the initial condition x(k) = [0.26 −0.2 0.1]T (k ∈ [−5, 0]). Figure 3 - Figure 5 show the states
of the neural network x1(k), x2(k), x3(k) and the states of the estimator x̂1(k), x̂2(k), x̂3(k), respectively,
from which we can see that the non-fragile estimator is effective and has a relatively good estimation
performance.

V. CONCLUSIONS

In this paper, the non-fragile state estimation problem has been investigated for a class of discrete-
time neural networks with Markovian parameters and mode-dependent time-delays. Considering that the
dynamics of the estimation error needs to be globally stable in the mean square, an asymptotic state
estimator has been derived to estimate the neuron states with available output measurements. With the
Lyapunov-Krasovskii functional, the LMI based sufficient conditions have been established to ensure the
existence of the asymptotic state estimator. The gain of the estimator has been designed in terms of
the solution to an LMI. A simulation example has been utilized to represent the effectiveness of the
derived method. It should be pointed out that the main results shown in this paper can be extended to the
filter design and the control applications for other discrete-time delayed systems (e.g. genetic regulatory
networks). In addition, the methods here could be further employed to the non-fragile state estimation
problems for discrete neural networks with more complicated network-induced phenomena such as fading
measurements [26], [29], [31], [32], randomly occurring faults [27] and randomly occurring incomplete
measurements [6], [7], [17], [18], [28], [30], [35], [36], [38].
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Fig. 2: Estimation errors
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