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Abstract 

Changes in the lead-time can lead to supply chain inefficiencies and risks. In this paper, we investigate the 
effects of lead-time disturbances on the system’s output responses of a production and inventory control model.  
In the adaption process of the control system for lead-time disturbance analysis, the resulting model becomes 
nonlinear. Hence nonlinear control theory in combination with simulation is used to analyse the impact of lead-
time changes on the transient and steady state responses of order rate, inventory and work in process. Assuming 
constant customer demand, small perturbation theory is applied to linearise the model and to find the transfer 
functions relating the system’s outputs to the lead-time input. 
We find that the order rate, inventory and work in process transfer functions are input-dependent. In order words, 
the output responses depend on the input type, amplitude and direction of changes in the lead-time. When lead-
time increases, the system has a relatively slow transient response and, as expected, work in process inventory 
levels increase and order rates are higher. However, step decreases in the lead-time can cause significant 
underdamped dynamics in the system. 
This work demonstrates that, although lead-time reduction is associated with service level improvement, 
increased flexibility and cost reductions, its implementation has to be carefully planned since a quick time 
compression may lead to undesirable oscillations in the supply chain system. In contrast, increased lead-times, 
associated say with a disturbance, yield slow recovery requiring adjustment of control parameters to increase 
resilience. 
 
Keywords: lead-time disturbances, inventory and production control models, nonlinear systems 
 
1. Introduction 
The main goal of supply chain managers is to match customer demand with supply effectively, 
in order to minimise stockout rate as well as to reduce operating costs. Production and 
inventory control plays an important role in balancing supply chain-wide operational costs 
and customer service level. However, this goal is made more challenging given the 
uncertainties originated from the demand side, the supply side, manufacturing processes and 
control systems (Mason-Jones and Towill, 1998; Christopher and Peck, 2004). 
 
Disturbances and uncertainties in production and supply lead-times are reported to be the 
main sources of supply chain risk (Colicchia et al., 2010). Notwithstanding the relevance of 
lead-time disturbances, previous research using control theory has focused on understanding 
the impact of demand uncertainty and on improving demand forecasting methods. Lead-time 
fluctuations can lead to performance degradation and increased production costs, just as 
demand uncertainties can (Dolgui et al., 2013).  
 
Spiegler et al. (2012) proposed a methodology to assess supply chain resilience to 
disturbances caused by changes in demand. They used a well-known production and 
inventory control model: the Automatic Pipeline Inventory and Order Based Production 
Control System (APIOBPCS) (John et al, 1994). Using the same model, in this paper we 
investigate the impact of lead-time disturbances on the system’s responses. Lead-time 
disturbances can be triggered by variations in internal manufacturing process time or external 
supplier lead-time. We initially assume constant demand/consumption to ease the modelling 
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process but we changes in lead-time coupled with changes in demand are suggested for future 
research. 
 
2. Literature Review 
Without strong inventory management strategies, companies will fail to compete on a global 
scale (Schwartz and Rivera, 2010). In order to address production and inventory control 
problems, many researchers (e.g. Towill, 1982; John et al., 1994; Disney and Towill, 2005; 
Dejonckheere, et al., 2003; Aggelogiannaki and Sarimveis, 2008) have applied classical 
control engineering techniques such as block diagram development, transfer function 
formulation and Liénard–Chipart or Routh–Hurwitz stability analysis for discrete- or 
continuous-time systems, respectively. More recently, nonlinear control theory has been used 
as an alternative to simulation to investigate the effects of nonlinearities in production and 
inventory control systems (Jeong et al., 2000; Wang and Disney, 2012; Wang et al., 2015; 
Spiegler et al., 2015a, Spiegler et al., 2015b).  
 
These works have generated knowledge to help supply chain designers to determine 
replenishment rules and policies that optimise order variances and stockouts across the supply 
chain system. However, focus has been given on the analysis of disturbances caused by the 
demand side. Although Dolgui et al. (2013), in their literature review paper on supply 
planning and inventory control under lead-time uncertainty, have pointed out a small number 
of articles using analytical modelling techniques to investigate the impact of stochastic lead-
time on supply chain performance, we have not found any work applying control theory to 
examine the impact of even deterministic disturbances, such as step responses, triggered by 
sudden changes in lead-time. Step responses provide great insights into the characteristics of 
system dynamics, including peak response and settling time. Moreover, broader and deeper 
picture of the system dynamics can be obtained from determining the frequency-domain 
descriptors (Tangirala, 2015). 
 
The literature regarding the application of control theory in supply chain management 
recognises the importance of estimating lead-time with accuracy since a mismatch between 
actual and estimated lead-times may lead to an inventory drift (Towill et al., 1997; Disney and 
Towill, 2005; Aggelogiannaki and Sarimveis, 2008; Schwartz and Rivera, 2010; Garcia et al., 
2012). These works have made efforts to develop alternative production and inventory control 
models or to propose controllers with adaptive capabilities for predicting lead-time, 
generating new decision replenishment policies and tracking lead-time changes online. 
 
In this work, we investigate the impact lead-time disturbances have on system response by 
assuming constant demand. We use and adapt the APIOBPCS model to predict the transient 
and steady state responses of order rate, inventory and work in process. 
 
3. Model Formulation 
3.1 The original APIOBPCS model 
We chose to analyse the APIOBPCS model (John et al., 1994) since it is very similar to the 
classical discrete order-up-to (OUT) policy inventory control system (Disney and Towill, 
2005).  This model belongs to a family of decision support systems, the IOBPCS family 
(Towill, 1982), which takes into account a demand forecasting method, production and 
distribution lead-times, an inventory feedback loop, a work in process feedback loop and 
target inventory levels. 
 
The production and inventory control model in Figure 1a is characterised by three control 
parameters Ta, Ti and Tw and a physical parameter, the actual lead-time Tp. The expected lead-
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time  !! is assumed to be equal to the actual lead-time in this model. In the demand policy, 
the value of the current demand or consumption CONS is exponentially smoothed. The 
parameter Ta represents the time to average demand/consumption, creating AVCON. The 
exponential smoothing constant is given by α = !

!!!!/!!
, where Δt is the sample time interval.  

 
The inventory and work in process policies are characterised by feedback loops. The 
inventory control is concerned with the rate (1/ Ti) at which a deficit in inventory is recovered. 
This policy is responsible for reducing the discrepancy between desired inventory DINV and 
actual inventory AINV. The pipeline policy considers the actual work in process WIP and the 
time Tw it takes to recover to target (desired) levels DWIP. While the DINV is a constant value, 
the DWIP is function of !! and AVCON. Finally the order (rate) ORATE placed onto the 
supplier will take into account AVCON, the fraction of errors in inventory (DINV-AINV)/ Ti 
and work in process (DWIP-WIP)/ Tw. The delay between ORATE and completion rate 
COMRATE is represented by a first order delay of Tp time units. 
 
3.2 Adapting APIOBPCS for lead-time input response analysis 
The first step taken to adapt the APIOBPCS for the analysis of lead-time disturbances was to 
make CONS constant (Figure 1b). Given a constant CONS, the demand-forecasting element is 
no longer needed to predict AVCON. In this way the block containing the smoothing constant 
Ta was removed. 
 
The second step was to detach Tp from the block that represents the first order delay and to 
predict !!. In the detachment process of Tp a new negative feedback loop from COMRATE to 
ORATE has been established. Moreover, a division equation between WIP and Tp was 
introduced. To estimate !! we introduced a new parameter TL that represents the time to 
average lead-time using its past values. Exponential smoothing was chosen to ease calculation. 
More sophisticated methods for lead-time estimation can be found in Towill et al. (1997); 
Aggelogiannaki and Sarimveis (2008); Schwartz and Rivera (2010); Garcia et al. (2012). 
 
Figure 1c represents the resulting model for lead-time disturbances analysis. This model is 
nonlinear due to the presence of nonlinear algebraic differential equations, which in the block 
diagram are represented by the symbol . To further consider this model analytically, 
linearisation techniques based on Taylor series approximation are applied. 
 
3.3 Linearisation through small perturbation theory 
The system in Figure 1c can be described by the nonlinear differential equations (1-3), where 
!"#(!), !"#$(!)!and !!(!) are the state variables ! = !(!,!) of the system and !!(!) is the 
system input u.  
   (1) 

   (2) 

  (3) 

 
The outputs ! = !(!,!) we are interested in analysing are the comrate(t), orate(t), wip(t) and 
ainv(t).  
  (4) 
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  (5) 

  (6) 

  (7) 

 
The mathematical model given by Equations 1-7 is nonlinear due to the presence of nonlinear 
algebraic differential equations given by the division between the state variable wip(t) and the 
input Tp(t). We can linearise the overall model about a nominal operating state space x* and 
for a given input u* by using small perturbation theory with Taylor series expansion. The 
assumption of this linearisation approach is that departures from a steady state point are small 
enough to produce transfer function coefficients. Hence, by assuming small amplitude of the 
excitation signal, we can replace the nonlinear differential equations by a set of linearised 
differential equation with coefficients dependent upon the steady state operating point. 
 
The first-order Taylor Series approximation of the nonlinear state derivatives leads to the 
following linearised function: 
   (8) 

                                      (9) 

 
where the state perturbations Δ! = ! − !∗ and Δ! = ! − !∗ , and the input perturbation 
Δ! = ! − !∗  are sufficiently small. Coefficients A, B, C, D can be found through the 
following partial derivatives: 
 

      (10) 

 
The equilibrium or resting points (x*,u*) can be found by considering a step change in lead-
time. In this way, the input can be defined as a function of an initial value (Tpi) and a step 
change (STEP). Hence, the final lead-time value Tp

* = Tpi+STEP will be the steady state 
operating point for the input. To find the equilibrium point for the state variables x* we solve 
the system of equations where all state derivatives are equal to zero. In this way the equation’s 
equilibrium point for a generic input Tp

* is: 
 

       (11) 

  (12) 

   (13) 
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a) Original APIOBPCS 

 

 
b) Making consumption constant 

 

 
c) Inserting lead-time as input and determining expected lead-time 

 

 
d) Linearised model 

 
Figure 1. Adapting and linearising APIOBPCS for lead-time disturbance analysis 
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Finding the partial derivatives as given by Equation 10 and replacing them with the steady 
state points of Equations 11-13 will result in Equation 14, which can then be converted back 
to a block diagram representation as in Figure 1d).  
 
 

 (14) 

 
Note that the state and outputs responses are input-dependent since they depend on the lead-
time equilibrium state. When comparing Figures 1c) and 1d), we can see that the product 
functions ( ) are replaced by summing comparators ( ) after linearisation. 
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This result is reasonable since without demand there will be no changes in the inventory 
levels and order rates will be zero. 
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Another important point is that for ORATE and COMRATE transfer functions, the constant 
term CONS is being added to the transient term. For dynamic analysis only the transient term 
(second part of Equations 15 and 18) are needed but the constant term is necessary for 
determining the input- output static characteristic functions.  
 
4.2 The input-output static characteristic function 
The input-output static characteristic function is defined to be the equilibrium point from the 
system as a function of the value of a constant input Tp to the system. When the reference 
input signal is a constant (step input), the output signal (position) is a constant in steady-state. 
Hence the Final Value Theorem of the Laplace transforms will be used to determine the 
steady-state values: 

       (19) 

By applying Equation 19 to Equations 15-18, we can determine the steady state values for the 
responses given a step input on Tp. The steady state values for AINV and WIP were already 
calculated in Equations 11 and 12 when determining the points where the state derivatives of 
the system equal zero. We find that the steady state values for ORATE and COMRATE are 
equal to the CONS regardless the value of Tp. Hence, the only steady state response which is 
input-dependent is WIP since its final value is equal to Tp

*. CONS. 
  
The input-dependent transfer functions can be used to determine the transient behaviour of the 
system around a pre-specified equilibrium. When combined with the input-output static 
characteristic functions, it is possible to assess other properties about the nonlinear system, 
such as whether the system has asymptotically stable equilibrium points. 
 
4.3 Root locus analysis 
The denominator of the transient part of Equations 15-18 gives the characteristic equation of 
the system:  

               

(20) 

We note that Equation 20 is very similar to the original APIOBPCS characteristic equation, 
where Ta is analogous to TL in the first part of the equation. In the second part of Equation 19, 
the only difference is that while in the APIOBPCS the lead-time Tp is constant, in our model 
the characteristic equation changes depending on the final value of the input, Tp

*. In this way 
the system’s natural frequency (ωn) and damping ratio (ζ) also depend on Tp

* and can be 
determined as: 
 
       (21) 
  (22) 
 
Equations 21 and 22 demonstrate that when there is a step increase in lead-time (Tp

* 
increases), the system will have a relatively slow transient response given by increasing 
values of ζ  potentially making the system overdamped. On the other hand, when Tp
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decreases (caused by a step decrease in lead-time) underdamped dynamics in the system may 
occur. Hence, it is recommended to set the parameters Ti and Tw as function of Tp, so that they 
are adapted as lead-time changes. 
 
To verify the system’s stability we will use the following theorems of Liapunov on the 
stability of linearised systems (Popov, 1961): 
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1. If all the roots of the characteristic equation of a linearised system have negative real 

parts, both the nonlinear and the linearised will be asymptotically stable. 
2. If the characteristic equation of a linearised system has at least one root with positive 

real part, both the nonlinear and linearised systems will be unstable. 
3. In there is at least one purely imaginary root the behaviour of the nonlinear system 

cannot be always be determined by its linearised equations. 
 

Taking that in consideration, we calculated the roots of the characteristic equation which are: 
 
 
       (23) 

 
  (24) 

The stability analysis becomes very complex since the values of the roots change with the 
input. According to Equation 23, positive values of TL are needed for system stability. On the 
other hand, Equation 24 demonstrates that as Tp

* increases the unstable region also increases. 
The value Tw=- Tp

* should be avoided since purely imaginary roots will be produced. Hence, 
it is advisable to adjust the values of the control parameters according to changes in the lead-
time. 
 
4.4 Simulation results 
In this section, we will discuss the accuracy of the linearised model in comparison with the 
nonlinear model and illustrate the asymmetrical behaviour of the system responses since they 
are input-dependent. 
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we found that both models yield exactly the same output responses for any chosen parameters 
lying within the stable region. Although the linearised model is only valid for step input 
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for ORATE and WIP when CONS=10 units. When the amplitude of lead-time is low (Figure 
2a) the linearised model is more accurate than when lead-time amplitude is high (Figure 2b). 
Interestingly, the WIP and AINV responses in the nonlinear model never recover target 
average values and this finding needs further investigation.   
 
Figure 3 illustrates the asymmetrical behaviour of the nonlinear system. Both Figures 3a and 
3b illustrate the output responses of WIP, AINV, ORATE and COMRATE for a step of 3 units 
change in lead-time, but the former picture displays a step increase while the latter, a step 
decrease. This result confirms the analysis made in the previous sections and it calls for 
attentions to the dangers of time compression without proper planning. When lead-time 
increases, the system has a relatively slow transient response. However, step decreases in the 
lead-time can cause significant underdamped dynamics in the system. 
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a) Low amplitude (mean Tp=10, amp=2) 

 
b) High amplitude (mean Tp=10, amp=5) 

Figure 2. Sinusoidal responses when assuming the equilibrium point as average lead-time 

 
a) Step increase in lead-time 

 
b) Step decrease in lead-time 

Figure 3. Effects of increasing/decreasing lead-time without re-adjusting control parameters 
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5. Conclusion and future research 
In this paper we investigated the effects of lead-time disturbances on the system’s output 
responses of a production and inventory control model. We adapted the APIOBPCS model so 
that deterministic disturbances on lead-time could be generated assuming a constant demand. 
Since the adapted model is intrinsically nonlinear, we used a linearisation technique to 
analytically evaluate the impact of lead-time changes on the system’s transient and steady 
state responses. 
 
We found that the transient response of the order rate, inventory and work in process are 
input-dependent as well as the steady state value of work in process. Because the output 
responses depend on the input type, amplitude and direction of changes in the lead-time, the 
system’s characteristics, such as natural frequency, damping ratio and stability, are not fixed 
making the system design more complex. In order to overcome this problem, we 
recommended that the control parameters (Ti and Tw) should be time-varying and dependent 
on Tp . John et al. (1994) suggested that the “best design variables” are when Tw =2Tp and Ti = 
Tp. Taking into consideration these recommendations, we present the model in Figure 4 where 
we introduce intentional nonlinearities so that the control parameters are adaptive in relation 
to the lead-time and to the gain parameters i and w. The latter represent the weight given in 
the calculation of the control parameter Ti and Tw, respectively. Hence, if we want to design 
the system with ‘fast’ responses, the values of i and w should be small and for ‘slow’ 
responses they should be large. According to John et al. (1994)’s nominal design i should be 
equal to 1 and w equal to 2. 
 
The current analysis complements the previous work of Spiegler et al. (2012). In the next 
steps of research the more realistic setting of changes in demand coupled by changes in lead 
times is to be considered. Also for future research we intend to analyse stochastic lead-time 
disturbances and their impact on supply chain resilience. For this, the ripple effect of lead-
time disturbance impacting upstream and downstream the supply chain should be investigated. 
Moreover, we want to investigate the efficacy of deliberately introducing nonlinearities in 
production and inventory control models for better system design, such as the case of the 
model in Figure 4. 
 

 
Figure 4. Proposed model for further investigation 

 
This work demonstrated that the implementation of lead-time reduction has to be carefully 
planned and the system may need re-designing so that undesirable oscillations in the supply 
chain system are avoided. 
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