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Abstract. The evolvable hardware technique is based on evolving the functionality and connectivity of a rectangular array of
logic cells in addition to the layout of this array. The evolutionary process contains two main steps. Initially the genome
fitness in given by the percentage of output bits, which are correct. Once 100% functional circuits have been evolved, the
number of gates actually used in the circuit is taken into account in the fitness function. This allows us to evolve circuit with
100% functionality and minimise the number of active gates in circuit structure. We perform a number of experiments to
investigate the behaviour of the second fitness function and the circuit layout during evolution. We find that the gate usage is
linearly related to the total number of gates in the chromosome.

1 Introduction

Evolvable Hardware (EHW) approach is a recently developed technique to synthesise the electronic circuits using
evolutionary algorithms. A central idea of this approach is to represent each possible electronic circuit as chromosome in
an evolutionary process in which the standard genetic operators are carried out [1, 2, 3, 4, 5].

In this paper, we evolve combinational logic circuits. The EHW approach can be easily extended for the
combinational multiple-valued logic circuits. This approach is an extension of EHW method proposed in [2, 6, 7] for
binary circuits. A similar approach to the design multiple-valued circuit has been discussed in [8, 9]. Analysis of the
EHW approach for both binary and multiple-valued functions shows us that the GA performance strongly depends on the
number of rows and columns and the internal connectivity [9, 7]. In subsequent discussion we define the circuit geometry
to mean the layout of the rectangular array of logic cells. It is characterised by just two numbers: the number of rows and
columns in the cellular array. The degree of connectivity in the circuit called levels-back parameter defines how many
columns of cells to the left of current column can have their outputs connected to the inputs of the current cell, this also
applies to the final circuit outputs. The choice of suitable circuit geometry is very complicated task and is intimately
linked the complexity of function implemented. In this paper we investigate the possibility of evolving the circuit
geometry at the same time as trying to evolve 100% functional circuits. In this scheme, mutation is carried out in two
ways. First, we can mutate genes associated with a circuit in a fixed geometry, and secondly, we can by mutation choose
the circuit geometry. Often the objective in digital evolution behaviour is to merely produce a 100% functionally correct
circuit. So, that the evolutionary process is terminated at this point. In this paper we continue to evolve the circuit beyond
the point of 100% correctness by modifying the fitness function to include a measure of circuit’s efficiency.

2 The Evolutionary Algorithm

In order to evolve combinational logic circuits, an elitist evolutionary algorithm using tournament selection with elitism
and uniform crossover has been implemented, these details are given in the following subsections.

2.1 Encoding

There are two aspects required to define any combinational logic network. The first is the cell-level functionality and the
second is the inter-connectivity of the cells between the circuit inputs and outputs. An encoding of chromosome was
adopted that satisfies these two aspects.

A combinational logic circuit is represented as a rectangular array of logic gates (Fig. 1). Each logic cell in this array
is uncommitted and can be removed from the network if they prove to be redundant. The inputs of combinational
network such as logical constants, primary and inverted inputs, as well as the outputs of logic cells are labelled with an
individual integer. In the work reported in this paper we define each logic function to be chosen from the set of functions
AND, OR, NOT, EXOR with primary and inverted inputs or function defined behaviour of multiplexer. Each input of a
logic gate may be connected to the output of a logic gate provided it is to the left of the cell, a logical constant, a primary
or an inverted primary inputs.

The chromosome is represented by 3-level structure: 1) Geometry 2) Circuit 3) Gate (cell) structures. On the first level
" the global characteristics of the circuit are defined. There
& Outputs

Inputs C|rcu1t connecti
"0" l are levels-back parameter and the number of rows and
columns. The circuit geometry is changed in this level.

# columns @ - i On the second level the array of cells are created and the
# 1ows ﬁ ] IjD‘ circuit outputs are determined. Finally the third level

Circuit size Gate structure

represents the structure of each cell in the circuit. The
Cirouit Outputs G‘ﬁﬁmﬁ data describing the cell contains the number of inputs,
Gate connectivity the array of inputs and the functional gene. The number
of inputs in the cell depends on the type of cell and is
Fig. 1. Schematic of chromosome structure defined when the value of functional gene is known.
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2.2 Initialisation procedure

The initialisation procedure contains several steps: 1) Define circuit geometry of chromosomes in population; 2) Initialise
the genotype of cells; 3) Generate the circuit outputs for each of the chromosome. The first step is constrained to observe
the maximum number of rows and columns in the chromosome. During the second and third steps the initialisation of
cell inputs and circuit outputs is performed according to the levels-back constraint and to the type of variables which are
able to be present throughout all circuit. Thus if the logic constants are allowed as input connections throughout the
circuit, then during initialisation procedure the inputs of gates can be chosen from the set of inputs constrained by levels-
back or from the set of logical constants. The same procedure is true for the primary and inverted primary inputs.

2.3 Mutation

We use two types of mutation: parameter circuit mutation and geometry mutation. The parameter circuit mutation allows
us to change the type of genes in chromosome excluding the number of columns and rows. The geometry mutation
changes the numbers of rows or columns in the rectangular array. The maximum numbers of rows and columns are
predefined. In both cases the mutation rate has to be chosen carefully, since it can dramatically affect on the GA
performance.

PARAMETER CIRCUIT MUTATION: The parameter circuit mutation allows us to change the following three
parameters of the circuit: 1) Cell input 2) Cell type and 3) Circuit output. Each of these parameters is considered as an
elementary unit of the genotype. The parameter circuit mutation rate defines how many genes in the population are
involved in mutation. The chromosome contains 3 different types of genes.

GEOMETRY MUTATION: Geometry mutation allows us to change the number of rows and columns in chromosome.
Geometry mutation can be applied to each chromosome with the geometry mutation probability. The number of rows and
columns are treated as an elementary unit of the genotype. Each such unit can be changed with a probability 0.5. The
geometry mutation consists of the two main steps: 1) Gene mutation 2) Repair algorithm. On the first step the new
number of columns or rows of the chromosome is randomly defined. This number cannot exceed the maximum number
of columns or rows. On the second step the repair algorithm is applied to ensure that a chromosome with new geometry
represents a valid genotype.

Let us consider geometry mutation process for chromosome with 3x3 circuit geometry. Let N jums and N,,,s be the
number of columns and rows of chromosome assigned to be mutated and new_gene is the new value of mutated genes,
which is synthesised randomly. The gene mutation procedure is the following:

1. Define the circuit mutation rate Py,.
A. Chromosome: 3x4 B. Chromosome: 3x2  C. Chromosome: 4x3 5 - Geperate random number for each chromosome,

é 5.),  randl€[0,1].
=3 3. If (randl < P,,) the geometry mutation is
Y2 }’z applied to the currentg chromosome

=z = 4. Generate random number rand2¢ [0 l].
S. If (rand2 < 0.5) the number of columns in
heck f ﬂ chromosome is chosen to be mutated and the new
777 Ccheck for 94| |1 , -
¥ /A correctness number of columns (new_gene) is generated from
g the range [1, ™ .
° 5, initialise new El hg [ iveml"}""f ] ] dored g
7 - gate se the number of rows is considered as mutate
5. B4 =

gene and the new number of rows (new_gene) is

generated from the range [1, N% 1.

When new_gene is defined, the geometry mutation is performed in the following manner. Let us consider the case
when the mutated gene is the number of columns. In this case the new circuit structures, shown in Fig. 2 (A and B), can
be synthesised. If (new_gene > N gjumns) We have to add new columns in the chromosome representation (Fig. 2 (A)). The
gates in new columns are initialised using initialisation procedure. It is possible, however, that the circuit output disobeys
the levels-back constraint. Thus, the chromosome may need to be repaired. The repair algorithm checks whether the
circuit outputs obey the levels-back constraint, and whether all the cell inputs are valid. If the circuit output does not
satisfy this condition a new circuit output is initialised. If (new_gene < N oumns) We have to remove some columns in the
circuit structure (Fig. 2 (B)). After the new structure is obtained, a repair algorithm is applied to the circuit output,
because the circuit output can refer to a gate which no longer exists in the circuit. In the case when the mutated gene is
the number of rows, the structures C and D given in Fig. 2 can be synthesised. If (new_gene > Ny,) the new rows of
gates are added to the circuit structure (Fig. 2 (C)). Again, these gates are initialised. There is no need to apply repair
algorithm to the circuit outputs in this case because all connections are not changed and the circuit outputs will still refer
to the correct logic cells in the circuit structure. If (new_gene < N,oys) some rows are removed from the circuit structure
(Fig. 2 (D)). In this case the inputs of the remaining gates as well as circuit outputs can refer to gates which are no longer
present. The repair algorithm has to be applied to the each genotype of the gate and to the circuit outputs.
RECOMBINATION: Recombination is implemented with uniform crossover. The whole logic cell is considered as a
gene. Two cells are chosen from two chromosomes and swapped. The number of chromosomes selected for breeding is
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ig. 2. The geometry mutation process (3x3 circuit geometry)
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defined by the crossover rate, which is carried out on a cellular level. In order to preserve the interconnection conditions,
the repair algorithm checks the parameters of logic gates for correctness. When two chromosomes with different
geometries undergo crossover it is very likely that merely swapping genes to produce the offspring, will generate invalid
genomes. These would have to be repaired (randomly initialised), and this would introduce a considerable amount of
randomness into the recombination process. Thus, the selection of correct crossover rate and its type is very important.
FITNESS FUNCTION: The evaluation process consists of the two main steps. First we are trying to find the circuits with
100% functionality and second we are trying to minimise the number of active gates in 100% functionality circuits. An
active gate is a gate, which is proved to be not redundant.

Table 1. Experimental parameters 3 Experimental Results

Population size 15 . . i} . . .

Number of generations 500 In this section we will consider the some experimental results obtained for the
Number of GA runs variable one-bit adder with carry. We investigated how the number of 100% functional
Breeding rate 60_ cases relates to the number of active gates used in circuit. The initial data for the
Crossover type One-point} G s given in Table 1

Selection pressure 0.75 g i : L . .
Max number of Tows Sor8 The distribution of the circuit geometry of the best chromosomes is shown in
Max number of columns | Sor8 Fig. 3 (a) for a maximum circuit geometry 5x5 and in Fig. 4 (a) for 8x8 geometry.
Levels-back parameter 2 It is clear that in both cases the most number of 100% functionality cases is
Target function Addlc.pla

obtained when large numbers of logic gates are available. Thus, the GA performs
better when there is large gate redundancy.

Fig. 3 (b) and Fig. 4 (b) show how the number of 100% functional varies with the number of active gates. The overall
behaviour of this function in both cases (5x5 and 8x8 maximum circuit geometries) is very similar. Note that there is the
definite number of active gates in the circuit when the highest number of 100% cases can be obtained. When very large
number of gates is allowed to be used, many of them are not used in actual circuit structure.

In order to investigate how the redundancy of logic gates in chromosome influences the GA performance we calculate
the percentage of gates actually used in final circuit structure.
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Fig. 3. The number of gates used in circuit geometry 5x5
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Fig. 4. The number of gates used in circuit geometry 8x8

In Fig. 6 the proportion of gates used in the circuit is plotted as a function of the maximum number of gates available.
It is clear from this graph that the proportion of active and unused gates is constant with increasing the number of gates in
circuit structure. This means that the number of active gates grows in linear way with increasing the number of possible
gates in circuit. It implies that the most economical circuit will not occur often in larger circuits. The proportion varies
erratically with smaller number of gates.

In order to compare the GA execution with fixed and flexible circuit geometry the following experiment has been
carried out. The initial data for GA is given in Table 2. This experiment has been performed for the maximum circuit
geometry of 5x5 and all possible circuit geometries from 2x2 to 5x5 for constant circuit geometries. It is interesting to
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note the behaviour of the second fitness is nearly the same for both cases (Fig. 7). This implies that allowing a flexible
geometry does not reduce the number of 100% cases.

A study of many histories of the GA runs revealed that the evolution proceeds

Table 2. Experimental parameters in the three successive phases:

Population size _ 15 1. in the early generations, the population selects a particular geometry;

:ﬁ:g:: gtf, é‘i;’er'ua;‘sms 52050 2. in the second phase, the structure of the circuit evolves in such a way, that the

Breeding rate & circuit implements the test function; )

Crossover type One-pomnt 3. in the last phase, the evolution process is slower and tends to decrease the

Selection pressure =5 number of gates in the actual circuit.

Number of Tows Variable Thus we can argue that since the geometry is chosen so early in the history of

LNﬁum})eg of kcolumns Variable the GA evolution is proceeding with a largely fixed geometry. Consequently, the
vels-back parameter 2 i in Fi 3 isi H

PLA £l prooessing AddioE similar appearance of the graph shown in Fig. 7 is not so surprising. It is probable

that the rather drastic way in which mutation can change the circuit geometry is
causing this behaviour. A much smother geometrical mutation may lead to a more interesting interaction between the
geometry, the number of 100% cases and the number of active gates.
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Fig. 5. Gate redundancy

4 Conclusion

This paper has described the evolutionary design of combinational logic circuits. The distinctive feature of proposed
algorithm is that it allows us to evolve the circuit layout in addition to the circuit structure. We have defined a fitness
function, which allows us estimate not only the functionality of circuit but to define how good the evolved 100%
functional circuit is. The experimental results show that in terms of the 100% cases evolved the chromosome
representation with flexible and permanent circuit geometry give similar results. Thus allowing the geometry to evolve is
not especially harmful to the evolution process. Developing less drastic mutation operator may allow a greater amount of
geometry change. Analysing the structure of circuit evolved allows us to make conclusion that proportion of the number
of available gates in the circuit to the number of actual gates becomes fixed with increasing numbers of available gates in
circuit. This is interesting finding and worthy of further investigation. It may be that increasing the number of generations
will change this picture as the optimising phase of the GA takes place in the latter stages.
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