
 1 

 Intact action segmentation in Parkinson’s disease: hypothesis 2 

testing using a novel computational approach  3 

Anne-Marike Schiffer1*
 

, Alejo J. Nevado-Holgado1,2, Andreas Johnen3, Anna R. Schönberger4, 4 
Gereon R. Fink4,5 

 

and Ricarda I. Schubotz4,6 5 
1
Department of Experimental Psychology, University of Oxford, Oxford, UK 6 

2
Department of Psychiatry, University of Oxford, Oxford, UK 7 

3Department of Neurology, University Hospital Münster, Münster, Germany 8 
4
Department of Neurology, University Hospital Cologne, Cologne, Germany  9 

5Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM3), Research Centre 10 
Jülich, Jülich, Germany  11 

6Biological Psychology, Department of Psychology, Westfälische-Wilhelms Universität Münster, 12 
Münster, Germany  13 

 14 
 15 
 16 
*Corresponding author: anne-marike.schiffer@psy.ox.ac.uk  17 

18 



Abstract  19 
Action observation is known to trigger predictions of the ongoing course of action and 20 

thus considered a hallmark example for predictive perception. A related task, which explicitly 21 

taps into the ability to predict actions based on their internal representations, is action 22 

segmentation; the task requires participants to demarcate where one action step is completed 23 

and another one begins. It thus benefits from a temporally precise prediction of the current 24 

action. Formation and exploitation of these temporal predictions of external events is now 25 

closely associated with a network including the basal ganglia and prefrontal cortex. 26 

 Because decline of dopaminergic innervation leads to impaired function of the basal 27 

ganglia and prefrontal cortex in Parkinson’s disease (PD), we hypothesised that PD patients 28 

would show increased temporal variability in the action segmentation task, especially under 29 

medication withdrawal (hypothesis 1).  30 

Another crucial aspect of action segmentation is its reliance on a semantic representation of 31 

actions. There is no evidence to suggest that action representations are substantially altered, 32 

or cannot be accessed, in non-demented PD patients. We therefore expected action 33 

segmentation judgments to follow the same overall patterns in PD patients and healthy 34 

controls (hypothesis 2), resulting in comparable segmentation profiles. Both hypotheses were 35 

tested with a novel classification approach.  36 

We present evidence for both hypotheses in the present study: classifier performance was 37 

slightly decreased when it was tested for its ability to predict the identity of movies 38 

segmented by PD patients, and a measure of normativity of response behaviour was 39 

decreased when patients segmented movies under medication-withdrawal without access to 40 

an episodic memory of the sequence. This pattern of results is consistent with hypothesis 1. 41 

However, the classifier analysis also revealed that responses given by patients and controls 42 

create very similar action-specific patterns, thus delivering evidence in favour hypothesis 2.  43 

In terms of methodology, the use of classifiers in the present study allowed us  to  establish 44 

similarity  of  behaviour  across  groups (hypothesis 2).  The approach opens up a new avenue 45 

that standard statistical methods often fail  to  provide  and  is  discussed  in  terms  of its  46 

merits  to  measure hypothesised  similarities  across  study populations. 47 
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1 Introduction  57 

 58 

Parkinson’s disease (PD) is a condition with well-defined neurological changes. It results 59 

from a loss of dopaminergic cells in the substantia nigra (Bernheimer et al., 1973; Birkmayer 60 

and Wuketich, 1976), which leads to decreased levels of this neurotransmitter in the basal 61 

ganglia and the prefrontal cortex (PFC). PD is signified by prominent motor impairments 62 

such as tremor, bradykinesia, and rigor. These motor symptoms are often accompanied by 63 

cognitive changes, including compromised ability to learn from feedback and limited use of 64 

the predictability of external events (Flowers, 1978; Cameron et al., 2010; Cools et al., 2003; 65 

Cools et al., 2001; Cools, 2006; Crawford et al., 1989; Frank, 2006; Zalla et al., 1998; 66 

Shohamy et al., 2008). A related impairment in PD which has recently been linked to the 67 

basal ganglia and the prefrontal cortex is the internally driven prediction of external events 68 

(Schönberger, et al., 2013).  69 

1.1 (Temporal) Prediction in a basal ganglia network 70 

The proposal that the basal ganglia are involved in prediction of the content and temporal 71 

onset of external events (referred to as sensory states in the original literature Bischoff-72 

Grethe, Crowley, and Arbib, 2003) is grounded in a combination of findings from patient 73 

data with data from animal, imaging, and modelling research (Alm, 2004; Balleine, 74 

Liljeholm, and Ostlund, 2009; Berns and Sejnowski, 1998; Bischoff-Grethe, Crowley, and 75 

Arbib, 2003; Schönberger, et al., 2013).  The research suggests that the basal ganglia and 76 

prefrontal cortex, and particularly the supplementary motor area (SMA), work in concert in 77 

learning, selecting, and timing predictions of external events (Lewis et al., 2004; Stocco, 78 

Lebiere, & Anderson, 2010; Schiffer, Wasak, & Yeung, 2015; Schönberger, et al., 2013; see 79 

Coull & Nobre, 2008 for a dissenting view). Because decline of dopaminergic innervation of 80 

the basal ganglia and prefrontal cortex is a hallmark feature of PD, this research suggests that 81 

PD patients should be compromised in the fast prediction of event sequences, particularly 82 

under medication withdrawal. The present study tested this hypothesis explicitly, 83 

implementing an action segmentation task. 84 

 85 

1.2 Action segmentation requires exploitation of semantic knowledge and benefits from     86 

prediction of forthcoming events 87 

In the segmentation task participants observe an actor performing familiar activities and are 88 

required to indicate their subjective judgment whether an action boundary has occurred, i.e., 89 



whether an action step has been completed and a new action step has been initiated. These 90 

segmentation judgments, also referred to as boundary detection reports, are usually given in 91 

the form of a button press (Zacks et al., 2001; Schubotz et al., 2012; Baldwin et al., 2008; 92 

Newtson and Engquist, 1976). Because actions are highly structured and action observation is 93 

known to trigger online predictions of forthcoming action steps (Csibra, 2007; Colder, 2011; 94 

Botvinick and Plaut, 2004; Kilner, Friston, and Frith, 2007; Kilner et al., 2004; Schiffer et al., 95 

2013; Stadler et al., 2011), reliable and fast performance in action-segmentation tasks 96 

requires two core abilities:  97 

First, action segmentation benefits from the ability to generate a temporally precise 98 

prediction of the course of the current action, including the end of one action step and the 99 

beginning of the next action step thereafter. Detection of stimuli is not only aided by 100 

predictability of occurrence, but also additionally facilitated by predictability of stimulus 101 

onset (Rohenkohl et al., 2012). Thus, predicting which action step is to follow, and at what 102 

time this action step would naturally commence, aids boundary detection in the action 103 

segmentation task.  104 

 Importantly, if the basal ganglia are involved in real-time prediction of sequential events 105 

(Schiffer & Schubotz, 2011), we would expect increased variability in the timing of the 106 

response around action boundaries (Baldwin et al., 2008; Newtson and Engquist, 1976) in PD 107 

patients. The action-segmentation paradigm thus provides a sensitive test for the hypothesis 108 

that compromised dopaminergic innervation of the basal ganglia and prefrontal cortex leads 109 

to increased temporal variability in response behaviour, particularly under medication 110 

withdrawal (hypothesis 1), indicating impaired (temporal) prediction and delayed assessment 111 

of forthcoming sensory states.  112 

A second, profound aspect of action segmentation is that observers have to rely on an 113 

internal representation of the single steps that together form specific actions (action 114 

semantics) to detect the end of one action step and the beginning of another. Some authors 115 

have argued that PD patients should be impaired in action segmentation (Zacks & Sargent, 116 

2010). However, while learning and retrieval of action semantics has repeatedly been shown 117 

to involve a fronto-parietal network extending to the temporal lobes (Decety et al., 1997; 118 

Spunt, Falk, and Lieberman, 2010; Watson and Chatterjee, 2011; Hoffman, Jones, and Ralph, 119 

2012; Schubotz et al., 2012; Schiffer et al., 2013), evidence for an involvement of the basal 120 

ganglia is missing.  We therefore propose that the ability to segment actions should be largely 121 

intact in non-demented PD (hypothesis 2), resulting in comparable segmentation profiles.  122 

 123 



1.3 Assessing action segmentation components in a patient study  124 

We tested these hypotheses in a cohort of patients with idiopathic Parkinson’s disease and a 125 

group of age-matched controls. To assess whether changes in dopamine availability exert an 126 

effect on the ability to segment actions per se and increase the temporal variability of 127 

segmentation behaviour, PD patients underwent two experimental sessions, one with their 128 

usual dopamine replacement therapy unchanged (ON) and one under withdrawal of their 129 

dopamine replacement therapy (OFF). Healthy controls took part in two separate sessions 130 

without medication. Their virtual medication status (pseudo ON and OFF status) was yoked 131 

to the random order of ON and OFF tests in the matched PD patients. During each session, 132 

participants segmented a different set of 6 multi-step action movies twice, allowing 133 

comparison of segmentation reliability under different medication status.  134 

 135 

1.4 Classification approach to assess similarity 136 

Predictions of similarity, central to our second hypothesis, are statistically challenging, 137 

because inference statistic measures aim at establishing differences between groups. Even if 138 

these measures fail to establish a difference between groups or conditions, such null effects 139 

cannot be taken as a proof of similarity (Cohen, 1994). Moreover, our hypotheses demand an 140 

estimate of the exact degree of similarity between response patterns. We resolved this 141 

paradox by developing a novel methodology, which implements a computational classifier. 142 

To show that PD patients and healthy controls can rely on the same action models, we 143 

transformed their response behaviour in the action-segmentation task into a temporal profile 144 

of response probability, expressed as the function that represents the probability to make a 145 

response for each moment in time. Bringing the data into this format allowed us to use these 146 

temporal response profiles in a computational classifier (Figure 1; please refer to Methods 147 

section 2.2 and 2.4.1 for further explanation).  148 

We trained a classifier to predict movie identity using the data from a subset of 149 

participants as a training set and another subset of participants as a test set. The hypothesised 150 

above-chance classification of movie-specific response profiles when testing data and training 151 

data are taken from different groups strongly indicates behavioural similarity. This 152 

behavioural similarity is evidence in favour of intact semantic representation of action 153 

structure in PD. At the same time, the predicted differences in classification performance 154 

between different (above-chance) cross-group classifications would show the predicted 155 

differences in the temporal precision of segmentation behaviour in PD.  156 



 157 

2 Materials and Methods  158 

 159 

2.1 Participants  160 
A total of 32 male participants took part in the experiments: 16 patients with idiopathic 161 

Parkinson’s Disease (PD) and 16 healthy controls, individually matched for age, handedness, 162 

and education (please refer to Table 1 for a summary of the information on the patient and 163 

control population). Every invited PD patient was tested and no dataset was discarded. For 164 

patients to be invited and included in the study they had to fulfil the following list of 165 

inclusion criteria. Patients had to be diagnosed with idiopathic Parkinson's disease. They had 166 

to be aged between 18 and 80, have given written informed consent, and weren’t allowed to 167 

take part in any other study on the same day. Lastly, testing in their medication OFF state was 168 

conducted within their regular, scheduled assessment, during which they withdraw from their 169 

individual medication to test for symptom severity and dopa-responsiveness. Thus, the 170 

patients were not in their medication OFF as part of a clinical trial.  171 

Exclusion criteria were: receiving deep-brain stimulation and suffering from further 172 

neurological or life-expectancy limiting diseases. Inclusion/exclusion criteria for matched 173 

controls were comparable, except for the presence of idiopathic Parkinson's disease, or any 174 

other neurological or psychiatric condition, which were exclusion criteria for control 175 

participants. There was also no relationship to a scheduled stay at the hospital for the control 176 

group, as these participants did not receive or withdraw from any medication.   177 

All participants had an introductory session one day before the first test session to 178 

practise a short version of the main task and control tasks. This practice session did not 179 

contain any of the videos that were later used in the real test sessions (ON or OFF). The 180 

purpose of this pilot session was to ensure that all participants would understand the tasks, 181 

even if their first test session took place under medication withdrawal. One matched control 182 

had to be replaced by another equally well-matched control participant, as the first person did 183 

not understand the instructions of various subtasks.  184 

Average Unified Parkinson’s Disease Rating Scale (UPDRS) scores for healthy controls 185 

was 1.15, compared to 23.8 for PD patients (mean ON medication: 20.9, mean OFF 186 

medication: 27.1). The difference in UPDRS scores between PD patients and controls was 187 

highly significant in a one-sided t-tests (T = 17.8, p < 10-18 df = 31), and so was the 188 

difference between ON and OFF session for PD patients (T = 6.1, p < 10-6, df = 15).  The 189 



average Parkinson Neuropsychometric Dementia Assessment (PANDA) scores were 25.4 190 

and 26 for PD patients and healthy controls, respectively. Beck’s Depression Inventory (BDI) 191 

scores were 9.7 vs. 5.75 for PD patients and healthy controls, respectively. The differences in 192 

PANDA and BDI scores were not statistically significant in one-tailed t-tests (PANDA: T= 193 

0.5, p = 0.31; BDI: T = 0.8, p = 0.21). No healthy control participant and no PD patient 194 

scored lower than 14 points, indicating that that no participant fulfilled the cut-off for 195 

dementia. All but one participant scored higher than 18 points, indicating age-appropriate 196 

function (Kalbe et al., 2008). One PD patient scored 16 points, thus being in the range of 197 

subtle cognitive impairment. The proceedings were approved by the local ethics committee of 198 

the Medical Faculty of the University of Cologne and the work described was carried out in 199 

accordance with The Code of Ethics of the World Medical Association (Declaration of 200 

Helsinki) for experiments involving human subjects.  201 

 202 

2.2 Task  203 

2.2.1 Action segmentation task:  204 

All participants took part in two experimental sessions. For the PD patients, one session took 205 

place when they were on their individual, regular dopamine-replacement medication (ON 206 

session), and another session after over-nightly medication withdrawal (OFF session). The 207 

order of ON/OFF sessions was randomised across patients. An overview of medication 208 

specifics is included in Table 4. For the healthy controls, whether a session was assigned ON 209 

or OFF status was yoked to their matched patient’s order of sessions. Note that healthy 210 

controls did not receive any dopaminergic medication in any session. Therefore, these 211 

sessions will henceforth be described as pseudo ON/pseudo OFF, to emphasize that no 212 

medication was involved at any stage for the healthy volunteers. 213 

Within each test session, the participant segmented 6 different short movies of naturalistic 214 

action sequences 2 times each (please refer to Table 3 for a description of the movies). The 215 

first and second segmentation instance within sessions included the same movies, but no 216 

movie was repeated in the next session. The selection of the 6 movies for each of the first 217 

session was pseudo-randomised and the second session contained the other 6 movies of the 218 

set of 12. Pseudo-randomisation ensured that each of the 12 movies appeared in all possible 219 

conditions across participants: first sessions ON medication, first sessions OFF medication, 220 

second sessions ON medication and second sessions OFF medication. This setup allowed us 221 

to measure reliability scores and movie specific segmentation independent of order and 222 



medication effects (please refer to Schubotz et al., 2012 for a comparable design in a study 223 

with young healthy volunteers).  224 

Within the segmentation task, participants were instructed to indicate with a button press 225 

whenever a new action step began. In more detail, participants were told to press a button 226 

when they felt (emphasis on the subjectivity of the judgement) that one action step had 227 

finished and a new action step was to begin (example judgments for the two segmentations 228 

performed on the same movie., ie, within one session, are depicted by the blue lines and bars 229 

in Figure 1). They were told that an action step might relate to what they would say if we 230 

asked them to give an online record of the actions they saw to a bystander. Responses were 231 

made with a standard QWERTZ keyboard, by pressing the space bar.  232 

2.2.2 Motor control task:  233 
Participants’ motor behaviour was assessed in a separate task. In this part of the experiment, 234 

subjects were presented with a stream of white and red squares on a grey-background monitor 235 

at 1/5 Hz. Their task was to respond as quickly as possible to the red crosses, while ignoring 236 

the white ones. Each colour appeared equally often in a randomised order. The task was run 237 

for 60 trials, i.e., 30 target trials (red crosses). Crosses were presented in font size 30.  238 

Responses were made with a standard QWERTZ keyboard, by pressing the space bar.  239 

2.2.3 Cognitive control tasks:  240 
To increase the interpretability of the classifier results we conducted a number of control 241 

tasks which tested for differences between patients and healthy controls in: the ability to 242 

retrieve semantically associated items, the ability to recognize a familiar action episode, and 243 

in the ability to predict the on-going course of an action.  244 

Semantic association control task: The ability to retrieve semantically associated 245 

items was tested in a paradigm in which participants were presented with a pair of nouns, 246 

e.g., "sugar","flour", and had to name a related item, e.g., "salt". Reaction times were 247 

recorded over 10 trials per session, with a microphone that was sensitive to speech onset. 248 

Participants had up to 6 seconds to initiate their response. The inter-trial interval was 1 249 

second. Correctness of the 10 responses (i.e., whether the participants response was 250 

semantically related to the word pair) was later rated by two independent observers. These 251 

were blind to disease status and medication.  252 

Episodic recognition control task: The ability to recognize a familiar action was 253 

tested on another set of 10 everyday action movies (not appearing in the segmentation tasks), 254 



which were presented at the beginning and end of each experimental session. These movies 255 

contained short everyday actions, all performed while sitting at a table, such as preparing 256 

muesli, stapling a stack of paper, wrapping up a parcel, etc. (please refer to Schiffer et al., 257 

2013 for pictures showing some of the actions). When participants saw the movies again at 258 

the end of the test session, movies either appeared in the same version as before or in a 259 

different version (please refer to Schiffer et al., 2012; 2013 for more details).  Participants 260 

had to press one of two response buttons (left arrow key and down arrow key on a standard 261 

QWERTZ keyboard) to indicate whether the movie had been presented as before. 262 

Participants had up to 6 seconds to initiate their response. The inter-trial interval was 1 263 

second.  264 

Action prediction/association control task: Lastly, to test for participants’ ability to 265 

predict a likely on-going course of action, participants were presented with a third set of 10 266 

movies, which ended abruptly after the completion of an action step. These movies were 267 

again taken from the sample implemented in Schiffer et al. (2012; 2013), showing everyday 268 

actions taking place at a table; there was no overlap between the movies used for any of the 269 

control tasks within subjects. Participants were then instructed to name a probable next action 270 

step. Voice responses were again recorded with a microphone that was sensitive to the time 271 

point of speech onset. Participants had up to 6 seconds to initiate their response. The inter-272 

trial interval was 1 second. Please note that while prediction of likely next action steps would 273 

help to decrease reaction times in this task, timing of these associated predictions is not as 274 

crucial as in the action segmentation paradigm.  275 

 276 
2.3 Descriptive statistics  277 
In a first simple analysis, we used number of segmentations as an approximate measure to 278 

estimate the reliability of segmentation responses. The number of segmentations for each 279 

movie was correlated within each session for each participant to yield average correlation 280 

scores across all six respective movies for each participant in each session (cmp. Schubotz et 281 

al., 2012).  282 

 283 

2.3.1 Segmentation agreement  284 
In a next step, we assessed how normative segmentation judgments were (i.e., how much a 285 

the segmentation profile of a movie derived from one person was in agreement with how 286 

other participants segment the same movie). This variable needs to be as closely related to the 287 

timing of segmentation judgments as possible, as this approach complements the classifier 288 



analysis (section 2.4). To obtain a normativity score, we first established a symmetric time 289 

window around each segmentation judgment ‘a’. We then counted how many other times 290 

segmentation judgments were placed within this window around ‘a’ by the other participants.  291 

To avoid any bias, we excluded the judgments by the participant in their second 292 

segmentation instance of the same movie and the judgments by his matched control. We call 293 

this the number of segmentation agreements for segmentation judgment ‘a’. This represents a 294 

statistical random variable which measures how normative a given segmentation judgment 295 

‘a’ is. Therefore, we can use this random variable to estimate how much the segmentations 296 

produced by a given group (e.g., PD patients OFF medication) agree with the general 297 

population. A group including participants who segment a movie in a manner different from 298 

the average population will get lower agreement scores. Conversely, a group with participants 299 

that segment more normatively will get higher agreement scores (see Kurby, Asiala, and 300 

Mills, 2014 for a closely related approach). 301 

In addition to the inference-statistic measures and the normativity estimate, we also 302 

employed a classifier approach to test whether PD patients rely on the same semantic 303 

structure (i.e., are uncompromised in their ability) to segment actions. The classifier approach 304 

extends the possibilities of classic inference statistics; while classic approaches test for the 305 

difference between populations, classifiers can show that the data drawn from one sample can 306 

predict the shape of the data of the corresponding sample - a strong argument in favour of 307 

similarity.  308 

 309 

2.4 Within-and between-groups classification  310 
The power of a classifier analysis is its ability to predict the category of an item based on 311 

information the classifier previously gathered about other items from all existing categories. 312 

Harnessing this characteristic, we devised a classifier analysis to show that classification in 313 

PD patients and healthy controls is so consistent that a classifier could predict which movie’s 314 

data it was currently being presented with.  315 

2.4.1 Preprocessing  316 
Given a number of samples, of which each belongs to one of two possible classes, a classifier 317 

attempts to learn the underlining sample-class mapping (Murphy, 2012). Samples are N-318 

dimensional vectors, while classes are labels with two possible values {class 1, class 2}. In 319 

the present study, the task of the classifier was to assign the identity (“correct name”) to each 320 



movie, based on the segmentation judgments. This means that the segmentation judgments 321 

served as N-dimensional samples, and the classes were the correct name of the movie. 322 

However, the segmentations do not have a constant number of dimensions, as each 323 

participant may make a different number of segmentation judgments in the same movie (i.e., 324 

participants responded more or less often for each movie). To achieve the same vector length 325 

for each sample (i.e., each segmentation instance for each movie for every participant), we 326 

used a Fourier approach which, given a movie and a subject, obtained the probability of the 327 

subject placing a segmentation judgment at any time point for that movie, in essence a 328 

temporal profile of the typical response behaviour (this smooth probability function for the 329 

example movie is depicted in the red line in Figure 1). This probability function has a fixed 330 

number of dimensions (each time point is a dimension). In more detail: using formal 331 

nomenclature, the segmentation response of subject S, when watching movie M in trial T is 332 

eSMT (t), and can be described as a sequence of δ-dirac functions (δ functions are also 333 

commonly referred to as stick functions): 

€ 

eSMT =
0 otherwise

1 segmentation at time t )(    334 

 335 

A smooth probability density function (i.e., pSM(t )) is the natural result of representing a 336 

function of time with only the first few components of its Fourier transform (Diniz et al., 337 

2010). This function estimates the probability of the subject pressing the segmentation button 338 

at time t for that given movie. The following four steps were implemented to derive this 339 

function: In a first step, we calculated the Fourier transform of eSMT (t):  340 

  341 

€ 

ESMT ( f ) = exp(−2πft)
t=1
∑  342 

where f are the different Fourier components, evaluated at frequencies 1Δf, 2Δf...,with Δf = 343 

1000 divided by the total duration of the movie. In simple terms, Fourier transforms allow to 344 

generate a soft approximation of the signal described in the sets of δ functions. In the next 345 

step, we picked only the first 8 components of this transform to achieve a smooth 346 

representation. We chose 8 components because this provided time profiles that were smooth 347 

enough for the averages to converge. However, getting a few more or less components did 348 



not change the results of the overall analysis. Only using either very few components (<4) or 349 

too many (>20), will hampered the classifier's performance - and it is then impaired in all 350 

conditions (for PD and controls), as the time profiles will change either too slowly with time 351 

(for < 4 all movies will render the same time profile) or too fast (for > 20 different 352 

segmentation profiles of the same movie will start to diverge). Third, for each subject and 353 

movie, we averaged these 8 components across trials:  354 

€ 

PSM ( f ) = ESMT
T
∑ ( f )

  355 

The fourth and last step was to apply the inverse Fourier transform to obtain the temporal 356 

profile of this signal: 357 

€ 

PSM (t) = exp(2πft)
f =1Δf ,2Δf ,...

8Δf

∑  358 

  359 

As we eliminated the elements containing the high frequency components of the original δ 360 

functions, we obtained a smooth version of the segmentation times (this is a general property 361 

of the Fourier transform and of low-pass filters). Assuming that the probability of pressing 362 

the segmentation button changes slowly over time, this effectively created an estimation of 363 

this probability based on the eSMT samples (please refer to Figure 1 for the depiction of a 364 

smooth probability-density function achieved in this way).  365 

2.4.2 Classification  366 

For each movie M, we selected 30 equidistant time points, with a separation equal to 
1
/30 of 367 

the total length of that movie as input dimensions for the classifier. The purpose of the 368 

classifier was then to test whether it could assign the movie class (identity) correctly based on 369 

the information from these 30 dimensions (Figure 3). In simple words, the question is 370 

whether the classifier can, for example, identify that it is presented with the temporal profile 371 

of segmentations (segmentation pattern) of the movie that shows an actor doing the dishes 372 



based on its training with the temporal profile of button-press probabilities for all movies, 373 

including the dishes movie. 374 

This setup of movie-based classification allowed us to use the classifiers to measure 375 

how consistent participants within each group segmented movies. To this end, we iteratively 376 

selected one subject from the group and two movies, which served as the two classes that the 377 

classifier had to identify. We trained the classifier on all subjects (excluding the selected one), 378 

and measured whether it could correctly classify the probability-density function (temporal 379 

profile of response-probability) of the selected participant as one of the two movies. We 380 

repeated this leave-one-out training/testing procedure (also referred to as jack-knife 381 

approach) for all possible pairs of movies and for all participants in the given set of subjects. 382 

The obtained average number of correct classifications indicates how consistent the 383 

segmentation of movies was within this group of subjects.  384 

A modification of this classification procedure allowed us to test how consistent 385 

segmentation is across two groups, A and B. To this end, we selected all the subjects of group 386 

A except for one as the traininig sample in the classifier, and tested the classifier's ability to 387 

predict movie identities for the matched subject of group B. This means, for example, that we 388 

trained the classifier with the segmentations from PD patients 2-16 and tested its ability to 389 

assign the correct label to segmentation patterns derived from the matched control of PD 390 

patient 1. The latter approach was used to measure whether the segmentations performed by 391 

PD patients (group A) were consistent with controls (group B).  392 
 393 

3 Results  394 

 395 

3.1 Descriptive statistics  396 
In the segmentation task, PD patients segmented each action movie on average 10.4 times in 397 

their medication ON status and 9.8 times in their OFF status. Healthy controls segmented the 398 

same movies on average 12.2 times in the pseudo ON and 12.9 times in the pseudo OFF 399 

status. The time interval between two segmentation judgments was on average 9.5 seconds in 400 

ON status and every 10.5 seconds in OFF status. For the healthy controls, segmentation 401 

interval was on average 9.6 seconds in pseudo ON and 11.4 seconds in pseudo OFF. We 402 

analysed the number of segmentations for each group (PD/CONTROL) in each medication 403 

status (ON/OFF) using a repeated-measures ANOVA with between-subject factor GROUP 404 

and within-subject factor MEDICATION STATUS and found no significant main effect or 405 



interaction (all F(1,30)<1). These results indicate no strong differences in segmentation 406 

behaviour, i.e., PD patients did not segment significantly less often than controls, irrespective 407 

of medication status.  408 

A correlation analysis was conducted on the number of responses for each movie and 409 

for each of the two instances of the segmentation task in each session, per participant. This 410 

yielded an average within-session segmentation-judgment reliability of r=.86 (p = 0.045) for 411 

PD patients ON medication, r=.87 (p = 0.039) OFF medication, r=.74 (p = 0.19) for healthy 412 

controls in pseudo ON, and r=.88 (p = 0.031) for healthy controls in pseudo OFF. We 413 

conducted a repeated-measures ANOVA on within-session correlation with the between-414 

subject factor GROUP and within-subject factor MEDICATION STATUS and found no 415 

significant main effect or interaction (all F(1,30)<1). All correlation coefficients were Fisher 416 

z-transformed for group statistics.  417 

 418 

3.1.1 Cognitive control tasks:  419 
We analysed participants’ reaction times and accuracy  - measured as percent of correct 420 

responses  - in 6 different repeated-measures ANOVAS (Figure 4). Each ANOVA contained 421 

the data from the patient population and their matched control (between-subject factor 422 

GROUP) under both medication conditions (within-subject factor MEDICATION STATUS). 423 

In the Semantic association control task, we found no significant main effect (all F(1,30)< 1) 424 

of GROUP or MEDICATION STATUS and no significant interaction for accuracy rates. 425 

Reaction-time data likewise yielded no significant main effect (all F(1,30)< 1) and no 426 

significant interaction.  427 

We found no indication of a difference in accuracy in the Episodic recognition control 428 

task, with no significant main effects (all F(1,30)< 1) and only a trend-level interaction of 429 

GROUP and MEDICATION STATUS (F(1,30) = 3.199, p = 0.08). In the reaction-time data, 430 

we also found no significant main effect (GROUP F(1,30) = 1.3, p = 0.26, MEDICATION 431 

STATUS F(1,30)< 1) . There was no significant interaction (F(1,30) < 1).  432 

Finally, the Action prediction/association control task yielded a marginally 433 

significant effect of GROUP in the accuracy data (F(1,30) =3.84, p = 0.059), but no main effect 434 

of MEDICATION STATUS and no interaction (both F(1,30) < 1). In the reaction time data, we 435 

found no main effect (all F(1,30)< 1) and no significant interaction (F(1,30) = 2.73, p = 0.1). In 436 

sum, the results from the control tasks did not show a specific impairment in any group under 437 

any condition for functions which have to be considered necessary abilities for the action-438 

segmentation task: the ability to retrieve associations in general and in relation to actions, and 439 



the ability to learn about new action episodes. The latter may be necessary to engage in a 440 

compensatory strategy, as we will discuss later on.  441 

The number of trials in all control tasks was very limited to reduce the time spent 442 

under medication withdrawal. This means that the test may have had not enough power to 443 

detect an impairment of function on the single-subject level. However, taken together with 444 

the results of the PANDA tests, which showed that no participant suffered from dementia 445 

(including associative learning and working memory abilities), and given that all participants 446 

performed extremely well (mean accuracy higher than 80% in all tasks), there is no 447 

compelling reason to assume that PD patients were impaired in action recognition, semantic 448 

retrieval, or episodic memory. These results permit no inferences on whether action 449 

recognition, semantic retrieval, or episodic memory can be impaired in PD. But they suggest 450 

that in the present population differences in behaviour established in the analysis of 451 

segmentation agreement and the classifier analysis were not driven by substantial 452 

impairments in these functions. 453 

 454 

 455 

3.1.2 Segmentation agreement  456 
The above reported analyses of segmentation frequency per movie and within-session 457 

correlation coefficients for segmentation frequency show that PD patients display consistency 458 

in their segmentation behaviour across ON and OFF status. At the same time, it is evident 459 

that the number of segmentations does not convey any information about segmentation 460 

location. In contrast, the following analysis and the classifier approach both used measures 461 

that were sensitive to the exact time-point of segmentation responses.  462 

We used a time-window approach to measure within-group segmentation agreement. 463 

Given a segmentation judgment ‘a’, this approach measures how often other subjects also 464 

placed a segmentation judgment within a given time window around 'a'. This delivers a 465 

measure of normativity: when, for a given movie, a participant segments close to the time 466 

when many other subjects also make a segmentation judgment, the participant’s segmentation 467 

is in agreement with the population (see Methods and Figure 2 for details, and Kurby, Asiala, 468 

and Mills, 2014 for a closely related approach).  469 

The histograms in Figure 5 show the segmentation agreement for PD patients and 470 

healthy controls in ON and OFF sessions, divided for the first and second segmentation 471 

instance for each movie. Interestingly, when PD patients were tested in their first session OFF 472 

medication, they showed significantly less agreement than control participants who 473 



segmented a movie for the first time (Kolmogorov-Smirnov; p-value = 0.0061; ks-stat 0.073). 474 

In Figure 5 (lower left), this is evident because many segmentation judgments made by PD 475 

patients OFF medication in their first segmentation instance agree only with 10-30 476 

segmentation judgments placed by other participants (i.e., only 10-30 other subjects placed a 477 

segmentation within the time window). However, there was no difference between groups’ 478 

segmentation agreement the second time they segmented the movie. Tested ON medication, 479 

PD patients did not differ from healthy controls in their segmentation agreement scores for 480 

both the first and second segmentation (regardless the width of the time-window). The results 481 

shown in Figure 5 are based on a time window of 1.5 seconds half-width. This result holds 482 

for all window widths between 1 and 2.3 seconds. No statistically significant performance 483 

decrement for PD patients in any medication or segmentation-instance condition with wider 484 

windows was observed.  485 

  486 

3.2 Classifier analysis  487 
We used a classifier analysis to assess how consistent segmentation patterns were within and 488 

across our four groups (PD patients ON vs. OFF medication, healthy controls in pseudo ON 489 

vs. OFF session). These classifications produced 16 averages as shown in Figure 6. Averages 490 

were calculated across all the possible leave-one-out splits of the data for the training-group-491 

A/testing-group-B classification. All of these classification performances were higher than 492 

80% and t-tests showed that all of them were significantly different from chance at p < 10 
-14 

493 

(Table 3). This allows the first inference that the commonalities in segmentation patterns far 494 

outweighed the differences, as the classifier would otherwise have performed at chance level 495 

(it would have "guessed" movie identity).  496 

To test for any possible effect of training group, testing group, or medication status, we 497 

ran a 4-way ANOVA with the factors: (i) TRAINING GROUP (PD/CONTROL), (ii) 498 

TESTING GROUP (PD/CONTROL), (iii) MEDICATION STATUS TRAINING GROUP 499 

(ON/OFF), and (iv) MEDICATION STATUS TESTING GROUP (ON/OFF).  500 

The first classifier did not include measures of motor impairment and classified solely on 501 

the dimensions derived from the smooth probability-density function for segmentation 502 

behaviour. This analysis yielded a significant main effect of TRAINING GROUP (F(1,15) = 503 

6.99; p = 0.009, a marginally significant main effect of TESTING GROUP (F(1,15) = 3.4, p = 504 

0.066, but no further main effect and no significant interaction. In a second classifier, we 505 

included standard deviation in reaction time in the motor control tasks as an additional 506 

dimension, to account for higher motor variability under dopamine-replacement withdrawal. 507 



This step is necessary to link potential between-group differences to cognitive changes. This 508 

classifier showed again a main effect of TESTING GROUP (F(1,15)= 12.39, p = 0.001), but no 509 

other main effect (all F<1, except main effect of training group at F(1,15)= 1.15, p = 0.28), and 510 

no significant interaction (all F<1, except interaction of testing group by training group at 511 

F(2,14) = 1.44, p = 0.23).  512 

Lastly, we repeated this second approach, using the standard deviation sigma from an 513 

ex-gaussian fit to the reaction-time data from the motor control task. Sigma in an ex-gaussian 514 

model of reaction-time data captures the amount of variance in the data. This analysis 515 

(Figure 6) likewise yielded a significant main effect of TESTING GROUP, (F(1,15) = 7.84, p 516 

= 0.001), but no other significant main effect or interaction.  517 

4 Discussion  518 

 519 

The present study investigated whether PD patients would display behavioural impairments 520 

in an action segmentation task, which requires the exploitation of structured semantic action 521 

representations and the generation and evaluation of predictions of forthcoming events. We 522 

expected that PD patients would show some temporal variability around segmentation points 523 

(1), but that the temporal pattern emerging from these segmentation points would be nearly 524 

indistinguishable between PD patients and healthy controls (2). We found evidence for both 525 

hypotheses in the present study. When participants were asked to segment action movies at 526 

meaningful boundaries, classifiers trained on the temporal pattern of segmentation responses 527 

were able to classify movie identity far above chance, for both training (PD or healthy 528 

controls) and testing groups (PD or healthy controls), under either medication status 529 

(ON/OFF). This core finding strongly suggests that PD patients have access to and exploit the 530 

same action knowledge as healthy controls in action segmentation.  531 

As predicted by our first hypothesis (temporal variability), classifier performance was 532 

slightly decreased (while still far above chance) when it was tested for its ability to predict 533 

the identity of movies segmented by PD patients. This subtle change in performance 534 

indicated that PD patients’ data contained more variability at segmentation points, thereby 535 

becoming marginally less predictable in classification. Importantly, this finding stands when 536 

motor variability, assessed in a separate motor control task, is accounted for by the classifier. 537 

Thus, this finding suggests that the difference between the two groups is caused by cognitive 538 

changes rather than a consequence of altered motor behaviour in PD. Notably and against 539 

expectations, this small deviation was not limited to a specific medication session.  540 



Indeed, we found that segmentation in PD patients reached lower agreement scores 541 

only during the first of two segmentation instances in the OFF state. This lack of agreement 542 

with the average segmentation, or non-normativity, was not, however, present during the 543 

second segmentation instance in the OFF state, or any segmentation instance in the ON state. 544 

This striking pattern of a one-time-exposure training effect supports the idea that patients can 545 

use episodic memory for the content of the action sequence to compensate. Because we find 546 

this compensation in dopaminergic OFF state, it is likely to rely on a brain network that does 547 

not critically depend on dopaminergic innervation.  548 

4.1  PD patients exploit the same action knowledge as healthy controls when 549 
segmenting action movies  550 
Action segmentation relies on semantic action knowledge (Zacks et al., 2006; Kurby, Asiala, 551 

and Mills, 2014; Bailey et al., 2013). Learning and retrieving this action knowledge is 552 

associated with a network including the lateral prefrontal cortex and temporo-parietal areas 553 

(Binder et al., 2009; Buxbaum et al., 2007; Buxbaum, Kyle, and Menon, 2005). Recently, 554 

there has also been evidence for a hippocampal involvement (Schubotz et al., 2012), a region 555 

classically associated with episodic memory.  556 

The putative role of the hippocampus is of particular interest since it is well established 557 

that although PD patients have difficulties to learn from (positive) feedback and compensate 558 

strategically for this impairment via explicit learning of stimulus-outcome contingencies 559 

(Shohamy et al., 2008). Learning response-outcome contingencies from feedback integration 560 

is assumed to rely on the basal ganglia and to involve the dopaminergic midbrain, while the 561 

suggested compensatory strategies are mediated by the hippocampus (Dagher et al., 2001; 562 

Shohamy et al., 2008;).  563 

 Clearly, attributing all compensatory function in PD to a hippocampal network is not 564 

warranted. This is not least because the hippocampus receives dense dopaminergic projection 565 

and the degree to which a potential decrease in innervation in PD could alter hippocampal 566 

function remains unclear. (Jay, 2003 for review) Further, it has been shown that hippocampal 567 

volume can be decreased in PD, especially in elderly patients and patients suffering from 568 

dementia (Brück et al., 2004; Camicioli et al., 2004; Churchyard & Lees, 1997 - please note 569 

that the PD patients in the present study did not suffer from dementia or memory problems). 570 

These findings suggest that hippocampal function may be impaired in PD, which could 571 

potentially have implications for the availability of hippocampal compensation mechanisms.  572 



 In contrast, the possibility that a hippocampal learning and memory mechanism may 573 

indeed be involved in compensation in this specific task is suggested by the episodic nature 574 

of the decrease in non-normativity: normativity scores in patients in the OFF status made a 575 

full recovery as soon as they had segmented the same movie one single time before. Lastly, 576 

the proposal that episodic memory can aid action segmentation and that this process is 577 

associated with the hippocampus receives some support from a study which showed non-578 

normative segmentation behaviour in participants with decreased medial temporal lobe 579 

volume (Bailey et al., 2013).  Thus, whether decrease in non-normative behaviour is in fact 580 

hippocampally mediated remains an open and exciting research question. An empirical study 581 

using classifiers to achieve a double dissociation between PD patients and patient groups with 582 

dementia would be highly desirable.  583 

In light of the present results and our previous fMRI data (Schubotz et al., 2012), we 584 

propose that action segmentation based on action semantics and episodic memory relies on a 585 

network including prefrontal cortex (Grafman, 2003; Schubotz et al., 2012), cortical areas 586 

involved in action representation (Decety et al., 1997; Spunt, Falk, and Lieberman, 2010; 587 

Watson and Chatterjee, 2011; Hoffman, Jones, and Ralph, 2012), and the hippocampal 588 

formation (Schubotz et al., 2012 cf. Bailey et al., 2013). Intact dopaminergic innervation of 589 

the basal ganglia (and prefrontal cortex) does not appear essential for action segmentation, 590 

but is important for the precise timing of the responses, particularly when no episodic 591 

memory for the sequence can be accessed. These results complement a series of studies 592 

which has shown that PD patients are impaired in motor imagery (Poliakoff, 2013), i.e., when 593 

they have to internally initiate action representations - a process similar to the initiation of 594 

predictions of external (action) events. However, PD patients are not impaired in action 595 

observation (Poliakoff, 2013), as shown for example by the finding that the observation of 596 

another agent's actions affects performance of a motor tasks in PD patients just as it does in 597 

healthy controls (Albert, Peiris, Cohen, Miall, & Praamstra, 2010). 598 

4.2 Prediction errors and sequential prediction  599 

The proposed role of the basal ganglia in the generation, selection and timing of forward 600 

models of probable forthcoming events (Redgrave, Prescott, and Gurney, 1999; Bischoff-601 

Grethe, Crowley, and Arbib, 2003) led us to hypothesise an increased variability at a fine 602 

timescale in the segmentation behaviour of PD patients. This hypothesis was supported by 603 

the classifier analysis.  604 



However, an alternative account of basal ganglia involvement in action segmentation 605 

would also lead to the prediction of increased variability: The Event Segmentation Theory 606 

(EST, Zacks and Swallow, 2007; Kurby and Zacks, 2008; Zacks and Sargent, 2010) proposes 607 

basal ganglia involvement in signalling prediction errors when unlikely but salient events 608 

occur. According to EST, the end of events is signified by prediction errors (‘ES prediction 609 

errors’, hereafter). The underlying theory is that internal forward models of one event become 610 

imprecise when the new event begins, which leads to ES prediction errors. EST therefore 611 

argues that compromised basal ganglia function leads to disorganised segmentation 612 

behaviour (Zacks and Sargent, 2010), as a lack of dopaminergic error signalling prevents the 613 

inference that an event boundary has been passed.  614 

In contrast, we would argue that naturalistic events such as actions are usually 615 

probabilistically structured (Csibra, 2007; Colder, 2011; Botvinick and Plaut, 2004; Kilner, 616 

Friston, and Frith, 2007; Kilner et al., 2004), i.e., that the occurrence of one event makes 617 

certain events more probable, while other events are rendered less likely. Accordingly, 618 

probable upcoming actions do not constitute a violation of predictions. Moreover, most 619 

events are associated with (and thus expected to have) a set approximate duration. Hence, in 620 

naturally timed and canonical action sequences such as our action movies, expectations 621 

remain usually unviolated.  622 

The understanding that transitions between actions steps are probabilistic or even near-623 

deterministic in character relates to concept of action hierarchies (Botvinick, Niv, and Barto, 624 

2009; Schwartz, 2006; Grafman, 2003; but see Botvinick and Plaut, 2004). An overarching 625 

action goal like, e.g., tidying the kitchen, is composed of a series of action components, each 626 

with its own goals such as, e.g., clearing away the dishes and tidying the shelves. Again, each 627 

of these actions may comprise different subgoals, such as opening the dishwasher, getting a 628 

plate out, opening the cupboard, putting the plate into the cupboard, etc... It has not been 629 

spelled out yet at which level of this hierarchy dopaminergic ES prediction errors are to be 630 

expected. However, experiments that did vary the hierarchical level on which participants had 631 

to segment did not report basal ganglia activity for either coarse (high level) or fine grained 632 

(low level) segmentation (Zacks et al., 2001). 633 

 In the present study, we could establish that PD patients, both ON and OFF 634 

medication, show segmentation judgments that are highly similar to controls’ judgments and 635 

thus seem to rely on the same structured action knowledge. This finding is difficult to 636 

reconcile with the proposal that event segmentation has to rely on dopaminergic ES 637 

prediction errors. Moreover, while PD patients OFF medication segmented less normatively 638 



if a movie was completely unknown to them, this deviation was not present for the second 639 

segmentation instance; this finding speaks against the idea that action segmentation has to 640 

rely on intact dopaminergic innervation. Accordingly, we propose that the basal ganglia play 641 

a role in the fast generation of timed predictions for probable next sensory states and their 642 

evaluation based on the present sensory input.  643 

This account suggests that the probabilistic structure of actions results in the presence 644 

of a number of weighted forward models for probable next action steps in the basal ganglia 645 

circuits (see Frank, 2006; Frank and Claus, 2006; Frank, Scheres, and Sherman, 2007 for a 646 

computational model of weighted forward models in the basal ganglia for goal-directed 647 

behaviour). Because the weighing of these probabilities and their generation is dependent on 648 

dopaminergic input, PD patients would be compromised in fast decisions on whether a 649 

present sensory input (according to the next action step) is in line with, or deviant from, 650 

specific forward models.  651 

4.3 The anatomic specificity of patient data 652 

Ascribing function to a specific brain area based on data from participants with neurological 653 

changes has some limitations; one of many is that the multitude of changes associated with a 654 

different neurological conditions make it difficult to ascertain which affected structure is 655 

causally relevant for the specific impaired function. Parkinson's disease is associated with 656 

changes not only to the basal ganglia, but also to the prefrontal cortex and hippocampus 657 

(Brück et al., 2003; Camicioli et al., 2003; Churchyard & Lees, 1997; Emre, 2003; Scatton et 658 

al., 1982). While models of basal ganglia and premotor function drove our hypothesis, our 659 

results can obviously not discern the changes to which structure underlie the established 660 

changes in behaviour. In fact, internally driven prediction of external events and timing of 661 

predictions may well rely on interplay of basal ganglia, thalamus and prefrontal/premotor 662 

cortex (Lewis et al, 2004; Schönberger, 2013).  663 

4.4 Showing similarity and highlighting differences: the use of classifiers in patient 664 

studies  665 

Every study that tests for the ability of patients to perform a task just as well as healthy 666 

participants suffers from a conundrum: It is statistically unsound to test for the validity of the 667 

null-hypothesis (Cohen, 1994). The present study circumvents this problem by taking a new 668 

approach in implementing a classifier analysis. The idea of this classifier analysis is that if the 669 

algorithm learns classification from patient data and this classification is then successfully 670 



applied to the data from healthy controls (or vice versa), similarities between the groups has 671 

to be considerably high. In fact, in our case it shows that each action movie has a distinct 672 

temporal profile of segmentation judgments that makes it different from all other movies. 673 

These profiles of the same movie produced by different people were very similar, regardless 674 

whether they reflect the behaviour of healthy controls, medicated PD patients, or PD patients 675 

off their dopaminergic medication. In the present study, these findings are supported by the 676 

correlation analyses that indicate high reliability. The correlation analyses’ findings, as well 677 

as the segmentation agreement estimation, fall short of the classifier in that they cannot 678 

deliver evidence whether what patients do reliably is, in colloquial terms, the same thing 679 

healthy controls do reliably. The classifier yields just this distinction.  680 

We believe these very positive results mark classifiers as a valuable tool to investigate 681 

hypotheses that propose that patients are not compromised in a given ability. This type of 682 

analysis is particularly appropriate for paradigms that provide rich data, for example, 683 

behavioural paradigms which assess reaction times, error rates, and subjective judgments 684 

(e.g., confidence judgments) for each task, or - perhaps more obviously - studies combining 685 

behavioural data and neural recordings. We included classic statistical approaches in the 686 

present paper to show that the classical and the novel approach yield similar results. Since the 687 

classifier approach is a positive test for the presence of an effect (classification), we suggest 688 

that it surpasses the argumentative power of non-significant findings inherent to many 689 

inference statistic approaches.  690 
691 
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Figure 1: Probability of segmentation judgments 
 

 
 
Top row: Frames from an example movie showing an actor clearing out the dishwasher; 
2nd & 3rd upper rows: each participant segmented each movie twice (eSM,1 and eSM,2). The red bars 
correspond to individual segmentation judgments expressed as delta functions, taken from one 
participant. Each bar represents one segmentation judgment. These delta functions were combined and 
transformed into temporal patterns representing the probability of a segmentation judgment at each 
moment in time (probability-density functions), displayed in blue. The classifier analysis used these 
probability-density functions to predict movie identity.  
 
 
  



Figure 2: Schematic representation of segmentation agreement analysis. 
 

 
Segmentation agreement scores were calculated for each participant (e.g., P1), under each medication 
status (here referred to as 'd', or 'drug status', to avoid confusion), for each segmentation instance (e.g., 
first segmentation, s1) for each movie (e.g., m1). For each segmentation judgment in the respective 
segmentation instance (left panel, P1: d1 s1 m1), we counted how many other segmentation judgments 
across the entire group (all participants except the current one and his matched control, in each 
medication condition, in each segmentation instance, for the same movie) would fall into the same time 
window (e.g., 6 for the first judgments, marked in pink, 3 for the second judgment, marked in purple). 
For explanation-purposes only, this example assumes a group of 4 participants, instead of the actual 32. 
This number is then normalised by the overall number of segmentations in the group. This process 
delivers a histogram of segmentation agreements for each participant in each medication condition, in 
each segmentation instance, for each movie (displayed on the right). The histogram shows that in this 
example, one of the segmentation judgments was agreed on in 6 instances (pink) and 3 different 
segmentation judgments were agreed on 3 times, respectively (purple, magenta, yellow). The 
combination of these histograms is indicative of the segmentation agreement scores for a subpopulation 
(eg., PD patients, ON medication, in their first segmentation instance) with the overall group.  
 
 
 
  



Figure 3: Classification on temporal segmentation patterns 

 
 
The classifier was trained on a representation of the temporal pattern of responses, i.e., the probability-
density functions, capturing the probability of a segmentation judgment over time (see Figure 1), for 
each movie (SM1, SM2, etc., here limited to 4 movies for presentation purposes only), taken from all 
participants (P2, P3, etc.) except the one that it was later tested on (P1) and his matched control. In the 
testing phase, the classifier was iteratively presented with the data from the left-out participant and had 
to assign one of two possible labels (e.g., doing-the-dishes movie vs sweeping-the-floor movie, here 
represented as purple and yellow). In the case of across-group classification, the classifier would be 
presented with the data from the matched control of the left-out participant.  
  



 
 
Figure 4: Patients' and controls' performance in the three control tasks. 

 
 
 
Legend:  
Performance in all control tasks across groups. There were no main effects of group or medication 
status in any of the tasks.  
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Figure 5: Segmentation agreement across sessions and medication status for PD patients and controls

 
 
Legend:  
Segmentation agreements, for each participant group (PD – red line/controls – blue line), in each 
medication status (ON/OFF), for each segmentation instance (first/second). The cumulative distributive 
function is a random variable, displaying the area under the curve calculated from the combined 
agreement histograms for each group. Considering for example agreement scores in the first 
segmentation instance ON medication (upper left panel), a probability of agreement of 0.2 is the case in 
~23 datasets or less  (see dotted lines) both for PD patients and for healthy controls (the red and blue 
lines are aligned).  
 A Kolmogorov-Smirnov showed that the only significant difference was a comparatively lower 
segmentation agreement for PD patients in the first instance OFF medication (lower left panel), 
compared to healthy controls in this condition. This deficit is absent during the second segmentation 
instance in the same session (lower right panel). Additional tests show that this difference is the only 
statistically significant difference with window sizes varying between 1 and 2.3 seconds. For larger 
window sizes, all significant differences disappear.   
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Figure 6: Classifier performance for within and between group classification ON and OFF medication

 
 
Legend: 
Classifier performance for all tested combinations of training and testing group under all medication 
conditions. Classification performance for classifiers trained on patients displayed in dark colours, 
classifier performance for classifiers trained on controls are displayed in lighter colours. Performance 
of classifiers tested on patients displayed in red and performance of classifiers tested in controls 
displayed in blue. Medication status in training or testing is indicated by location on the x-axis. on-on: 
training and testing on medication; off-on: training off, testing on; on-off: training on, testing off; off-
off : training and testing off medication. The y-axis starts at 50%, i.e., chance level; error bars show the 
standard error of the mean. Classifiers tested on controls’ data achieve a slightly higher performance 
(main effect of TESTING GROUP).  
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Table 1: Descriptive data of patients and healthy controls  

 PD: mean - min - max (STD) Controls: mean - min - max (STD) 
Age (yrs) 61 - 45 - 73 (7.4) 61.4 - 51 - 74 (5.1) 

Edinburgh score 70.3 - 33 - 100 (17.3) 73.8 - 50 - 100 (2.8) 
UPDRS - ON 20.9 - 9 - 31 (6.6) 1.25 - 0 - 4 (1.3) 
UPDRS - OFF 27.12 - 13 - 37 (6.9)  1.1 - 0 - 4 (1.1) 

BDI 9.7 - 0 - 19 (6.1) 5.8 - 0 - 17 (4.1) 
PANDA 25.4 - 16 - 30 (2.8) 26.1 - 21 - 30 (2.4) 

Disease duration (yrs) 7 - 2 - 12 (3.1)  
Hoehn & Yahr - ON 2.4 - 2 - 3 (0.10)  
Hoehn & Yahr - OFF 2.6 - 2 - 3 (0.09)  

 
 
Table 2: Condition specific t-values in the comparison of classification performance against chance level (50%). 
CON: control group, PD: patients  
Training-testing  
group 

Training-testing 
medication 

p-value T-value, all df =15 

PD-PD ON-ON 6*10−16  36  
PD-PD ON-OFF 1*10 −17  46  
PD-PD OFF-ON 1*10−16  40.3  
PD-PD OFF-OFF 3*10−16  37.8  
CON-PD ON-ON 8*10−14  25.7  
CON-PD ON-OFF 1*10−16  39.6  
CON-PD OFF-ON 3*10−17  44.4  
CON-PD OFF-OFF 5*10−19  57.7  
PD-CON ON-ON 1*10−15  33.7  
PD-CON ON-OFF 3*10−18  50.9  
PD-CON OFF-ON 4*10−15  31.3  
PD-CON OFF-OFF 4*10−19  58.8  
CON-CON ON-ON 6*10−16  36 
CON-CON ON-OFF 6*10−19  57.1  
CON-CON OFF-ON 4*10−17  43.3  
CON-CON OFF-OFF 2*10−18  52.4 
    
 
Table 3: Description of the movies in the segmentation tasks 

Movie content Length 
Actor irons shirts, folds onto table. 110 s 
Actor finds sugar spilled on floor, takes broom, 
sweeps floor. 

55 s 

Actor takes clothes off the line, folds them away. 143 s 
Actor clears out the dishwasher and sorts dishes 
into cupboards. 

69 s 

Actor gets dressed (coat, boots and scarf), leaves 
room. 

43 s 

Actor finds lamp not working, changes light bulb. 53 s 
Actor pours milk into cup, spills coffee, gets 
cloth, wipes table. 

44 s 

Actor takes a photograph of flowers on a table. 62 s 
Actor takes hand pump off bike, starts pumping 
air into tyre. 

76 s 

Actor washes and cuts tomatoes, places both into 
bowl. 

143 s 

Actor sticks poster to to wall using sellotape. 50 s 
Actor cleans dishes by hand. 119 s 



 
 
Table 4: Overview of individual medication. Dopamine agonists were discontinued up to 36 h (Piribedil: 36 h, 
Ropinirole/Pramipexole 25 h) and replaced by L-Dopa until complete cessation 14 h before testing. 
Patient Medication 
P1 Pramipexole 2,1 mg, L-Dopa 850mg, Selegiline 5mg, Benserazide 75mg, 

Carbidopa 137,5mg, Entacapone 1000mg 
P2 Amantadine 150mg, L-Dopa 600mg, Piribedil 50mg, Entacapone 1000mg, 

Carbidopa 100mg, Benserazide 25mg 
P3 Piribedil 100mg, L-Dopa 300mg, Carbidopa 75mg 
P4 Rotigotine 4mg, Rasagiline 1mg 
P5 Piribedil 400mg, L-Dopa 400mg, Carbidopa 100mg 
P6 L-Dopa 300mg, Carbidopa 75mg, Pramipexole 3,15mg 
P7 Pramipexole 2,1mg, Selegiline 5mg 
P8 Pramipexole 2,1 mg, Rasagiline 1mg 
P9 Pramipexole 2,1mg, Rasagiline 1mg 
P10 Pramipexole 2,36, Rasagiline 1mg 
P11 Ropinirole 12mg, Rasagiline 1mg 
P12 Pramipexole 2,62, L-Dopa 700mg, Benserazide 25mg, Amantadine 300mg, 

Tolcapone 300mg, Carbidopa 150mg 
P13 Amantadine 200mg, L-Dopa 200mg, Benserazide 50mg, Selegiline 10mg 
P14 Pramipexole 3,15, Rasagiline 1mg, 225 L-Dopa, Carbidopa 56,25mg, Entacapone 

600mg  
P15 Ropinirole 2mg, Rasagiline 1mg, Amantadine 200mg 
P16 Amantadin 200mg, Rasagiline 1mg, L-Dopa 218,75 mg, Benserazide 43,75mg 
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