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A Modified Bayesian Filter for Randomly Delayed
Measurements

Abhinoy Kumar Singh, Paresh Date and Shovan Bhaumik

Abstract—The traditional Bayesian approximation framework
for filtering in discrete time systems assumes that the measure-
ment is available at every time instant. But in practice, the
measurements could be randomly delayed. In the literature,
the problem has been examined and solution is provided by
restricting the maximum number of delay to one or two time
steps. This paper develops an approach to deal with the filtering
problems with an arbitrary number of delays in measurement.
Pursuing this objective, traditional Bayesian approximation to
nonlinear filtering problem is modified by reformulating the
expressions of mean and covariances which appear during the
measurement update. We use the cubature quadrature rule to
evaluate the multivariate integral expressions for the mean vector
and the covariance matrix which appear in the developed filtering
algorithm. We compare the new algorithm which accounts
for delay with the existing CQKF heuristics on two different
examples and demonstrate how accounting for a random delay
improves the filtering performance.

Index Terms—Nonlinear filtering, Bayesian framework of fil-
tering, Random delay in measurements, Cubature quadrature
Kalman filter.

I. INTRODUCTION

THERE are several efficient filtering techniques available
for nonlinear systems in the literature. Some of the more

popular techniques include the particle filter (PF) [1], the
extended Kalman filter (EKF) [2], the unscented Kalman filter
(UKF) [3], the Gauss-Hermite filter (GHF) [4], the central
difference filter (CDF) [5], the cubature Kalman filter (CKF)
[6] etc. Out of these approximations, CKF is quite popular,
especially in the field of tracking, due to its high accuracy
and computational efficiency. Very recently, the CKF was
generalized and cubature quadrature Kalman filter (CQKF) [7]
was introduced for achieving better accuracy.

The traditional framework of filtering is developed with
the assumption that the current measurement is available at
every time instant. But, in practice it is not always. The
estimator may receive the measurements with a random delay
in time. For example, the measurement received at the time
instant ‘t’ may actually belongs to any time ‘t − τ ’ where
0 ≤ τ < t. The equality sign represents that the measurement
may be non-delayed and belongs to the current time step itself.
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This delay may occur before arrival of measurement to the
sensor or during its propagation from sensor to estimator due
to the limited bandwidth. In practice, this kind of problems
usually occur in aerospace and underwater target tracking [8],
communication [9], control applications [10] etc.

In the filtering literature, extensive research has been carried
out for filtering of linear systems with delay in measurements.
But focusing on the nonlinear systems, we find very few
noticeable papers addressing the problems of random delays.
Hermoso-Carazo et. al. introduced a nonlinear filtering algo-
rithm for one-time step [11] and two-time step [12] randomly
delayed measurements using the extended and the unscented
Kalman filter approach. The work has been extended for
correlated noises in [14]. Later, Wang et. al. [13] incorporated
cubature Kalman filter (CKF) [6] to solve the nonlinear filter-
ing problems with one-step randomly delayed measurement.
All these works are restricted to delays extending to one or
two time steps.

In this paper, the conventional Bayesian framework of
filtering using numerical integration is modified to incorporate
any arbitrary number of random delays in measurements.
We reformulate the standard multivariate integral expressions
under Gaussian approximation to account for delays. Like the
conventional CKF/CQKF algorithms, the modified algorithm
includes intractable integrals for nonlinear systems, which are
approximated numerically.

The authors choose to implement the cubature quadrature
approach, recently introduced in CQKF [7], to solve the
intractable integrals appeared in the proposed algorithm with
delayed measurements. The CQKF under modified framework
is named as the randomly delayed cubature quadrature Kalman
filter (CQKF-RD). From the simulation results, it could be
justified that the CQKF-RD performs better than the ordinary
CQKF for filtering with delayed measurements.

II. MODIFIED APPROXIMATE FILTERING FOR RANDOMLY
DELAYED MEASUREMENTS

Let us consider a dynamic system whose state space model
could be described in terms of the following equations:

State equation xk = φk−1(xk−1, k − 1) + qk−1, (1)

Measurement equation zk = γk(xk, k) + vk, (2)

where xk ∈ <n denotes the state vector of a system and
zk ∈ <d is the measurement at any instant k where k ∈
{0, 1, 2, 3, ..., N}. φk(xk, k) and γk(xk, k) are known nonlin-
ear functions of xk and k. The process noise qk ∈ <n and
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measurement noise vk ∈ <d are assumed to be uncorrelated,
white and distributed normally with covariance Qk and Rk

respectively.
As discussed earlier, the assumption that the current mea-

surement is received at each time step does not always hold
true in practice. It may belong to the same time step or may be
a randomly delayed measurement from a previous time step.
To address this situation, we need to modify the measurement
equation of the dynamic state space model.

To modify the measurement model in a tractable fashion,
we need to fix the maximum number of delays. Let us assume
this number as (N−1) time steps. The value of N can be chosen
by the practitioner, subject to the following considerations:
• If N is chosen very small as compared to the actual delay

possible, then no measurement will appear at several time
steps. It may result in loss of data and subsequently, poor
filtering accuracy.

• As will be seen in the next section, the complexity of
filtering rises with increasing N.

For (N − 1)-delayed systems, at kth time step either any
measurement zk−i (0 ≤ i ≤ N−1) arrives or no measurement
arrives. If no measurement arrives, the measurement data
stored in the sensor is not updated and hence the estimator
receives the measurement received at previous time step itself.

To model the delayed measurements at kth time instant,
corresponding to each (k − i)th (0 ≤ i ≤ N − 1) time step
we need a random number which takes a value either 1 or
0. The kth step measurement actually belongs to a step for
which this value is 1. To this regard, let βj (j = 1, 2, ...,N)
be the independent Bernoulli random variables taking values
either 0 or 1 with probability P (βj = 1) = p = E[βj ], and
P (βj = 0) = 1−p. If yk represents the measurement received
at kth time instant, then

yk = (1− β1)zk + β1(1− β2)zk−1 + β1β2(1− β3)zk−2 + ...

+ (

N−1∏
i=1

βi)(1− βN)z(k−N+1) +
[
1− (1− β1)− β1(1− β2)

− β1β2(1− β3)− ...− (

N−1∏
i=1

βi)(1− βN)
]
yk−1

= β(j,0)zk + β(j,1)zk−1 + β(j,2)zk−2 + ...+ β(j,N−1)z(k−N+1)

+ (1−
N−1∑
i=0

β(j,i))yk−1,

(3)

where β0 = 1 and β(j,i) =
(∏i

j=0 βj

)
(1 − βi+1). From the

above expression, it is clear that the yk is i step delayed if
βi+1 = 0 and βj = 1 ∀ j 6= i.

Hence, yk =

N−1∑
i=0

(
β(j,i)zk−i

)
+

(
1−

N−1∑
i=0

β(j,i)

)
yk−1.

(4)

This is the modified measurement model which actually ap-
pears in case the measurement is randomly delayed in time.
The values of β(j,i) will be either 0 or 1. At any specific
instant, at most one β(j,i) (∀ 0 ≤ i ≤ N − 1) can be 1 while

all the remaining will be 0. If β(j,i) = 1 and β(j,k) = 0
(∀ k 6= i), then the received measurement will be ith time
step delayed measurement. If all the β(j,i) (∀ 0 ≤ i ≤ N− 1)
are zero, it represents that no measurement is received at the
corresponding time instant. In such case yk−1 will propagate
at kth instant i.e. yk = yk−1. It can be noticed in equation
(4).

Lemma 1: The probability that the measurement received at
kth time step is actually i time step delayed, is pi = pi(1−p).

Proof: pi = E
[
β(j,i)

]
.

As βj is independent of βk ∀ j 6= k, hence

pi = E
[
β(j,i)

]
=E

 i∏
j=0

βj

E [(1− βi+1)] . (5)

Moreover, E

 i∏
j=0

βj

 =

 i∏
j=0

E [βj ]

 = pi, (6)

and E [(1− βi+1)] = (1− p). (7)

Substituting equations (6) and (7) into (5), we get

pi = E
[
β(j,i)

]
= pi(1− p). (8)

�
Lemma 2: The probability that no measurement will be

received at kth time instant can be given as pk = pN.
Proof: pk can be given as

pk = E

[
1−

N−1∑
i=0

β(j,i)

]
. (9)

We can write

E

[
1−

N−1∑
i=0

β(j,i)

]
= 1−

N−1∑
i=0

E
[
β(j,i)

]
Substituting (8), we get

pk = E

[
1−

N−1∑
i=0

β(j,i)

]
= 1−

N−1∑
i=0

pi(1− p) = pN (10)

�
Remark 1: As the value of p is usually small relative to

unity, the probability that no measurement arrives at kth time
instant i.e. pk = pN will be very small. Even for higher p, it
can be make smaller by increasing the value of N.

As the measurement model is modified, the mean and the
covariance of measurement along with the cross-covariance
which we denote as ẑk, Pzz

k|k−1 and Pxz
k|k−1 respectively, should

be modified in Bayesian framework of filtering. Hence, the
problem reduces to reformulation of these expressions and
deriving ŷk, Pyy

k|k−1 and Pxy
k|k−1 for modified model.

The proposed modification is introduced in two steps. In the
first step, the reformulation is done under the assumption that
no measurement is lost for (N−1)-delayed filter. In the second
step, these expressions are further modified and the possibility
that some measurements may be lost is incorporated.

The purpose of performing this modification in two steps
is simple. The chances of the measurement being delayed
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by a large number of sample times is low, so that the value
of p is small. Consequently, the probability of not receiving
any measurement, pk will be very small and hence it can be
ignored. Subsequently, the filtering can be performed with the
expressions derived in the first step only in order to reduce
the computational complexity. But if this is not the case, the
expression derived in the second step can be employed.

A. Step 1: If no measurement is lost for (N− 1)-delay

Say, the measurement at kth time instant under the condition
that no measurement is lost for (N− 1)-delay is Yk, then

Yk =

N−1∑
i=0

β(j,i)zk−i. (11)

We derive the expressions for Ŷk, PYY
k|k−1 and PxY

k|k−1 in a
series of lemmas next.

Lemma 3: If no measurement is lost for (N− 1)-delay, the
estimate of measurement at kth time instant can be given as

Ŷk|k−1 = (1− p)
N−1∑
i=0

piẑk−i|k−1. (12)

Proof: From equation (11)

Ŷk|k−1=E[Yk]=E

[
N−1∑
i=0

β(j,i)zk−i

]
=

N−1∑
i=0

E
[
β(j,i)

]
ẑk−i|k−1.

Substituting (8), Ŷk|k−1 = (1− p)
N−1∑
i=0

piẑk−i|k−1. �

Lemma 4: If no measurement is lost for (N− 1)-delay, the
covariance of measurement at kth time instant is

PYY
k|k−1 = (1− p)

N−1∑
i=0

piPzz
k−i|k−1 + (1− p)

N−1∑
i=0

pi

(1− pi(1− p))
(
(ẑk−i|k−1)(ẑk−i|k−1)T

)
.

(13)

Proof: From equations (11) and (12), we get

Yk − Ŷk|k−1=

N−1∑
i=0

β(j,i)zk−i−(1− p)
N−1∑
i=0

piẑk−i|k−1

=

N−1∑
i=0

β(j,i)(zk−i−ẑk−i|k−1)︸ ︷︷ ︸
M1

+

N−1∑
i=0

(
β(j,i) − (1− p)pi

)
ẑk−i|k−1︸ ︷︷ ︸

M2

.

(14)

PYY
k|k−1 = E[M1MT

1 ] + E[M1MT
2 ] + E[M2MT

1 ] + E[M2MT
2 ].

(15)

E[M1MT
1 ] =

N−1∑
i=0

E
[
β(j,i)

]2
E
[
(zk−i − ẑk−i|k−1)

(zk−i − ẑk−i|k−1)T
]
=

N−1∑
i=0

E
[
β(j,i)

]
Pzz
k−i|k−1.

From (8), E[M1MT
1 ] = (1− p)

N−1∑
i=0

piPzz
k−i|k−1. (16)

Next, E[M1MT
2 ] =

N−1∑
s=0

N−1∑
t=0

E
[
AsAT

t

]
, (17)

where As = βj,s(zk−s − ẑk−s|k−1)

and, At =
(
βj,t − (1− p)pt

)
ẑk−t|k−1.

For any s and t,

E
[
AsAT

t

]
=E
[
βj,s
(
βj,t−(1−p)pt

) (
(zk−s)(ẑk−t|k−1)T

)]
− E

[
βj,s

(
βj,t−(1−p)pt

)(
(ẑk−s|k−1)(ẑk−t|k−1)T

)]
or, E

[
AsAT

t

]
= E

[
βj,s

(
βj,t − (1− p)pt

)
−βj,s

(
βj,t − (1− p)pt

)] (
(ẑk−s|k−1)(ẑk−t|k−1)T

)
or, E

[
AsAT

t

]
= 0. (18)

Substituting (18) into (17), E[M1MT
2 ] = 0. (19)

Similarly, it can be shown that E[M2MT
1 ] = 0. (20)

E[M2MT
2 ] =

N−1∑
i=0

E

[(
β(j,i) − (1− p)pi

)2]
(ẑk−i|k−1)×

(ẑk−i|k−1)T=
N−1∑
i=0

E

[(
β(j,i)

)2
+
(
(1− p)pi

)2
−2β(j,i)

(
(1− p)pi

) ]
(ẑk−i|k−1)(ẑk−i|k−1)T .

In the above expression

E

[(
β(j,i)

)2]
= E

[
β(j,i)

]
= pi(1− p).

hence, E[M2MT
2 ] =

N−1∑
i=0

(
pi(1− p)− p2i(1− p)2

)
×(

(ẑk−i|k−1)× (ẑk−i|k−1)T
)
.

(21)

Substituting (16), (19), (20) and (21) into (15), we get

PYY
k|k−1 = (1− p)

N−1∑
i=0

piPzz
k−i|k−1 + (1− p)

N−1∑
i=0

pi
(
1−

pi(1− p)
) (

(ẑk−i|k−1)(ẑk−i|k−1)T
)
. �

Lemma 5: If no measurement is lost for (N− 1)-delay, the
cross-covariance between state and measurement at kth time
instant can be given as

PxY
k|k−1 = (1− p)

N−1∑
i=0

piPxz
k−i|k−1. (22)

Proof: From (14), Yk − Ŷk|k−1 = (M1 + M2). Hence,

PxY
k|k−1 = E[(xk − x̂k|k−1)(M1 + M2)

T ]. (23)
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Now, E[(xk − x̂k|k−1)(M1)
T ]

= E

(xk − x̂k|k−1)×

(
N−1∑
i=0

β(j,i)(zk−i − ẑk−i|k−1)

)T


= (1− p)
N−1∑
i=0

piE
[
(xk − x̂k|k−1)(zk−i − ẑk−i|k−1)T

]
or, E[(xk − x̂k|k−1)(M1)

T ] = (1− p)
N−1∑
i=0

piPxz
k−i|k−1. (24)

Similarly replacing M2, we get

E[(xk−x̂k|k−1)(M2)
T ]=E

(xk−x̂k|k−1)

(
N−1∑
i=0

(
β(j,i)−(1−p)pi

)

ẑk−i|k−1

)
T

=N−1∑
i=0

E
[(
β(j,i)−(1−p)pi

)(
(xk−x̂k|k−1)ẑk−i|k−1

)
T
]

=

N−1∑
i=0

E
[(
(1−p)pi−(1−p)pi

) (
(xk − x̂k|k−1)ẑk−i|k−1

)T ]
or, E[(xk − x̂k|k−1)(M2)

T ] = 0. (25)

Substituting (24) and (25) into (23), we get

PxY
k|k−1 = (1− p)

N−1∑
i=0

piPxz
k−i|k−1. �

Under the consideration that pk = pN is negligible i.e. no
measurement is received, the expressions of ẑk, Pzz

k|k−1 and
Pxz
k|k−1, appeared in the traditional Bayesian approximation

framework can be replaced by Ŷk, PYY
k|k−1 and PxY

k|k−1 re-
spectively to modify it for dealing with the randomly delayed
measurements.

B. Step 2: Incorporating the possibility that a few measure-
ments are lost for (N− 1)-delay

The probability that no measurement arrives at any time
instant k is pk = pN. In case when no measurement arrives, the
previous measurement is propagated i.e. yk = yk−1. Now, the
expressions of Ŷk, PYY

k|k−1 and PxY
k|k−1, derived in the previous

step are reformulated and ŷk, Pyy
k|k−1 and Pxy

k|k−1 are derived
to get a generalized solution.

Lemma 6: For an (N − 1)-delay system, the estimate of
measurement can be given as

ŷk|k−1 = (1− p)
N−1∑
i=0

piẑk−i|k−1 + pNŷk−1|k−2. (26)

Proof:

yk =

N−1∑
i=0

β(j,i)zk−i +

(
1−

N−1∑
i=0

β(j,i)

)
yk−1︸ ︷︷ ︸

M3

= Yk + M3.

hence, ŷk|k−1 = Ŷk|k−1 + E

[(
1−

N−1∑
i=0

β(j,i)

)]
ŷk−1|k−2

Substituting (12) and (10)

ŷk|k−1 = (1− p)
N−1∑
i=0

piẑk−i|k−1 + pNŷk−1|k−2. �

Before proceeding forward, we make an assumption that
Pyy
k|k−1 ≈ PYY

k|k−1+E
[
(M3 − E[M3]) (M3 − E[M3])

T
]
. This

assumption is useful for deriving the measurement covariance.
Remark 2: The above assumption does not affect the per-

formance much as the estimates of cross terms cancel each
other due to the independence of zk and zj (∀ j 6= k). The
cross terms are non-zero only when yk and yk−1 both receives
the same measurement zd where d < k and the probability of
this occurrence is negligible, as the probability of occurrence
of M3 is already quite small in practice.

Now, Under the assumption made on M3 earlier, we may
write

Pyy
k|k−1 ≈ PYY

k|k−1 + E
[
(M3 − E[M3]) (M3 − E[M3])

T
]

= PYY
k|k−1 + E

((1− N−1∑
i=0

β(j,i)

)
yk−1 − pNŷk−1|k−2

)
((

1−
N−1∑
i=0

β(j,i)

)
yk−1 − pNŷk−1|k−2

)T
 .

Further, E

(1− N−1∑
i=0

β(j,i)

)2
 = E

[(
1−

N−1∑
i=0

β(j,i)

)]
= pN.

Also, p2N ≈ pN for small p or higher N.

hence, Pyy
k|k−1≈PYY

k|k−1+p
NE[(yk−1−ŷk−1|k−2)(yk−1−ŷk−1|k−2)

T ].

Replacing (13), we get

Pyy
k|k−1 ≈ (1− p)

N−1∑
i=0

piPzz
k−i|k−1 + (1− p)

N−1∑
i=0

pi
(
1−

pi(1− p)
) (

(ẑk−i|k−1)(ẑk−i|k−1)T
)
+ pNPyy

k−1|k−2.

(27)

Lemma 7: For an (N−1)-delay system, the cross-covariance
between the state and measurement could be given as

Pxy
k|k−1 = (1− p)

N−1∑
i=0

piPxz
k−i|k−1 + pNPxy

k−1|k−2. (28)

Proof: We may write,

Pxy
k|k−1 = E[(xk − x̂k|k−1)(Yk − Ŷk|k−1])

T+E[(xk − x̂k|k−1)

(M3 − E[M3])
T ] = PxY

k|k−1+E

(xk − x̂k|k−1)

(1− N−1∑
i=0

β(j,i)

)

yk−1 − pNŷk−1|k−2

T
 = PxY

k|k−1 + pNPxy
k−1|k−2.

Replacing (22), we get

Pxy
k|k−1 = (1− p)

N−1∑
i=0

piPxz
k−i|k−1 + pNPxy

k−1|k−2. �
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Remark 3: The conventional Bayesian approximation frame-
work for filtering using numerical integration could be modi-
fied to deal with the problem of randomly delayed measure-
ments by replacing the conventional expressions of estimates
and covariances of measurement by ŷk, Pyy

k|k−1 and Pxy
k|k−1

respectively and keeping all the other expressions as it is.
In step 2 (section II-B), x̂k+1|k+1 is computed using yk if

the measurement received at kth instant is delayed by more
than (N − 1) steps. It may result in poor accuracy for some
problems (especially, if the sampling interval is high). For
such problems, N must be chosen sufficiently high in order
to minimize/circumvent the possibilities of lost measurements.
Alternatively, prediction could be performed without measure-
ment update at those steps.

III. SIMULATION RESULTS

In this section, for comparison purpose, the proposed
method is implemented to solve two different filtering prob-
lems where delay in measurement is likely.

A. Problem 1
The process and measurement models for an arbi-

trary dimensional system are [15] xk = 2 cos(xk−1) +

qk−1, and yk =
√
1 + xT

k xk + vk. The noise covariances
are Q = 5In and R = 5. The filter is initialized with
x0 = 0.1n×1, x̂0 = 15n×1 and P0|0 = 5In. The states are
estimated upto 200 time steps and the results are ensured with
200 independent Monte Carlo runs by considering n = 6.

For filtering, the CQKF is applied with 2nd order Gauss-
Laguerre quadrature rule. The simulation is performed con-
sidering one and two time step delays in measurement. The
results are compared in terms of the root mean square error
(RMSE) averaged along the time step. The average RMSE
against the different probability p = P (βj = 1) i.e. 0.1 ≤
p ≤ 0.9 are plotted in figure-1 and figure-2 for one delay
case and two delay case respectively. The subfigures (a) to
(f) are corresponding plots for state-1 to state-6 of the sixth
dimensional system.

The simulation is performed with the conventional CQKF
and the modified CQKF as proposed in this paper, represented
by CQKF-RD. The conventional CQKF suffers significant
numerical errors in matrix inversion for higher probability of
delay (p) and hence its square-root version [16] is used for
implementation. From the plots, it could be concluded that
the performance of CQKF-RD is significantly better than the
ordinary CQKF, in the presence of a delay.

B. Problem 2
In this problem, we estimate the amplitude and the fre-

quency of multiple superimposed sinusoids [17], [18]. The
delay in measurement is probable due to the bandwidth
criteria. In this paper, the number of sinusoids are considered
to be three, hence the state variable can be represented as
x = [f1, f2, f3, a1, a2, a3]

T , where fi and ai are the frequency
and amplitude of the ith sinusoid. The process model follows
random walk model, i.e.

xk = Ixk−1 + qk,
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Fig. 1. Average RMSE against probability plot for one delay, for (a) state-1,
(b) state-2, (c) state-3, (d) state-4, (e) state-5 (f) state-6.
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Fig. 2. Average RMSE against probability plot for two delays, for (a) state-1,
(b) state-2, (c) state-3, (d) state-4, (e) state-5 (f) state-6.

The measurement equation is [19]

yk=
[∑3

j=1aj,k cos(2πfj,kkT )
∑3

j=1aj,k sin(2πfj,kkT )
]T
+vk,

where T is the sampling time considered as 0.1667 ms.
The noise covariances are Q = diag([σ2

f σ2
f σ2

f σ2
a

σ2
a σ2

a]) i.e. σf =
√
2.55mHz and σa = 2mV , and

R = diag([0.009V 2 0.009V 2]). The initial true values and
estimates are considered as [200 1000 2000 2 2 2]T and
1.2× [180 900 1800 1.5 2.5 2]T respectively, while the initial
error covariance is taken as diag([202 202 202 0.5 0.5 0.5]).
The states are estimated for 750 steps and the results are
ensured with 500 Monte Carlo runs. The results are compared
in terms of the RMSE.



6

(a) (b) 

(c) (d) 

1

2

3

4

20 220 420 620

R
M

SE

Steps

CQKF CQKF-RD

0

100

200

300

400

20 220 420 620

R
M

SE

Steps

CQKF CQKF-RD

1

2

3

4

5

0 0.5 1

A
ve

ra
ge

 R
M

SE
 

Probability

CQKF CQKF_RD

0

100

200

300

400

0 0.5 1
A

ve
ra

ge
 R

M
SE

 
Probability

CQKF CQKF_RD

Fig. 3. One delay: (a) RMSE (in V ) vs time step plot for amplitude
considering p = 0.3 (b) RMSE (in Hz) vs time step plot for frequency
considering p = 0.3 (c) Average RMSE vs probability plot for amplitude (c)
Average RMSE vs probability plot for frequency.
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Figures 3(a) and 3(b) represent the RMSE plot of fre-
quency and amplitude respectively, while Figures 3(c) and
3(d) show the average RMSE plotted against the probability
for frequency and amplitude for the case of one delay in
measurement. Similarly, Figures 4(a) to 4(d) represent the
same plots for two delay case. For this problem as well, the
RMSEs are compared for the ordinary CQKF and CQKF-RD.
During simulation, the square-root version is used for ordinary
CQKF as it suffers with numerical errors in matrix inversion.
It is found that the result is improved for CQKF-RD.

For one delay case, the authors also compared the new
algorithm with the algorithm in [19]. It was found that the
performance of the two algorithms was comparable at the low
end of probabilities, although our algorithm outperformed at
large delay probabilities. Details are omitted for brevity.

IV. DISCUSSIONS AND CONCLUSIONS

In recent years, the conventional Bayesian approach of
filtering has been most accepted one. This approach works
only if the measurement is available at every time instant.
Hence, its practical applicability vanishes if the measurement
reaches to the filter after some delay in time. The delayed
measurement problem is very common in maneuvering and

underwater target tracking problems where distance and sensor
response time matters and in the filtering and estimation prob-
lems occurring in communication systems where bandwidth
matters.

In this paper, the Bayesian approximation framework for
filtering using numerical integration is enhanced for the prob-
lems where the measurement is expected to arrive after some
delay. To compare the performance, two nonlinear filtering
problems are solved using the conventional CQKF and modi-
fied CQKF for randomly delayed measurements (CQKF-RD).
It is found that the RMSE is lower for CQKF-RD which
concludes that the proposed modification can be accepted for
real life applications if delay in measurement is probable.
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