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Value-at-Risk for fixed income portfolios: A Kalman filterin g approach

We propose a way of measuring the risk of a sovereign debfigtiorby using a simple two-factor short
rate model. The model is calibrated from data and then theggsain the bond prices are simulated by
using a Kalman filter. The bond prices being simulated reradbitrage-free, in contrast with principal
component analysis based strategies for simulation akdméasurement of debt portfolios. In liquid
sovereign debt markets, a risk measurement methodologghveliows the future bond price scenarios
to be arbitrage-free may be seen as a potentially more tiealiay of measuring the debt portfolio risk
due to interest rate fluctuations. We demonstrate the peafioce of this methodology with calibration
and backtesting, both on simulated data as well as on a re#blpmof US government bonds.

Keywords Keywords: Value-at-Risk, fixed income portfolios

1. Introduction

Financial institutions need to monitor and effectively rage market risk Quantitative risk measures
have become crucial management instruments for portfofinagers for this purposé/alue-at-Risk
(VaR) has been chosen by the Basel Committee on Banking @sjoer in Basel Il as the standard
risk measure for financial risk managers, see Ba Enife06) and Chen and Gerlach (2011)
for details. VaR has received criticism by Artzner €t al.998(Acerbi and Tasché (2002) ahd Szego
@) for not being a coherent measure of risk. A sub-addaiternative to VaR is the conditional

Value-at-Risk (CVaR). Its minimization formula was firsmeéoped i Rockafellar and Uryasév (2000).

VaR and CVaR at a levet arerespectivelygiven by:

VaRy = —qa(2), (1.1)
CVaR = ~E[2]2° < a(2), (1.2)

whereqg(2") = inf{x|F4-(x) > B} is the-quantile of 2".

The purpose of this paper is to measure the risk of fixed incpongolios which originates from the
uncertainty in the interest rates, using VaR as a risk measur

Several mathematical tools have been applied to model the $&ucture of interest rates. A first
approach is using tools that smooth the yield term strucflinés includes the approaches suggested in
McCulloch (1975), Vasicek and Fanlg (1982) and Fisher el1£19%), among othersn this article, we
consider exponential affine term structure models, whighdkss of models often employed to under-
stand the dynamics of interest rat&eminal work on this class has been provideﬁé&@lgﬁ
Coxetal. 5) where, respectively, Gaussian and nors&ausingle factor models are proposed. As
pointed out in_Brigo and Mercurio (2006) there is evidena the single factor models fail to explain
accurately some of the features of the term structure achiécessary to consider extensions to these

models. A generalization of the single-factor models tchkigdimensions have been presented e.g.
in %ﬁﬁﬂdﬁhﬁ?%ﬁ%i). Chén iiEQS) and Duffie and KaB86),while Jegadeesh and Pennac-
i 5) an

ch i (2004) focused on Gaussian mulidfacodels Babbs and Nowman (1999)
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looked at one, two and three factor models on US data and fthatdhe two-factor model performed
better for the term structure of the interest rates in the ti&lmarket. Ih Dai and Singleton (2000), the
authors provided a classification of affine term structureef®into non-nested families and explored
the structural properties of each family of modelsM@) an extension to these results was
prowded by allowmg the price of risk to vary independgruf the interest rate volatility. Later in

1(2010), closed-form approximatiovere provided for likelihood functions of
one, two and three factor models under the framework deeelopDai and Singleton (2000).

The interest rate term structure can be described by simgrautiiple factors. A three-factor model
is often preferred to describe the behaviour of economiialibes. However, when it comes to out-of-
sample prediction, the authors in Date and Wang (2009) state two-factor Gaussian model performs
better than a single-factor model or a three-factor modemd¢omparing out-of-sample one-step ahead
forecasting. A two-factor model seems to offer a good commpse between the difficulty of calibrating
a three factor model and the poor accuracy of a one factor mbidmce a two-factor model has been
chosen for the current analysis.

The computation of Value-at-Risk for fixed income portfslisas attracted a lot of interest and a few
different approaches are available in the Iiteraturem ), the author calculates VaR for a
three zero-coupon bond portfolio by focusing on the yielthtilities and correlations. The perfor-
mance of fixed-income Brazilian portfolios are assessediwvathal and Daumas (2010) by computing
several measures including VaR and CVaR, which are catuileésuming a normal distribution of in-
terest rate variations. The authors conclude that the elwiteria based on minimum VaR and CVaR
achieve satisfactory results. MEOOD, VaR fordfixeome portfolios is computed using ex-
treme value theory. The VaR estimates so obtained are thepared tothe estimates found using
the variance/covariance method and the historical sinauahethod, concluding that the extreme value
method provides the best VaR estimates. A methodology eftgrloyed to assess VaR for fixed income
portfolios is scenario simulation from principal compotseaf the yield curve. 1h Jamshidian and Zhu

) the bond prices are modeled using a small numberlofaidors, the joint distribution is ap-
proximated using a multivariate discrete distribution &adR is computed by selecting the appropriate
quantile of the discrete cumulative distribution functi@ibson and Pritsker (2000) pointed out that an
appropriate choice of risk factors is crucial for this metblmgy, and also advocated using a continuous
distribution to model the extracted risk factots. Fiori and lannotti/(2007)the authors apply princi-
pal component analysis (PCA) to Monte Carlo simulation agring the non-normality of historical
observations. Another approach is suggested in Cherl @7} where the authors use independent
component analysis (ICA), a tool utilized in sound engiivegrto calculate VaR for foreign exchange
rate portfolios.

We present an alternative way tioe extant works on VaR computation for fixed income portfolios.
We model the instantaneous interest rate using a two-fa&sicek model. After calibration of the
model, arbitrage-free future bond prices are simulatedsoyga Kalman filter and are used to compute
the portfolio loss quantiles of interest. We demonstragegdrformance of this methodology with cali-
bration and backtesting on simulated data as well as on pogtiblio of US government bonds.

The Kalman filter, first proposed in Kalman (1960), is a mathgeal tool used to estimate the vari-
ables of interest which are not directly observable. It ceewide range of applications in different
fields including signal processing, weather sciences,@wetrics and financen particular, in finance

it has proved to be a useful instrument for a variety of puggpcluding the estimation of instanta-



neous interest rate implied by the yield curve (see,e.gbBaind Nowmar (1999) ahd Bolder (2001)),
the estimation of the spot prices of commodities from theiress prices (see_Schwartz (1097) and

IManoliu and Tompaidis (2002)) and updating the uncertaiihgrameters in the context of hedging in
incomplete markets (Monoyios (2007)). A review of applieas of filtering in financial mathematics
is provided in_Date and Ponomareva (2011).

The novelty of the work presented here lies in exploiting fikering methodology for simplify-
ing the scenario generation from the point of view of measuthe portfolio risk due to interest rate
uncertainty. To authors’ knowledge, this is the first timattthe ability of Kalman filter to generate
one step ahead conditional distribution of the short ratebeen exploited for efficient simulation of
arbitrage-free bond prices using a two-factor Gaussianemddhe fact that only arbitrage-free scenar-
ios are generated may be seen as an added advantage on stiexitting methods, such as those
based on the principal component analysis. We present @mapsive numerical studies, including for-
mal backtesting based on industry-standard hypothesss teish both simulated and real data for VaR
computation on fixed income portfolios using the Kalmanfilte

The rest of the paper is structured as follows. Sedflon ®éhices the recursive equations for the
Kalman filter and some of their features that will be usedrlédectior B providethe preliminary def-
initions for the term structure of interest rates and prestre two-factor Vasicek model, highlighting
some of the key relationships. Sectidn 4 includes detailheracktesting tools used for validation of
the VaR model. Sections$ 5 alid 6 report numerical experinvétitsimulated data and real data, respec-
tively. In both these sections we compare how our methoped against the historical simulation
method and the variance/covariance method for computiiy Sactiod 7 concludes the article.

2. The Kalman filter

Let us consider a discrete time, linear state space system:

M1 =Arp+b+wq, g, (2.1)
Yn=Crn+d+2z, (2.2)

wherew, andz, are zero mean, Gaussian and uncorrelated random varidtdestatimet,. A, b, C,
d, G =E(waw) andH = E(z,z!) are constants or are known functions of time. The varigple the
only observable variable, whilg, can not be directly observed and needs to be estimated. Baeh t
stepAt = t, —t,_1 is assumed to be constant. Equatidns|(2.1) (2.2) ameaéf® as théransition
equationand themeasurement equatiprespectively.

There are different versions of th€alman filter (KF) equations including the one reported e.g. in
Date and Wand (2009). The KF consists in a set of recursivateEms; the one employed in this paper
involves the following:

Vn=Yp—Cfypn-1—d, (2.3)
50 =CVyn1CT +H, (2.4)
Kn=Von-1CT 2,1, (2.5)
Prin = Fojn-1+ KnVn, (2.6)
Prsan = Afpn+b, (2.7)

Vit 1in = AVpn1AT + G — Ay 1CT 2, 1CV,n 1A (2.8)



The estimation of the variable of interast and the conditional variance of the estim&febased on
information up to time,_; are respectively denoted by,_; andVy,_;. Initial estimatesoq andVyg

are assumed to be known or can themselves be parametéftaeithnovationsv,, and their covariance
matrix 2, are expressed by equatiofis{2.3) dndl(2.4) respectivelle Wh, often referred tas the
Kalman gain, is given by the equatidn (2.5). Equatlonl(2epyesents the filtered state vector. The state
vector and the covariance matrix predictions are respagtivovided by equationg(2.7) arid (2.8). The
calibration of the set of parameters which characterizenth&ricesA, C, G, H and the vectord, d

are obtained through maximizing the likelihood of obseorat. Having the set of observatio¥s=
{y1:¥2,..-,yn} @nd sincey, qjn ~ A (Clp qn +d, Zn11), We can express the log likelihood function,
ignoring the constant terms, as:

logL(Y) = —%i(log|zi|+viTZilvi). (2.9)

The expressior (219) can be maximized in MATLAB 7.9 usingititauilt solvers such as fminsearch
over the set of model parameters. Once the optimal parasnaterobtained, one can forecésé
successive values for the latent variablas long as new observatiogshecome available. This is
implemented employing the recursive equatidns](Z3})(2uth A, b, C, d, G andH expressed as
appropriate functions of the optimized parameters.

3. Preliminary definitions for the term structure and the two-factor Vasicek model

The relationship between the interest rates #redcorrespondingime to maturity is called the term
structure of interest rates. For clarity, some essentitihitiens are henceforth briefly introduced. A
zero-coupon bond is a contract that pays at its matuFitygne unit of its currency. Its value at tinbe
is denoted byP(t,T), witht < T. Given the price of a pure discount bond having matuFitghe bond
yield (or spot rate or zero-coupon yield) associated to &qudar datet is given by:

_InP(t,T)

Y(ET) = = 3D

while the instantaneous interest rate is defined by takiadjthit as the time to maturity tends to zero:

(t) :70InZEt,T)' (3.2)

The price of a zero-coupon bond with maturityat timet can be obtained by inverting this equation as:
P(t,T) = Eg[e i rWiu 7],

where % is the natural filtration for the process and the expectagaiaken undethe risk neutral
measure). Hence modeling the variation of the instantaneous inteeger(t) over time affects the
evolution of bond prices and other derivative prices, atichaltely the bond yields. The bond yields are
observable quantities, whilgt) is a latent variable. We need to predi¢t) if we want arbitrage-free
forecasts of bond yields. In exponential affine mod#ig,yields depend affinely on the latent vari-
abler(t). In such cases, it is possible to estimtite latent variables recursively, in a computationally
tractable fashion, from the observable bond yields usieg<alman filter, which was described earlier
in sectior 2.



The key assumption of the two-factor Vasicek model is thatsthort term interest rates are given by the
sum of two state variables, each of them following an Ornstélenbeck process. Let us consider two
independent state variables that follow linear, mean teygGaussian process under the risk neutral
measure):

r(t) =ra(t) +ra(t), (3.3)

dri(t) = ki(6 —ri(t))dt+ gidW(t), ri(0) =rio i=1,2, (3.4)

whererig, ki, 6 andg; are positive constants, akid(t) are uncorrelate@-Wiener processes. Eacitit)
conditional to.Zs is normally distributed with mean and variance (see, e.@dand Mercurio/(2006)):

E[ri(t)|-7s = ri(s)e k(9 L g(1— e =9y, i=1,2, (3.5)
o
2K;
We discretize the two equatioris (B.5) ahd3.6) considezirmmly spaced observation timgs< ty <

... <tn, With ths 1 — th = At, obtaining (see, e.d. Bolder (2001)) the following traiositequations in
the same form as expressedin{2.1):

Var(ri(t)|.Zs) = = (1— e 269y, i=1,2 (3.6)

k1At —k1At
Mns1| _ (€79 0 lin 01 (1—e "4 Wini1
|:r2n+1:| - [ 0 eszt] {fzn} * [92(1—ek2m) T | wons) (3.7)
wherew, 1, ~ 47(0,G), with:
9 (1 e bt 0
o= | %! ) o2 : (3.8)
0 2_1(22(17 e72k2At)

This discretisation preserves the exact conditional niggiit + At)|.%:] and the exact conditional vari-
ancevarlri(t + At)|.%:]. Let us assume that each state variable that makes up theeirsteoest rate

follows a linear, mean reverting Gaussian process with dineesvolatility but a different drift function

under measurg:

dn(t) = k(6 —nO)dt+ GdW(t), [0 =ro  i=12 (3.9)

whereW (t) is aP-Wiener process. Our assumption of an arbitrage-free rarégectly implies the
existence of processagt) such thath — 6 = giAi(t) fori = 1,2 holds. Itis common practice (see, e.g.

IDe Ross$il(2004) ar Vasicek (1977)) to assuln@) = A; to be constants, independentaindr;(t).

The bond price function for the two-factor Vasicek model theesfollowing analytical form:
P(t, T,ra(t),ra(t)) = eE(t‘rT)iFl(t’T)rl(t)iFZ(t’T)rZ(t),
where
A 2
2 (R6-%)-FEET-(T-1) g2RALT)
3 A
(1—e KTy, i=12 (3.11)

E{t,T)=

(3.10)



where); is the market price of risk for thié" factor.

Note that it is quite straightforward to use correlated Weprocesses in this framework, at the
risk of complicating the notation as well as the calibragiwocedure; sees.g./Date and Wargd (2009)
for a treatment with correlated factors. However, in aushexperience, adding correlation tends to
induce numerical difficulties in likelihood maximisationithout a compensatory improvement in out-
of-sample performance. Besides, even though) andr;(t) are themselves uncorrelated, the bond
prices (and the yields) are (imperfectly) correlated sihey are functions of; (t) andry(t). Hence we
will continue with the use of uncorrelated random factors.

The measurement system we used involves the followingioaktiip between zero-coupon yields
and the price of zero-coupon bonds:

JOT) = 7In:(i,t'l') _—ET) +'Z|'i2i1tFI (tLT)r() (3.12)

Using this equation at eadh, for a set ofm bonds with maturitiedy, ..., Ty, leads to the following
vector valued equation:

F1(tn,T1) Fo(tn, T1) E(tn,T1)
Y(tn, T1) F%r(1t7$l) Fgr(1t7$l) j ET(% 7%: ) 21(t)
1\tn, 12 2\tn, 12 n, 12
Al I I = o N ETCO1 I ol R (3.13)
: : 2| Lralt) : :
y(tn, Tm> F1(tn,Tm) Fo(tn,Tm) _ E(tn,Tm) Zm(tn)
Tm—tn Tm—tn Tm—tn

wherez (t,) ~ .4 (0,H) are noise variables which reflect the deviation of bond grfcem the model
prices ancH = diagh?,h2, ..., hZ)), whereh; are positive constants. Equati¢gn{3.7) provides the tran-
sition equation as i (2.1) and the equation (B.13) sup@yntlieasurement equation as[in {2.2). Hence
these equations form a linear state space system with bel$ys observable variables, so that Kalman
filtering can be applied for model calibration and foreaastiThese forecasts will then be used for pre-
dicting the tail losses of bond portfolios.

4. Backtesting for VaR models: methodology

In the case of VaR models, backtesting consists of checkimgtlver the actual losses are in line with
projected onesSeveral authors recommend backtesting VaR models, imgtitrioh [(2007), Kupiéc
(1995) and_Christoffersen (2003yhe most common method to test a VaR model has been suggested
inlﬂpﬁ& (1995), where the author developed a 95% confidesgien forunconditional coverage test
The unconditional coverage test is the standard tool fokteating models and is also recommended
(see, e.g. Chen and Gerlach (2011)) by Basel Il. Hence weleiétd employ it throughout the numer-
ical experiments in this papdn addition to the conditional coverage tests which are idesd later

in this section According to the procedure for the unconditional coversggt a model is correctly
calibrated when the number of exceptions (i.e. the podfloisses exceeding VaR) is in line with the
confidence level. If backtesting reveals too many exceptitimen the risk is underestimated by the
current model. Hence one might reserve an insufficient reduapital and suffer critical losses under
extreme market movements. On the other hand, too few excepsignals an overestimated risk and
that would lead to an inefficient allocation of capital, whis also not ideal for institutions that look for




maximising profits. Let us define an indicator varialslgas:

7 — 0 if Zh<VaRynpn-1
"1 if 4 > VaRy s

where#, = —Arl, andVaR, -1 represent respectively the loss at tithand thea confidence level
Value-at-Risk computed at tinfggiven the information at timg_;. The number of exceptions is given
by % = $N_, #n, whereN is the total number of observations. Since each weekly ougorould lead
to an exception or not, the random variaftefollows a binomial distribution:

ftw = () pi

wherep=1—a, anda is the level for the selected VaR. Let us consider the numbexeeptions in the
sampleu; and define the failure rate agN. Null and alternative hypothesis Kupiec'’s tes
)) are as follows:

{ Ho:p= %
Hiip#y
We test whether the observed failure rate differs signifiganom the given confidence levgd. The
test statistic used is:
1— N—0 0
LRyc= —2In <%> ~x2. (4.1)
[1-%" (%)

Using a 95% confidence interval this likelihood ratio tegces the null hypothesis fR,c > 3.841.

The unconditional coverage test, on its own, focusses omtimeber of exceptions, but it does
not consider whether they are clustered. The independestedeveloped in_Christoffersen (2003),
is capable to reject a VaR with clustered exceptidnsterms of the indicator variable,, define the
transition probabilitiest; = P(%, =i and.%,.1 = j), e.g, To1 provides the probability of having an
exception tomorrow given that today there were no exceptfdhe exceptions sequence is independent
over time, the probability of an exception tomorrow does aepend on today’s outcome, i.@h1 =
mm1 = 7. In this case, the null and the alternative hypothesis are:

Ho: mhy = h1
Hi: oy # my -

To test this hypothesis, we use the following likelihooda &¢st:

1 — 71)Noo+N1o 7No1+N11
— >~xi @2)

LRi d= —2In — — — —
n (1— nbl)NOO fl(l— nll)Nlonﬁll

e No1+N11 ~ _ Nog ~ __ Nyg »
whergnf Noo+N01+Nm+l\31'_m1 = oot Nox andigi = NN Nij r(_apresents th_e number (_)f days_when
statej follows statei, andi, j can only assume values 0 and 1. Since we are interested instaiging
whether simultaneously the number of exceptions is coardtVaR exceptions are independent, we

can test jointly these two features using the conditionaécage test:
LRec = LRuc+LRna ~ X3. (4.3)

Using a 95% confidence interval this likelihood ratio tegéces the null hypothesis fR.. > 5.991.
Hence, the 95% level critical values bR, LRing andLR. are 3841, 3841 and 5991 respectively.



VaR estimates are considered inadequate if at least onebehR . andLR;,q are above their critical
value or ifLR. is above its critical value.

In sectior b we simulate a weekly path for the interest rategu$ypical’ values for a two-factor
Vasicek model. Then we select a bond portfolio and computkiyeestimates of 95% and 99% VaR
using the Monte Carlo method, historical simulation ahe variance/covariance method. Next, we
backtest these estimates against the series of simulaeklyesses?, = —AlMy = —(My— Mp—1).
Sectior will present a similar analysis employing real kig®&S bond prices.

5. Numerical experiments with simulated data

In this section we assess and compare the computation o \é&atRisk for a bond portfolio computed
through Monte Carlo (MC) simulation using the Kalman filtdre historical simulation (HS) method
and the variance/covariance (VC) method using simulatea. dahis will help to gain some insight
about the performances of the three considered methodsbéestiof 511 we present the three methods
involved in our comparisoand then the actual experiments are described along wittréseilts in the
next subsection.

5.1 Monte Carlo, HS and VC

A short term interest rate path is generated using a two aistof model as specified by formul&e{3.3)
and [3:4). As mentioned earlier in sectibfs 2 [@hd 3, at angtfjtihe simulated bond yields, are given
by:

yn :C:r‘r']<i’(j*|>2|"|7

wherez, ~ 4/ (0,H) andH = E(z,z}) = diagh?,h3,...,h2), while C andd are explicitly expanded
in equation[(3.118). The measurement data are given by siimgla set ofm bonds having different
maturities whose prices are driven by the generated irteats. The KF recursive equatioris (2.3)
to (2.8) are used to compute the state vector and the cocariaatrix prediction$,,, 15 andVy 1,
according to the measurement dgtaprovided at time,. Then VaR can be obtained for a specified
bond portfolio by Monte Carlo simulation, using the factttha ; is normally distributed, with its mean
and covariance matrix specified tiye KF predictions. The bond portfolio under study consistsl of
bonds having each maturifly and priceP, j at timet, for j = 1,2,...,J. The portfolio composition is
not changing during the period considered. At time 1 the value of the bond portfolio is given by:

J
My1= Z WiPni1js
=1

J
=W exp(Eni1j — Fini1jfini1 — Fanpajfanit) (5.1)
=

whereP,, 1 j andll,,, are, respectively, the price of th& bond and the portfolio net worth at time
th+1 andw; is the quantity of thq’th bond heldr; andr, are the factors anél, F; andF, are the known
functions depending of; —t,, 1 as specified in[(3.10) an@(3111). SiNGg 1jn ~ A" (Fni1jn, Vatan)
one can perform a full Monte Carlo simulation to obtain anragjmate distribution of the predicted
lossMy1 — M, and obtain the Value-at-Risk at a specific confidence levelce®5% and 99% VaR
are computed, it is possible to obtain their nonparametididence intervals based on finite sample



theorﬂ. Table[1 displays the index of ordered statistics to obt&i¥b Tonfidence intervals for 95%
and 99% VaR using 1000 draws, which is the number of draws used in all individdahte Carlo
simulation experiments in this paper.

Table 1. Nonparametric 95% confidence intervals for 95% &% 9aR using 10000 Monte Carlo simulations.

95% VaR 99% VaR
Lower Bound Upper Bound Lower Bound Upper Bound
10,000 457 544 81 120

Number of Draws

The historical simulation (HS) is a nonparametric procedar computinghe Value-at-Risk where no
specific assumptions about the distribution of risk faceyessmade. It considers the lower quantile of
the distribution of the actual historical returns and asssithat history will repeat itself. Let us consider
the time series of rates of retuRy = % at any timet,, forn=1,2,....N;. Let now beZ the
random variable gathering all the computed rates of retlVes assume that the lower quantilesf

will remain constant in future samples®f forn=N; +1,N; + 2,...,N>. Hence we can write:
Pr(lMy—Mh-1> q1—alMh-1] = a.
01_q is thus a number such that the historic portfolio return edsghat number with probability.

Similar to the HS method, the variance/covariance (VC) metbonsiders the lower quantile of the
distribution of the actual historical returns and assurhes history will repeat itself. However, VC
method assumes that rates of return are normally distdbwith its mean and variance being the his-
torical sample mean and sample varianges A (U, a}i,). Hence we have

Pr[% > Up — 0 0% | =0, (5.2)

wherequa represents thél — o) quantile of the normal random variabdé (i.e. 1.645 and 2.326 for
the 95% and 99% VaR, respectively), amdepresents the level of confidence of VaR. Again, we assume
that the lower quantiles a# will remain constant in future samplesi®f forn=N; + 1, N;+2,...,Na.
Hence we can write:

PriMy—IMh-1> (Uz — q’ffaa@)l'ln_l} =a.

Thus the mean and the variance of the portfolio return cotelylespecify the VaR at all confidence
levels for the VC method.

5.2 Simulation experiments

In this subsection, we consider an interest rate path, ctenipond portfolio values and assess the
reliability of 95% and 99% VaR estimates for the MC methtte HS method andhe VC method
using the backtesting procedure reported in sefion 4. Thelation has been run choosing ‘typical’
values for the parameters (see Castellanos Pirizon!(2008)j mvolves computing a weekly interest
rate using the Euler discretization of stochastic difféiedequations[(3)3) and(3.4). The procedure for
computingthe VaR using Monte Carlo simulation consists of the followiogif steps:

1Sem@7) for more details on finite sample theory.



e Considering five yields obtained by simulating five batcheE®ands, each having a different
maturity;

e Estimating the KF parameters using an in-sample subsetnpiementing the equations (2.3)-
(2.8) and maximising the likelihood function as describadier;

e Computing 95% and 99% VaR using Monte Carlo simulation asritesd in subsection 5.1.

The choice of the dataset is related to the standard of iisedielsacktesting. To achieve an adequate
level of reliability, one requires to consider a sufficigntirge number of values. We opted for 250
values. The procedure adopted considers an in-sampletsdisasting of 200 yields for each of the
five batches of simulated bonds to estimate the vector ohpeters and then uses the estimated values
to calculate 50 one-step ahead yield predictions, thatlvelcompared with the corresponding out-
of-sample actual values. The choice of employing 50 one-ateead yield predictions comes from
empirical evidence suggesting that out-of-sample fittisgn@ real data is rather good for a number of
time steps in a range of 50-75 data, while outside this raegdts of fitting are poorer. Repeating this
procedure five times, shifting both the in-sample and theobisiample by 50 values as explained next,
allow us to compute the required 250 non-overlapping values

In-sample Out-of-sample
1-200 201- 250
51— 250 251300
101—-300 301-350
151—-350 351-400
201-400 401- 450

The time-stepAt = 5i2 (i.e. weekly data is used), while the whole interest ratdh ggnerated con-
sists of 450 simulations.

The procedure for the HS method and the VC method involvegubie in-sample subsets to obtain the
quantilesg; ¢ andq{fa, respectively, that will be employed to compute 95% and 9%8R W the out-
of-sample subsets. Bond prices included in the considevetfbfio to calculate the relevant statistics
O1-a andqua are computed using the formula:

Poj=e it =12 .7

wherey, j represents the realization of th® bond yield simulated at timg. The values to simulate
the two-factor Vasicek model described by equatiéng (318)&.4) are reported in tadlé 2:

Table 2. Coefficients used for the simulation of the twodadtasicek model.
[ Xio ki 6 i Ai

1] 0.015 0.375 0.044 0.015 -0.18
210025 0.02 0.014 0.01 -0.0001

The starting values set for the initialization of the KF aitfum are:

1 0
0 1

. 0.02 -
ro‘o = |:002:| and Vl\O =5x10 3

Note that changes in the initial values do not change theatgtie¢ aspects of resultd.he observable
measurements are supplied by five bonds whose featuregamtetin tablé:



Table 3. Features of the bonds providing the measuremamtsal

j | Tj(years h?

1 0.5 0.0008
2 1 0.0012
3 1.5 0.0018
4 2 0.0012
5 5 0.0006

T andhj2 represent the maturity and the variance of the zero meae teyis that perturbs the measured

it bond yield, respectively. The goodness of fit reached fohn lto¢ in-sample subset and the out-of-
sample subset was assessed considering the relative sohr (RAE), defined as:

|simulated rate - predicted rate

RAE = -
simulated rate

The features of the bonds included in the portfolio undeshstre reported in tablg 4:

Table 4. Features of the bonds included in the simulatedghiort

J | Ti(years  w;

1 1 15,000
2 2 35,000
3 5 30,000

whereT; are the maturities andg; is the initial number of units of th¢'" bond held. Tabl&l5 reports
the parameter estimatedpng with the standard errors for the estimates given iokats for the five
in-sample subset considered, and their corresponding oféhe RAE for both the in-sample (indicated
asMRAE) and the out-of-sample (indicated KKRAE"). The standard errors are computed using the
Hessian matrix of the log likelihood function; d@), for example. The true values of the
parameters used in simulation were listed earlier in thitiee in tabldP.



Table 5. Estimated parameters for the subset considerddhain correspondin/RAEandMRAE".

Subset 1 2 3 4 5
ke 0.3127 0.2987 0.2942 0.3025 0.3211
(0.0219)  (0.0212)  (0.0204)  (0.0264)  (0.0178)
6, 0.0551 0.0335 0.0005 0.0229 0.0536
(0.0016)  (0.0016)  (0.0024)  (0.0037)  (0.0012)
o 0.0161 0.0176 0.0177 0.0166 0.0144
(0.0014)  (0.0013)  (0.0019)  (0.0022)  (0.0016)
M -0.2821  -0.5838  -0.9375  -0.6707  -0.0944
(0.0351)  (0.0298)  (0.0305)  (0.0319)  (0.0323)
ko 0.0586 0.0452 0.0222 0.0105 0.0733
(0.0325)  (0.0297)  (0.0295)  (0.0329)  (0.0201)
6, 0.0131 0.0005 0.0083 0.0062 0.0076
(0.0043)  (0.0045)  (0.0057)  (0.0039)  (0.0021)
o> 0.0109 0.0100 0.0093 0.0082 0.011(
(0.0019)  (0.0022)  (0.0029)  (0.0026)  (0.0015%)
Ao -0.0002  -0.0014  -0.0014  -0.0001  -0.001#4
(3.11e-04) (5.60e-04) (2.99e-04) (3.10e-04) (1.92e{04)
hy 0.0006 0.0006 0.0007 0.0007 0.0007
(6.93e-05) (5.78e-05) (5.91e-05) (3.61e-05) (5.20e{05)
ho 0.0011 0.0011 0.0010 0.0010 0.0011
(6.05e-05) (2.99e-05) (6.67e-05) (5.56e-05) (5.56€{05)
hs 0.0009 0.0009 0.0009 0.0008 0.0004
(6.30e-05) (5.88e-05) (6.01e-05) (5.51e-05) (6.89e{05)
ha 0.0011 0.0011 0.0011 0.0011 0.0011
(6.46e-05) (4.92e-05) (3.96e-05) (7.23e-05) (5.47e4{05)
hs 0.0009 0.0009 0.0010 0.0010 0.001(
(6.13e-05) (4.80e-05) (5.33e-05) (4.98e-05) (7.22e{05)
MRAE(%) 0.89 0.91 1.13 1.36 1.40
MRAE" (%) 1.28 1.46 1.15 1.09 0.83

Local modeling otheinterest rate allows to obtain an overall good fit, as hiditkgl by lowMRAEand
MRAE" values reported in tabld 5. We used the estimated paranteteesform a Monte Carlo simu-
lation as described in subsect{onl5.1 to obtain the estsnztene-step ahead 95% and 99% VaR. We
also computed the 95% and 99% VaR using the HS method and theétlibd which were previously



described.

Table 6. Summatry of test results for the considered sinaulati

Method a X Noo Nox Nig Nig LRyc LRing LR AR
MC 95% | 12 228 10 10 2 0.0213 2.5109 2.5322 A
99% | 4 242 4 4 0 0.7691 0.1301 0.8992 A

HS 95% | 13 225 12 12 1 0.0208 0.1528 0.1736 A
99% | 7 236 7 7 0 5.4970 0.4033 5.9003 R

VC 95% | 15 221 14 14 1 0.4961 0.0122 0.5082 A
99% | 9 232 9 9 0 10.2290 0.6724 10.9014| R

Table[® reports the 95% and 99% VaR backtesting outcomesfioistance of the process described by
equations[(3]13) and(3.4), having values reported in {ableére,Xis the number of exceptions over

out-of-sample data (i.e. the total number of exceptions five non-overlapping out-of-sample data
subsets) and the rest of the notation is the same as in sektidhe values in bold represents either
the values outside the non-rejection confidence intervalsevalues above the corresponding critical
value. In particular, the last column of the table indicat®gther the VaR, at the specified level of con-
fidence, estimated using either the MC simulation, the HShotkor the VC method is accepted (A) or

rejected (R). While 95% and 99% VaR estimates obtained ubmd/C simulation are both accepted,

95% VaR estimates using the HS method and the VC method aeptectcbut the 99% VaR estimates
using the HS and the VC estimates are both rejected.

Other instances of parameter values (not reported heréeatdnsidered interest rate simulation lead
to the conclusion that HS and VC methods, at least in thiseconare not reliable for the estimation
of 95% and especially of 99% VaR since, as reported here, laektesting occasionally fails to be
accepted. The assumption that the past provides a fairsepegion of the immediate future seems
to be not always true. The ability to estimate VaR using HS \@@dmethods seems to depend on the
specific path simulated. This might also depend on the (tiiphssumption of portfolio returns being
independent and identically distributed, which appearsaanrealistic. Furthermore all the rates of
returns are given equal weights, where it might be more gpat to assign different weights accord-
ing to the fact that data further away from the present hawwei predicting influence compared to
the closer ones. Monte Carlo simulation, provided that té@tion is sufficiently accurate, seems
reliable independently from the single path realizatiod keads to VaR estimates that are not rejected
by the unconditional and conditional tests. Varying thefficients for the simulation of the interest rate
and/or varying the features of the bonds included in theidensd portfolio leads to similar conclusions
and are not reported here for brevity.

One can also carry out CVaR tests on the same data using @q{&2). The expectation in the
CVaR definition can be approximately evaluated as a tail giodiby weighted summation of VaRs for
the MC and the HS methods and is given in closed-form for then&thod. CVaR, being coherent, is
mathematically a far better measure of loss. However, taggano rigorous hypothesis tests available
to validate a CVaR model, nor are there any measures, sudteasimber of exceptions in the case
of VaR, with which to compare different models. Finding VaRhaultiple confidence levels can give
a qualitative idea of whether the model is suitable to evel@VaR as well,e.g. a model which is
accepted for 95%, 93% and 99% VaR through backtesting is likely to be acceptdnl®5% CVaR
as well. Since reporting the CVaR will not lead to any additibinformation about the quality of the



models, we have restricted the comparison to finding the VeResting it via tests based on the number
and the clustering of exceptions.

Having seen the performance of our method with a simulatetiglio, we carry out the same tests
using real bond prices.

6. Numerical experiments with real data

The aim of this section is to compute 95% and 99% VaR using tbat® Carlo simulation for an
actual portfolio of bonds and to compare its performancésgthe HS method and the VC method, as
described in the sectign 5. This is achieved in three steps:

1. Calibrating a two-factor Vasicek term structure modehgshe Kalman filter for the chosen
dataset;

2. Computing the VaR at the required confidence level, asithestin sectiofb;
3. Backtesting the one-step ahead forecasting, as dedadnilsebsectionl4.

Unlike in the simulation experiments, the interest rateigalare unknown. Hence we need to compare
the bond yields to judge the accuracy of calibration. Thedgpess of fit can be assessed considering the
RAE, which is defined for the experiments using real data as:

|observed yield - predicted yidld

RAE = observed yield

Subsectiof 6]1 introduces the data employed and explainsthis used to calibrate the parameters,
while subsectiof 612 reports the results of backtestingstienates obtained with the proposed method.

6.1 Data

The dataset employed for this experiment consists of 45Khywegelds computed on three groups of
US government bonds from 286/2001 to 1710/2012: three batches of very short term bonds (5to 7
months maturity), two batches of short term bondS (4 55 years maturity) and one batch of medium
term bonds (10 years maturity). All the data was retrievedifiDatastream. This data was split into
five in-sample and five out-of-sample data sets using ex#ltdysame procedure as used in section
for the simulated data set of the same size. We calibfatedwo-factor Vasicek models on the
five different in-sample yield data-sets mentioned abovty @ach model having 14 parameters. Each
in-sample estimation is used to produce one-step aheachfstieg of yields. The procedure adopted
for the experiment using real data is similar to the one chésethe experiment using simulated data.
We used five in-sample subsets and follow the four steps ithescin subsection 5.2. Computation of
statisticsq; ¢ and gy — quaagg to obtain VaR through the HS and the VC methods are calculated
using the actual bond values.

6.2 Results

Table[T displays the estimated parame#dosg with their standard errgnssing the five in-sample data
subsets mentioned.



Table 7. Estimated parameters for the considered finanatal d

Subset 1 2 3 ] 5
ke 0.7030 0.7118 0.7095 0.7023 0.6891
(0.0341)  (0.0351)  (0.0277)  (0.0186)  (0.0213)
6, 0.0056 0.0047 0.0049 0.0048 0.0045
(9.37e-04)  (0.0013)  (0.0019)  (0.0015)  (0.001P)
o 0.0321 0.0314 0.0332 0.0327 0.028¢
(0.0076)  (0.0084)  (0.0058)  (0.0079)  (0.0052)
A -0.4591  -0.4606  -0.4842 -0.4751  -0.4553
(0.0924)  (0.0790)  (0.1315)  (0.0819)  (0.0518)
ko 0.0255 0.0275 0.0231 0.0241 0.0219
(0.0116)  (0.0091)  (0.0137)  (0.0104)  (0.0085)
6, 0.0035 0.0035 0.0028 0.0030 0.0029
(0.0015) (5.88e-04) (0.0012)  (0.0018)  (0.0011)
o> 0.0142 0.0154 0.0138 0.0144 0.0127
(5.98e-04) (1.07e-04) (3.05e-04) (5.24e-04) (5.72e{04)
Ao -0.2652  -0.2639  -0.2528 -0.2509  -0.2629
(0.0510)  (0.0225)  (0.0131)  (0.0337)  (0.0794)
hy 0.0009 0.0011 0.0010 0.0009 0.0013
(8.84e-05) (7.02e-05) (6.46e-05) (9.03e-05) (8.30e{05)
ho 0.0012 0.0006 0.0011 0.0011 0.0011
(1.03e-04) (9.38e-05) (6.33e-05) (9.98e-05) (7.13e{05)
hs 0.0013 0.0010 0.0006 0.0009 0.0009
(1.22e-04) (1.27e-04) (1.11e-04) (1.19e-04) (7.38e{05)
ha 0.0007 0.0010 0.0007 0.0011 0.0007
(9.13e-05) (9.08e-05) (5.33e-05) (1.08e-04) (4.92e{05)
hs 0.0009 0.0004 0.0012 0.0011 0.0009
(1.21e-04) (9.77e-05) (1.06e-04) (9.23e-05) (9.04e{05)
he 0.0010 0.0008 0.0009 0.0008 0.0009
(6.95e-05) (5.54e-05) (7.44e-05) (1.64e-04) (8.06e{05)
MRAE(%) 1.22 1.34 1.18 1.36 1.15
MRAE" (%) 1.16 1.09 1.29 1.12 1.20




The estimated values were used to calculate 50 one-steg mterest rate predictions, and used to carry
out the Monte Carlo simulation as described in subseéfidin $he portfolio considered includes an
initial number of 50000 of each of the six bonds. Talle 8 reports the conditiomékhae unconditional
tests for the Monte Carlo simulation, the HS method and thenéthod.

Table 8. Summary of test results for the experiment with ded.

Method| @ | & MNoo Not Nio Nz LRe LRng  LRee | AR
ve | 9% |16 219 15 15 1 09514 0.0006 0.9520A
99% | 5 240 5 5 0 1.9568 0.2041 2.1609 A
Hs | 95% |17 218 15 15 2 15403 0.5996 2.1399A
99% | 7 237 6 6 1 54970 1.8520 7.3490| R
ve | 95% |16 220 14 14 2 009514 16762 2.62f6A
99%| 6 238 6 6 0 35554 0.2952 3.8506 A

The Monte Carlo simulation and the VC method provide acd#ptastimations of both 95% and 99%
VaR, while the HS method just provides an acceptable 95% VdaRalls to provide a valid 99% VaR.
As highlighted in the previous section, the assumptiontieipast provides a fair representation of the
immediate future might be not realistic. In this instance 5 method produces too many exceptions
in estimates of 99% VaR, therefore the evaluation of 99% \f@aRjected. The calibrated model seems
accurate enough for the purpose of estimating the quagitese the conditional and unconditional tests
are non-rejected for both 95% and 99% VaR estimaibs.distribution of the portfolio returns seems to
be close enough to normality in this particular case for t@envethod to be deemed acceptable, although
this is not always the case (as seen in the simulation expetsin the previous section). Further, note
that VC method does not provide any intuition about the nisks of the individual components of the
portfolio. It is easy in our KF based methodology to carry suth exploratory analysis,g.it is quite
straightforward to find the VaR estimates for hypothetitedrs-dated and long dated portfolios, from
the results of the same Monte Carlo experiment as above,ssad@awhether the short end or the long
end of the yield curve currently poses more risk.

7. Conclusions

In this article, we propose a way of measuring the ValueiakRf fixed income portfolios and we
backtest it for both simulated and real data. Our methodigeswscenarios which are arbitrage-free and
which (arguably) better reflect the market conditions fghy liquid government securities. The KF-
based method requires simulating only a vector of two randariables for one-step ahead forecasts
and is hence computationally cheaper as compared to palnogpnponents analysis using more than
two principal components. Numerical experiments with dated data as well as real treasuries data
confirm the utility of our method in measuring the tail risk.

The focus of this paper is limited to compute the Value-atkRor a bond portfolio. A possible fu-
ture research direction could be to extend the portfolio pasition to include other nonlinear interest
instruments, such as interest rate caps and floors.
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