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ABSTRACT: Conformational changes associated with protein function often occur beyond the time scale currently accessible to
unbiased molecular dynamics (MD) simulations, so that different approaches have been developed to accelerate their sampling.
Here we investigate how the knowledge of backbone conformations preferentially adopted by protein fragments, as contained in
precalculated libraries known as structural alphabets (SA), can be used to explore the landscape of protein conformations in MD
simulations. We find that (a) enhancing the sampling of native local states in both metadynamics and steered MD simulations
allows the recovery of global folded states in small proteins; (b) folded states can still be recovered when the amount of
information on the native local states is reduced by using a low-resolution version of the SA, where states are clustered into
macrostates; and (c) sequences of SA states derived from collections of structural motifs can be used to sample alternative
conformations of preselected protein regions. The present findings have potential impact on several applications, ranging from
protein model refinement to protein folding and design.

■ INTRODUCTION
Conformational changes in proteins are often associated with
protein−protein interactions,1 ligand binding,2 and posttransla-
tional modifications.3 They are at the basis of powerful
mechanisms for functional regulation such as allostery,4,5 and
they can be fuelled by chemical reactions to produce large-scale
mechanochemical motions in molecular motors.6

The structural and energetic characterization of conforma-
tional transitions is therefore of central interest in under-
standing protein function. Computational approaches such as
molecular dynamics (MD) simulations offer a powerful way to
investigate such processes with atomic resolution. However, the
conformational transitions usually found in biologically relevant
systems are beyond the time scale currently accessible to
equilibrium MD simulations. Different methods have been
developed to overcome this problem by accelerating the
sampling of “rare events”.2,7−9

Most of the available methods are based on the use of
collective variables (CVs),7 which define the part of the space
where the sampling is enhanced and usually represent the
progress of the system along the process of interest. A range of

CVs have been used in the literature to describe protein
conformational changes, ranging from general descriptors of the
protein global shape to local geometric parameters specific to
the process under examination.10−18

While the details of the global conformational landscape of a
protein are uniquely determined by its amino acid sequence, it
is now well-established that protein fragments tend to adopt
recurring backbone conformations. In particular, coarse-grained
and sequence-independent structural alphabets19 (SAs) have
been derived, which contain the minimal set of typical Cα

conformations of protein fragments (local states or “letters”)
needed to reconstruct experimental protein structures with a
high level of accuracy. SAs have been exploited in the past for a
number of applications, including local structure20 and
flexibility21 prediction, sequence-based structural comparison,22

structure mining,23−25 fold classification26 and recognition,27

and de novo prediction.28,29 Recently they have been shown to
correctly represent also the dynamical properties of proteins.30
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Indeed, they have been used to analyze trajectories from MD
simulations31−33 and in particular to detect signal transmission
in allosteric proteins.32,34

The main goal of the present work is to investigate if the a
priori knowledge provided by SAs on the local states
preferentially adopted in protein structures can be exploited
to accelerate the exploration of protein conformations in MD
simulations. In the following we use a SA-based CV (CVSA) to
guide the sampling of fragment conformations in small proteins
toward predefined local states in metadynamics and steered
MD (SMD) simulations.
We first address the question of whether enhancing the

sampling of native local structures can accelerate the sampling
of global native structures. We show that folded structures of
small proteins can be reproducibly and efficiently recovered in
short simulations using the SA letters that best represent the
local native structures. We then reduce the extent of the
information on the local native structure provided a priori by
using a simplified or reduced version of the SA (rSA), where
local states are replaced by macrostates defining fragment
shapes instead of detailed structures. We show that in all cases
the missing information required to get the global folded state
is recovered by the MD sampling, which allows the fragments
to adapt to their specific environment by adjusting their
conformation and relative orientation.
Finally, we investigate possible ways to produce synthetic SA

strings to guide the sampling when no information on the

desired final state is available. In particular, we show that
libraries of SA strings can be derived from databases of
structural motifs and can be used to sample alternative
conformations of parts of a protein. The resulting conforma-
tions can then be ranked a posteriori with a scoring function to
identify the most native-like structures.
The present findings indicate that MD simulations and

knowledge-based SAs can be effectively combined to enhance
the exploration of the conformational space of proteins. The
proposed CVSA has a wide range of applications, ranging from
protein model refinement to protein folding and design.

■ RESULTS
The results presented in this work are derived using a new CV
based on the 25-letter SA M32K2530 (CVSA). To define a CVSA,
the structure of the protein is first partitioned into four-residue
fragments of Cα atoms. The CVSA is then calculated as a sum of
single-fragment terms (eq 1 in Methods), each consisting of a
switching function related to the deviation of the fragment from
a predefined reference letter extracted from the SA (Figure 1A).
The overall CVSA measures the number of fragments matching
the structure of their corresponding reference SA letters. The
fragments used to define a CVSA can overlap, and they can
cover the whole protein or only selected regions.
In the following we investigate if, when combined with an

enhanced sampling technique, the CVSA can be used to guide
the folding of the entire protein to its native state (Figure 1B)

Figure 1. Schematic description of the CVSA and its applications. (A) A plot of the switching function used in the definition of the CVSA is reported,
showing the dependence of the function on the Cα RMSD (ρ) of a fragment (gray to dark green licorice) from a reference SA state (green). Using
the CVSA, the sampling of local states can be biased for all fragments in a protein (B) or for fragments in selected regions (C).
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and to sample alternative conformations in selected regions
(Figure 1C).
Folding 3D Structures from SA Strings. In this section

we apply the CVSA to fold two small fast-folders, the β-hairpin
of the GB1 protein, and the Trp-cage mini-protein. These are
small proteins that are known to adopt a stable fold in solution
with relatively short folding times (6 μs for the GB1 β-hairpin35

and 4 μs for the Trp-cage36), so that they are often used as
model systems to study protein folding. As expected from their
folding rates, equilibrium MD simulations in the nanosecond
time scale are usually not suitable to observe folding events for
these two proteins,37 and either enhanced sampling11,38,39 or
long (∼10−100 μs) MD simulations40,41 have been used in the
past.
In this section we use the CVSA combined with the enhanced

sampling method metadynamics42 (Methods). The reference
SA letters are determined from the local-fit encoding
(Methods) of the experimental native structure, where each
SA letter is the best match of a fragment in its native
conformation (Table 1). CVSA contains all the overlapping

fragments in the protein. In the local-fit mode used to assign
the letters, no information on adjacent fragments is used to
determine the letter of a given fragment. The sampling along
the CVSA is then biased in metadynamics simulations
(Methods), so that structures with CVSA values in the whole
accessible range [0, CVSA

max] are explored, where CVSA
max is

equal to the number of fragments included in the CVSA.
The CVSA defined in this way contains information on the

local structure of the native state but not on the global folded
structure. Indeed, using the CVSA differs from providing the

coordinates of the folded conformation as reference structure in
that (a) the native conformations of single fragments are used,
with no information on the relative arrangement of different
fragments, and (b) discrete SA states are used to represent
fragment conformations, so that the CVSA does not contain the
actual native fragment structures, but the SA letters closest to
them.
Folded β-hairpin conformations, i.e., conformations with Cα

RMSD from the experimental native structure (RMSDnat) ≤ 2
Å, were sampled multiple times within a 100 ns metadynamics
simulation (Figure 2A) starting from an extended conforma-
tion, with a minimum RMSDnat of 0.4 Å. Considering that the
CVSA was defined using reference SA letters from the native
structure, folded conformations are expected to have high CVSA
values. Indeed, almost all low-RMSDnat structures belong to the
high-CVSA ensemble, defined as composed of structures with
CVSA ≥ CVSA

max − 2 (blue points in Figure 2A). Moreover,
after filtering the trajectory for high-CVSA structures, a
significant enrichment was found in folded conformations,
going from a percentage of folded structures of 6% for the
overall trajectory to 39% for the CVSA-filtered one (Table 2).
Metadynamics simulations of the Trp-cage showed a similar
behavior. Folded structures were sampled with RMSDnat as low
as 0.5 Å (Figure 2C), and high-CVSA ensembles were composed
for the 27% of native-like structures (Table 2). As expected, for
both proteins no folded conformations were found in control
unbiased MD simulations of the same length (Table 2).
Non-native structures with high-CVSA values were also

sampled (blue points above the dashed lines in Figure 2A,C).
In these conformations the single fragments match their
reference SA letter, but their global arrangement differs from
the native one. Hairpin-like conformations were found where
terminal segments are in a β-strand conformation, but they are
too distant to form a β-sheet, resulting in a percentage of native
contacts as low as 68% (Supporting Information Figure S1A).
This is consistent with the fact that the CVSA does not contain a
bias toward nonlocal native contacts, so that non-native global
arrangements of native local states can be sampled during the
simulation.
In summary, the present results show that providing local

structural information can enhance the folding toward the
global native structure of small proteins. Using the CVSA
promotes the sampling of structures with the desired sequence
of discrete local states (or strings of letters). During the
simulation, different relative arrangements of these fragments
are explored, with a significant fraction of folded global
structures. In the following section we further reduce the
information needed a priori to build the CVSA by introducing a
simplified version of the structural alphabet.

Generating SA Strings: Simplified Alphabet. The extent
to which the target local structures are known before the
simulation can vary significantly, and in some cases it might be
limited to a prediction of the shape of the fragment. It is thus
convenient to have a reduced set of SA letters representing
more general fragment states (macrostates). To this end, a
cluster analysis was performed on the 25 letters of the M32K25
SA (Methods). The resulting six clusters (Figure 3), named
after the letter of their representative, describe fragment states
that differ mainly for the pseudotorsion around the two central
Cα atoms (Supporting Information Table S1).
SA encodings can be translated into rSA encodings by

replacing each letter with the corresponding cluster representa-
tive (Table S1). For example, the GB1 β-hairpin SA string

Table 1. M32K25 SA and rSA Strings Used for the Folding
and Refinement Simulations

aFragments covering the central loop residues are indicated in bold.
bThe fragments include residues 18−31. cThe fragments include
residues 19−30. dThe fragments include residues 38−45. eThe
fragments include residues 39−44.
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“DBAALVWOQABAB” becomes “AAAAAUUKRAAAA”
(Table 1), where the turn-encoding letters are easily
recognizable as being sandwiched between two stretches of
strand-encoding “A” letters.
When going from the SA to the rSA encoding, the maximum

RMSD between each fragment experimental structure and its
corresponding letter for the two proteins increases from 0.4 to
1 Å, thus reducing the extent of information on the fragment
target states contained in the rSA-based CVSA. Nevertheless,
metadynamics simulations showed that folded conformations
can still be recovered for both proteins (Figure 2, panels B and
D), with overall RMSDnat values as low as 0.5 Å (β-hairpin) and
1.8 Å (Trp-cage). Filtering the trajectories for high-CVSA

structures produced an enrichment in folded structures for
the β-hairpin from 2 to 38% (Table 2). A less extensive
sampling of high-CVSA structures and hence of folded states
was instead observed for the Trp-cage (Table 2).
The performance of the rSA-based CVSA was also tested by

using a different enhanced sampling technique, the steered

MD43 (SMD; see Methods), where the CVSA was steered from
the starting value to its maximum value CVSA

max in a
predetermined amount of time and in multiple replicas. The
folded state was recovered at the end of the simulation in about
one-third of the runs (productive runs) for both molecules
(Figure 4 and Table S2), confirming that the rSA-based CVSA

contains sufficient information to reach the folded state for
both proteins.
Since the steering bias was applied on the overall CVSA, the

single fragments were free to reach the reference structure at
different times (Figure S2). In the productive runs, the folding
mechanism mainly resembled a zipper mechanism,37 where the
contacts between the β-strands started to form from the turn
toward the termini (Figure S2).
In the nonproductive trajectories, the final structures reached

the CVSA
max maximum value, but they were trapped in non-

native conformations where the N- and C-terminal segments
were differently aligned (Figure 4, orange structural ensembles)
and a smaller fraction of native contacts was recovered (Figure

Figure 2. Time evolution of the Cα RMSD from the experimental native structure of the GB1 β-hairpin (upper panels) and the Trp-cage mini-
protein (lower panels) during metadynamics simulations. The CVSA was defined using the SA (left panels) and rSA (right panels) encodings of the
experimental structures. High-CVSA points are colored in blue. For each panel, the experimental structures (white cartoon) are superimposed to the
best matching high-CVSA structure (blue).

Table 2. Fraction of Native-like Structures in Metadynamics and SMD Simulations of the GB1 β-Hairpin and the Trp-Cage
Mini-protein

pNatM (%)d pNatFiltCVsa (%)
e pNatSMD (%)f

GB1 β-hairpin (SA)a 5.9 39.4
GB1 β-hairpin (rSA)b 2.0 37.5 36.0
GB1 β-hairpin (unbiased MD)c 0.0
Trp-cage (SA)a 3.3 26.5
Trp-cage (rSA)b 0.2 0.4 33.3
Trp-cage (unbiased MD)c 0.0

aCVSA-biased simulation with SA encoding. bCVSA-biased simulation with rSA encoding. cUnbiased MD simulation. dPercentage of structures in the
whole metadynamics trajectory with RMSDnat ≤ 2 Å. ePercentage of structures in the metadynamics high-CVSA ensemble with RMSDnat ≤ 2 Å.
fPercentage of productive SMD trajectories (final structure with RMSDnat ≤ 2 Å).
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S3, orange lines) compared to the productive trajectories. The
relaxation to the native state was hindered by the early
formation of non-native contacts (Figure S4).
Interestingly, we observed that part of the nonproductive

SMD trajectories can be filtered out without using information
on the target native state by calculating the work needed to
drive the overall transition for each trajectory. Indeed, the
trajectories associated with low-work transformations (Support-
ing Information) were found to have a higher success rate in
producing a correctly folded structure.
The present results show that the reduced representation of

the SA can be effectively used to sample folded conformations
of small proteins within both the metadynamics and the SMD
frameworks. The generation of the rSA fragment macrostates is
a first step toward the definition of artificial sequences of
fragment states, which do not require a priori knowledge of the
final structure. In the next section we show that recurring
motives can be identified in the rSA encoding of experimental
loop structures, indicating that libraries of predefined strings
can be used to define the CVSA reference states.
Generating SA Strings: Recurrence of SA Motifs in

Loops. Loops, defined as nonrepetitive structural units
connecting regular secondary structures, have been shown to
adopt recurring conformations by different classification
schemes.19 The existence of supersecondary structural motifs

has been exploited in the past for both function and structure
prediction.19,44 In this section, we analyze the loops contained
in the ArchDB database44 (Supporting Information) to show
that a large number of loop structures can be encoded by a
small number of recurring rSA strings or rSA motifs. In the
fo l lowing we focus on β -ha i rp ins o f length 4
(ArchDB.BN4.100, Supporting Information), which are one
of the most populated loop types in ArchDB,44 but the analysis
can be easily extended to any loop type. For each β-hairpin, the
structure of the loop plus the first residue from each flanking β-
strand was encoded into three-letter strings with the rSA.
Of the 56 possible combinations of six letters in strings of

length 3, only 26 rSA motifs were observed in the 3314 loop
structures of the ArchDB.BN4.100 data set (Table S3).
Interestingly, 97% of all the structures fall in the first five rSA
motifs (Figure 5). All together, these motifs cover 20 of the

original 21 ArchDB subclasses (Supporting Information). The
structures of the five rSA motifs are significantly different from
each other, with an average intermotif RMSD of 2.2 Å (Table
S4).
The existence of a small number of recurring rSA motifs can

be exploited to build CVSA variables that are not tailored to a
specific experimental structure as was done in the previous
sections. As we will see in the next section, such CVSA can be
used to dictate the general shape of a loop, while the specific
conformation is determined by the amino acid sequence and/or
the environment of the loop.

Folding Different Amino Acid Sequences Using the
Same rSA String. In this section we show that simulations
based on the same rSA string can correctly reproduce
differences in loops that, while having a similar shape, present
structural differences due to their different amino acid
composition.
We identified two groups of β-hairpin loops with similar

shape (encoded by the rSA string “KUN”) but with differences
in the specific structure that correlate with differences in their
amino acid sequence (Supporting Information).
A structural superimposition (Figure 6A) shows that KUN

loops are clustered in two groups (KUNg1 and KUNg2), with
KUNg2 structures (green) featuring a more bent conformation
around the residue in position p4 compared to KUNg1 (blue),
a different orientation of the p4 CO bond (licorice), and
significantly different Ramachandran plots at the p4 and p5
positions (arrows in Figure 6D). A sequence alignment shows

Figure 3. Licorice representation of the six clusters of M32K25 letters.
The cluster representatives forming the reduced alphabet rSA are
labeled and shown in darker colors.

Figure 4. Productive (blue) and nonproductive (orange) SMD runs of
the GB1 β-hairpin (A) and the Trp-cage mini-protein (B). Final SMD
structures (colored cartoon) are superimposed onto the experimental
structures (white cartoon). Low-work relaxed structures (Supporting
Information) are reported. A SMD run is defined productive if
RMSDnat ≤ 2 Å at the end of the simulation. The average value of
RMSDnat is also reported for productive runs.

Figure 5. Structures of the most populated rSA motifs for β-hairpin
loops of length 4 in the ArchDB.BN4.100 database. The cluster
representatives of the loop structures belonging to each motif are
shown, with the most populated cluster highlighted as a thicker tube.
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that all KUNg2 loops have a Gly in position p5 (Figure S5A),
which allows for the larger bending of the loop.
Two sequences representative of the two groups were

selected. CVSA-biased MD simulations were run to fold each
amino acid sequence into its corresponding β-hairpin starting
from an extended conformation. The same rSA encoding was
used for the two β-hairpins (Table 1).
In both cases, the native state was recovered in

metadynamics and SMD simulations (Table S5), with a
percentage of native-like structures ranging from 4−10%
(metadynamics) to 36−72% (SMD). Remarkably, even if the
same rSA encoding was used for both amino acid sequences,
the simulated folded structures reproduce the differences
between the experimental ones. Indeed, KUNg2 simulated
structures (Figure 6B, light green) are more bent at p4 than
KUNg1 (light blue) and the simulated conformations of each
amino acid sequence are more similar to the experimental
structure with the same sequence than to the other one (Table
S6). Correspondingly, the Ramachandran plots of simulated
structures show differences in the distribution of φ and ψ angles
that parallel the differences between the experimental
structures, in particular for residues in positions p4 and p5
(arrows in Figure 6D).

A possible explanation of the conformation adopted by
KUNg2 at position p4 can be found by looking at the nearby
side chains. Indeed, the bent loop arrangement in KUNg2
allows the Gly5 backbone NH group to be on the same side of
the His3 side chain, favoring the formation of a His3-Gly5
hydrogen bond both in metadynamics (Figure 6C) and SMD
(Figure S5B) simulations.
The present results indicate that the CVSA based on rSA

motifs contains sufficient information to guide the folding
toward the correct general shape of the loop backbone while at
the same time allowing for adjustments to obtain sequence-
specific structures. Side chains are not included in the definition
of CVSA, but they are explicitly taken into account during the
simulation by the all-atom force field and they can modulate the
loop conformation via direct side chain−backbone interactions.

Real Life Application: Protein Model Refinement. In
this section we use the CVSA and the library of loop motifs to
refine a protein model. Differently from the previous sections,
only part of the structure is considered in the definition of the
CVSA, while the rest is left unbiased during the simulation.
The protein to be refined was selected from the targets of the

Refinement category of the CASP8 exercise (Supporting
Information). The best model generated in the normal

Figure 6. Comparison of KUNg1 and KUNg2 β-hairpins. (A) Superimposition of experimental structures of KUNg1 (blue) and KUNg2 (green) β-
hairpins. (B) Superimposition of experimental (dark colors) and simulated (light colors) structures of KUNg1 (blue) and KUNg2 (green) β-
hairpins. The simulated structures were extracted from the high-CVSA metadynamics ensembles with a cluster analysis. The backbone CO bonds of
the residues in positions p4 and p5 are represented as licorice. (C) His3-Gly5 hydrogen-bonded interaction in the KUNg2 metadynamics structure.
(D) Ramachandran plots of experimental (large numbered circles), metadynamics (diamonds), and SMD (small circles) folded structures for
KUNg1 (left panel) and KUNg2 (right panel).
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prediction exercise failed to correctly describe two regions L1
(residues 19−30) and L2 (residues 39−44) (Figure 7A),
indicated by CASP organizers as problematic and showing
deviations from the experimental structure > 4.0 Å (Table 3).

The rSA encoding sequences of L1 and L2 in the best model
and in the target experimental structure (Table 1) show that L1
changes from an α−β-hairpin with the central turn in a “UUK”
conformation to a “KUK” β-hairpin, while the central turn in
L2 changes from “UUK” to “UKR”. Interestingly, these three
turn encodings are among the top five motifs for length-4 loops
in β-hairpins described before (Table S3).
Enhanced sampling simulations were first run with a CVSA

based on the rSA target encodings of L1 and L2 (Target rSA in
Table 1) to test if local information can be used to guide the

refinement. A single CVSA coordinate was used containing the
fragments of both regions. The distance between the structures
sampled during the simulations and the target conformation
was measured by calculating the Cα RMSD for the overall
structure (RMSDnat) and separately for the two regions L1
(RMSDnat(L1)) and L2 (RMSDnat(L2)).
Structures significantly closer to the target structure than the

starting model were sampled during 100 ns long metadynamics
simulations. Both RMSDnat(L1) and RMSDnat(L2) were
reduced to ≤2 Å in ∼21% of the CVSA-filtered trajectory
(pNatFiltCVSA in Table 3), with deviations for the single regions as
low as 0.5 (L1) and 1.5 Å (L2) for the best metadynamics
structure (Figure 7B). Similarly, SMD simulations with rSA
encoding improved the starting model in 18% of the runs, with
RMSDnat values as low as 1.7 Å (Figure 7C and Table S7).
Control unbiased simulations failed to significantly improve the
starting model. Indeed, no structures were found where both
L1 and L2 were in a native-like conformation (unbiased MD
pNat in Table 3).
The analysis of the time evolution of RMSDnat for

metadynamics (Figure S6B, upper panel) and SMD runs
(Figure S7A,B) indicates that L2 is the last loop to adopt the
native conformation, suggesting that its rearrangement is the
difficult step in the model refinement.
To test the performance of CVSA in a real life situation where

the target state is not known, multiple metadynamics
simulations were run using “blind” rSA encodings for the L2
loop (BlindL2a−c in Table 1). L2 encodings were chosen
among the top five motifs for length 4 loops in β-hairpins
identified in the previous section (Figure 5). The BlindL2a
encoding “UKR” coincides with the native Target rSA encoding
used in the previous calculations.
The blind trajectories were filtered for high CVSA values

(CVSA ≥ CVSA
max − 2), and the resulting structures were

rescored using the Rosetta scoring function45,46 (Methods).
The best scoring structure was found in the BlindL2a
simulation (Table S8), with a RMSDnat(L2) of 0.7 Å when
using only L2 for the best fit superposition (local fit or LF) and
of 3.0 Å when calculated using the whole protein structure
(global fit or GF). Indeed, the L2 conformation in the best
CVSA-refined structure (blue in Figure 7D, left panel), while
featuring a residual translational displacement from the
experimental structure (green), has a very good match to the
experimental shape. Remarkably, 13 of the top 20 scoring
structures are from the BlindL2a simulation (gray rows in Table
S8).
The best structures from the other two blind simulations

differed significantly from the experimental L2 conformation
(BlindL2b and BlindL2c in Figure 7D), with RMSDnat(L2)

Figure 7. Refinement of the TR464 target from CASP8. (A)
Superimposition of the L1 (residues 19−30) and L2 (residues 39−
44) regions for the starting unrefined model (pink) and the target
experimental structure (green). The rest of the structures is
represented as white cartoon. Residues E5 and R42 are highlighted
as licorice. A E5-R42 salt bridge interaction is formed only in the
experimental structure. (B) Superimposition of the L1 and L2 regions
in the target structure (green) and in a representative structure from
metadynamics (blue). The E5-R42 interaction is recovered in the
metadynamics simulation (blue licorice). (C) Superimposition of the
L1 and L2 regions in final structures from productive SMD runs (blue
cartoon). The E5-R42 salt bridge is recovered in all of the productive
SMD runs. (D) Comparison of the structures with the best Rosetta
score (blue) from the high-CVSA metadynamics ensembles obtained
using the BlindL2a (left), BlindL2b (center), and BlindL2c (right)
encodings for L2. The Rosetta score is reported together with the L2
RMSDnat calculated in local fit.

Table 3. Refinement of the CASP8 Target TR464

pNat (%)b pNatFiltCVsa (%)
c RMSDnat (Å)

d RMSDnat(L1) (Å)
e RMSDnat(L2) (Å)

e

Best Model 2.94 4.00 (3.22) 4.35 (2.02)
Best Refined Model 2.23 1.57 (1.38) 2.38 (0.49)
Metadyn (Target)a 2.1 21.4 2.00 0.53 (0.27) 1.50 (0.30)
unbiased MD 0.0 2.32 2.86 (2.45) 2.48 (1.64)

aCVSA metadynamics simulation run using the Target rSA string. bPercentage of structures in the whole trajectory with both RMSDnat(L1) and
RMSDnat(L2) ≤ 2 Å. cPercentage of structures in the high-CVSA ensemble with both RMSDnat(L1) and RMSDnat(L2) ≤ 2 Å. dCα RMSD from the
native structure calculated over the whole structure. Minimum values observed during the simulation are reported for metadynamics and unbiased
MD. eCα RMSD from the native structure calculated over only L1 and L2. Minimum values observed during the simulation are reported for
metadynamics and unbiased MD. Values in parentheses are calculated in local fit (only the L1 or L2 structures are used for the best fit superposition
instead of the whole structure).
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values of 2.2 (BlindL2b) and 1.9 Å (BlindL2c) in the local fit.
Interestingly, they have also poorer scores according to Rosetta
(Table S8). Thus, rescoring the structures with Rosetta allows
BlindL2a structures to be identified as the closest to the native
state without using information on the experimental structure.
To summarize this section, we showed how the CVSA

coupled with libraries of rSA loop motifs can be effectively
used to sample multiple alternative loop conformations and,
when combined with a knowledge-based rescoring potential, to
refine protein models.

■ DISCUSSION

The occurrence of recurring local structures in proteins has
inspired several approaches to structure prediction and design.
Large libraries of sequence-dependent fragments have been
successfully employed in fragment-assembly strategies such as
Rosetta.45−47 Alternatively, small sets of coarse-grained
sequence-independent fragments were used as structural
alphabets,30,48−50 often coupled with machine learning
predictors.20 Recently, it was also shown that local structural
changes observed in MD conformational ensembles can be
analyzed in terms of changes of SA letters without loss of
information. This was particularly true for the M32K25 SA,
which has been derived from conformational attractors, i.e.,
regions in the fragment conformational space that are highly
populated by experimental structures.30 The use of this SA
turned out to be particularly effective in investigating allosteric
proteins.32

All these data indicate that SAs can provide a compact and
reliable representation of the most populated conformational
states of protein fragments, recapitulating the structural features
of a large number of experimental structures.30 The central idea
of the present work is to exploit the experimental information
distilled in a SA to accelerate the exploration of protein
conformations in MD simulations. We thus introduced a SA-
based collective variable (CVSA) to control the match between
simulated and SA fragment conformations. Combining the
CVSA with either metadynamics or steered MD techniques, it
was possible to bias the sampling of fragment conformations
toward experimentally preferred local states. While SAs have
been used in the past for postprocessing MD trajectories,31−33

this is the first time to our knowledge that they are used to
enhance the sampling during an MD simulation.
The use of the CVSA allows the introduction of knowledge-

based elements in the simulation without loss of generality.
Since the CVSA is based on local states, no assumption is
required on nonlocal contacts and thus on the relative
arrangement of the fragments. Moreover, the SA fragments
contain only Cα atoms, so that they can be used with any amino
acid sequence and no a priori information is needed on side
chain structures.
CVs based on secondary structures have been used in the

past either to accelerate the folding of small proteins to their
native states13 or to explore the space of their accessible folds.51

Performances comparable to the CVSA were obtained when
folding the GB1 β-hairpin with metadynamics simulations.13

However, these CVs are based on canonical structures of blocks
of secondary structure elements, and for β structures they
contain pairs of β-strands.13 The CVSA differ from these in that
(a) it does not require nonlocal information on specific
arrangements of secondary structure elements and (b) it can be
used to describe regions with irregular structure.

The performance of the CVSA was first tested on the folding
of peptides and mini-proteins. In all cases, conformations with a
CVSA value equal or close to CVSA

max were sampled during
metadynamics simulations starting from unfolded conforma-
tions. In these high-CVSA ensembles, all the fragments were in
their target SA state or close to it, indicating that the structures
had a local native-like conformation. Remarkably, a significant
portion of each ensemble (27−40%) had also a global native-
like conformation. In the SMD runs, the CVSA was explicitly
steered to its maximum value, so that high-CVSA states were
ensured to be sampled in a fixed amount of time. Similarly to
metadynamics, the ensemble of high-CVSA conformations
composed by the final SMD structures had a significant
proportion of native-like conformations, with percentages up to
72%.
Folded structures were thus observed when the fragments, in

addition to being in the correct local state, had also a native-like
arrangement, with native-like interfragment contacts. No
information was directly provided on nonlocal native contacts,
but folded structures were successfully formed during the
relatively short simulations performed here. The bias on the
CVSA ensured an increased probability of observing native-like
local structures, which in turn increased the probability of
finding them in a global native-like arrangement compared to
an unbiased simulation.
While the local states used to perform these calculations were

derived from the target global structures, experimental and
predicted information on the local structure of a protein may be
available even in the absence of its global structure. For
example, the experimental secondary structure composition can
be derived from CD spectra,52 while the sequence of secondary
structure elements can be usually predicted with a high level of
accuracy.53−55 For irregular regions, libraries of structural
motifs are available,44 while protein regions involved in
conformational changes can be identified by hydrogen/
deuterium exchange mass spectrometry.56

By construction, high CVSA values can be used to
discriminate conformations with a local native structure
among those generated during the simulation, but these are
not necessarily globally folded. To fold larger and more
complex systems than the ones considered in this work in a
comparable amount of time, additional information on
interfragment contacts would need to be provided. This
information could be derived from inter-residue contact
prediction, for example using recently proposed methods
based on coevolution.57 On the other end, when no contact
information is provided a priori, the possibility to sample
multiple global arrangements compatible with the same
sequence of local states could be exploited for protein design
methods. Indeed, simulations using the same reference SA
string with different amino acid sequences would show how the
spectrum of different interfragment arrangements is modulated
by the primary structure of the protein.
The form chosen for the CVSA (eq 1) allows for some degree

of structural variability also in the local structure of high-CVSA
ensembles. Indeed, the conformation of a fragment is not
required to exactly match its reference SA letter to contribute
significantly to the CVSA, but small adjustments in the local
structure are possible if energetically favored. This behavior is
regulated by the ρ0 parameter (eq 1), which defines the
tolerance on the fragment deviation from the reference letter in
the switching function. In most of the calculations, a value of
0.6 Å was used, which is comparable to the cluster radius in the
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macrostates of the reduced alphabet (rSA). When using a CVSA
with the rSA encoding, the requirement for the fragment is thus
to match a macrostate, with freedom to adapt to any of the SA
states that compose it.
Coupling the MD sampling with the reduced version of the

alphabet rSA instead of the full SA has the advantage that less
information on the system needs to be provided before the
simulation. Indeed, even when using the same reference rSA
string for different amino acid sequences, the structural
differences of the experimental structures are still recovered
during the MD simulation. While the rSA-based CVSA provides
information on the sequence of local macrostates, during the
simulation the fragments can adopt the states that best match
their specific chemical environment.
The reduced complexity of rSA strings can be exploited for

the generation of guess reference strings for the CVSA without
detailed knowledge of the desired final structure. In particular,
secondary structure predictors53−55 can be used for regular
structures, while loop encodings can be extracted from loop
databases. Indeed, we showed that a large part of the loops in
experimental β-hairpin structures can be described by a reduced
number of rSA strings. This analysis can be easily extended to
other types of loops,44 generating a comprehensive library of
rSA motifs.
The use of rSA sequence libraries was exemplified with the

refinement of a protein model. Alternative rSA sequences,
generated from the most populated motifs for β-hairpins, were
used to refine the L2 loop in the CASP8 target TR464. No
information on the final state was used to define the CVSA. L2
structures closer to the native state than the starting model
were identified by rescoring with Rosetta. In particular, the
ensemble generated with the native rSA motif could be
identified as the best one because of the higher proportion of its
conformations in the top ranking structures after rescoring.
The results discussed above suggest that the combination of

CVSA-based MD sampling with rSA libraries is a promising
approach for the development of protein refinement methods.
In particular, the increasing availability of parallel computing
resources could be exploited to test a large number of rSA
strings, which might be needed to be considered when multiple
regions are involved in the refinement.
The development of refinement methods that can system-

atically improve the quality of protein models has proven to be
particularly challenging so far, and it is still an area of ongoing
work. Structure prediction relying on knowledge-based
approaches seems to have reached a plateau in their accuracy,58

and different refinement strategies are now required to achieve
effective improvements. The combination of knowledge-based
prediction with physics-based methods looks particularly
promising. Indeed, an MD-based method was found for the
first time to be the best performing in recent rounds of
CASP.58,59 Key factors in this success were the coupling of MD
with knowledge-based elements and the use of an averaging
procedure over multiple parallel trajectories to enhance the
structure sampling and to generate an enrichment of native-like
versus non-native features.60 Another example of these types of
approaches is the use of distance maps taken from high-
resolution experimental structures as restraints in MD
simulations.59

Sampling remains critical especially if the refinement requires
large energy barriers to be overcome.58 In these cases,
enhanced sampling, as performed in our study, is necessary.
Moreover, CASP11 results demonstrated that loops tend to be

more challenging to refine. To this end, a CVSA-based strategy
is particularly suitable since it uses tunable local biases for loop
regions.
Enhanced sampling methods were used in this work mainly

to accelerate the sampling of high-CVSA conformations and not
to derive energetic or kinetic data. Snapshots from metady-
namics simulations were rescored with an external scoring
function for model refinement, while work values in SMD
simulations were only used to prefilter candidate structures.
However, provided that appropriate simulation lengths and
postprocessing protocols are used, it is in principle possible to
extract direct energetic information from CVSA-biased
trajectories and derive free energy changes for the processes
involved, ranging from free energy changes associated with loop
rearrangements or changes in secondary structure to folding
energies. Moreover, when combined with suitable global CVs,
the CVSA could be used to investigate the relative kinetics of
formation of secondary and tertiary elements61,62 in the folding
of proteins, for example when comparing diffusion−collision
and nucleation−condensation pathways.63 Following recent
successful examples where secondary structure-based CVs were
combined with NMR chemical shifts to study denatured
states64 and IDPs,65 the CVSA could in principle be coupled
with CVs containing specific experimental information on
unfolded or denatured states. In this context, using the CVSA is
particularly suitable since it is able to describe both regular and
irregular local structures.
As a final remark, the CVSA can be used in any CV-based

enhanced sampling approach, including hybrid approaches
mixing CVs with REMD-like methods, such as parallel
tempering11 or bias exchange metadynamics,66 where ex-
changes are allowed between replicas that use different CVs.
The second approach would be particularly suitable to explore
alternative local structure arrangements by using multiple CVSA
with different SA strings.
In conclusion, we showed that, by enhancing the sampling of

local states from a structural alphabet, it is possible to recover
the global native state in MD simulations of small proteins.
This finding is robust against approximate definitions of local
states. Moreover, we showed how artificial sequences of SA
states from libraries of recurring SA motifs can be used to
generate alternative conformations of protein regions. Biasing
the sampling of local states has a wide range of potential
applications, going from protein design to the study of
conformational changes based on large local rearrangements
such as hinged motions, secondary structure transitions, or loop
remodelling.

■ METHODS
Full details on methods, simulation setup and data analyses can
be found in the Supporting Information.

Structural Alphabet and Structure Encoding. A SA is a
collection of prototypical backbone conformations adopted by
short fragments in protein structures, where each letter
represents a fragment conformational state. In this work, we
used the M32K25 SA, composed of 25 representative fragments
of four consecutive Cα atoms.30 A protein structure can be
encoded into a SA string by progressively labeling each
overlapping four-residue fragment (i.e., residues 1−4 for
fragment 1, 2−5 for fragment 2, and so on) from the N-term
to the C-term of the protein with a SA letter (A−Y), so that
conformation of a protein of N residues is encoded into a
structural string of length N − 3. In this work, the labeling of a
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fragment is performed by identifying the SA letter that has the
minimum root-mean-square deviation (RMSD) from the
fragment (local-fit encoding). No information from adjacent
fragments is used, so that letters encoding consecutive
fragments are assigned independently from each other, allowing
for a nonexact match in the overlapping region.
Local macrostates were defined by clustering the 25 letters of

M32K25 (Supporting Information). The representatives of the
six resulting clusters define a reduced version of the M32K25
SA (rSA).
CVSA Definition. CVSA is defined as the number of four-

residue fragments f i in the protein with Cα RMSD ρ from a
preassigned SA letter Xi (reference state) within a given cutoff
ρ0:

∑
ρ ρ
ρ ρ

=
−
−=

f X

f X
CV

(1 ( ( , )/ ) )

(1 ( ( , )/ ) )i

N
i i

n

i i
mSA

1

0

0

frag

(1)

Each term in the sum is a differentiable function13 switching
from 1 (ρ ≪ ρ0, f i very close to the reference state Xi) to 0 (ρ
≫ ρ0, f i very far from Xi), where n and m are user-defined
parameters that modulate the switching rate. It follows that the
maximum value that a CVSA can adopt (CVSA

max) corresponds
to the number of fragments used for its definition. The RMSD
ρ is calculated on the positions of Cα atoms. The CVSA was
implemented in a modified version of PLUMED10 1.3. The
resulting user interface for the CVSA definition is flexible, and
any number of fragments can be used, spanning the entire
protein structure or parts of it. The sequence of Xi letters
defines the CVSA reference string. The CVSA section of sample
PLUMED input files is reported in the Supporting Information
for the GB1 β-hairpin (Appendix S1) and TR464 (Appendix
S2). Different criteria can be used for the string assignment, as
it is shown in Results. The CVSA can be used in combination
with any CV-based enhanced sampling method implemented in
PLUMED. The patch files used to implement the CVSA can be
downloaded from https://afornililab.wordpress.com/software
or http://people.brunel.ac.uk/~csstaap2/software.html.
MD Simulations. The GROMACS 4.5.5 program67 was

used to prepare the initial system coordinates and to run the
simulations. The Amber99SB*-ILDN68 force field was used for
all the simulations. Enhanced sampling simulations were
performed by coupling GROMACS with PLUMED-1.3.10 In
the metadynamics folding simulations, a CV describing a global
property was used in addition to the CVSA. In SMD
simulations, the steering was performed with harmonic
restraints moving at constant velocity.
Tools for Trajectory Postprocessing and Analysis. MD

trajectories were analyzed with the GROMACS 4.5.5 tools67

and with in-house scripts in R (available from https://
afornililab.wordpress.com/software or http://people.brunel.ac.
uk/~csstaap2/software.html). The bio3d69 R package was used
for coordinate manipulation and for the analysis of the ArchDB
database.44 The encoding of experimental structures and MD
trajectories with the M32K25 SA was performed with
GSATools.34 Structures from the blind loop refinement of
the TR464 CASP target were independently rescored with
Rosetta45−47 (ver. 3.3).
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structure prediction: an overview. Methods Mol. Biol. 2015, 1268, 1−
13.
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