
Int. J. Communications, Network and System Sciences, 2012, 5, 839-849 
http://dx.doi.org/10.4236/ijcns.2012.512089 Published Online December 2012 (http://www.SciRP.org/journal/ijcns) 

Towards Cloud to Device Push Messaging on Android: 
Technologies, Possibilities and Challenges 

Jarle Hansen1, Tor-Morten Grønli1,2, Gheorghita Ghinea1,2 
1School of Information Systems, Computing and Mathematics, Brunel University, London, UK 

2The Norwegian School of Information Technology, Oslo, Norway 
Email: jarle@jarlehansen.net, tmg@nith.no, george.ghinea@brunel.ac.uk 

 
Received October 5, 2012; revised November 2, 2012; accepted November 14, 2012 

ABSTRACT 

In this paper we look at different push messaging alternatives available for Android. Push messaging provides an im-
portant aspect of server to device communication, and we specifically focus on the integration of cloud computing with mo-
bile devices through the use of push-based technologies. By conducting a benchmarking test, we investigate the performance 
of four relevant push technologies for the Android platform, namely C2DM, XMPP, Xtify and Urban Airship. The compari-
son focuses on three aspects of the libraries: 1) The stability; 2) Response times; and 3) Energy consumption. The test is con-
ducted on both WLAN and 3G, and includes several mobile device types. Additionally, we also integrate with the Google 
App Engine to provide the cloud integration server that is responsible for sending push messages to the mobile devices. 
 
Keywords: Cloud Computing; Android; Push Messaging; Cloud Integration; C2DM; XMPP; Urban Airship; Xtify 

1. Introduction 

The goal of cloud computing is to provide the appearance 
of unlimited scalability and storage for less money than 
the in-house data centers [1]. Its success is based on an 
economy of scale and the relative ease of administration 
of services, as an entire cloud-based data center could be 
configured through, for example, a series of web pages. 
Many businesses are today looking at cloud computing 
as a viable and cost-effective alternative to hosting their 
own data centers internally, with large IT companies like 
Microsoft, Google, and IBM all having initiatives relat-
ing to cloud computing [2]. Popular cloud-based plat-
forms include Microsoft Azure, Amazon EC2 and the 
Google App Engine. 

In 2011 Gartner reported that cloud computing, and 
mobile applications and media tablets are on the top 
10-list of strategic technologies [3]. In this paper we will 
investigate how these technologies can cooperate through 
push messaging, where a content provider publishes in-
formation to a subscriber. We have focused on combin-
ing cloud computing with mobile applications through 
the use of push technology on the Android platform. 

Before the platform support for push messaging was 
added to Android it was common to use a polling me- 
chanism. This worked by making the application con-
stantly poll the server for updates. There are several 
drawbacks with this alternative, especially the challenge 
of configuring the frequency of poll-requests sent. An-

other possibility is to push messages using SMS (Short 
Message Service). Android is able to receive and inter-
cept SMS messages, but they come with their own limi-
tations like availability, cost and message size. 

In this paper we present our experience from working 
closely with push messaging technologies. Specifically, 
we compare different technologies available for the An-
droid platform, from the standard library provided by 
Google to commercial options. In total we will look at 
four alternatives that all provide similar push messaging 
features. We believe this gives an in-depth look at the 
state of the art in integration between cloud computing 
and the Android platform not found in existing research. 
On the server side we have used the Google App Engine 
as the cloud-based platform. 

We focused on push messaging on Android because it 
is an important aspect for application developers. Push 
messaging is in many situations a vital aspect of the us-
ability and functionality of an application. Additionally, 
as stated by Gartner [4], the popularity of the Android 
platform means that this area of research highlights chal-
lenges that affect a considerable amount of software de-
velopers. 

Accordingly, the main contribution of our research is 
to investigate the following topic: Compare four push- 
messaging technologies for Android, which are inte-
grated with a cloud-computing environment, in regards 
to the stability of responses, response times and energy 
consumption. 

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 840 

The paper is organised as follows: We begin with a 
look at related work before presenting a short introduc-
tion of the investigated technologies. A description and 
review of the benchmarking test is shown, and finally the 
conclusion is presented towards the end. 

2. Related Work 

Cloud computing is becoming increasingly popular. Fea- 
tures like elasticity, scalability and a new cost-model are 
providing new and interesting opportunities for many 
companies. It has proven particularly useful for small and 
medium enterprises that have a large variation in their 
computing needs [5]. However, not all businesses will 
benefit from moving their data centres to the cloud, e.g. 
when there are government regulations not allowing sen-
sitive data to be stored with an external cloud provider 
[6]. 

In an attempt to help decision makers identify their 
concerns with moving all or parts of their computing 
needs to the cloud, Khajeh-Hosseini et al. [7] has created 
a Cloud Adoption Toolkit. With this toolkit, they argue 
that one can identify the potential benefit or drawback 
from moving the IT infrastructure and applications to a 
cloud provider. 

When selecting a cloud platform, there are three main 
service models to select from [8]: 

1) Software as a Service (SaaS), the consumer uses 
the cloud provider’s applications running on a cloud in-
frastructure; 

2) Platform as a Service (PaaS), the consumer is able 
to deploy (either customer created or acquired) applica-
tions onto the cloud infrastructure. The consumer does 
not manage or control the cloud platform/infrastructure; 

3) Infrastructure as a Service (IaaS), the consumer 
can provision processing, storage, networks, and other 
computing resources that can be utilised to deploy and 
run the applications. 

In our work we focus on the Google App Engine, 
which is a PaaS service model making it possible for 
developers to run their own applications on Google’s 
infrastructure [9]. We used the Google App Engine be-
cause it provides good support for the technologies we 
wanted to test, such as a close integration with C2DM 
and XMPP, and also a simple and easy administration 
feature. 

The Google App Engine is a cloud-based PaaS service, 
the platform is pre-configured by Google and provides a 
much higher abstraction than an IaaS (Infrastructure as a 
Service) platform like Amazon EC2, where almost the 
entire stack from kernel and upwards can be controlled 
[10]. The Google App Engine is also well integrated with 
other Google services like e-mail and authentication. The 
platform imposes certain limitations on the developers, 

for example that threads cannot outlive the request that 
creates it and a limit of 10 concurrent request threads 
[11]. However, by enforcing these Google is able to pro-
vide very high scalability [9]. 

In work more closely related to ours, Minstrel [12] has 
been developed to provide a push-based messaging sys-
tem. The system utilises the publish/subscribe paradigm 
and has been extended to support mobile devices. Min-
strel and the standard push messaging library for Android, 
which is called Cloud to Device Messaging (C2DM), 
have several similarities in how they are built, including 
the publish/subscribe model, where subscribers must re- 
gister at the content publisher to receive the messages. 

In similar research, the Bakabs application, created for 
Android and iOS, Paniagua et al. [13] use C2DM and the 
Apple Push Notification Service (APNS) to implement 
push messaging. The application aims to provide a man-
agement tool that allows information to be retrieved 
about the web applications’ traffic and then launch or 
stop cloud instances based on the current load. The use of 
push messaging was included to allow for the cloud- 
based services to send messages asynchronously back to 
the handset, thus eliminating the need for the client to 
wait for a response. 

One of the topics investigated, as part of the bench-
marking test we conducted, is energy consumption. Re-
search in this area includes the work done by Flinn and 
Satyanarayanan [14]. They specifically look at energy- 
aware systems, where they show that a solution for dy-
namic balancing of energy consumption and application 
quality is an essential part of comprehensive energy ma- 
nagement solutions. Similarly, Rivoire et al. [15] present 
a research effort in the area of energy efficiency. They 
propose JouleSort, an external sort benchmark for evalu-
ating the energy efficiency of various devices, from lap-
tops, desktops and servers. 

The research described effort by Rivoire et al. [15] is 
quite different from ours. Firstly, we focus on one spe-
cific element, namely push messaging technologies run-
ning on an Android device. We chose to focus on the 
Android platform because it is well integrated with other 
Google technologies and, more importantly, it is an open 
platform making it ideal for experimentation. Secondly, 
we are not trying to identify the performance of disk I/O, 
CPU capacity and so on, but we compare the stability, 
response times and energy consumption of the important 
push messaging technologies. Generally, our test is much 
more specific, targeting specific mobile operating system 
and push-messaging technologies, in contrast to the gen-
eral-purpose benchmark proposed by Rivoire et al. [15]. 

In the context of performance testing, Calheiros et al. 
[5] have examined the performance of cloud computing 
alternatives. They present a simulation toolkit, called 
CloudSim, making it possible to model and simulate 

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 841

cloud computing systems and applications. They argue 
that it is impossible to perform benchmarking experi-
ments in a repeatable, dependable and scalable environ-
ment using real-world cloud-based platforms. With Cloud- 
Sim, they have created a tool making it fast and easy to 
configure and run these tests. 

Nonetheless, getting highly reliable and repeatable re-
sults from a real-world environment is difficult [5]. This 
is especially so when using cloud-based resources, where 
there are many components, hardware and software, 
working together and it can be difficult to isolate the 
specific parts of the overall system one wants to test. 
However, we still believe there is value in doing a 
benchmarking test of different push messaging technolo-
gies integrated with cloud computing. There is value in 
providing performance results for the different technolo-
gies because it gives the developers information on the 
strengths and weaknesses of the popular push-messaging 
alternatives on the platform. 

Also, it is important to note that we are integrating ex-
ternal components, the mobile devices, into the tests and 
not just using a cloud-based system, making it even more 
challenging to use a simulation tool that will provide 
realistic results. 

We have focused our work on combining mobile de-
vices with cloud computing. In this context, Binnig et al. 
[1] argue that a benchmarking test in a cloud computing 
environment should address the following issues: 

1) Adaptability of the system, the ability to adapt to 
changing load in terms of scalability and cost; 

2) Conduct the benchmarking tests from different lo-
cations; 

3) Access more dynamic “Web 2.0”-like applications 
including multimedia content. 

These pointers provide valuable insight into what a 
cloud computing benchmark test should include. We 
want to use some of the general ideas from this list, but 
we also want to stress the differences between what we 
are benchmarking, where a mobile client and cloud inte-
gration is involved, with the pure cloud-based bench-
marking test that was described by Binnig et al. [1]. Par-
ticularly interesting for our test is to include the stability, 
response times and energy consumption of the system 
and also results from different networks. 

The next section will introduce the different push mes-
saging technologies. 

3. Push Messaging on Android 

The technologies used in our experiment all deal with the 
integration of cloud computing and mobile applications. 
Not all push messaging technologies investigated are 
directly related to cloud computing, such as XMPP (Ex-
tensible Messaging Presence Protocol). However, it is 

well integrated with the Google App Engine and is there- 
fore included in our test. 

In our benchmarking test we considered a total of six 
alternative technologies that offer push messaging for 
Android. These libraries are currently the main competi-
tors in the market. SMS was not considered as part of the 
push messaging libraries, this was because of limitations 
such as availability and cost. Specifically, we conducted 
the test on a tablet device, Samsung Galaxy Tab 10.1, 
which does not support SMS. 

The libraries we found particularly interesting are: 
C2DM, Urban Airship, Xtify, XMPP, MQTT (Message 
Queue Telemetry Transport) and Deacon. Although we 
believe these technologies present the most promising 
and useful push messaging libraries on Android, we 
cannot completely rule out the possibility of other inter-
esting options we were not able to find. 

Of these alternatives, we did not go into detail for two 
specific libraries, namely MQTT and Deacon. MQTT 
was not included because we wanted to investigate push- 
messaging technologies that can be easily integrated into 
the cloud, and specifically on the Google App Engine. 
MQTT is useful for connections that require a small code 
footprint and where network bandwidth is limited [16]. It 
does require a message broker hosted on a separate 
server. We did not find an easy way to integrate this ser-
vice with the Google App Engine. 

The second technology, The Deacon Project [17], is an 
open source project providing push notifications to Java 
and Android applications. We felt that this project was 
the least mature technology of the options we considered, 
as it is currently in beta release. The project also states 
that it is created for users wanting to run push notifica-
tions on their own server and support Android versions 
lower than 2.2, whereas C2DM requires at least Android 
2.2. None of these requirements matched what we want- 
ed to investigate, which included a close integration with 
a cloud-based server application and devices running on 
at least the 2.2 version of Android. 

3.1. XMPP 

The first push-messaging technology we wanted to in-
clude in our benchmarking test was the XMPP protocol. 
It is created for real-time communication [18] and for 
streaming XML [19]. The technology behind XMPP was 
created in 1998 and then refined in the Jabber open 
source community in 1999 and 2000, before it was for-
malised by IETF (The Internet Engineering Task Force) 
in 2002 and 2003 [20]. It is commonly used in Instant 
Messaging (IM) and has been used by Google Talk, Jab-
ber and other IM networks. 

XMPP is offered as a service on the Google App En-
gine, making it possible to write cloud-based applications 

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 

Copyright © 2012 SciRes.                                                                                IJCNS 

842 

on the Google infrastructure that is able to communicate 
with users or applications. Accordingly, we integrated 
with XMPP through the Google App Engine infrastruc-
ture. Our Android client used an XMPP library called 
asmack [20], which is a patched version of smack created 
for Android. Smack offers an XMPP library and is a pure 
Java implementation [21]. 

XMPP on the Google App Engine has a daily limit of 
1 GB data sent and 100,000 invitations with the free de-
fault limit [22]. More resources can be purchased, with 
paid applications incurring a minimum spend of $2.10 
per week. 

3.2. Cloud to Device Messaging 

Cloud to Device Messaging (C2DM) was made available 
from Android 2.2, where the goal was to make it easier 
for mobile applications to sync data with servers [23]. 
The technology is used in several standard Google ap-
plications including Gmail, Contacts and Calendar. 
When messages are received on the Android client, the 
system will wake up the application via an Intent broad-
cast, and pass the message data [13]. The message limit 
is set to 1024 bytes and developers are encouraged to 
send short messages, essentially notifying the mobile 
application that updated information can be retrieved 
from the server. C2DM is a free service, and the maxi-
mum number of messages that can be sent is approxi-
mately 200,000 per day [24]; however this can be in-
creased if there is a need for more resources. 

Google offers standard libraries for Android that 
makes it possible to use C2DM directly. Figure 1 shows 

a basic overview of C2DM. We believe the C2DM li-
brary provides a good basis for a standard push messag-
ing technology. However, we identified certain limita-
tions with C2DM that we wanted to simplify and provide 
more features than the standard solution. This will be 
presented in more detail in a later section. 

There will also be a market for different solutions, of-
fering more comprehensive services and novel features 
not covered by the C2DM technology, such as a webpage 
for administration and multi-platform support. These 
features are targeted by other commercial technologies, 
such as Urban Airship and Xtify. 

3.3. Urban Airship 

Urban Airship provides a commercial option for sending 
push notifications on Android, Blackberry and the iOS 
platform [25]. It makes it easier for developers to create 
applications for multiple device types since it provides a 
single API for all the supported platforms. It consists of a 
library that is added to the project to hide all the low 
level complexity related to push messaging. In addition 
to push notifications, Urban Airship provides features 
such as rich push, push composer, reports, in-app pur-
chase and subscriptions. 

Urban Airship also offers a proprietary push-messag- 
ing platform called Helium that supports Android 1.6 and 
newer. With newer phones (minimum Android 2.2) it 
supports the use of C2DM. The pro priceplan costs $199 
per month, and includes support for up to 10,000 users 
and unlimited push messages, with an additional $0.01 
per user over this limit [26]. 

 

 

Figure 1. C2DM overview. 



J. HANSEN  ET  AL. 843

 
3.4. Xtify 

Similar to Urban Airship, Xtify is a commercial option 
that provides push messaging for Android. Xitfy also 
supports the Android, Blackberry and iOS platforms. For 
Android it uses the C2DM technology offered by Google 
and adds features like registration management, notifica-
tion handling, notification inbox, rich notification sup-
port and the ability to send messages based on user loca-
tion. 

The Just Push-package from Xtify costs $199 per 
month, and includes support for 30,000 devices and 
unlimited notifications. Each additional device over this 
limit costs $0.01 [27]. 

Both Urban Airship and Xtify support C2DM, and in 
addition they have their own proprietary Android push 
notification service [28]. These proprietary alternatives 
are used in the benchmarking test to provide a way of 
comparing C2DM-based applications with other push 
messaging technologies. For Xtify this is implemented 
on their infrastructure with the XMPP protocol [28]. It is 
important to note that even though two technologies in 
our benchmarking test are based on XMPP, we use 
XMPP directly when integrating with the Google App 
Engine. When testing Xtify we use their API and infra-
structure. Xtify recommends using XMPP in cases where 
one for example needs to communicate frequently with 
the mobile devices over a short period of time. In other 
cases it recommends using the C2DM alternative it pro-
vides. 

In our research reported here, we have included all of 
these technologies and performed a benchmarking test to 
see how they perform. 

4. Benchmark Test 

We created a benchmarking test to compare different 
push-messaging technologies on Android. The system 
consisted of a mobile client that in sequence invoked all 
the different push messaging technologies and record the 
time used. On the server side we have a Google App En-
gine server application that sends messages when re-
quested to do so from the client. This application is also 
responsible for storing all the data received from the mo-
bile application. 

In our research we wanted to compare the performance 
of C2DM with other push-based technologies integrated 
in a cloud environment. We defined three main charac-
teristics that are important for push-based technologies: 
 Response times, what are the response times for the 

different push messaging technologies? 
 Stability, are the response times providing stable re-

sults over the time we run the test? 
 Energy consumption, how efficient, in regards to bat-

tery power, is the various push-messaging technologies? 

The test was conducted in two main iterations. In it-
eration 1 we started by looking at the response times and 
stability for each push-based alternative. Moreover, the 
test was performed on two network types, namely WIFI 
and 3G. The message size sent was 450 bytes on all 
technologies and the tests were run on and off over sev-
eral days with messages sent every 5 minutes. 

For iteration 1 we included the following devices in 
the benchmarking test: Samsung Galaxy Tab 10.1 (SG), 
HTC Evo (HE), and HTC Nexus One (HN). 

For iteration 2, we wanted to compare the energy con-
sumption of the various push-messaging technologies. 
This test included the same message size (450 bytes), but 
we only used one device, which was SG, and we also 
increased the message frequency to 10 minutes. This 
device was selected to get a more comprehensive test 
because the SG device has a significantly larger battery 
(7000 mAh) when compared to for example the HE 
(1500 mAh). 

This benchmark test lasted about 6 days for C2DM 
and Urban Airship, while the XMPP test only lasted 
about 2 days because of certain limitations in the plat-
form, which we will describe in more detail later in this 
paper. 

When doing our pilot-tests we noticed that the screen 
would consume a considerable amount of battery power 
and made it difficult to find any differences between the 
push-messaging technologies. For this reason we turned 
the screen on the device off when testing the energy 
consumption. Additionally, we also disabled the auto- 
sync feature to prevent applications using network com-
munication resources on the device. These steps were 
taken to try to eliminate other factors that might impact 
the energy consumption on the device. 

4.1. Test Procedure 

Both iterations, as explained above, followed these main 
steps: 

1) The Android client registers with the server. This is 
done differently for each technology, for example C2DM 
will send a registration id to the device; 

2) A timer is started on the client, followed by a mes-
sage being sent to the server requesting a new push mes-
sage; 

3) The server application receives the message and 
immediately sends out a message consisting of 450 bytes 
to the mobile device. This will happen for each technol-
ogy type; 

4) When the message is received, the Android client 
stops the timer and registers the result. This result is 
then sent back to a result-servlet that is part of the 
server application, which will permanently store the 
information; 

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 844 

5) Finally, the process waits 5/10 minutes before con-
tinuing with the sending the next message. 

In our tests we compare the following technologies: 1) 
XMPP; 2) Urban Airship Helium; 3) Xtify (proprietary 
push messaging infrastructure) and 4) C2DM. All push 
messaging alternatives are integrated with a cloud-based 
Google App Engine server application. It is important to 
note that we did not include other technologies built on 
top of C2DM, like Urban Airship or Xtify with C2DM 
enabled, because they send messages in the same way as 
standard C2DM. 

4.2. Results 

Table 1 presents the overall results from the benchmark-
ing test. We start by looking at the numbers for both the 
SG and HE. Both devices ran on the same WIFI network, 
and we were also able to provide a fairly equal number of 
messages for each technology providing a good basis for 
the comparison. 

As can be seen in the table below, the results are rela-
tively consistent, even though the differences between 
the technologies (see the standard deviation) were big-
gest on the SG. The average response time for XMPP 
was the shortest, with C2DM on second and finally Ur-
ban Airship. There is a difference of 276.12 ms (SG) and 
156.98 (HE) between XMPP, which had the shortest re-
sponse times, and Urban Airship with the longest re-
sponse times. As seen in both Figure 2 (results from SG) 
and 3 (results from HE), the difference is mostly due to 
spikes in the response from Urban Airship. The max time 
used for Urban Airship was 5337 ms (SG) and 3601 ms 
(HE), whereas both XMPP and C2DM provided consid-
erably more stable results in the benchmarking test. 
These spikes were more frequent on the results gathered 
from SG than with HE, however, this trend was evident 

on all the devices included in the test, which is confirmed 
by looking at the standard deviation. 

Overall the C2DM results were stable and the per-
formance results recorded showed an average response 
time of 466.82 ms (SG) over 281 messages and 401.89 
ms (HE) over 174 messages. Comparing the response 
time for C2DM on SG and HE, there is only a difference 
of 23.01 ms in the average response times. The HE had 
fewer messages received, with 174 compared to 281 for 
the tablet. 

XMPP had the most stable results in our test, with a 
standard deviation of 172.91 (SG) and 67.84 (HE). Urban 
Airship did appear to have more stability issues than the 
rest and these issues surfaced several times during the 
test. When comparing the results from different WIFI 
networks and 3G, the same pattern emerges. The 3G re-
sponse times are higher, but this is to be expected since 
they will have less bandwidth than the WIFI connection. 

The final technology we tested was Xtify, and it comes 
very close to the overall performance of C2DM. It pro-
vides more stable results than Urban Airship and with 
slightly better average response time than C2DM. We 
were unable to conduct the benchmarking test with Xitfy 
on other devices than HE, because of limitations in the 
account we used. Additionally, since we were only able 
to send a limited number of messages this technology 
was not included in iteration 2. 

The results for SG and HE are presented in Figures 2 
and 3 on the next page, and it is easy to the spikes in the 
response times for Urban Airship as previously men-
tioned. 

For the final test, iteration 2, we wanted to investigate 
the energy consumption of the different push-messaging 
technologies. In this part of the benchmark test, we ran 
the same application as before, but we increased the time 

 
Table 1. Test results. 

Device Tech Number of messages Average response time (ms) Standard deviation

C2DM 281 466.82 203.76 

Urban Airship 279 619.43 708.72 
Samsung Galaxy Tab 10.1 
—Android 3.1 
—WIFI 

XMPP 280 343.31 172.91 

C2DM 174 401.89 95.40 

Urban Airship 172 473.88 321.97 
HTC Evo 
—Android 2.3 
—WIFI 

XMPP 168 316.90 67.84 

C2DM 17 502.47 59.68 

Urban Airship 37 814.27 943.24 
HTC Nexus One 
—Android 2.3 
—3G 

XMPP 30 436.60 286.10 

HTC Evo 
—Android 2.3 
—WIFI 

Xtify 213 432.92 250.09 

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 845

 

Figure 2. Results for C2DM, Urban Airship and XMPP on Samsung Galaxy Tab (WIFI). 
 

 

Figure 3. Results for C2DM, Urban Airship and XMPP on HTC Evo (WIFI). 
 
between messages to 10 minutes. Another difference was 
that instead of running each technology in sequence, we 
only recorded one technology at a time. This was done 
because we wanted to provide results based on the bat-
tery level for each technology, and also to expand the test 
over a longer period of time. As previously described, the 
client ran the test by sending requests to the cloud-based 
server, but as part of this iteration we also added a fea-
ture that triggered a new request from the mobile device 
for each change in battery level. By doing this, we were 
able to record the messages and also the corresponding 
battery level. 

In this test we included C2DM, Urban Airship, and 
XMPP. Xtify was not included due to limitations with 

the developer account we had created. 
With both C2DM and Urban Airship we were able to 

provide fairly equal number of messages, with 862 and 
858 messages sent respectively. However, with XMPP 
we were unable to send more than 295 messages because 
of quotas and limits in the Google App Engine [29]. The 
results are presented in Figure 4, where we have added 
trend lines for each result to make it easier to see the dif-
ferences between the technologies. 

As can be seen in Figure 4, both C2DM and Urban 
Airship provided the best results, using less energy than 
XMPP. We did expect this because it is recommended to 
use XMPP in scenarios where one needs to communicate 
frequently over a short period of time, as stated by Xtify    

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 846 

 

 

Figure 4. Energy consumption results. 
 
[30]. This aspect is also verified by the normal use of 
XMPP, for instance Instant Messaging applications such 
as Google Talk. 

The two other technologies, Urban Airship and C2DM, 
provided fairly similar results. However, from the last 
50% and towards 0%, Urban Airship did provide slightly 
better results. It is difficult to draw any final conclusions 
of the difference between these technologies because the 
change is fairly small, and further testing is needed. 
However, we still find these results interesting, and espe-
cially the big difference between C2DM/Urban Airship 
and XMPP. We would certainly recommend using either 
C2DM or Urban Airship over XMPP for applications not 
dependent on frequent messages being pushed from the 
server to the devices. 

Table 2 presents a short summary of the advantages 
and disadvantages of the libraries we tested. The overall 
results show that the C2DM, which is the standard An-
droid library offered by Google, provided good per-
formance compared to the alternatives. Moreover, it also 
performed well in the energy consumption test, espe-
cially compared to XMPP. We found that C2DM pro-
vided the best overall results in the three categories in-
vestigated, namely response time, stability and energy 
consumption. 

4.3. Limitations 

The benchmarking test, as described previously, has 
some limitations, and this was specifically apparent on 
some of the mobile devices. We had certain issues run-
ning all of the push messaging technologies over a period 
of time. This would result in certain messages not being 
received. The test would run reliably for period of time, 
before the messages were no longer registered on the 

mobile client. A restart of the Android client would solve 
the problem, but this scenario happened multiple times. 
This is why some of the devices have very few test re-
sults for certain technologies, for instance the HN had 
issues with C2DM. This only happened on the Android 
2.3 mobile devices, whereas the Android 3.1 tablet was 
very stable over the entire test period. It would be inter-
esting and useful for future work to focus on these stabil-
ity issues, by including Android version 4 devices in the 
tests to see if the problems are fixed or at least improved 
in this newer version of the operating system. However, 
at the time of writing, an official version of Android 4 is 
not released for the devices used in the benchmark test. 

Additionally, both Urban Airship and Xtify were 
tested on development servers. In the case of Xtify, we 
had to run this separately because there is a limit of 300 
messages sent when using a basic account. The test con-
sisted of a total of 213 messages, because we had to 
setup and test the system before running the actual ex-
periment. For the energy consumption test we were un-
able to include Xtify because of the limitation in the 
number of messages. 

Moreover, we used a fairly coarse grained scale, with 
battery percentage, when registering the energy con-
sumption. There are other research efforts that have 
measured energy efficiency with a power meter, which is 
used in Rivoire et al. [15]. This will in most cases pro-
vide more reliable and accurate result. However, we be-
lieve there is still value in our general results and we 
were also able to push a fairly significant number of 
messages with: 862 (C2DM), 858 (Urban Airship) and 
295 (XMPP). 

We experienced a few issues with the C2DM API that 
we wanted to improve. These were specifically issues 

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 847

  
Table 2. Result summary. 

Technology Advantages Disadvantages 

The standard push-messaging technology offered by Google. 
Certain features, such as sending messages to 
multiple clients, is not supported. 

C2DM 
Provided stable response times and low energy consumption 
compared to for example XMPP. 

The development environment and API could be better  
(see Section 4.4 for more information on this issue). 

Provides several features not found in the free alternatives. 
We recorded varying response times. In certain cases we saw 
quite a big increase in response times for some requests. 

Urban Airship 
Our results show that the energy consumption was  
considerably less than for XMPP. 

Offers certain free features, but is mainly a 
commercial product. 

Works well in situations where one needs to communicate  
frequently over a short period of time. 

Uses more battery power than the other technologies. 

XMPP 
Provided good and stable response times in  
our benchmark test. 

 

Xtify 
For Xtify we were not able to collect the same amount  
of data, however, the results were very similar to C2DM  
in terms of response time. 

Offers certain free features, but is mainly a  
commercial product. 

 
related to the lack of flexibility and certain useful fea-
tures. We created an open source library, called Simple- 
C2DM, to address these issues. We will give a short 
presentation of this library in the next section. 

4.4. Simple-C2DM 

We implemented a new open source library called Sim-
ple-C2DM. It was created specifically to simplify the 
development of applications using C2DM on the Android 
platform. Our library builds on top of standard C2DM 
and provides additional features. 

An in-depth look at the Simple-C2DM features and 
functionality is outside the scope of this paper, however, 
a short introduction is given to provide useful informa-
tion on how the development tools and API problems 
with C2DM can be improved. These features can also be 
useful for other push messaging technologies. 

Figure 5 presents an overview of how Simple-C2DM 
is integrated in the client and server application. 

There were two main reasons why we wanted to pro-
vide a new implementation: 

1) To create a higher level of abstraction for certain 
key features; 

2) To provide features not available in standard 
C2DM. 

Starting with the higher level of abstraction, we solved 
this by introducing support for annotations. Annotations 
provide metadata that will not directly affect program 
semantics and are usually handled by tools and libraries. 
The main feature we found particularly useful and im-
portant by introducing annotation support was flexibility. 
Developers were no longer strictly forced to follow a 
specific pattern in the source code. 

The second task we wanted to introduce in Simple- 
C2DM was new features not available in the standard 
implementation. One of the major issues with C2DM in 

our opinion is the AndroidManifest.xml-file, and espe-
cially the required configuration that needs to be pro-
vided. In Simple-C2DM we tried to solve this problem 
by offering two alternatives. If the developer does not 
want to, or cannot for some reason, use code generation, 
we created a manifest-generator hosted on the Google 
App Engine. This is a webpage that will take the pack-
age-name as input and generate the needed XML-tags. 

The second option, which in our opinion is the best, is 
to generate the XML-tags automatically using an annota-
tion processor. This part of the Simple-C2DM library 
was created as an experimental feature to figure out if we 
were able to automatically generate these XML-tags 
without the need to manually type in the package name. 
Because this uses an annotation processor, there is a con-
figuration step involved when setting up the development 
environment. After this is completed, the annotation 
processor automatically runs when the project is com- 
piled. 

5. Conclusions 

In this paper we investigated four cloud-integrated push- 
messaging technologies for the Android platform. We 
wanted to specifically target technologies that could be 
easily integrated with cloud computing, and in our test 
we used the Google App Engine as the cloud-based plat-
form. We ran the tests on both WLAN and 3G, and pro-
vided results from several Android devices. 

Our benchmarking test consisted of a client installed 
on the mobile devices and a server application running 
on the Google App Engine. The client had fixed time 
intervals where it would request a push message from the 
server. When this requested message was received, it 
recorded the time used. For the second part of our test, 
the energy consumption experiment, we used the same 
basic client but increased the time between each message    

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 848 

 

 

Figure 5. Simple-C2DM. 
 
and included a feature that was able to record the battery 
level, in percentage, on the device. 

The benchmarking test investigated each technology in 
regards to stability, response times and energy consump-
tion. The results from the tests identified that XMPP pro-
vides the best result for response time and stability. 
However, it is also the library with the worst results for 
energy consumption. The next technology, Urban Air-
ship, suffers from spikes in the response times, but does 
provide good results for the energy consumption test. 

For Xtify we recorded very similar results to C2DM 
and Urban Airship with the stability and response times. 
However, we were not able to collect the same amount of 
data as with the other technologies, and were therefore 
unable to include the technology in the energy consump-
tion test. Overall, when including all aspects of the test 
from the three technologies we were able to test thor-
oughly, we found that C2DM provides the best results. 
This is especially so if one does not need messages 
pushed frequently over a short period of time. In these 
cases XMPP also a good alternative, because it provided 
the best response times in our evaluation. 

In future work we would like to investigate how the 
payload differs due to different message formats. Addi-
tionally, including devices with Android 4 in the bench-
marking test can also be a useful extension to our work. 
Finally, conducting a more comprehensive energy con-

sumption test, without the XMPP limitations and the in-
clusion of Xtify, would provide a useful future direction 
to our research. 

REFERENCES 

[1] C. Binnig, D. Kossmann, T. Kraska and S. Loesing, 
“How Is the Weather Tomorrow? Towards a Benchmark 
for the Cloud,” Proceedings of the 2nd International Work- 
shop on Testing Database Systems, ACM, New York, 
2009, pp. 9:1-9:6. 

[2] L. J. Mei, W. K. Chan and T. H. Tse, “A Tale of Clouds: 
Paradigm Comparisons and Some Thoughts on Research 
Issues,” IEEE Asia-Pacific Services Computing Confer-
ence, Yilan, 9-12 December 2008, pp. 464-469. 

[3] Gartner, “Gartner Identifies the Top 10 Strategic Tech-
nologies for 2011,” 2011. 
http://www.gartner.com/it/page.jsp?id=1454221 

[4] Gartner, “Gartner Says Worldwide Smartphone Sales 
Soared in Fourth Quarter of 2011 with 47 Percent Growth,” 
2012. http://www.gartner.com/it/page.jsp?id=1924314 

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De 
Rose and R. Buyya, “CloudSim: A Toolkit for Modeling 
and Simulation of Cloud Computing Environments and 
Evaluation of Resource Provisioning Algorithms,” Soft-
ware: Practice and Experience, Vol. 41, No. 1, 2011, pp. 
23-50. doi:10.1002/spe.995 

[6] R. C. Elsenpeter, T. Velte and A. Velte, “Cloud Comput-

Copyright © 2012 SciRes.                                                                                IJCNS 



J. HANSEN  ET  AL. 849

ing, A Practical Approach,” McGraw-Hill Osborne Media, 
New York, 2009. 

[7] A. Khajeh-Hosseini, D. Greenwood, J. W. Smith and I. 
Sommerville, “The Cloud Adoption Toolkit: Supporting 
Cloud Adoption Decisions in the Enterprise,” Software: 
Practice and Experience, Vol. 42, No. 4, 2012, pp. 447- 
465. doi:10.1002/spe.1072 

[8] P. Mell and T. Grance, “The NIST Definition of Cloud 
Computing,” 2011. 
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf 

[9] Google, “What Is Google App Engine?” 2011. 
http://code.google.com/appengine/docs/whatisgoogleappe
ngine.html 

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, 
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin and M. 
Zaharia, “Above the Clouds: A Berkeley View of Cloud 
Computing,” 2009. 
http://www.eecs.berkeley.edu/Pubs/TechRpts/.../EECS-2
009-28.pdf 

[11] Google, “The Java Servlet Environment,” 2012. 
https://developers.google.com/appengine/docs/java/runtime 

[12] I. Podnar, M. Hauswirth and M. Jazayeri, “Mobile Push: 
Delivering Content to Mobile Users,” Proceedings of 
22nd International Conference on Distributed Computing 
Systems Workshops, Vienna, 2-5 July 2002, pp. 563-568. 

[13] C. Paniagua, S. N. Srirama and H. Flores, “Bakabs: Man-
aging Load of Cloud-Based Web Applications from Mo-
biles,” Proceedings of the 13th International Conference 
on Information Integration and Web-Based Applications 
and Services, ACM, New York, 2011, pp. 485-490. 

[14] J. Flinn and M. Satyanarayanan, “Managing Battery Life-
time with Energy-Aware Adaptation,” ACM Transactions 
on Computer Systems, Vol. 22, No. 2, 2004, pp. 137-179. 
doi:10.1145/986533.986534 

[15] S. Rivoire, M. A. Shah, P. Ranganathan and C. Kozyrakis, 
“JouleSort: A Balanced Energy-Efficiency Benchmark,” 
Proceedings of the 2007 ACM SIGMOD International 
Conference on Management of Data, ACM, New York, 

2007, pp. 365-376. doi:10.1145/1247480.1247522 

[16] MQTT.org, “MQ Telemetry Transport,” MQ Telemetry 
Transport, 2011. http://mqtt.org 

[17] The Deacon Project, “The Deacon Project,” 2012. 
http://deacon.daverea.com/about 

[18] XMPP Standards Foundation, “About XMPP,” 2011. 
http://xmpp.org/about-xmpp 

[19] M. Ohja, “Server Push with Instant Messaging,” Proceed- 
ings of the 2009 ACM Symposium on Applied Computing, 
ACM, New York, 2009, pp. 653-658. 

[20] Asmack, “Asmack,” 2012. 
http://code.google.com/p/asmack 

[21] Smack, “Smack API,” 2012. 
http://www.igniterealtime.org/projects/smack 

[22] Google, “Quotas,” 2012. 
http://code.google.com/appengine/docs/quotas.html 

[23] Google, “Android Cloud to Device Messaging Frame-
work,” 2011. 
http://code.google.com/android/c2dm 

[24] Google, “Android Cloud to Device Messaging: Quotas,” 
2012. http://code.google.com/android/c2dm/quotas.html 

[25] Urban Airship, “Push Notifications,” 2012. 
http://urbanairship.com/products/push-notifications 

[26] Urban Airship, “Pricing,” 2012. 
http://urbanairship.com/pricing 

[27] Xtify, “Xtify Available Packages,” 2012. 
http://www.xtify.com/pricing.html 

[28] Xtify, “SDK Implementation Guides,” 2012. 
http://developer.xtify.com/display/sdk/SDK+Implementation+
Guides 

[29] Google, “Quotas and Limits,” 2012. 
https://developers.google.com/appengine/docs/java/xmpp/
overview#Quotas_and_Limits 

[30] Xtify, “Xtify Android XMPP Rich Notification Guide,” 
2012. 
http://developer.xtify.com/display/sdk/Xtify+Android+X
MPP+Rich+Notification+Guide 

 
 

Copyright © 2012 SciRes.                                                                                IJCNS 


