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Abstract: As the need for faster, safer and more efficient healthcare delivery 
increases, medical consultants seek new ways of implementing a high quality 
telemedical system, using innovative technology. Until today, teleconsultation (the 
most common application of Telemedicine) was performed by transferring the 
patient from the Accidents and Emergency ward, to a specially equipped room, or by 
moving large and heavy machinery to the place where the patient resided. Both these 
solutions were unpractical, uneconomical and potentially dangerous. At the same 
time wireless networks became increasingly useful in point-of-care areas such as 
hospitals, because of their ease of use, low cost of installation and increased 
flexibility.  
This thesis presents an integrated system called MedLAN dedicated for use inside 
the A&E hospital wards. Its purpose is to wirelessly support high-quality live video, 
audio, high-resolution still images and networks support from anywhere there is 
WLAN coverage. It is capable of transmitting all of the above to a consultant 
residing either inside or outside the hospital, or even to an external place, thorough 
the use of the Internet. To implement that, it makes use of the existing IEEE 802.11b 
wireless technology. 
Initially, this thesis demonstrates that for specific scenarios (such as when using 
WLANs), DICOM specifications should be adjusted to accommodate for the reduced 
WLAN bandwidth. Near lossless compression has been used to send still images 
through the WLANs and the results have been evaluated by a number of consultants 
to decide whether they retain their diagnostic value. 
The thesis further suggests improvements on the existing 802.11b protocol. In 
particular, as the typical hospital environment suffers from heavy RF reflections, it 
suggests that an alternative method of modulation (OFDM) can be embedded in the 
802.11b hardware to reduce the multipath effect, increase the throughput and thus 
the video quality sent by the MedLAN system. 
Finally, realising that the trust between a patient and a doctor is fundamental this 
thesis proposes a series of simple actions aiming at securing the MedLAN system. 
Additionally, a concrete security system is suggested, that encapsulates the existing 
WEP security protocol, over IPSec. 
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11..  IInnttrroodduuccttiioonn  
  

 

 

 

In recent years, there has been a rapid growth in the use of Wireless Local Area 

Networks (WLAN). They found their way into offices, campus, factories, airports, 

coffee shops and even hospitals, providing users with freedom of movement and 

allowing applications to operate in a mobile environment [Fig. 1.1]. One can safely 

assume that the trend our technological society is following, would dictate a 

transition from the wired to the wireless environment, as there is a profound need for 

mobility in our everyday applications. 

  
1.1 Telemedical needs 

The medical needs that influenced the creation of the Telemedical system described 

in this dissertation belong mainly within the sphere of Telemedical 

videoconferencing. An increasingly large number of videoconferencing systems are 

being used by the hospitals for a number of reasons, varying from Teleconsultation 

to Telesurgery. Up until today the way that any of these applications were performed 

was by either transferring the patient, often in a critical state, to a videoconferencing 

room where a number of heavy and large videoconferencing systems were installed, 

or transferring these machines into another part of the hospital; usually the A&E 

room. Both of these solutions came with a number of disadvantages: 

• The equipment was usually very heavy and required the need for at least two 

persons to carry it. 

• There were a large number of cables that had to be connected and run over a 

distance in the A&E ward. That makes the current systems both unpractical and 

potentially dangerous in a fast moving environment like the emergency ward. 

• A considerable amount of time was needed to reset and reconnect the system; not 

to mention special communication lines (usually triple ISDN lines) had to be 

installed to the A&E rooms, as well. 

• In the case that the patient was to be carried to the videoconferencing room, 

valuable time would be lost in that transfer; sometimes critical for the patient. 
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• The videoconferencing rooms were usually not properly suited for patient care 

but mostly for accommodating the communication needs of the 

videoconferencing system (there is usually lack of proper patient facilities, 

critical life support equipment and generally medical tools that are available in 

the treating sections of the hospital). 

• Current videoconferencing systems usually rely on the use of Integrated Services 

Digital Network (ISDN) lines that have higher cost of ownership and relatively 

lower bandwidth in comparison with standard network lines (a triple ISDN line 

can support 3x128 Kbps=384 Kbps in comparison with a standard 100 Mbps 

network line). 

 
Fig. 1.1 Wireless Telemedicine in use: drug subscription using a WLAN 

 

Regardless of the above problems, the issue still remains: It is very often that a 

doctor treating a patient from the A&E ward would require the opinion and 

consultation of another doctor either within or outside the hospital. The way that the 

technology was utilised until now is far from satisfactory as it left space for errors, 

delays and accidents and could even be accused of neglecting the patient needs for 

fast and safe diagnosis. 

 

 

1.2 Basic WLAN concepts 

Wireless LANs came to bridge the gap of applications like those that are described 

above. However, they are not limited to that small sector of science [Fig. 1.2] 

WLANs are much like any radio system like TV and radiophone. They utilise the 

airwaves to transmit and receive signals but unlike conventional radio waves, they 
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do so in a digital manner so binary information can flow between them while 

minimising the need for wired connections. 

 
Fig. 1.2 A variety of WLAN architectures find increased acceptance in our every day life 

 

WLANs have a number of properties that make them increasingly popular [Khu00]: 

• Their range can cover an office space of about 100m radius and, depending on 

the product and the antennae used, can extend to a distance of 20 km. 

• Their throughput, although smaller than that of the wired LANs, is between 11 

and 54 Mbps and in some cases, has the additional support of Quality of Service 

(QoS). 

• WLANs maintain interoperability with the existing wired structure as they only 

define the lower two layers of the ISO model and are transparent to the overall 

network. 

• They allow for seamless handover between cells so the coverage area can be 

extended infinitely. 

• They apply techniques that eliminate interference among them and reduce 

external noise within the wireless path. 

• WLANs can be easily operated by non-specialised users but can also be 

efficiently maintained by network administrators (even in remote operation). 

• They are secure enough and in critical applications, can become even more 

secure by incorporating specialised security patches on them. 
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• They have a low cost of ownership and an even lower cost of maintenance when 

compared to the wired LANs. 

• Their topology can be user defined (change the backbone and architecture of the 

network). 

• Finally, they have been proven to be safe (conforming to every safety rule) and 

interference free, especially in a sensitive environment like that of the hospitals. 

 

A conclusion that can be drawn by reading the last two sections, is that the needs of 

specific Telemedical applications bind perfectly with the advantages and 

characteristics that WLANs have to offer. 

 

 

1.3 Existing applications 

Several pieces of substantial work related to the MedLAN project have been carried 

out, related both to the Telemedical and to the communicational part of it [Kyr02]: 

• One of the first wireless Telemedical projects was developed by the Johns 

Hopkins hospital in 1999. The project was not designed to transfer real-time data 

and was using mostly store and forward methods to update patient records and 

issue drug prescriptions. Consequently, it was unable to transfer live video and 

audio for use in medical teleconference. The research included three different 

WLAN technologies with three different frequency ranges. Several Access 

Points (AP) were placed in a single hospital floor to give the ability to the 

treating personnel to roam between APs. The results were satisfactory and 

opened up the way for the use of WLANs within hospitals. [Lom97] 

• Another project that started in Jan 2001 is Mobi-Dev: Mobile Devices for Home 

Care Applications. This project will provide clinical staff with portable devices 

(based on palm PCs) wirelessly connected to different information databases, 

able to perform real time data management. An Internet-based system is set up to 

exchange clinical data between the Mobi-Dev portable devices and various kinds 

of relevant information databases. The palm PC with microphone is integrated 

with a smart card reader, a Bluetooth and a UMTS transceiver [Inc03]. This 

project, although using wireless techniques, is limited both in bandwidth (about 
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one tenth of basic WLAN bandwidth) and in the variety of possible applications 

and does not include video transfer or videoconferencing. 

• The National Technical University of Athens has developed two projects using 

wireless GSM networks: the Ambulance and Emergency-112. The aim of the 

Ambulance project was the development of a portable emergency telemedicine 

device that supports real-time transmission of critical biosignals as well as still 

images of the patients, using GSM links. EMERGENCY-112, an extension of 

the Ambulance project, aimed at developing an integrated portable medical 

device for Emergency Telemedicine. The system enables the transmission of 

critical biosignals (ECG, BP, HR, SpO2, temperature) and still images of the 

patient, from the emergency site to an Emergency call centre; thus enabling 

physicians to direct pre-hospital care in a more efficient way, improving patients 

outcome and reducing mortality rates. The system was designed in order to 

operate over several communication links such as satellite, GSM, POTS and 

ISDN.  In Emergency-112 emphasis was given on maximising the system’s 

future potential application, through the utilisation of several communication 

links (both fixed and wireless), as well as through the increase of the overall 

system’s usability, focusing on advanced user-interface and ergonomics. The 

Emergency-112 system has been used successfully since 1998 in three European 

Countries (Greece, Italy, and Cyprus). Nevertheless, as the above projects mainly 

use a slow GSM link (9.6kbps), it cannot incorporate video along its 

transmission nor can it support high resolution imaging. [Pav98a], [Pav98b] 

• One other project of major importance is Speedwave. Manchester city has 

unveiled the first urban wireless network based on Bluetooth and wireless local 

area networking (WLAN) technology. The pilot network is designed to offer 

residents high-speed access to the Web and communications services as they go 

about the city. Initially, the network will be installed in hotels, restaurants, the 

Manchester Business School, and the University of Manchester. The wireless 

network will feature both Bluetooth and 802.11b technologies and will be 

expanded to serve the city council and 70 other sites. Users of wireless portable 

appliances will be able to connect to base stations from up to 100 meters.  The 

service is offered on a pay-as-you-go basis. This kind of infrastructure is not 

designed specifically for telemedical application but can easily support the 
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roaming of systems like MedLAN well beyond the boundaries of the hospital and 

will permit for the consulting doctor to be anywhere while still having access to 

medical data. [Agn01] 

• Finally, one of the projects closest to MedLAN, is a commercial application of a 

medical trolley that has the ability to transfer data over an ISDN link, the Darby 

trolley [Rco04]. Much like MedLAN, it is specifically designed for use in 

hospitals and clinics where there is a requirement for remote consultation or 

second opinion through wireless videoconferencing. However, its technical 

characteristics are inferior to those of MedLAN: it uses a slower wireless link 

(2Mbps) and requires ISDN lines to transfer the live stream into another hospital. 

It weights about 30-40 kg, it accepts no changes or improvements to its existing 

infrastructure and does not have the ability to send high-resolution still images. 

 

On the communicational side of MedLAN, there has been much research mainly 

related to the wireless networks. 

• The Institute of Electrical and Electronic Engineering (IEEE) has developed a 

work group, called 802.11. Several versions have been developed since then, that 

address different network properties: IEEE 802.11a, b, g, e, i, deal with speed, 

compatibility, combination of both, QoS and security respectively [IEEE99]. 

From these, undoubtedly the most well used around the world is the IEEE 

802.11b offering a top speed of 11Mbps. This technology has already been 

incorporated in handheld computers, PDAs and even mobile phones.  

• The European Telecommunication Standards Industry (ETSI) is the European 

equivalent of the IEEE. They have also developed a set of wireless transmission 

protocols called HiperLAN (HIgh PERformance LAN). With its two versions, 

HiperLAN/1 and HiperLAN/2, it competes with the IEEE protocols offering not 

only speeds in excess of 50Mbps but also procedures to differentiate and 

prioritise the traffic sent over the wireless link, in order to impose QoS rules onto 

the wireless network.  

Each of the above architectures addresses a part, but not all of the needs that a 

wireless Telemedical system would have. As a paradigm, IEEE 802.11b works in a 

frequency range that is more desirable for an average office space while IEEE 

802.11a offers a substantial increase of speed while sacrificing the available range of 
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the WLAN. On the other hand, as desirable as many of the HiperLAN/2 properties 

might sound, no such system is as yet commercially available to use. 

 

 

1.4 Thesis objectives 

The contents of this dissertation describe a two-fold application: a Telemedical and a 

Communicational application. In the Telemedical part, a mobile system would be 

described, dedicated for use within the Accidents and Emergency (A&E) wards of a 

hospital. The communication part will investigate novel ways for enhancing the 

operation of the above Telemedical system. 

In general, the objectives of this dissertation are: 

• To enhance the mobility of a videoconference system dedicated for Telemedical 

use. 

• To add additional properties on that system that will make it desirable to the 

health care personnel. 

• To investigate the security issues of such a system. 

• To improve the communicational properties of such a system so this change will 

reflect a positive step in its Telemedical properties, too. 

• To enhance the Quality of Service (QoS) parameters of that system. 

• To create a user-friendly system that can be easily operated by any computing 

platform without the use of any specialised software. 

• To do all the above in a manner that would be financially feasible and more 

affordable compared with the current trends and techniques. 

 

 

1.5 Contribution to knowledge 

This thesis makes several contributions to both the Telemedical and the 

communication science: 

The MedLAN system itself is a novel system. Depending on the version, it either 

consists of a light mobile trolley (containing a laptop computer, a high quality video 

camera, a small hardware encoder and a WLAN card) or in a newer version it can be 

in a size that a doctor can carry in his / her pocket. Several alterations were made to 
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the above prototype including the replacement of the laptop computer with a PDA. 

As the project has already been completed, doctors in the A&E room can already use 

this system to wirelessly communicate with a consultant either within or outside the 

hospital. 

Adjusting DICOM (Digital Imaging and Communications in Medicine) 

specifications to meet the requirements of wireless networks was also an original 

task. WLANs offer reduced bandwidth in comparison with wired LANs. 

Accordingly, still images have to be slightly compressed to fit efficiently into the 

wireless channel. This kind of compression eventually loses a small part of the 

original information. An extensive study of the validity of the output images was 

made using a number of images and videos. Finally, a clinical research was carried 

out with the collaboration of several consultants to determine if this method retains 

enough image quality to make a safe diagnosis. 

Suggesting an alternative modulation to that of IEEE 802.11b for use in 

Telemedical applications. Orthogonal Frequency Division Multiplexing (OFDM) is 

proven to be more tolerant to multipath interference, often caused by the operation of 

WLANs in spaces with thick walls and reflecting surfaces. Old hospitals are the ideal 

terrain for examining this problem. By applying OFDM into the existing 802.11b 

modulation, the multipath noise was reduced and there was an increase of the 

available bandwidth. This allowed for lower compression levels in both still images 

and live video that in turn resulted in an increased diagnostic ability. 

 

In the course of development of the MedLAN project, a number of other tasks were 

developed that were not original but novel in their application to Telemedical 

science: 

A complete model was developed for the Central Middlesex Hospital (CMH) A&E 

and its connection to the surrounding hospitals belonging to the North West London 

Hospitals (NWLH) network. In there, the whole operation of the MedLAN system, 

the WLAN and its connection to the wired hospital network was simulated and 

research was made into the assumption that OFDM would perform better in these 

specific conditions. 

Additionally the overall security of a WLAN system using the 802.11b protocol 

was investigated. Following recent concerns on the possible attacks that were made 

to the above WLAN protocol, a set of countermeasures were researched and 
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proposed, specifically designed for a Telemedical system. The data overhead of such 

techniques was also investigated as it reflects on the quality of medical information 

sent over the wireless channel. 

 

 

1.6 Dissertation structure 

The remainder of this dissertation is organised as follows: 

Chapter 2 introduces Telemedicine as a science and separates it from its variations 

(Telehealth, Telemonitoring, Telesurgury, etc). Then, it describes a modern 

Telemedical system like MedLAN, explaining basic issues like videoconference, 

compression, communications lines, etc. It concludes with an overview of the legal 

and ethical dilemmas that such a project may pose to both the health care personnel 

and to the engineers involved in developing such an application. 

Chapter 3 is an overview of the basic WLAN technology and includes the major 

IEEE and ETSI protocols. There, the most well known WLAN architectures are 

presented along with an investigation of the impact they have on the last two ISO 

layers (physical and data-link). Issues like topology, signal encoding, Medium 

Access Control (MAC), services, range, interference and security are being 

presented along with some of the most well known problems that WLANs have. 

Chapter 4 and onwards is the contribution of this thesis to Telemedicine. In Chapter 

4 there is a complete presentation of the MedLAN system and its capabilities. It 

describes the contents of the mobile trolley, the way that the system is working, the 

outputs it produces and the general performance of the system. It also describes how 

symbiotic the system is with existing medical instruments, especially those found in 

A&E wards. 

Chapter 5 investigates the concept of compressing still images and live video to 

reduce the bandwidth and enable a more efficient transmission of these data through 

a wireless link. This is an alternative to the recommendations of the DICOM 

organisation that usually calls for uncompressed data. An extensive library of various 

medical images, sounds and video has been processed and the results are analysed 

and evaluated by a number of consultants. 

Chapter 6 introduces OFDM modulation and the possible advantages that this may 

have on reducing multipath interference. It then suggests that Telemedical 
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applications could benefit by using OFDM as an alternative modulation. This notion 

is supported by means of simulation using three different simulation packages that 

eventually model the complete ISO 7-layer model of the system. The results are 

compared to those using the original 802.11b modulation to show that the proposal is 

beneficiary for certain kinds of applications. 

Chapter 7 begins by outlining the security procedures involved in WLANs today. It 

summarises Wired Equivalent Protocol (WEP) and addresses the current concerns 

about its safety. It suggests a series of countermeasures that a Telemedical system 

might take to ensure privacy and confidentiality, emphasising the use of security 

protocols like IPSec as a means to achieve the above. It concludes by measuring the 

overhead that such action might impose on the bandwidth and therefore on the 

output quality of a Telemedical system. 

Finally, Chapter 8 concludes with the main contribution of this thesis and describes 

some possible future research directions. 
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22..  AApppplliiccaattiioonnss  ooff  TTeelleemmeeddiicciinnee  
  
  
  
  

2.1 Definition of Telemedicine 

It is always useful to clarify the boundaries of the term “telemedical” science 

especially as over the years, the meaning of the term has changed and keeps on 

changing. 

The first part of the word “Tele-medicine” derives from the Greek word “tele” that 

means “at a distance”. An easy way of defining Telemedicine, would be to consider 

it as “medicine delivered at a distance”. However, since the “tele” implies at least the 

existence of a telecommunication path (often being a digital one) and considers 

medicine at its broader sense, we can perceive Telemedicine to be a science that 

“utilises information and telecommunication technology to deliver medical 

information for diagnosis, therapy and education” [Nor02]. A term very closely 

related to Telemedicine is “telecare”. Telecare utilises information and 

communication technologies to transfer medical information for the diagnosis and 

therapy of patients in their place of domicile. It is especially important for a specific 

group of patients with long-term chronic conditions such as mental illness, disability 

or simply old age, which reduce their freedom of movement [Ist01b]. 

 

 

2.2 Divisions of Telemedicine and Telecare 

The scope and categorisation of Telemedicine and Telecare is in constant change. 

Presently we can distinguish four main categories depending on their features 

[Nor02]: 

 

2.2.1 Teleconsultation 

Since the medical consultation is one of the most important factors in clinical 

practice, it is obvious that Telecosultation would be the most frequent example of 

Telemedicine.  Studies have shown that Teleconsultation accounts for 35% of the 
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usage of telemedical networks [ATA02]. Teleconsultation also represents the 

application area for projects like MedLAN as the basic task that it achieves is the 

communication between a doctor in the A&E ward and a consultant residing 

somewhere else [Ban02a]. 

A teleconsultation can take place between two or more health care personnel or 

between them and a patient. It can extend from a distance as small as different rooms 

in the same hospital, up to running a telemedical link between different countries. It 

can also use a variety of communication media; from a simple telephone line to a 

satellite video link. 

The most frequent case of Teleconsultation is a video link between a patient and his 

or her doctor [Fig. 2.1]. By default, this link is based on a real-time communication 

channel as opposed to store-and-forward techniques that usually deal with still 

images (x-rays, etc). 

 

 
Fig. 2.1 Videoconferencing is the most commonly used application of Teleconsultation. Above, a 

doctor is consulting a specialist using a telemedical link [Sha03] 

 

In the process of running a teleconsultation link, the following procedures have been 

suggested in order to maximise the benefits of this procedure [Tac99] 
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• Agree on the purpose of the teleconsultation. For example, is the session to 

be used to diagnose a condition, to monitor the progress of treatment or to 

develop the skills of healthcare workers? 

• Establish the process and content of the teleconsultation. Whatever its main 

purpose, the consultation should focus in a natural and continuous way on the 

relevant healthcare issues. It should avoid irrelevancies and discontinuities as 

well as distractions such as the need to adjust technology settings. 

• To achieve the above, one must ensure practitioners are trained in the use of 

equipment. 

• Formalise the delegation of clinical responsibilities. A doctor who 

participates in a teleconsultation must be satisfied that any healthcare worker 

who accompanies the patient at the other end of the link, can carry out any 

medical procedures that are needed. 

• Decide on documentation. All healthcare professionals involved in the 

teleconsultation should document the procedure and the outcomes and make 

sure that a suitable note is made in the patient’s medical record. 

 

2.2.2 Tele-education 

With the term tele-education we refer to the use of telemedical links to deliver 

educational material. Depending on the recipient of this information, we can 

distinguish the following tele-educational categories: 

• Clinical education using Teleconsultation: whenever there is a 

Teleconsultation link between a health care worker and a consultant, there is 

always an opportunity for education to occur. In a conventional scenario, the 

non-expert person is at close vicinity to the patient, with the consultant being 

at the other end of the communication link. This presents the non-expert with 

several opportunities: to help the patient to articulate and interpret his or her 

symptoms, to enhance his diagnostic abilities by observing the expert at 

work, and have hands-on experience especially if the non-expert is at the 

early stages of practice. In general, this triangle (non-expert, patient, 

consultant) offers an opportunity for education that is not normally presented 

in the classical referral process (patient, GP). 
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• Clinical education using the Internet: healthcare workers can obviously 

update and extend their knowledge and medical skills using sources from the 

Internet. Clinicians have specialised access to some excellent web and other 

online resources, which are ideal for this purpose. Examples include national 

sites such as the UK’s National Electronic Library for Health (NELH) 

[NEL04] and the USA’s National Library of Medicine (NLM) [NLM04]. 

There are also specialised databases or literature searching tools such as 

MEDLINE to retrieve evidence-based information from which to enhance 

self-skills and improve the treatment of patients. 

• Academic study via the Internet: tele-education also deals with the support of 

distance learning courses that lead to recognised qualifications. These courses 

are usually at a postgraduate level and are made by doctors for doctors. Some 

examples include EuroTransMed (ETM) [Rao99] and IT-EDUCTRA 

[Has97], [Man97] [Fig. 2.2] 

 
Fig. 2.2 Using telemedical links to enhance education of healthcare personnel 

 

• Public Education via Telemedicine: this implies the education of the 

community at large, about matters of public health. Examples include issues 

of diet, exercise and hygiene, and information on specific diseases and 

conditions, such as cancer or diabetes. The information can be presented in a 

controlled way to a target audience via a kiosk in a shopping mall, health 

centre or home or can even be accessed by anyone using the web. 

 

2.2.3 Telemonitoring 

Telemonitoring is the procedure when telecommunications links are used to 

repeatedly collect data about a patient’s condition. This procedure of data 

accumulation can be either manual (every given interval a care taker gathers data 

from the patient’s charts and sends them into a collection point for evaluation using 
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phone, fax or a computer) or it can be entirely automatic (machines will send these 

data in a predefined time using either real time or store-and-forward processes). 

In most of the cases, the purpose of Telemonitoring is to decide if an adjustment is 

needed in the patient’s treatment. This adjustment can be implemented either by 

manual means (like instruct either the patient or the caregiver to take an action), or in 

a more automatic way, by the treating doctor remotely controlling medical 

instruments on a two-way communication system. Perfect examples of 

Telemonitoring home-based patients are the monitoring of hypertension [Fig. 2.3] 

[Fri96] and diabetes [Ahr92], [Goy95]. 

 
 

Fig. 2.3 A patient suffering from hypertension is using a digital device  

to forward his daily readouts to his treating GP 

 

2.2.4 Telesurgery 

Compared to the above, Telesurgery is a relatively newer application. It can be 

applied in the following ways: 

• By having Telemonitoring as the basis, a doctor can enjoy the assistance of a 

specialist that views the operation from a distance (audio and video) using a 

telemedical link. The above notion also promotes Tele-education. 

• By a specialist controlling a robotic arm and actually performing a surgical 

operation from a remote place. In this case, other medical personnel are in the 

actual place of the operation, to assist the remote surgeon. Because of the 

delicate operations required for such an action, it is not uncommon to scale down 
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the movements of the robot in order to avoid hand tremor and increase accuracy. 

[Fig. 2.4]. However, and in the case that a satellite link is to be used, one of the 

fundamental problems of Telesurgery is the delay introduced by the signal 

bouncing back from the satellite, that can vary from half a second to more than 

one second [Moo02] 

 

 
Fig. 2.4 A specialist performs remote surgery by controlling a robotic arm 

 

 

2.3 Advantages and limitations of Telemedicine 

It is obvious by reading the previous sub-chapter that Telemedicine in general can 

offer us with a number of advantages. Below is a list of some of them [Nor02]: 

• Better access to healthcare: extending the healthcare to disadvantaged 

communities that would have problematic access to hospitals or doctors 

[Elf97], [Mit98]. In that sense, more convenient methods of health care 

delivery can be implemented to both the doctor and the patient: the patient 

avoids unnecessary journeys and the doctor saves time in between 

consultations. 

• Access to better healthcare: in comparison with the conventional methods of 

treatment, using Telemedicine can offer the patient with the opportunity of 

consulting a specialist, as opposed to his or her personal GP [Got95]. 

• Improved communication between carers: with the transition to digital 

information exchange the healthcare staff can benefit by more accurate, more 

complete and faster access to patients information [Hje99] 
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• Healthcare personnel continuing education: an easy access to increasingly 

bigger information databases assists the carers to continue their education and 

to have experience in subjects that would have been next to impossible in the 

past. 

• Better access to information: patients can enjoy better access to information 

while taking advantage of home-based telemedical advances. These include 

downloading information from the Internet or uploading personal data to 

specific databases. 

• Better resource usage: it is uneconomical to have the same information stored 

in several places. It makes much more sense to set up the minimum number 

of resource sites and make them available through telemedical links. 

• Reduced cost: cost has always been one of the fundamental drivers of 

Telemedicine and the right use of the technology can reduce the health care 

cost considerably. Clear cost savings have been demonstrated to modalities 

like teleradiology, which have been around long enough to permit the 

extraction of such conclusions [Bal99] 

Unfortunately, nothing good comes without some negative aspects. Telemedicine 

can have the following repercussions: 

• Poor patient-carer relationships: there might be a breakdown of 

communication between the patient and the carer, especially if there are 

concerns of confidentiality from the patient’s side [Hje99], [Col96]. This will 

be discussed at a later stage within this chapter. 

• Poor relationships between healthcare staff: telemedicine can be a threat to 

the conventional ways that some carers have been used to. It can also be a 

potential drawback when an over-enthusiastic party will try to convince a 

more conservative co-worker. 

• Impersonal technology: some patients (mostly elderly) will fear the 

technology itself. That can lead to the patient feeling uneasy and can 

jeopardise the validity of the examination. 

• Organisational disruption: the adoption of new technologies can lead to some 

disruption on the normal working pattern that might consume some extra 

time from the carers, especially in the implementation period as then, there is 

a profound need for education into the new technologies [Yel99], [WGA98] 
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• Potential low rates of utilisation: there is always the risk of installing a 

telemedical system in much enthusiasm and then leaving it unused. On the 

opposite side, there is also the risk of a telemedical link becoming so popular 

that the staff will overuse and render it obsolete. 

 

 

2.4 Ethical and legal aspects 

Telemedicine still has many barriers to overcome until it can be satisfactorily utilised 

within the healthcare system. Some of these include the optimum usage of 

telecommunication infrastructure standards, (described later on in this chapter), the 

cost effectiveness of the telemedical systems and the compliance with the national 

policy and strategy. Finally, yet most importantly, it has to overcome some ethical 

and legal dilemmas. 

 

2.4.1 Confidentiality and patients expectations 

The basic principle behind the term “confidentiality” is that the patient’s information 

should remain confidential, if upon the release of such information, there is the 

potential danger of harming a person either physically or emotionally. This concept 

dates back to Hippocrates and applies regardless to if a contract or any other formal 

relationship exists between a doctor and a patient [BMA93]. The current thinking in 

medical record keeping is that the healthcare organisation “owns” the physical form 

of the information (e.g. an x-ray film) but the patient “owns” the information 

contained in it. In summary, the following three rules describe the patient’s 

expectations regarding medical confidentiality [AMA96]: 

• There is a basic right of patients to privacy of their medical information. 

• Patient’s privacy should be respected unless waived in a meaningful way, or 

when it will counter the public interest. 

• The information that is kept should be limited only to the portion needed to 

fulfil the specific purpose. 

It is obvious that the concept of confidentiality is at the core of the patient-doctor 

relationship: patients who reveal information to their doctors must be sure that no 

information will leak to others, either intentionally or even incidentally [Tac96]. This 

“incidental” disclosure of information is a fundamental issue when dealing with 
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projects like MedLAN, as this assumes the transmission of information through a 

WLAN link. However, the techniques to overcome this problem will be discussed in 

a later chapter. 

 

2.4.2 Data Protection Act 

In order to form a legal framework and regulate any possible misuse of information, 

the UK government formed a list of “rules” concerning the safekeeping and 

exchange of personal information; the Data Protection Act. Initially activated in 

1984 it required the registration of individuals and organisations (including the NHS 

Trusts) that hold personal information in digital form and introduced criminal 

penalties to those not obeying these rules. By its revision in 1998, the Data 

Protection Act, among other things, becomes more specific in its concepts, includes 

manual keeping of records and strengthens the rights of individuals even more. In 

essence, there are eight fundamental rules included in the original Act: 

1. The information to be contained in personal data shall be obtained, and 

personal data shall be processed fairly and lawfully. 

2. Personal data shall be held only for one or more specified and lawful 

purposes. 

3. Personal data held for any purpose or purposes shall not be used or 

disclosed in any manner incompatible with that purpose or those purposes. 

4. Personal data held for any purpose or purposes shall be adequate, relevant 

and not excessive in relation to that purpose or those purposes. 

5. Personal data shall be accurate and where necessary kept up to date. 

6. Personal data held for any purpose or purposes shall not be kept for longer 

than necessary for that purpose or those purposes. 

7. An individual shall be entitled: (a). At reasonable intervals and without 

undue delay or expense: To be informed by any data user whether he holds 

personal data of which that individual is a subject; and access to any such 

data held by the data user; and (b). where appropriate, to have such data 

corrected or erased. 

8. Appropriate security measures shall be taken against unauthorised access to, 

or alteration, disclosure or destruction of personal data and against 

accidental loss or destruction of personal data. 



 

 

20

When applied to the healthcare sector, principle 3 describes the patient’s 

expectations. 

 

2.4.3 Common problems and risks 

One can distinguish the problems that arise from the use of telemedical equipment, 

in two major categories: problems that are caused due to the technology itself and 

problems due to the personnel involved [Nor02]. For the former, we can consider 

technology risks like: 

• Quality of images: of major issue is the amount of difference (often 

expressed as noise) that a still image can suffer before producing 

unacceptable clinical results. This implies that a set of rules must exist for 

images used in radiology, pathology, dermatology, etc to ensure the levels of 

“change” this image can undergo through when transmitted over a 

telemedical link. This will be dealt with in detail in a future chapter. 

• Lack of proper equipment: describes the absence of suitable tools to 

effectively practice Telemedicine and includes worn-out or incompatible 

devices, lack of servicing, poor documentation, etc 

• Malfunctioning equipment: when telemedical equipment suffers some form 

of breakdown or is poorly connected and configured. 

• Inadequate guidelines: this refers to both the procedures and protocols that 

govern a telemedical session and to the documentations applied by the 

engineer developing the telemedical application. 

For the case of operational risks due to personnel, we can consider: 

• Poor verbal communication: what makes problematic audio and video 

transmission even worse is the human factor due to the personal nature of the 

personnel involved. This includes native language, dialect, accent and even 

factors like age and culture. 

• Limited ability: medical personnel that are under-qualified or even 

unqualified, is a source of errors for practicing Telemedicine [Vin88] 

• Poor training: the training of consultants used in telemedical scenarios is 

crucial. It is inconceivable that in today’s fast evolving world, some medical 

personnel are only educated in the clinical aspects of the treatment and do not 

undergo training in the effective use of technology. 
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• Improper delegation: the delegation of responsibility to personnel with either 

less qualifications or personnel belonging to sciences different than those of 

the healthcare sector, is often a source of medical malpractice. That often 

includes the use of engineers to develop a telemedical project (much like 

MedLAN). In contrast with medical personnel, an engineer is not governed 

by the same rules for confidentiality. 

• Unclear responsibility: the fact that a telemedical link often requires the 

involvement of a greater number of people (sometimes changing in the 

process) often leads to an unclear responsibility when an error occurs. 

 

2.4.4. Engineering concerns 

In view of the above concerns on the ethical and legal aspects of Telemedicine, there 

are a number of responsibilities that rely on the engineer developing the telemedical 

application. Apart from the ones related to the technical risks of the equipment 

involved (discussed in the previous section), there are always security concerns 

involved, if a telemedical system is to be used without reservations. A security 

policy has to be created by answering the following questions [Nor02], [Owe01] 

• How sensitive are the data we wish to protect? Are we dealing with a crucial 

piece of medical information or mostly with demographic data? 

• What are the consequences of a breach of security? Is it likely that this will 

result in an unpleasant situation for the patient, or harm them severely, either 

physically or emotionally? 

• Who are the authorised users of the telemedical system? There has to be a list 

of authorised personnel restricting the use of the system through a set of 

usernames, passwords and other security measures. 

• How vulnerable is the data? Is it likely to be intercepted easily (unprotected 

data over a WLAN link) or are they well secured on their own (data through 

a Virtual Private Network)? 

• What are the technical issues that will govern the safe exchange of data? Is it 

likely that the additional cost of security will overcome the benefit of the 

system? 

• Do we wish to eliminate, minimise or reduce the threat of unauthorised 

access? Not all telemedical applications need the same level of security. For 
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example, an exchange of medical ideas through a tele-educational link needs 

much less security than a delicate tele-surgery procedure [Owe01] 

• How do we balance the needs of authorised users with the constraints 

imposed by security? This becomes an even bigger issue in projects like 

MedLAN created for use in fast moving environments like the A&E wards, 

when even a portion of time required for the proper authentication of a user, 

can be proven fatal to a patient. 

 

2.4.5 NHS principles 

In the United Kingdom, the above engineering considerations gave rise to an 

extended discussion between the NHS and the British Medical Association. That led 

to a review of the existing NHSnet structure. The improved network promised a 

more effective access of medical information to all interested parties with emphasis 

on security. This approach initiated a “code of connection”; rules that organisations 

should obey if they wished to have access to the NHSnet [NHS95]. The basic rules 

were: 

• Access of the network is being protected by at least one level of 

authentication (like username / password). 

• Controls are placed between non-NHS organisations wishing to access the 

NHSnet. 

• A specific person is made responsible for the security of a specific 

connecting point. 

• Both the engineering and the healthcare staff are made aware of their 

responsibilities. 

• Physical access to the NHS network equipment (routers, HUBs, wall plugs) 

is controlled. 

• Any misuse of the system or any security breach is reported and dealt with. 

The above rules soon found their place as a standard to any internal NHS network 

access. However, as the NHSnet was designed long before the Internet revolution, 

these rules imposed a handicap to future developments. Newer techniques had to be 

set to allow more people (often non-specialists individuals like patients) to be able to 

have access to the new telemedical trends. Diabetic patients needed to fill in their 

data into their record, overweight people were looking for advice through custom-
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made NHS web pages and engineers needed to experiment using NHSnet to develop 

new medical applications. 

The above scenarios indicated the need for a specialised tool, controlling the access 

to the NHSnet through the Internet. Such a tool is called a “firewall”. A firewall acts 

like a filter allowing legitimate access through the Internet while blocking (and 

reporting) unwanted traffic. There are two kinds of firewalls: a network-level 

firewall, resides on a router and makes decisions on which traffic should pass and 

which should not, based on the IP (Internet Protocol) address of the computer 

requesting the traffic. An application–level firewall is a piece of software running on 

a PC and controlling two ports; an input and an output. It works by allowing outside 

users to access specific pages inside the network (like web pages) while blocking 

any other outside-to-inside activity of unauthorised users. 

Along with the need for controlled access, NHSnet had to facilitate the need for 

secure telemedical transactions by encrypting the transmitted data in such a way that 

they would be meaningless to an intruder. Moreover, they had to ensure that the data 

transmitted from both ends would belong to the alleged users and not any third party. 

The former concept describes the use of encryption and cryptography, while the 

latter deals with the use of authentication through digital signatures. 

One of the fundamental future applications of MedLAN is allowing the consultant to 

communicate through videoconference, with the A&E ward, while being on the 

move outside the hospital and, possibly, using a WLAN deployed by an independent 

service provider. It is within these kinds of scenarios that the above rules had to be 

fulfilled, so the consultant can penetrate through the NHSnet and its firewall and 

authenticate him or herself as a legitimate user. However, this also will be described 

in detail in a later chapter. 

 

 

2.5 Structure of a telemedical system 

After separating Telemedicine in its divisions and examining some basic telemedical 

issues like ethics, confidentiality and security, the most important factor to consider 

(and definitely the one that the developing engineer is mostly concerned about) is the 

actual structure of the telemedical system and the properties of its components. 
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Before describing the alternative telemedical structures, it would be useful to 

understand that since not all systems have the need for the same type of telemedical 

data, not all systems would have the same requirements. In essence, there are four 

major categories of telemedical data: text, sound, still images and video. Each of 

those utilise the communication line differently and have different requirements for 

Quality of Service. In summary: 

 
Type of data Example Typical file size 

Text Patient record 1-5 KB 

Audio Heartbeat through an electronic stethoscope 2-4 KB/sec 

Still image x-ray, MRI, US, etc 500KB-2MB 

Real time video Ultrasound, videoconferencing 200KB-1MB/sec 

Table 2.1 Examples of telemedical data with their typical sizes 

 

Following, is a summary of the basic characteristics of each of the above four types 

of data. 

 

2.5.1 Text 

There are two ways of storing text information in an electronic patient record. The 

first is by directly entering the text in digital form into a PC (typing the data) and 

storing it in a central system for retrieval. The second is by scanning a hand-written 

text and storing it as an image. As the later has the disadvantage of not creating 

editable text, there is the option of converting the hand-written text into data through 

an OCR (Optical Character Recognition) program. Unfortunately, these programs 

have a relatively low rate of success converting handwritten text, especially when the 

text is badly written. The first option usually occupies 0.5-2KB while the image of 

the handwritten text occupies about 50-200KB 

 

2.5.2 Audio 

Apart from the obvious use of the telephone network to facilitate a conference 

between two doctors, there is always the need for transmitting audio signals (other 

than speech) to a remote destination, through a telemedical link. 

In the case of speech, the voice is travelling through the PSTN (Public Switch 

Telephone Network) in an all-analogue form. The limitations of the telephone 
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network are imposed on both the frequency range and in the overall sound quality of 

the audio transmission. 

However, newer trends require newer techniques for transmission. An electronic 

stethoscope for example, is capable of transmitting heart and lung murmurs over a 

Plain Old Telephone System (POTS). The disadvantage of that method is that 

depending on the distance and the intermediate links of the phone call, the sound can 

be so degraded that it would be rendered obsolete. 

The solution for the above problem is to convert the analogue data into a digital data 

stream and send it in an error-free manner so it can be received, stored and 

reproduced without losing any of its original information. This is done by sampling 

the amplitude of the analogue signal in small time intervals and finally digitising it 

into a discrete form. The smaller these time intervals are, the more accurate the 

digital output is, in respect to the original analogue signal. Obviously, regardless of 

how small the intervals are, there will always be a small difference between the 

analogue and the digital signal. This is called a “quantisation noise” and is perceived 

by the human ear as a “metallic” variation of the original sound. A sampling 

“resolution” of 16 bits (creating 216=65536 different amplitude levels) and a 

sampling rate of 44kHz is considered sufficient to avoid distortion and to perfectly 

reproduce frequencies ranging from 0 to 22kHz (half of the sampling rate) [Nyq28]. 

As the human ear can generally hear the sound range 20Hz-20kHz, the above 

settings are considered more than enough. The above are also the settings that the 

music industry uses to record music on CDs. However, this produces the need for 

44000 x 16=704000 kbits=85.9KB/sec available bandwidth, that in an average 

situation is much more than what a PSTN line can offer. This leads to two 

alternatives: either use lower sampling frequency and resolution, or compress the 

audio signal. As compression will be presented in a more analytical way later, it is 

just worth mentioning that one of the most commonly used techniques for converting 

and transmitting digital sound over low data rate lines is the International 

Telecommunication Union (ITU) G.723.1 

 

2.5.3 Still images 

Still images represent the majority of the telemedical uses. They extend from simple 

x-rays to Magnetic Resonance Imaging (MRI) and from still Ultrasound (US) to 
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Computed Tomography (CT). Their quality is initially defined by their resolution 

and their colour “depth”. Resolution is the number of pixels than can fit in a given 

area (e.g. an inch) and is measured as dots per inch (dpi). The more dots per inch, the 

better the result. A typical scanner can scan a still image at 600-1200 dpi. However, 

this produces a very large output file, so less resolution is usually used. 

If we perceive the still image file as a two-dimension table with pixels, a third 

dimension could be added to the table to represent the colour (depth). By having 

eight bits per pixel to describe that dimension, we can create 28=256 alternative 

colours. Usually, a “colour depth” of 16 or 24 bits is proven more than efficient for 

still medical images. As grey-scale images, like x-rays, have no need for colour 

information, they are mostly limited to 28=256 shades of grey. 

The American College of Radiologists (ACR) has contributed to the definition of a 

set of rules that will be explained further in a later chapter. The Digital Imaging and 

Communication in Medicine (DICOM) set of standards define a framework of 

interconnection between medical devices. Although DICOM is merely a set of 

suggestions, many hardware manufacturers conform to these proposals. 

As an example of still images, ACR’s DICOM calls for two categories of 

teleradiology images: a small matrix (low resolution) images with 500 x 500 pixels 

and 8 bit colour depth and a large matrix (high resolution) with 2000 x 2000 pixels 

and 12 bits colour depth. The former generates usually a file size of about 200KB 

while the latter takes more than 4MB. If the whole 24 bits of colour information 

were to be used, the same file would exceed 12MB. 

Finally, it is worth mentioning that apart from using specialised scanners in order to 

digitise still images, there is also the option of directly capturing the image (film or 

paper) through a digital camera. Although not as precise as the scanner solution, the 

digital camera is very fast, handy and easy to use. This method of capturing stills is 

used by the MedLAN system. 

 

2.5.4 Video 

The benchmark for measuring the quality of a telemedical videoconferencing system 

is usually in relation to television broadcasting. While PAL, the predominant 

European standard, calls for a vertical resolution of 625 lines and 25 frames per 

second (fps) the output of a videoconferencing system is usually lower than that. 
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However, through special techniques (like compression or transmitting only that part 

of the image that has changed since the last frame) it can be improved considerably 

so the human eye can assume that it is viewing a television. 

The usual resolutions that a typical videoconferencing system has, is 260 x 144 

pixels, 320 x 200 or even higher. The frame rate varies from 5 to 25 fps. Both 

resolution and frame rate are heavily dependant on the amount of available 

bandwidth. The higher the bandwidth, the more data can fit within the given channel 

and so, the more pixels, colours and frames can travel at a given time. A PSTN 

connection is usually deemed poor to handle that kind of traffic while a triple ISDN 

(3 x 128=384 Kbps) is considered the standard for today’s videoconference. A 

dedicated T line (1 to 2 Mbps) produces even better results. 

 

2.5.5 Image compression 

As the number of medical applications that require the use of computer imaging 

increases, so does the required storage space (and thus the bandwidth demand for 

transferring a file within a network) for these applications. Increased complexity 

high-efficiency algorithms have been developed to compress the data before they are 

stored or transferred.  

When applied in still imaging, these algorithms are divided into lossless (a procedure 

that after decompression, regenerates the exact same image as the original) and lossy 

(a procedure that loses some part of the original quality but achieves a much better 

compression). The first scheme uses techniques that try to find similarities within the 

image and pack them together in order to save space (thus transfer time). The second 

works in the same way but it extends its operation onto creating similarities when the 

image components are so close, that the difference would not be visible to the end-

viewer. The user is able to adjust this “forcing” of similarities [Ban03]. The most 

well used compression technique that uses the above scheme, was proposed by the 

Joint Pictures Expert Group (JPEG). 

Doctors tend to agree that a lossless compression is more suitable for medical image 

interchange as it retains all its original quality and makes diagnosis more accurate. 

This is generally true if an extremely large storage space is offered, coupled with a 

very large bandwidth. Some would even argue that grouping very similar image 

components may result in reducing the “grain-of-rice” noise effect (when the 
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elements that make up an image on a film, are particularly visible to the viewer. This 

granular effect can be usually seen in photographs when using a fast film). [Tob02], 

[Ban03] 

When dealing with video, one can imagine that the storage / transmission problem is 

multiplied by the frame rate. For European PAL system it has to have 720 x 570 

pixels with a 24 bit colour depth, 25 times per second (fps). For a 90 minutes movie, 

this translates into: 720 x 570 x 24 x 25 x 60 x 90 = 1329696000000 bits 

(approximately 1.2TB). Luckily, compression algorithms for video applications have 

been developed, that can reduce this amount considerably. These algorithms, created 

by the Moving Pictures Expert Group (MPEG) rely too, on aggressively creating 

similarities on the image. However, and in newer version of this MPEG algorithm, 

the preceeding and succeeding frames of the video are taken into account to create an 

inter-frame compression and result into reducing the size of the file into as much as 

200 times while still perceived as “perfect” to the eye of the observer. One can think 

of the MPEG codec (coder-decoder) as a combination of a sequence of JPEGs 

running along an audio stream. 

Below is a table summarising some typical compression ratios for telemedical 

applications [Del99] 

 
 Image size Uncompressed 

(MB) 

Compressed 

(KB) 

Compression 

ratio 

x-ray 2000 x 2000 x 12 5.7 285 20:1 

Pathology 

(microscope) 

800 x 600 x 24 1.44 96 15:1 

Dermatology 1280 x 1024 x 24 3.9 980 4:1 

CT (20 images) 256 x 256 x 8 1.3 650 2:1 

Table 2.2 Typical medical modalities in original and compressed form 

 

As the use of video compression increased, several videoconferencing algorithms 

(codecs) were developed (mainly by ITU). H.320, H.323, H.324, H.261 and H.263 

being some of them. The last one, H.263, is the codec used by the MedLAN system. 

It combines high compression based on an MPEG-4 codec and is versatile enough to 

be used in a variety of communication lines, from PSTN to T lines. 
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2.5.6 Communication lines 

Regardless of the telemedical data to be transferred through the communication link, 

the link itself always deserves serious consideration. As mentioned above, if the link 

can accommodate a large enough amount of data, less compression is needed and the 

data suffer less distortion. Unfortunately, bandwidth is an expensive commodity. The 

developing engineer has to balance these two factors and produce the best result with 

the available means. 

Below is a list of the most well known communication lines along with their major 

characteristics: 

• PSTN lines present the standard medium for communication through POTS. 

With a minimum amount of monthly rental, they can operate in a maximum 

speed of 56Kbps (with an actual speed of 44-50 Kbps) for download and 

33.6Kbps for upload (V.90 protocol). The use of modems involve the 

conversion of a digital stream into an analogue form, in order to pass through 

the analogue line. Newer protocols (V.92) allow for an increase of upload 

speed to about 40Kbps. Although good for everyday slow Internet access, 

PSTN lines are not suitable for telemedical applications as the speed for 

uploading video is limited to 33.6Kbps 

• Until today, ISDN lines dominated the videoconferencing world and were 

extensively used in telemedical applications. They come in forms of Basic 

Rate (BR) having 2 x 64Kbps=128 Kbps channel, or Primary Rate (using 30 

x 64Kbps channels in Europe) having a total bandwidth of about 2Mbps. In 

their basic rate they are relatively cheap to rent and they can guarantee the 

available bandwidth that they advertise. This is the main reason that a triple 

ISDN (3 x 128=384 Kbps) were chosen as a standard for videoconferencing. 

Newer developments involve the use of Broadband ISDNs (B-ISDN) to 

facilitate the transmission of bandwidth demanding applications like live 

video, high quality audio, etc. This, however, is done with the use of fibre 

optics. 

• Asymmetric Digital Subscriber Lines (ADSL) is one of many threads of the 

DSL family lines. Using the same PSTN copper lines and more advanced 

modulation techniques like OFDM, they manage to dramatically increase the 

bandwidth offered to the end user from 56Kbps to 512-2048Kbps for 
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download and 384-1024 Kbps for upload. The only disadvantage is the fact 

that their bandwidth is dictated by the distance the end-user has from the 

private branch exchange (PBX); the greater the distance, the lower the 

bandwidth. DSL lines offer an excellent cost-to-performance ratio and are 

setting the status for Small Office – Home Office (SOHO) use. This 

technology is the best choice for doctor’s or patient’s home, when connected 

to a central point, (like a hospital) in order to run telemedical applications. 

• Satellite communications are becoming increasingly popular. They offer a 

link between source and destination with fewer intermediate providers, thus 

minimising delays and bandwidth limitations. However, as in its popular 

form the satellite connection is usually one-way (download), it requires the 

co-existence of at least one other communication form (PSTN, ISDN, etc) to 

upload data. Their major disadvantages are both the cost of installation 

(satellite dishes and decoders have to be installed) and their running cost. 

However, their use in certain circumstances (like marine telemedicine) is de-

facto. 

• Leased lines have always been the standard form of connection for bigger 

enterprises, including hospitals. They have a wide variation of available 

bandwidth, ranging from 64Kbps to 50Mbps and constant operation that 

makes them the tool of choice for Internet Service Providers (ISP). Their cost 

of ownership, however, is high enough to render them uneconomical if not 

utilised properly. In the case of the healthcare sector, this is usually the way 

that hospitals are connected together. 

• Wireless connections are becoming increasingly popular as they combine 

high bandwidth, low cost of ownership, installation flexibility and, most of 

all, mobility for the end users. They operate in the unlicensed ISM bands 

(2.4GHz and 5 GHz in Europe) and can reach speeds in excess of 50Mbps 

depending on the protocol and modulation used. Two major technologies 

dominate the market: IEEE 802.11 for the US and HiperLAN for Europe. 

Wireless technologies and their applications in Telemedicine will be 

examined in more detail in the next chapters. 
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• Several other communication lines exist with various other properties: high-

speed microwave links, ATM, DSVD, etc. The table below summarises the 

above technologies [Fal99] 

 
Communication line Bandwidth Characteristics 

PSTN 56 Kbps Cheap, ubiquitous, slow,  

not suitable for high resolution 

ISDN (BRI) 128 Kbps Cheap, flexible, slow 

ISDN (PRI) < 2Mbps Fast, high quality, expensive 

Satellite < 2Mbps High quality, remote access,  

need for extra line, expensive 

Wireless 2-24 Mbps Convenience, free movement, unclear standards 

Microwave < 20Mbps Good quality, inexpensive to run, expensive to install, 

line of sight only, short distances 

Leased lines 64Kbps – 50Mbps Reliable, expensive, inflexible 

ATM, DSVD 155Mbps High bandwidth, expensive 

ADSL 384Kbps-4Mpbs High bandwidth, dependence on user distance 

 

Table 2.3 Communication line options for telemedical uses 

 

 

2.6 Summary and conclusions 

During the previous chapter it was mentioned that this thesis described a two fold 

project: telemedical and communicational. Within chapter 2, some basic concepts of 

Telemedicine have been presented: it began with the definition and the divisions of 

Telemedicine, and continued by presenting some obvious advantages and limitations 

of that science. It then moved on to describe the ethical and legal maters that both 

healthcare personnel and developing engineers should consider when designing and 

using a telemedical system. Finally, there was a presentation of some basic structures 

and procedures that a telemedical system might use when dealing with a variety of 

modalities and concluded with a list of communication lines used in telemedical 

scenarios [Ist01a] 

In all the above, emphasis was given to the specific properties and techniques that 

the MedLAN system uses, along with their obvious advantages: telemedical 
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videoconferencing, wireless access, mobility and security to overcome ethical and 

legal dilemmas. 

In the following chapter, there will be a similar presentation of basic wireless LAN 

properties, with emphasis on the specific technologies used by the MedLAN system. 
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33..  WWiirreelleessss  LLAANNss  
  
  

 

3.1 Introduction 

In just the past few years, wireless networks have come to play an increasingly 

important role in the LAN market. Organisations found that wireless infrastructures 

are much more convenient and dynamic and can satisfy the needs for mobility, 

relocation, wide coverage and restructuring, much better than wired networks 

[Sta01]. Consequently, the field of wireless communication is one of the fastest 

growing sectors of the telecommunication industry. 

When trying to grasp the meaning of this “wireless revolution” it is a common 

misconception to separate “wireless” and “radio” networks into two different 

categories. From 1896, when Marconi invented the wireless telegraph, until 3rd 

generation mobile phones (3G), there are fundamental issues that remain the same: 

radio or wireless systems utilise electromagnetic waves to transmit or receive signals 

over a distance. Conclusively, apart from “wireless” usually addressing digital data 

transmission and “radio” more often referring to analogue transmission, there is not 

much difference between these two terms. 

 

 

3.2 Wireless evolution 

From 1946, when the first mobile telephone was introduced, there were many 

attempts to improve the services of mobile networks and increase their efficiency, 

mostly in the areas of telephony. Listed below, is a short timeline of the most 

important of these stages [Sta01]: 

• In 1946, Mobile Telephone System (MTS) was established in 25 cities in the 

US. It was a uni-directional communication system that utilised a high-power 

transmitter and due to its volume was usually mounted in vehicles. The 

communication had to be established manually through telephone operators. 

As an enhancement, Improved MTS (IMTS) started operating in the late 60s 
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offering full-duplex communication while eliminating the need for operators. 

It was clear, however, that the spectrum efficiency of that system was very 

low: it could accommodate a finite number of users per base station (23) and 

could not extend its coverage by reusing the same frequency band. 

• First generation analogue cellular telephony came to resolve the above 

problem. By dividing the frequency range into a number of channels, each 

channel could be reused, as long as the Base station (BS) using that 

frequency was sufficiently far away from another BS using the same 

frequency. That introduced the concept of frequency planning and site 

survey. Analogue systems were based in that architecture to extend their 

coverage space and include whole countries. Examples of analogue mobile 

telephony include Advance Mobile Phone System (AMPS) in the US and 

Total Access Communication System (TACS) in UK and other parts of 

Europe. 

• The second generation of cellular telephony (2G) used an analogue to digital 

converter to convert the data into a digital stream. It also used a combination 

of Frequency Division Multiplexing (FDM) and Time Division Multiplexing 

(TDM) to divide the available spectrum into a number of channels. Working 

in an all-digital environment presented a number of advantages: ease of 

encryption, reduced interference, better spectrum utilisation and many new 

applications (SMS, data transfer, etc). As good as the initial plan for GSM 

was, it still remained the problem of higher speed data rates: GSM was only 

capable of transmitting 9.6Kbps; a speed considered very low for today’s 

applications. Solution came with the introduction of what was called 2.5G: 

High Speed Circuit Switched Data (HSCSD) and General Packet Radio 

Service (GPRS). Utilising circuit switching and packet switching 

respectively, these additions to GSM managed to increase the data speed to 

57.6 and 115.2 Kbps respectively. The basic technique behind this increase of 

bandwidth is the use of additional time slots (slots that other users would use 

with their mobile phones). This, however, results either in additional 

charging, or in reduced battery autonomy. 

• The latest addition to mobile telephony is the third generation system (3G). 

Using a number of alternative techniques (EDGE, cdma2000, WCDMA) it 
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manages to elevate data transfer speeds up to 2Mbps (using a mobile device 

in a fixed position). Having that much bandwidth opens up the way to an 

exciting number of new applications: two-way videoconferencing, 

multimedia messaging that includes video, high quality audio playback, high 

resolution picture exchange, city mapping, etc. 3G is at its beginning. Time 

will tell if it will completely replace 2G and 2.5G devices (like 2G did for 

analogue telephones) or it will just be an alternative for bandwidth 

demanding applications, leaving 2G to play its well-deserved role in standard 

mobile telephony. 

• Studying the above timeline, one can distinguish a constant shift from 

standard applications to bandwidth demanding applications: initially mobile 

telephony was more than adequate to cover the user’s needs, while in today’s 

world people request an increase amount of data speed for their applications. 

The above requirement gave birth to Wireless Local Area Networks 

(WLANs). Unlike mobile telephony, WLANs are not designed to carry out 

voice (although this is also feasible) and are usually deployed in a smaller 

area, like an office, a building or a campus. Novel projects, however, have 

shown that they can also effectively cover a city area [Ang01]. What WLANs 

do in essence, is cover the need for high-speed data communication without 

the nuisance of wires. 

 

 

3.3 Applications of WLANs 

Apart from the obvious need for mobility, an emerging number of applications (even 

some that were not conceived during the birth of wireless networks) are taking 

advantage of WLANs today. WLANs are often being added to the existing wired 

network, providing the last few meters of connection. The ongoing decrease in 

pricing and the increase of integrated WLAN technology in PCs and mobile 

computing, has further accelerated the growth of wireless networking at home, in the 

enterprise environment and also in public spaces like hotel lounges, cafes, airports, 

Universities campus, libraries, etc. 

Below is a short list of some of the basic applications that were only made possible 

through the use of WLANs [Ani02] 
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• By using WLANs in dynamic environments, network managers minimise the 

overhead caused by moves, extensions to networks and other changes, and 

can redefine the network topology dynamically. 

• Network managers installing networked computers in older buildings (like 

old hospitals) find that Wireless LANs are a cost-effective network 

infrastructure solution as they eliminate the need for aggressive environment 

change (holes in the walls, lengthy cables, etc) 

• Wireless LANs are the ideal solution for temporary networks (exhibitions, 

seminars, etc) 

• Warehouse workers use wireless devices to exchange information with 

central databases, thereby increasing productivity and reducing the need for 

unnecessary movement. 

• Network managers implement Wireless LANs to provide backup for mission-

critical applications running on wired networks. 

• Office workers can roam from meeting to meeting throughout the building, 

remaining constantly connected to the enterprise network. 

• University students can be constantly connected to the network and the 

Internet while in class and can move from one building to another while 

roaming between WLAN cells. 

• Health care workers can take advantage of WLANs to offer better quality 

services, faster diagnosis and treatment and in general, more efficient ways of 

caring for the patient. 

 

 

3.4 Benefits, concerns and challenges of WLANs 

By taking into account the above applications of WLANs, we can identify a number 

of emerging benefits for either the user or the enterprise [Ani02]: 

• Mobility of users within the organisation promotes user satisfaction and 

improves productivity as the user can have real time access to information 

from any point, and consequently save time. 

• By using a simple wireless architecture, managers can cut the cost of 

installing, adding, changing or moving network infrastructure. They can also 
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eliminate the cost and burden of pulling wires or cables through walls, 

installing new plugs, etc. 

• Relocation and reorganisation of offices, departments or even campuses, is 

made much easier using WLANs. Once the Access Points (APs) are set to 

strategic places, very little has to be changed to accommodate for the new 

office structure. 

• New applications like mobile videoconferencing and mobile telephony using 

WLANs can seriously benefit the enterprise and reduce the cost of 

communications 

• Finally, WLANs have a low running and ownership cost and can guarantee a 

short-term return of investment [Pro99]. 

Unfortunately, nothing good comes without any negative aspect and that applies to 

WLANs, as well. Various concerns and challenges have been documented, ranging 

from health issues and interference to questionable security and range. These issues 

vary between different WLAN versions but can be generally summarised below 

regardless of the WLAN standard: [Sta01]: 

• In contrast with wired networks that guarantee accessibility and bandwidth, 

wireless networks, by nature, cannot offer that advantage. This is due to the 

significant attenuation and distortion the signal undergoes while transmitted 

over the air and can be attributed to reflections, lack of line-of-sight (LOS), 

multiple signal path, movement, etc. As most of these distortions are of 

random nature, the wireless systems include techniques that “hide” these 

problems from the higher layers protocols and consequently from the user. 

• Spectrum is a valuable commodity. License exempt spectrum is of vital 

importance to small and medium companies that desire the use of WLANs. If 

they were required to pay for air-time it would pose a serious handicap to the 

WLAN deployment. The spectrum regulation committees over the world 

recognised the obvious need for some bands to be license-free but 

unfortunately failed to agree on the exact same frequencies. This was mainly 

due to the fact that frequency bands have been reserved for other uses in the 

past. As an example, US GSM operates in 1.9GHz instead of the standard 

900MHz or 1.8 GHz, as these frequencies have been in use by the US army 
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for a number of years. Consequently, techniques for world-wide operation of 

WLAN equipment are necessary. 

• This license-free nature of WLANs means that other products can operate in 

the same frequency and potentially interfere with the wireless network 

(microwave ovens, Bluetooth devices). However, special techniques have 

been developed to reduce that problem. They include Direct Sequence Spread 

Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS) and will 

be described in a later part of this chapter. 

• Security is probably the first concern that comes to mind when talking about 

wireless networks. Enterprises have to be certain that they can trust WLANs 

as much as they would trust wired ones. To accomplish that, there is a need 

for encrypting the transmitted data and controlling the access of the users 

(will be dealt with in detail, in a later chapter).  Finally, contrary to wired 

networks, where terminals can be located in a fixed position, wireless 

networks offer the ability of roaming between cells thus constantly changing 

the current topology and work grouping. 

• Health concerns have always been an issue when using radio frequencies. 

People tend to confuse health issues concerning cellular telephony, with 

those concerning WLANs. Cellular transmissions are quite different as they 

operate in a different frequency, they are used by mobile phones operating 

very close to the human brain and they are of “bursty” nature (transmission 

on fixed time intervals that explain the characteristic sound of amplifiers and 

TVs when mobile phones are in close proximity). This is very different from 

the transmission of WLANs. Most of them are operating in a 2.4GHz 

frequency band; the exact same band that water molecules resonate and the 

same band that microwave ovens use. In contrast with the microwave ovens, 

though, that output a power of about 700-1000W, WLANs output merely 30-

50mW and relatively away from the human brain. There have been a great 

number of studies on the effects that these frequencies have on the brain: it 

has been suspected that prolonged use of such radio frequencies (GSM, 

WLAN) can gradually raise the average temperature of the brain and cause 

long term diseases. However a final answer is yet to be given as these studies 

result in different conclusions: some say that there is no scientific proof that 
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these combinations of power and frequencies can be harmful to the brain, 

while others indicate that there is no proof to the contrary. The overall 

situation resembles the first days of electricity when people were worried 

about damaging their health when power cables were passing through their 

houses. It is the writer’s opinion that a number of years must pass until we 

can draw a definite scientific conclusion of the above problem. Nonetheless, 

various health and radio regulatory bodies all over the world, issued 

conservative guidelines in order to protect consumers from possible side 

effects (ANSI/IEEE C95.1-1992) [Ent02]. They have set a maximum power 

level for these kinds of devices. These rules are obeyed (or made even 

stricter) by hardware manufacturers today. 

• Finally, power management also plays an important role in the operation of 

WLANs. As many of the terminals operate using battery power, the electrical 

consumption of the WLAN hardware dictate the autonomy of the overall 

system. Having this in mind, hardware manufacturers keep reducing the 

power consumption of WLAN equipment by embedding several techniques: 

beacon instead of constant transmission, sleep mode, power saving mode. 

 

3.5 WLAN frequency bands 

One of the basic reasons that supported the rapid growth of WLAN during the last 

five years, was proven to be the fact that there was no need for any license to operate 

in the frequency bands that WLAN use [Kap02a]. 

Local regulatory bodies around the world (ETSI for Europe, FCC for US) 

deregulated small portions of spectrum to be used without the need of licenses. This 

spectrum is commonly called ISM (Industry, Science and Medicine) on the 2.4GHz 

and UNII (Universal Networking Information Infrastructure) on the 5GHz band 

[Table. 3.1]. As mentioned above, spectrum is a valuable resource and the frequency 

bands that were deregulated were always the least desirable ones for any other kind 

of applications, due to the coexistence of common noise sources: the 2.4GHz band is 

the same band where microwave ovens operate, while the 5GHz band is crowded 

with older satellite signals and military radar. 

Below is a summary of the unlicensed frequency bands that WLANs use: 
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2.4 GHz band ISM: 2.4 – 2.4835 GHz 
11 channels 1W 

 
5 GHz band 

UNII-1: 
5.15-5.25 

GHz 

UNII-2: 
5.26-5.35 

GHz 

 
5.36-5.47 GHz 

 
5.471-5.725 GHz 

UNII-3 
5.726-

5.825 GHz 
12 channels 

(US) 50 mW 250 mW reserved reserved 1 W 

19 channels 
(EU) 200 mW reserved 1 W Reserved 

Table 3.1 ISM and UNII unlicensed bands used in most of WLAN networks (max power indicated) 

 

Both ISM and UNII bands have different regulations on the maximum power level 

depending on the distance and application to be used: UNII, for example, consists of 

three separate bands: UNII-1 for indoor use, UNII-2 for either indoor or outdoor use 

and UNII-3 for outdoor bridging only. 

 

 

3.6 WLAN trends and versions 

With Europe and the US competing on WLAN technology, two major trends appear 

in the market today: IEEE 802.11 and ETSI HiperLAN; the former being the most 

dominant around the world. Both these trends have several similarities but are 

separated by major differences, as well. 

 

3.6.1 IEEE 802.11 

In 1997 the IEEE 802.11 task group issued the first set of specifications describing 

the physical (PHY) and Medium Access Control (MAC) layer of a wireless network 

capable of working at speeds of 1 and 2 Mbps. It used either Direct Sequence Spread 

Spectrum (DSSS), Frequency Hopping Spread Spectrum (FHSS) operating at 2.4 

GHz ISM or Infrared (IR) light at a wavelength of 850 and 950 nm. After a short 

period, it was clear that greater speeds were needed if WLANs were to gain 

popularity. From then on, IEEE 802.11 groups created several task groups named a, 

b, g, e, h, i, to address the different needs of users for security, speed, quality of 

service, etc. A short mention of the basic characteristics of each follows: 

• IEEE 802.11b is undoubtedly the most popular WLAN standard today. Its 

success is mainly contributed to the WECA’s Wi-Fi alliance that permits 

wireless Network Identification Cards (NICs) of any vendor, to work with an 
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AP of another vendor. It operated in the 2.4 GHz band providing a maximum 

speed of 11Mbps that automatically falls down to 5.5, 2 and 1 depending on 

the distance and interference of the channel. 

• Despite its name, IEEE 802.11a is a newer addition to the 802.11 family. It 

is a high-speed LAN capable of providing speeds up to 54Mbps in the 5GHz 

band. In contrast with 802.11b it uses OFDM modulation to reduce the 

multipath interference. 802.11a products are not compatible with 802.11b. 

• The above incompatibility gave rise to the development of another product in 

the 802.11 series; IEEE 802.11g. 802.11g can be considered as an extension 

of the 802.11b in the 2.4GHz ISM band. Due to its superior modulation 

(combination of OFDM and Complementary Code Keying, CCK) it can 

support speeds of up to 54Mbps. Commercial products of 802.11g are just 

beginning to be available in the market. 

• IEEE 802.11e came to fill the need for Quality of Service (QoS). Many real 

time applications (like videoconferencing, voice over IP, etc) need to have 

higher priority over standard network traffic. 802.11e creates different classes 

of transmission for different types of data transmitted over a wireless link. 

• IEEE 802.11h is an enhancement of 802.11a standard that improves 

coexistence with other WLANs operating in the 5GHz band. This is 

particularly important in Europe, as ETSI promotes HiperLAN/2 that 

operates in the 5GHz band (explained later). 

• IEEE 802.11i addresses some security issues that become very significant 

after several successful attacks made on the standard 802.11b encryption with 

weak or improper configuration. However, this will be explained in Chapter 

7. 

• Finally, a very new task group, IEEE 802.11n is developing special 

protocols to increase the bandwidth of 802.11 to at least 100Mbps. This, 

however has not been standardised yet. 

 

3.6.2 ETSI HiperLAN 

Alongside IEEE, its European counterpart, ETSI, was developing similar protocols 

to facilitate the use of WLANs. Two majors versions exist [Khu00]: 
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• ETSI started developing HIgh PERformance LAN type 1 (HiperLAN/1) in 

1997, mainly for use in ad-hoc topologies (computer to computer). The 

standard mainly supports asynchronous data transfer and uses CSMA/CA 

techniques. Its maximum speed is 22Mbps. 

• From 1999 until today, ETSI has been developing a complement of the above 

protocol; HiperLAN/2. Using OFDM for modulation, it can support speeds 

up to 54Mbps in a distance of about 150m. Its internal coding schemes and 

characteristics are very similar to IEEE 802.11a [Dou02], however 

HiperLAN/2 also supports for traffic differentiation; a fundamental 

prerequisite for QoS: each connection is assigned one out of five specific 

priority levels (in terms of bandwidth, delay, jitter, BER, etc) relative to other 

connections [San02]. Unfortunately, and despite years of anticipation, 

HiperLAN/2 is still not commercially available today. 

Table 3.2 summarises some of the major characteristics of the most popular wireless 

technologies today. 

 
 IEEE 802.11b IEEE 802.11a IEEE 802.11g Hiperlan/1 Hiperlan/2 

Frequency band 2.4GHz 5GHz 2.4GHz 5GHz 5GHz 
License (ISM) No No (Not 

applicable in 
Europe) 

No No No (not 
applicable in 

Japan) 
Frequencies 2.4-2.483 GHz, 

3 non 
overlapping 

channels 

5.15-5.30 & 
5.47-5.725 

(Non-Europe) 
12 channels 

2.4-2.483 GHz, 
3 non 

overlapping 
channels 

5.15-5.30 GHz 
5 channels 

5.15-5.30 & 
5.47-5.725 
(Europe) 

Max capacity 11Mbps 54Mbps 54Mbps 24 Mbps 54Mbps 
Intermediate 

speeds 
1, 2, 5.5, 11 

Mbps 
6, 9, 12, 18, 24, 

36, 48, 54 
Mbps 

6, 9, 12, 18, 24, 
36, 48, 54 

Mbps 

6, 12, 24 Mbps 6, 9, 12, 18, 27, 
36, 54 Mbps 

Modulation DBPSK, 
QPSK, CCK, 

DSSS 

BPSK, QPSK, 
16QAM, 
64QAM 

CCK-OFDM, 
DSSS 

GMSK BPSK, QPSK, 
16QAM, 
64QAM 

MAC Ethernet based Ethernet based Ethernet based Ethernet based ATM based 
Typical Power 30mW 25mW 50mW 0.1-1W 25mW 

QoS Low Low Low Medium High 
Possible 

Interference 
Microwave 

ovens, cordless 
phones, 

Bluetooth, 
fluorescent 

lamps 

Satellite  (not 
for open 

environments), 
HiperLAN 

Microwave 
ovens, cordless 

phones, 
Bluetooth, 
fluorescent 

lamps 

Satellite (not 
for open 

environments) 

Satellite 

Types of 
applications 

WLAN, real-
time 

WLAN, real-
time 

WLAN, real-
time 

WLAN WLAN, video, 
broadcast, 

MPEG 
Typical radius 30-200m 20-100m 30-200m 20-100m 20-100m 

Cost today Low Low Medium Medium N/A 
 

Table 3.2 Comparison of WLAN standards and technologies today 
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The IEEE 802.11b is the most widely used protocol and is the network of choice for 

the development of the MedLAN project. The remaining of the chapter investigates 

details of installation considerations, physical characteristics and services of a 

WLAN. It is assumed that all the above address primarily the 802.11b. 

 

 

3.7 Physical characteristics of 802.11b 

The characteristics of the physical layer (PHY) specifications of IEEE 802.11b, 

extend to great detail and cover several volumes of specifications. From those, the 

most basic procedures and techniques will be mentioned. 

 

3.7.1 Mapping 802.11b into the ISO-OSI 7 layer model 

The International Standards Organisation (ISO) has established a seven-layer model 

for Open Systems Interconnection (OSI), that governs the connection of 

homogeneous and heterogeneous networks. It includes the following layers: 

Physical, Data link, Network, Transport, Session, Presentation and Application. It is 

beyond the scope of this thesis to get into greater detail on the ISO layers. It is worth 

mentioning though, that layers 3 or 4 and above are independent of network 

architecture and are applicable to LANs, MANs and WANs. In that way, a 

discussion of LAN protocols (wired or wireless) is primarily concerned with the 

lower layers of the OSI model [Nor98] 

On the other hand, the IEEE 802 group (that deals explicitly with the lower layers) 

has developed its own architectural model that has found great acceptance to 

organisations; the 802.11 reference model [Fig. 3.1]. 

 

 
Fig. 3.1 the IEEE 802 model compared to the 7-layer OSI model for the 802.11 protocol 
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The PHY layer of the IEEE 802 reference model includes functions like encoding 

and decoding of signals, preamble generation and removal, bit transmission and 

reception, etc. 

Above the PHY layer are functions that deal with providing LAN services to the 

users and include the following: 

• Assemble the data into frames with address and error detection fields. 

• Disassemble frames and perform address recognition and error correction. 

• Govern access to the LAN transmission medium (wired or wireless). 

• Provide an interface to the higher layers and perform flow and error control. 

Of these four items, the first three are treated as a separate layer (or sub-layer) by the 

IEEE 802 model, and form the Medium Access Control (MAC) sub-layer, perhaps 

the most important part of the wireless networks. The fourth item is separate and 

creates a Logical Link Control (LLC) sub-layer, something that is not described 

efficiently in the data link layer of the OSI model (especially for managing a shared-

access medium). It is also worth mentioning that for the same LLC, several MAC 

options may be provided. 

 

3.7.2 Wireless media 

There are three wireless media defined in the original IEEE 802.11 protocol: 

Direct Sequence Spread Spectrum (DSSS), Frequency Hopping Spread Spectrum 

(FHSS) and Infrared (IR). 

Although fully defined, Infrared transmission is the least favourable way of 

transmitting. Nevertheless it possesses a number of advantages like: the unregulated 

medium worldwide due to its nature (light), easily securable rooms using IR as light 

cannot penetrate walls and finally the fact that light colour objects can be used as 

mirrors to reflect the IR beams [Fig. 3.2] [Sta01] 
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Fig. 3.2 A typical infrared configuration. Several IR networks can be set up in different rooms as light 

from one room does not interfere with any other IR network in another room 

 

There are three alternative transmission techniques for IR:  

directed beam to create point to point links 

diffused, where all IR transmitters are focused on a diffusely reflecting ceiling 

omnidirectional, that involves a base station within the range of all other Mobile 

Terminal (MT) (usually on the ceiling). This last scheme, omnidirectional, is the 

most commonly used one and achieves a maximum range of 20m [Sta01].  

Despite some advantages that IR transmission has, its low range coupled with the 

inability of the system to transmit through solid objects (walls, etc) makes it useful 

only for a small number of applications (low cost communication, microwave 

sensitive environment, etc). Finally, two data rates are possible: 1 Mbps (using a 16-

Pulse Position Modulation, PPM) and 2 Mbps (using 4-PPM). 

Excluding IR transmission, essentially leaves the users with a choice between one of 

the two previously mentioned spread spectrum techniques, FHSS and DSSS. 

Generally, in a spread spectrum system the transmission bandwidth used is much 

greater than that required to transmit the signal. The way this is done, is by spreading 

the information signal over a larger bandwidth, before transmission. This is a totally 

opposite approach than the conventional method used by radio, television, etc, where 

the “station” occupies a specific narrowband channel. 

The spreading of the signal is governed by a spreading code, independent of the 

information of the signal. At the receiving end, the signal is de-spread using the same 

spreading code to recover the information. This process reduces the harmful effects 
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of noise, as noisy sources usually affect a specific part of the frequency spectrum. It 

also enhances security, as the receiver must possess the spreading key in order to de-

spread the data. This latest ability made the system ideal for military applications 

when it was initially launched in the 1950s. Later, as the advantages of spread 

spectrum became known, it was applied in a number of commercial applications like 

cellular telephony. Below is a summary of the advantages of spread spectrum 

[Sub98]: 

• Low probability of intercept and enhanced security as the transmitter and the 

receiver share a common, secret spreading code. 

• Combats multipath interference since the receiver can “lock” into one of the 

arriving paths. 

• Allows for multiple access within the same channel with more than one users 

transmitting in the same frequency range but using different spreading codes. 

The “other” signals would be considered as noise. 

Frequency Hopping Spread Spectrum is a process when a radio transmits and 

receives a packet of data at a specific frequency, for a short period of time, before 

changing (hopping) into a different frequency. The message is fully received only if 

the intended receiver knows the hopping sequence (usually different for each 

hardware vendor). To the intruder, these transmissions are perceived as random 

unintelligent beeps [Fig. 3.3]. Most FHSS systems divide the ISM band into 78 

separate 1 MHz channels and “hop” between these channels ten times every second 

using a pseudo-random algorithm [Sta01]. 

 

    
          a               b 
Fig. 3.3 a. Frequency Hopping Spread Spectrum uses a pseudo random algorithm to “hop” from one 

frequency to another.  b. Several transmissions can share the same frequency band 
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FHSS has two distinct benefits: electrical noise caused by random electromagnetic 

signals will only affect a small part of the useful signal. Furthermore, the effects of 

other legitimate transmissions in the ISM band will be held to a minimum. In any 

such case, error detection mechanisms will be engaged and a retransmission of a 

small part of the signal will take place automatically. 

Direct Sequence Spread Spectrum is by far the most common method used by 

WLANs today. A direct sequence modulator takes input bits and ads redundant data 

bits to them, creating “chips” [Fig. 3.4.a]. At least 10 redundant bits are added (with 

11 to 20 being a more realistic value). An example of an 11-bit chip might be: 

0=10010010110 and 1=01101101001. This repeated pattern of chips is called 

“chipping sequence” or “Barker sequence”. A good spread spectrum code has a low 

cross-correlation value with other spread spectrum codes issued by other radios in 

the same vicinity, in order to achieve the minimum interference among them. 

 

   
             a              b 
Fig. 3.4 a. Direct Signal Spread Spectrum adds redundant information to each bit transmitted, using a 

“chipping code”.  b. the power of the transmission is “spread” to minimise the interference 

 

Similar to FHSS, a DSSS receiver must know the transmitter’s spreading code in 

order to properly restore the original signal. The different spreading codes are what 

allow multiple DSSS transceivers to operate in the same area, without causing 

interference to each other, even though their channels will operate in overlapping 

frequencies [Fig. 3.4.b]. 

When comparing the two, FHSS radios generally use less power than DSSS and cost 

less as they have reduced complexity in their design. However, DSSS have a 

practical raw data rate of 8 Mbps (and by using advanced techniques can achieve 

even greater speeds) while FHSS have a practical limit of 2 Mpbs and generally 
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reduced range. That is the main reason why FH was used widely in the first version 

of 802.11, while the newer versions favoured DS. 

In conclusion, if a small inexpensive wireless adapter is needed without, the demand 

for a wider distance range, a FH system will be sufficient. On the other hand, as 

applications become more demanding, DS will meet these needs better. With either 

method, the result will be a secure system that minimises the interference with other 

wireless systems and provides sufficient bandwidth for data [Appendix A]. 

 

3.7.3 Medium Access Control layer (MAC) 

As mentioned before, the MAC layer is the building block of a WLAN. It receives a 

block from the LLC layer and performs functions related to the medium access and 

to the transmission of the data. The LLC in its turn is responsible for supporting the 

multi-access shared-medium nature of the link thus relieving the MAC layer from 

that task. The data that the MAC layer handles at a time form the Protocol Data Unit 

(PDU), is often referred to as the MAC PDU. 

The format of the MAC frame for the IEEE 802.11is illustrated in Fig. 3.5. The 

timing of the MAC sequence of 802.11 exists in Appendix B. 

 

 
Fig. 3.5 MAC frame and LLC PDU format of 802.11 

 

• Cyclic Redundancy Check (CRC) is used for error detection. 

• Data represents the body of the MAC frame and can be data from a higher 

layer (like LLC) or MAC control information. 
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• Source and destination MAC addresses are unique values set by the 

manufacturer of each network device. These can be used as filters by the APs 

for limiting the access of unauthorised users to the WLAN. 

• Finally the MAC frame control contains a series of information needed for 

the functioning of the MAC protocol. Fig. 3.6 illustrates an analysis of this 

field [Sta01]. 

 
Fig. 3.6 MAC frame of IEEE 802.11 as it is actually transmitted over the medium 

 

3.7.4 A general WLAN model: sequence of operations 

Summarising all the above procedures, Fig 3.7 displays the sequence of events on 

the lower layers of the IEEE 802 reference model. 

 



 

 

50

 
Fig. 3.7 Clockwise sequence of events within the lower layers of both OSI and IEEE reference model 

 

The raw data to be transmitted, is stored within the PSDU that is input to a scrambler 

whose job is to prevent long runs of 1s and 0s. Most WLAN systems scramble the 

data with a length 127 pseudo-random sequence. The scrambled data is input to a 

convolutional or to a CCK/PBCC encoder. The coded data is interleaved in order to 

prevent error bursts to affect the decoding procedure. Preamble, header and CRC are 

added to the signal and then the coded data is mapped to data symbols using BPSK, 

Quadrature PSK (QPSK), 16 QAM, 64 QAM, etc. Finally comes the choice of 

carrier: single carrier for 802.11b or multi carrier for 802.11a or HiperLAN/2, 

usually using OFDM modulation [Dou02]. The whole signalling train is transmitted 

over the air and noise is inevitably added to the channel (Additive White Gaussian 

Noise, multipath noise, frequency selective fading, etc). The receiving antenna picks 

up the signal and after equalisation (band pass filtering) it demodulates it, removes 

the interleaving sequence, decodes and descrambles the signal. 

The above procedure is common to almost all existing wireless protocols today with 

some variations on the details. 
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3.8 Installation considerations 

After deciding on the technology and version of WLAN to be used, one should 

consider some basic installation parameters: topology, frequency planning, the 

hidden station problem and the possible interference with other devices using the 

same frequency band. 

 

3.8.1 Topologies of WLANs 

Wireless LANs can operate in the following topologies: 

Ad-hoc mode (also referred to as Independent Basic Service Set) is very similar to a 

home or office, peer-to-peer network, where no single node plays the role of a 

server. It includes a number of wireless terminals that communicate with each other 

with no need for an AP or any connection to a wired network [Fig. 3.8]. This 

topology is ideal in situations where no wireless infrastructure exists (or is not 

required). Typical examples are conferences, hotels, airports, etc [Cis01]. 

 

 

Fig. 3.8 Wireless ad-hoc topology with no need for an AP 

 

Infrastructure mode (also called Basic Service Set) is the most commonly used 

topology. It includes at least one AP that acts as a server for a single WLAN cell. 

This AP is usually connected to the wired network infrastructure allowing the AP to 

act as a bridge between the wireless and the wired network (e.g. 802.3 and 802.11). 

Communication between mobile terminals flows from the source terminal to the AP 

and from then on, to the destination terminal. This topology can be extended to use 

several overlapping APs and form an Extended Service Set (ESS). APs are 

connected together through the wired network [Fig. 3.9]. The major advantage of 

this scenario is that a mobile terminal is permitted to roam from one cell to another 

seamlessly, without losing connection to the network and without the user being 

aware of this procedure. 
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Fig. 3.9 Infrastructure mode: each AP creates a cell (BSS). Multiple APs are connected to the wired 

network allowing mobile terminals to roam among them (ESS) 

 

Bridge mode is not as commonly used as the above topologies, but is gaining 

popularity as wireless bridge devices are becoming more affordable. In Bridge mode, 

entire wired networks use wireless links to connect to other networks in relatively 

close vicinity. A perfect example is the use of wireless bridges to interconnect two or 

more offices of a company that are in close proximity. This eliminates both the need 

for wires and the expenses for renting leased lines (most leased lines have 

considerably lower bandwidth capacity than WLANs) [Fig. 3.10]. The distance 

between buildings can vary from 3-25km, with the use of parabolic antennae and 

usually requires a relatively clear line-of-site. Wireless bridges can operate in point-

to-point and point-to-multipoint mode. 
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Fig. 3.10 Wireless bridges connect networks from different buildings  

either in point-to-point or in point-to-multipoint mode 

 

3.8.2 Frequency planning 

Before installing a wireless network it is highly recommended that a full site survey 

would be performed. This would not only reveal possible leaks of wireless signal 

outside the region of interest (that would eventually be considered as security 

threats) but would also help to establish the precise range of each of the APs. This 

will lead to a better utilisation of the available spectrum as one can place the APs in 

such a way that the interference between them will be minimised. 

In IEEE 802.11b the available spectrum is divided into 11 partially overlapping 

channels (2.4-2.48 GHz) [Sta01]. From those 11 channels, three are non-overlapping 

(channels 1, 6, 11) [Fig. 3.11] 

 

 
Fig. 3.11 802.11b has 11 partially overlapping channels. From them 1,6, and 11 are non-overlapping 

 

The above means that by carefully placing several APs in a way that the range of the 

first one (using channel 1) will not extend to interfere with the range of the fourth 

one (reusing channel 1), one can extend the WLAN coverage infinitely and include 

whole buildings in a cell-like structure [Fig. 3.12]. The transmitted power of the APs 

can also be adjusted to vary the size of the cell, much like in GSM structure. 
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Alternatively, three APs operating in channels 1, 6 and 11 can be used in close 

proximity to triple the available bandwidth (3x11=33Mbps) where there is such a 

need (busy office location, café shop, etc), without causing any interference to each 

other. 

 

 
Fig. 3.12 By establishing the range of each AP, the same frequencies can be reused to extend the 

coverage of the WLAN 

 

It is worth mentioning that IEEE 802.11a has a definite advantage over 802.11b as it 

supports eight independent channels. That makes frequency planning much easier 

and reduces Co-Channel Interference (CCI) considerably [Che01]. Although the 

range of the 802.11a cells are practically much shorter that those of 802.11b, Fig. 

3.13 demonstrates the above notion. 

 
Fig. 3.13 By having eight, instead of three independent channels, 802.11a can reduce Co-Channel 

Interference by placing AP cells, using the same frequency, further apart from each other 
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3.8.3 The hidden station problem 

A significant difference between the wired and the wireless networks is the fact that 

in the latter case one cannot assume connectivity between terminals: a mobile node 

can get out of the range of the WLAN. This gives rise to the “hidden station” 

problem, very often encountered in infrastructure topology, with multiple mobile 

terminals [Fig. 3.14] 

Fig. 3.14 The hidden station problem 

 

Mobile terminal A (MT A) is outside the range of MT C but they can both 

communicate with AP B. While MT A transmits a data frame, MT C cannot “hear” 

this transmission and assumes the medium is free [Fig. 3.14.a]. As MT C tries to 

transmit at the same time, both packets collide and are destroyed [Fig. 3.14.b] 

[Gar00]. 

The solution comes by varying the principles of Carrier Sense Multiple Access with 

Collision Avoidance (CSMA/CA): the controlling part of the wireless network (AP) 

introduces the use of Request To Send / Clear To Send (RTS / CTS) commands. 

Using that technique, MT A sends a RTS frame to B (about 30 bytes containing the 

length of the data to follow). MT B replies with a CTS (frame contains the length 

from the RTS) and immediately after MT A begins transmission [Fig. 3.15] 

Fig. 3.15 By using RTS/CTS commands, the hidden station problem is eliminated 
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Any other station hearing the RTS (close to MT A) and any station hearing the CTS 

(close to MT B) must remain silent. Even in extreme cases when collision occurs, 

stations back off for random time and retransmit [Gar00]. RTS / CTS is an effective 

mechanism to combat interference from hidden terminals. RTS and CTS data 

packets are very small (20 and 14 bytes respectively) compared to the maximum 

802.11 data frame of 2346 bytes, thus cause negligible overhead. As a result, when 

collisions occur, less bandwidth is wasted compared to standard 802.11 

transmissions. This does not apply in an environment characterised by a great 

number of MTs using small data packets. 

 

3.8.4 Interference by other 2.4GHz devices 

As mentioned in previous subchapters, the 2.4GHz band was intentionally included 

to the ISM band because it was, by nature, a very noisy frequency band. Hardware 

manufacturers had to overcome this problem by applying DSSS and FHSS 

techniques. 

Despite the obvious gain of spreading the available data into a frequency channel, 

2.4GHz still suffer from interference from other sources. The most commonly 

known are microwave ovens and other devices operating in the same frequency and 

sharing the same band; 802.11g and Bluetooth. 

Microwave ovens operate in a very specific frequency (2.448GHz); a frequency that 

resonates water molecules and heats up the water. Unlike any narrowband wireless 

connection that would have been devastated by such high power interferer, 802.11 

operates at the exact same frequency bands and suffers very little degradation from 

channel noise. Practical experiments have shown that by introducing a microwave 

oven in full operation at a distance of 20cm between two WLAN MTs, resulted in a 

11% loss at 1Mbps and 8% loss at 11Mbps. That comes as no surprise at any 

spreading system: when the WLAN is using DSSS only a small part of the signal is 

being affected (and errors are usually corrected through the use of Error Correction), 

while when using FH with an average of 78 hops, only 1-2 packets will be totally 

destroyed and need to be retransmitted [Fli03]. 

Bluetooth can be considered as a “light” WLAN. It, too, is capable of bi-directional 

transmission of digital data using the 2.4GHz band. Contrary to the WLAN structure, 

though, it uses FHSS and lacks central structure (infrastructure mode). It is mostly 
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used as a wireless alternative to cables, when low-speed communication is involved 

(printer, mouse, mobile phone, PDA, etc) with a top speed of about 0.8Mbps. 

Several simulations and practical experiments concluded that the coexistence of 

Bluetooth and 802.11b does not pose major problems nor does it reduce the speed of 

either considerably [Zyr99], [Sho01]. Obviously, this degree of interference is highly 

dependent on the loading, the density and the distance between the Bluetooth and the 

802.11b terminals. A typical degradation of the available bandwidth of both 

Bluetooth and 802.11b, is shown in Fig. 3.16 when an interferer is either in very 

close proximity (10cm) or in average distance (10m). 

 

 
         a             b 

Fig. 3.16  a. IEEE 802.11b with Bluetooth interferer at 10m and at 10cm.  

b. Bluetooth with 802.11b interferer at 10m and 10cm 

 

It is obvious that for a typical scenario, the level of interference among 802.11b and 

Bluetooth is negligible. 

Finally, IEEE 802.11g and any future wireless protocols using the 2.4GHz band, are 

not expected to create considerable interference among them. The reason is that by 

using different spreading keys, spread spectrum behaves very well when two or more 

transmissions use the same frequency band. Furthermore, hardware manufacturers 

promote dynamic channel selection on newer wireless products, which automatically 

select the least busy and corrupted channel from the ISM band. 
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3.9 IEEE 802.11b services 

In order for the wireless networks to be able to perform basic functions (registering 

into a cell, communication, verification of data, moving from one cell to another) 

nine different services (procedures) were established. Four of them belong to the 

station services group (MT) and the remaining five to the distribution group. The 

station services are of particular interest and include: authentication, de-

authentication, data delivery and privacy [Oue01] 

• The authentication service defines the identity of the wireless device and 

without this specific function the mobile device is not allowed to connect to 

the wireless network. Apart from the unique WLAN identity of each MT, 

authentication can be made using a list of MAC addresses that can be stored 

either inside the AP’s memory or somewhere in the wired network. It is 

worth mentioning that a MT can authenticate itself to more than one AP to 

allow for faster roaming from one cell to another. 

• The opposite procedure, de-authentication, is initiated when a MT is either 

shutting down or is moving away from the range of the AP (to free up 

resources to accommodate other MTs). After this procedure the MT can no 

longer access the wireless network. 

• Much like wired networks, WLANs need to specify a data delivery service to 

ensure that the data frames are reliably transmitted between MAC layers. 

This level consists of several procedures: 

o The DCF / PCF functions and the RTS / CTS mechanisms: 

Distributed Coordination Function (DCF) is mostly used when 

multiple MTs are operating without an AP. This is a “best effort” 

delivery system where if the channel is occupied, the terminal 

wishing to transmit will back off and wait for a random amount of 

time. Point Coordination Function (PCF) uses an AP that acts as a 

central controlling element to the wireless traffic. The AP periodically 

“beacons” the MTs to check if they have outgoing traffic. On both 

DCF and PCF, Request To Send and Clear To Send (RTS / CTS) is 

used to implement a CSMA/CA procedure. Finally, it is important to 

mention that since wireless is an unreliable medium by nature, higher 
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layer protocols, like TCP, usually guarantee the safe receiving and 

compilation of all data packages. 

o Data Acknowledgement is an essential part of CSMA/CA. In an 

environment highly susceptible to noise, the MAC layer needs to be 

informed if a transmitted packet arrived at its destination safely. The 

receiving station has the obligation to send an ACKnowledgement 

frame (ACK) to inform the sender of successfully receiving the 

packet. If this is not received in a predefined time (usually less than a 

second) it is assumed that the packet is lost and resending procedures 

are initiated [Appendix B]. 

o As mentioned above, the wireless environment is highly 

undependable. When an error occurs within a data packet, regardless 

of the number of bits corrupted, the whole packet has to be resent. 

Thankfully 802.11b gives the user the opportunity to vary the size of 

the packets (from 1 to 2346 bytes) to adapt to the current 

environment: in a noisy environment smaller packets are used to save 

time in case of retransmission, while in more reliable scenarios, the 

packet size is increased to reduce the overhead-to-data ratio. 

In contrast with station services, the distribution services make the decisions of 

where to send the data initiated by a MT. They include the procedures of association, 

re-association, disassociation, distribution and integration. 

• In association, the MT, through the AP, establishes a logical connection with 

the network devices and determines dynamically the path that its signal must 

take to reach other mobile devices. Association is very different from 

authentication. In the latter, the MT is accepted by the AP but without the 

knowledge of where the other network devices are, the distribution service 

cannot know how to deliver data to them. 

• When the MT is moving outside the range of the AP (or if the AP is shutting 

down) it will lose connection and become disassociated. The MT has to find 

another AP to associate with. 

• If in the above case either the AP is back into operation, or more commonly, 

the MT returns within the range of the AP, it is re-associated. In the case of 
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roaming between APs, the re-association procedure informs the new AP on 

the number of devices that the previous MT was associated to. 

• The distribution procedure informs the APs whether the data frame in hand is 

to be sent to another AP or it is destined to the wired network. 

• Finally, the integration service resides within the APs and acts like a bridge 

between the wired and the wireless network. It translates and reformats 

packets from 802.11 protocol, into the protocol used by the wired network 

(usually 802.3). 

Fig. 3.17 illustrates most of the above services. 

 
Fig. 3.17 authentication, de-authentication, association, disassociation and re-association  

of MTs while roaming in a multi AP environment. 

 

Although privacy and security will be analysed in a later chapter, it is worth 

mentioning some basic security principles that IEEE 802.11b uses. 

The privacy service that 802.11b uses to protect data utilises the RC-4 algorithm that 

has been used for encryption for a number of years. It is not intended for an end-to-

end encryption (MT to another terminal; wired or wireless) or to be used as the sole 

means of network protection. Its initial design was to provide a protection equivalent 

to the wired networks, hence its name: Wired Equivalent Protocol (WEP). However, 

and due to their nature, wireless networks have always been more prone to security 
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threats in comparison to their wired equivalent as in the latter, the lack of physical 

access can prevent potential attacks. 

Initially 802.11b provides three ways to increase security on the wireless part of the 

network. A network administrator can use any (or all) of these methods: 

• Withholding the Service Set Identifier (SSID) in the frame that is beaconed 

regularly by the APs and is needed by the MTs to associate themselves with 

the network. SSID can be considered as a unique name of each AP. 

• Controlling the MTs that associate with the APs, based on their MAC 

addresses. 

• Using the above mentioned WEP algorithm to encrypt the transmitted data, 

with either a 40-bit or a 128-bit key. 

Even by using all the above techniques, there is still a chance that an attacker would 

perform a passive attack. These kinds of attacks exploit some fundamental 

vulnerabilities of the WEP algorithm and the way that it creates and maintains the 

keys, and in some cases can lead to the attacker decrypting the data transmitted and 

gaining access to the wireless network. This would be examined in further detail 

within chapter 7. 

 

 

3.10 Summary and conclusions 

This chapter concludes the introductory part of this thesis. The same way chapter 2 

dealt with the introduction of some Telemedical aspects to the reader, this chapter 

offers some fundamental knowledge of wireless LANs and the way they operate. 

Within this chapter, we have examined the need that gave birth to WLANs and 

discussed the benefits, concerns and challenges that WLANs pose to the users. We 

have listed the most well known technologies of WLANs today and gave emphasis 

on the IEEE 802.11b, the technology used by the MedLAN system. We also 

considered the physical parameters of a wireless system and the services that are 

performed within it and finally elaborated on some installation considerations and 

procedures. 

As our world keeps shifting into “mobile”, WLANs, without a doubt, will play a 

leading role in that aspect. It is the author’s opinion that in some years from now 
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wired LANs will not cease to exist, but will provide a fast backbone service to 

connect the ever increasing number of WLANs. 

MedLAN is one of the novel projects that take advantage of the numerous benefits of 

WLANs that are stated in this chapter. As presented in the next chapter, it uses an 

infrastructure mode (APs and clients) and multiple APs to allow for one or more MT 

to roam from one cell to another and cover a vast hospital area. 

The following chapters will deal with the original contribution to knowledge starting 

with describing the physical characteristics and capabilities of the MedLAN system. 
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44..  TThhee  MMeeddLLAANN  SSyysstteemm  
  
  

 

4.1 Introduction 

One of the first issues that come to mind when talking about the applications of 

Telemedicine and Telecare is Teleconsultation. Teleconsultation accounts for a third 

of the use of Telemedical networks and usually defines the procedure of using 

communication links to provide an audio / video bridge between the patient’s side 

and a place where a consultant resides. The most frequent example is a 

videoconference link between a patient in a hospital and a doctor at another hospital. 

As Teleconsultation is one of the fastest evolving divisions of Telemedicine, it is 

expected that it will constantly embrace new technologies with the objective of 

making the health care delivery faster, more reliable and more accessible. The 

MedLAN system represents one of these new trends in the Teleconsultation field. 

 

 

4.2 Current and future medical needs 

A Teleconsultation system used in hospitals today usually consists of a relatively 

heavy trolley that includes a monitor (usually CRT) a desktop computer supported 

also by an Uninterruptible Power Supply (UPS) with keyboard and mouse, an ISDN 

modem supporting a triple ISDN line (3x128=384Kbps), a camera and a set of 

microphone and speakers [Fig. 4.1]. The same equipment has to be present on both 

sites, patient and consultant. The whole system weights about 30-90kg and during 

normal operation has to be powered by the mains. Due to its volume, weight and 

delicate nature, it is usually kept in a special room close to the consultant’s office. 

The procedure dictates that if a patient is in need of a Teleconsultation, the treating 

doctor communicates with the consultant via a conventional manner (a telephone 

call) and both initiate the procedure for the two teleconference machines to link 

together. The charging of the ISDN communication is usually done based on 

connection time. Call initiation has to take place and some time has to pass for the 

two systems to negotiate connection protocols and settings. 
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It is obvious that due to its weight and volume, the trolley is hard to manoeuvre and 

this can be a serious handicap, especially on the patient’s side. An alternative would 

be to transfer the patient (usually from the Accidents and emergency room) to the 

consultation side of the hospital that he or she is treated in.  

 

 
Fig. 4.1 A modern videoconferencing system including  

monitor, desktop computer (inside), camera and ISDN modem 

 

Despite the fact that the above procedure would produce the desired result (and has 

done for many years now), that does not necessarily mean that it cannot be 

considerably improved: 

• Transferring the patient from the A&E room to another place in the hospital 

wastes precious time (assuming the best-case scenario when the patient can 

actually be moved without endangering his or her condition). 

• In the case that one of the teleconsultation systems has to get to the patient’s 

site, one or more persons have to be charged with this responsibility (wasting 

man-hours), as the system is heavy and usually has to be set-up by an expert. 

• Lengthy cables in a fast moving environment like the A&E room do not just 

limit the range of the system but also pose a potential danger to the staff 

operating in there. 

• Finally, ISDN lines operate on an “on-demand” charging system. That means 

that it would be financially infeasible to retain a constant ISDN connection 

between hospitals thus a connection procedure has to be initiated every time a 

new consultation is needed. Furthermore, the ISDN communication model 

usually addresses similar communication systems and not computers that 

exist in remote hospitals. 
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Both doctors and consultants recognised the above vulnerabilities of the present 

systems and requested for an improvement that would be more autonomous within 

the A&E room, be less costly to build, easier to operate and would reduce the 

running communication costs of teleconsultation. By answering those needs 

(freedom of movement inside the Accidents and Emergency area while transmitting 

high quality video), the MedLAN system was created. 

 

 

4.3 System description 

MedLAN consists of two main parts [Fig. 4.2]: A mobile trolley that exists in the 

open plan Accident & Emergencies area (A&E) and a consultation point, within the 

hospital. 

 

 
Fig. 4.2 The MedLAN system 

 

The mobile trolley uses a wireless LAN to connect to the hospital’s network and can 

be freely moved to anyplace within the hospital, as long as there is coverage by the 

WLAN. It can also seamlessly roam from cell to cell without interrupting the 

teleconference procedure (although this scenario is rarely needed). Within the mobile 
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trolley exists a high-end laptop computer and a camcorder capable of transmitting 

both video and still images. The doctor that operates the system can either point the 

camera directly to the patient, or to any medical information (ECG, hardcopy 

outputs, films, CRT screens, details of the patient, etc) available at the time. As 

explained in chapter 5 the procedure of directly viewing the medical data presents 

several advantages while retaining the diagnostic quality. 

The system can also be connected to several medical equipment (digital stethoscope, 

otoscope, dermascope, endoscope, etc) that produce video or audio (digital or 

analogue) convert and forward their output into the network. This connection can be 

made by using cables (AV or S-Video) or by using Bluetooth medical devices. 

A consultant either exists at another part of the hospital, or in another hospital 

connected to the NHSnet. High quality still images along with video and sound can 

reach the consultant’s computer to perform the teleconference procedure [Fig. 4.3]. 

There is the option of establishing a WLAN in the consultant’s site to allow the 

consultant to freely move around his or her hospital while giving advice. 

 

       
  a      b 

Fig. 4.3  a. The MedLAN prototype trolley while communicating wirelessly with the consultant. 

Newer versions do not require the use of a trolley.  b. The consultant’s side 

 

The overall system is very light and flexible. In its initial version, the contents of the 

trolley weight just above 3Kg while an even newer version has been tested, having 

the digital camera embedded in the mobile computer, which the doctor can carry in 

his or her pocket and can be considered wearable as it weighs less than a kilo. 
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Furthermore, the use of Personal Data Assistants (PDAs) with wireless support on 

the consultant’s side can enhance consultant’s mobility even more and detach him or 

her from the consultant’s offices. The above will be explained in further detail within 

this and other chapters. Below is a summary of the basic system components for the 

first version of MedLAN: 

• A light portable computer (laptop) that will be the central node of the system. 

Most laptops available on the market today have sufficient computational 

power to accommodate the needs of a videoconferencing session. 

• A digital camcorder performing a two-fold function: it can be used as a 

camera for the teleconference part and it can also take high-resolution 

photographs and sending them to the consultant. The most important 

characteristics of the camera are: the quality of the camera lens, the ability of 

focusing to distances close to zero (macro lens), the automatic reduction of 

hard tremor (“steady shot”) the fast and automatic while-balance and the 

ability to perform under poor lighting conditions. The camcorder also 

includes a video / audio-in port to connect third-party medical equipment 

while being able to perform real-time analogue to digital conversion of their 

signals. 

• A hardware video encoder stands between the camcorder and the laptop. It is 

a very light USB device that accelerates the compression procedure and 

alleviates that task from being performed by the computer. The alternative 

would be to directly input an IEEE 1394 (Firewire) signal from the digital 

camcorder, to the computer but compacting a 100Mbps high quality video 

and audio signal into a data stream less than 1Mbps requires extra 

computational time that translates to delay between receiver and transmitter 

or audio / video desynchronisation. 

• The data to be transmitted is processed by the mobile computer and fed into 

the network path. A WLAN card (that can be embedded inside the laptop) 

transmits the data into an infrastructure WLAN. The optimum speed is 

11Mbps that falls down to 5.5, 2 and finally 1 Mbps as the MT is moving 

away from the AP. About 40% of the nominal speed is actually available to 

the MedLAN system with the rest being used by the controlling mechanisms 

of the WLAN system [chapter 3]. 
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• Access points are strategically placed in the A&E ward (and to anywhere else 

deemed necessary), pick up the signals from the MTs and forward them to 

the wired hospital network. From then on (and depending on the location of 

the receiving station) the data is routed either to a computer within the same 

domain (hospital or hospital group) or to any other computer in the NHSnet. 

• The consultant’s computer will receive the video, audio and other medical 

information having no need of any special software. This computer is also 

able to respond with any of the above kinds of data. 

It is important to understand that this thesis has demonstrated that both the practical 

and the theoretical capabilities of this system are very broad. Experiments performed 

have shown that the system is also capable of: 

•  Accommodating more than one MT in the A&E ward while sharing the 

11Mbps wireless capacity. 

• Having up to three MTs in the same vicinity, with each one enjoying 11Mbps 

of bandwidth. This takes advantage of the three independent channels 

supported in the ISM band. 

• Forwarding the data into the Internet to be useful to the consultant, even 

when he or she is at home or in any place that can access the Internet. This 

generally requires the use of broadband connections (e.g. ADSL) in the 

consultant’s residence. 

• Accessing the data through a mobile computer being connected to Internet 

using General Packet Radio Service (GPRS) while on the move. 

• Accessing the data through the high-speed links offered in the third 

generation mobile phones (3G) and performing consultations on the run. 

• Using high-quality, wireless-ready PDAs to allow the consultant to be in 

constant communication with the A&E room (always connected) and 

perform a novel videophone function. 

• Wirelessly linking hospitals that are close together and have line-of-site 

(LOS) to implement an all-wireless, independent telemedical network and 

reduce communicational costs. 

 

The following block diagram explains further the sequence of events while using the 

MedLAN system [Fig. 4.4] 
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Fig. 4.4 Block diagram of the operation of the MedLAN system 

 

The data initiated from the camcorder and the microphone (videoconferencing mode) 

flows to the hardware video encoder. Both can have other telemedical equipment as 

their input. The digital videostream of the MPEG encoder is input to the mobile 

computer in the MedLAN trolley. Through videoconferencing software, the laptop is 

able to send audio and video to a specific IP, using a PCMCIA WLAN card (can be 

embedded in the laptop). The WLAN card acts as a transceiver (transmitter and 

receiver) to the infrastructure network and is constantly connected to an AP, or 

roams between APs. The AP is connected in its turn to the wired network of the 

hospital, along with the consultant’s computer, who can eventually view the video 

and audio sent, based on its IP address. Since this is an all-IP network, outside 

connections can be supported to send the data anywhere in the world through the use 

of broadband connections (fibre, DSL, etc). Patient’s data can also be forwarded, 

recorded, and even stored in the patient’s file. 

 

 

4.3 System services and performance 

The MedLAN system is capable of handling video, audio still images, video from 

other sources and wireless access to the hospital’s network. Each of these issues will 

be presented separately. 
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4.3.1 Video 

To accommodate the basic needs for teleconsultation the MedLAN system acts as a 

mobile videoconferencing system. A high quality camera is input to a hardware 

encoder that, in its turn, feeds the data to software responsible for recompressing the 

video and audio stream and transmitting it to the specified IP of the consultant. 

Assuming that the destination computer would be in the same network domain 

(NHSnet in this case), the same software can also pick up the data from the network, 

decompress and display them on screen on the consultant’s side. 

Several commercially available software packages suitable for videoconferencing, 

were tested and evaluated. Each had its unique set of advantages and disadvantages: 

• Microsoft NetMeeting v.3 (MNM) was proven to be one of the most reliable 

software packages. Its greatest advantage was the fact that it is embedded to 

any Microsoft Windows environment (all available versions from Windows 

95 to Windows XP) that seem to monopolise the industry today and is even 

offered in Linux operating systems. This kind of cross-platform compatibility 

was proven essential, as sometimes the treating doctor in the A&E ward has 

no knowledge about the operating environment of the destination computer.  

The system is capable of sending and receiving video in three different 

resolutions: 160x120, 320x240 and 640x480 pixels. The highest resolution 

(640x480) is the most suitable for medical applications. Within the available 

resolutions, the compression factor of the video can be adjusted to increase 

the quality of the video:  

MNM uses an H.263 video transmission protocol. This is very similar to the 

MPEG4 compression algorithm where, apart from finding similarities to each 

frame and grouping them together, the algorithm tries to find similarities in 

preceding and succeeding frames in order to achieve an even better 

compression. Furthermore, when the chromatic differences of the pixels are 

not that high, the algorithm considers those pixels to have the same colour 

thus compressing the video output even more. The more the compression 

factor, the less bandwidth has to be used, but the lower the video quality. 

MNM always tries to take advantage of most of the available bandwidth. It 

also gives the user the opportunity to select between faster video and clearer 

video. Selecting clearer video is best suited for delicate operations when the 
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remote camera is in a relatively stable position and there is not much 

movement. Faster video behaves better for moving situations, transmitting 

images straight from a CRT or LCD screen (ECG, EEG, etc) and plain 

videoconferencing with either the patient or the treating doctor. The “golden 

rule” was proven to be a setting relatively closer to “faster video” [Fig. 4.5]. 

The overall compression procedures would be analysed further in chapter 5. 

 

 
Fig. 4.5 Microsoft NetMeeting videoconference settings:  

balancing between faster video and better quality. 

 

The communication procedure begins by powering up the laptop and camera 

on the mobile trolley and initiating wireless connection to the hospital’s 

network, through the WLAN card and the AP in the A&E room. About half a 

minute later, the mobile computer has received an IP address from the DHCP 

server of the hospital. The case is even easier when a static IP is associated 

with the specific network plug. By possessing any of the two IP numbers, 

(MedLAN’s or the consultant’s) one MNM software can page the other to 

initiate the communication. The receiving computer is prompted to accept the 

“call” and after doing so, two video windows are displayed on both screens 

(local and remote video). 

As the bandwidth available by the WLAN usually fluctuates, the number of 

frames per second (fps) changes and both users experience this as a 

temporary “freezing” of the video. This is more apparent when the mobile 



 

 

72

 

trolley roams from one cell to another (disassociating from one AP and 

associating with another). In normal operation, this freezing effect is less than 

100-200ms for the former case but can reach up to 10 sec while roaming 

from cell to cell. This, however, is rarely needed as it would mean that the 

MedLAN trolley had to follow a patient moving from the A&E ward into 

another hospital room. Generally, the system displays an average of 13-18 

fps when a single MT is used inside each AP [Fig. 4.6 middle left side]. As 

the number of MT terminals increases, the available fps decrease 

dramatically, mainly due to the conflicting packets of the WLANs: eight fps 

for two MTs and less than three for three MTs. 

Finally, it is worth mentioning that as the compression factor is getting 

higher, more succeeding frames have to be taken into account to search for 

inter-frame similarities and achieve a better compression. This however does 

not apply for the sound that accompanies the video. As the number of frames 

increases, so does the delay between audio and video; something that is 

usually referred to as AV delay. There are software tricks that synchronise 

audio and video by actually delaying the audio as much as the video. This 

obviously introduces further delays than those already imposed by the 

transport layer. The relatively small AV delay of the MedLAN system (50-

230ms) is considered low enough not to justify the use of the above AV-sync 

patches. 

• An alternative to the MNM is the TeVeo Vidio Suite. Unlike MNM this 

program does not offer a complete videoconferencing solution as it can only 

handle video and not audio. It too, compresses the videostream to reduce the 

bandwidth needed but it also uses a relatively simple Java script to transmit 

the video directly to an Internet browser (Internet explorer, Netscape, etc) 

capable of supporting Java scripts. Since Microsoft Windows version 2000 

and above have an embedded support for the Internet through the Internet 

Explorer) and these versions of IE include the ability of running Java scripts), 

TeVeo can transmit video to any computer or PDA that can run an Internet 

browser: the consultant simply has to know the unique IP of the treating 

doctor’s computer and type it in the address bar of his or her browser. The 

transmitting side would have already run the TeVeo client to monitor the 

videostream sent. In the case that the videoconferencing is needed to be both 
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ways (two video windows in each computer) the above procedure is repeated 

for the consultant’s computer [Fig. 4.6] 

 

 
Fig. 4.6 By using simple Java scripts, live video can be transmitted to any computer running an 

Internet browser by just knowing the transmitter’s IP (top left). 

 

The major advantage of this alternative is that a basic teleconsultation 

procedure can be initiated very quickly, without the receiving side having to 

have any special software or needed to install or configure any applications 

(like MNM). The disadvantage is that Java scripts do not usually support 

sound transmission so alternative means have to be used (landlines, mobile 

phones or even voice over IP software). 

• Several other software packages were tested, including CUSeeMe, WebCam, 

ISpy, etc. Java scripts were either created or altered to investigate their 

usefulness in telemedical applications. With the exception of CUSeeMe  

which seems to have better settings control (it allowed the user to select or 

change the basic settings for the video and audio compression algorithm), 

other software fell into two categories. Videoconferencing software where 

both parties needed special software installed on their computer, or Java 

scripts that only require the transmitting party to run any special software. 
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Overall, MNM was proven to perform relatively well and coped better with 

bandwidth fluctuations introduced by the WLAN system than any of the alternatives. 

TeVeo was simple to use and introduced the lowest overall delay between sender 

and receiver, as it did not buffer any frames: as soon as the frames were ready to be 

transmitted, TeVeo sent them to the application layer. This, however, was only done 

at the cost of high frame rate fluctuation. Fig. 4.7 illustrates this problem. 

 

 
Fig. 4.7 comparison between the transmissions of MNM (right) and TeVeo (left) 

 in terms of bandwidth fluctuation. 

 

MNM buffered a sufficient number of frames, to be able to transmit video and audio 

with much less fluctuation, in comparison with TeVeo. 

 

4.3.2 Audio 

The audio of the MedLAN system is usually transmitted alongside the video when 

software like MNM is used. It, too, is compressed to limit the amount of bandwidth 

used and/or improve the audio quality within a limited bandwidth. 

As MNM has an integrated solution for videoconferencing, it also supports 

compressed sound transmission. The user is given the opportunity to either leave the 

computer to decide the suitable compression algorithm, or set one manually using 

the advanced sound settings. From those available G.723 is a standard audio 

compressor sampling a single sound channel at 8KHz and output 6.4Kbps of sound 
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data [ITU96]. This compression algorithm was proven sufficient for average 

scenarios when the two doctors needed only to verbally communicate among them. 

In the case that an external sound source was connected to the system (electronic 

stethoscope, ultra sound monitor, etc), alternative compressors performed better. 

Adaptive Differential Pulse Code Modulation (ADPCM) and CCITT’s A-law and u-

law produced less noise and clearer sound outputs, as judged by the doctors. Below 

is a table of the available sound compressors with their corresponding data rates. 

 

 Sampling rate Bits Max frequency 

transmitted 

Bandwidth occupied 

G. 723 8kHz 8 4kHz 6.4kbps 

ADPCM 8kHz 4 4kHz 8kbps 

A-law 8kHz 8 4kHz 8kbps 

u-law 8kHz 8 4kHz 8kbps 
Table 4.1 Sound compressors available on the MNM 

 

MNM also supports full duplex communication (transmit and receive sound 

simultaneously). This function depends on the sound card used, although most sound 

cards today support this feature. Furthermore, it can automatically adjust the sound 

level to accommodate for very high or very low level sounds. Finally, it detects 

silence by allowing the user to set a threshold below which, the programme assumes 

that no sound is being generated. This has the advantage of saving bandwidth and 

limiting the background noise in a noisy environment but also introduces the danger 

of not transmitting a low level sound. 

The overall audio quality is dependant on the electronic properties of the audio 

hardware used including microphone, cables, earphones, etc. Using a low quality 

microphone with an unshielded cable led to the system picking up noise from 

various sources and retransmitting them to the channel. Not only was the sound 

unclear, but since the noise was constant, the sound threshold control could not get 

into effect thus wasting precious bandwidth. This bandwidth was eventually taken 

from the bandwidth destined for the video, thus reducing video quality. 

Finally, and despite the relatively low sampling frequency of the sound, the system 

performed very well in retransmitting audio from other sound sources. Heart and 

lung murmurs have a low maximum frequency. Nyquist theorem states that when 
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digitising a sound, the maximum frequency reproduced is half the sampling rate. As 

in most cases the sound is sampled at 8kHz, the reproduced sounds can vary from 0-

4kHz; much more than needed for heart and lung sounds (a telephone line permits 

frequencies up to 2.4kHz). 

 

4.3.3 Still images 

    
         a              b 

    
         c              d 

     
         e              f 
Fig. 4.8  MedLAN still image transmission: a. macro detail of a patient.  b. camera pointing on a TFT 

ECG screen.  c. chest x-ray.  d. Computed Tomography.  e. Magnetic Resonance.  f. Ultra sound film 
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One of the most highly used functions of the MedLAN system is its ability to send 

high quality still images to the consultant’s side. These images can be films (x-ray, 

MRI, CT), images directly taken from a patient (skin, injury, various details) or 

images pointing at an object (ECG monitor, hardcopy results, patient records, etc) 

[Fig. 4. 8] 

This procedure elevates the teleconsultation procedure into a higher level: up until 

today the consultant has often found that the resolution and general quality of the 

videostream did not provide support for accurate diagnosis as it was usually poor in 

quality and limited to the resolution of a television (720x576=0.4 Mega pixels). By 

having a quality digital camera to take snapshots of images and transmit them to the 

consultant, he or she can deliver easier, faster and safer diagnosis. 

The use of a high quality camera pointing directly to the observed object permitted 

total mobility of the MedLAN system by eliminating the need for wires, and also 

performed better than initially expected (the use of direct cameras in telemedical 

applications has been proven very valuable [Kru00]). 

The system uses a high quality Carl-Zeiss lens capable of auto focusing from zero to 

infinity and features auto white balancing in all lightening conditions. It has a CCD 

with a maximum resolution of one Mega pixel and can optically zoom 6x 

(independently of the 4x digital zoom). Its output is compressed as a JPEG with the 

user having the choice of three alternative compression levels and two available 

resolutions. Its maximum file size is just over half a MB. Below is a table 

summarising all the available resolutions, compressions and file output sizes of the 

still images. 

 
 1152 x 864 640 x 480 

Low compression (5.5:1) 520KB 180KB 

Medium compression (10.3:1) 220KB 100 KB 

High compression (14.3:1) 100KB 55KB 

Table 4.2 Still image file sizes depending on resolution and level of compression 

 

These images can also be converted to any other file format (including the DICOM 

format). Additional information can also be added and they can be stored into a 

patient’s record. Further information about compression and DICOM compatibility 

will be given at chapter 5. 
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The way these images are transmitted is the store-and-forward method: the digital 

camera stores the images in its internal memory (it can vary from 4MB to 2GB being 

able to accommodate thousands of images of various resolutions, according to Table 

4.1) and then retransmits the image, as a file to the consultant’s computer. From then 

on, the consultant can use any image viewer to view, zoom, enhance, and generally 

process the image. He or she can easily use this image to amend patient records or, 

(since it is already digital), forward it as an attachment to an email. 

Generally, the quality of the images was very satisfactory. The worst-case scenario 

was when capturing x-ray films (and generally black and white films with variety of 

grey scaled areas). As the system tried to compress the image, it created some 

similarities when there were none. This, however, was done in a very small scale and 

the output retained its diagnostic value. Finally, as the black and white films needed 

to be placed in a transparency viewer (fluorescent light) to be photographed, it was 

often better to adjust the brightness of the camera manually, to bring out the details 

of the film as the camera tended to get “fooled” by any remaining light from the 

transparency viewer [Fig. 4.9]. 

 

 
Fig. 4.9 Still images were better captured using “manual exposure” as escaping light for the 

transparency viewer (right) tends to “fool” the camera’s auto-brightness function. 

 

4.3.4 Connecting to an external device 

The MedLAN system also has the ability to connect to an external medical device 

and transfer video, audio and still images from that device to anywhere in the 

network. Obviously, by connecting to any device through wires the MedLAN system 

will lose its mobility. Nevertheless, having a very light device that freely moves 
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around the A&E ward until it gets connected to any device also presents advantages 

as the cables will only be connected at the last possible moment. 

These kinds of devices were usually ultra sound monitors, endoscopes, electronic 

stethoscopes, etc. With the exception of the latter (being small and mobile), the 

remaining devices usually could output a video signal either through a RCA 

(coaxial) video cable or through a S-Video cable. Both of these cables can be input 

to the MedLAN system. One sound channel can also be carried through a RCA 

coaxial cable [Fig. 4.10]. 

 

   
   a            b 
Fig. 4.10  a. The MedLAN system is capable of connecting to an external device and retransmit video, 

audio and still images.  b. Connecting to an ultra sound monitor and wirelessly retransmitting its video 

 

The overall performance of the system while connected to an external device, 

followed precisely that of when the system was operating on its own. The real-time 

hardware video encoder does not differentiate between these two scenarios, so as far 

as it was concerned it was just transmitting video. 

There was a visible improvement when using the S-Video cable instead of the classic 

coaxial RCA to carry the video signal. That is attributed to the fact that S-Video 

achieves a better signal to noise ratio by transmitting the chrominance and luminance 

signals separately so the need for composite signal filtering is eliminated. 

Finally, high-resolution still images of the external devices can also be taken by the 

digital camera by connecting internally in the device’s output and without having to 

point the camera to the output screen. Unfortunately, as these images are destined to 

be viewed on a television monitor (720 x 576 pixels) the resolution cannot be as high 

as the digital camera can support. 
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4.3.5 Wireless network access 

In addition to the above services, MedLAN also permits its user to wirelessly access 

the hospital network and perform any task that would require the use of a computer 

connected to the wired part of the network (file transfer, print, amend record, access 

the Internet, etc). This presents a significant advantage, especially in the A&E ward 

where the computer access sometimes becomes a problem: too many people demand 

access to a computer for emergency needs, while there is usually lack of space to 

accommodate a greater number of terminals. That, coupled with the fact that cables 

present a potential danger in the A&E rooms, makes the MedLAN system ideal for 

these kinds of applications. 

The system connects at a nominal speed of 11Mbps (as all IEEE 802.11b WLANs) 

but has an actual speed of about a third of that (3-4Mbps). That permits for fast file 

transfer or any other kind of bandwidth demanding application. 

As the above procedures have no need for QoS, the users reported that wireless 

network access performed very satisfactorily fulfilling any potential need in the 

A&E ward. 

 

4.3.6 Using a PDA at the consultant’s site 

Further to the consultant viewing the MedLAN output on a computer screen, there is 

scope for  providing the end user with the same mobility advantages as in the A&E 

ward. In that sense, a Personal Data Assistant (PDA) device can be used by the 

consultant as a communication device. Using a PDA has a number of advantages: 

• It is very light (150g) and thus can be carried easily. 

• It supports a resolution of 320 x 200 x 16 colour depth that can handle live 

video, audio, and still images. 

• Newer PDA versions have internal IEEE 802.11b support so no additional 

PCMCIA WLAN card is needed. 

• It can perform all the necessary functions usually performed by a desktop 

computer (save, open, zoom, pan, etc). 

Concerning the network coverage, there are two solutions: either extend the WLAN 

to the entire hospital by placing multiple APs and performing frequency planning (as 

explained in the previous chapter) or install an AP close to the consultant’s office to 

allow for mobility on a radius of about 50m [Fig. 4.11]. 
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   a         b 

             
   c         d 

Fig. 4.11  a. mobile PDA viewing a DICOM image b. zooming into the ROI  c. performing basic 

measuring tasks in the PDA’s screen  d. streaming wireless video viewed in the PDA screen 

 

The PDA component runs a Pocket PC 2002 operating system that supports 

Windows Media Player 9 (WMP) for viewing video and audio. Images are 

transmitted in the usual manner as files though the WLAN and can be panned to 

allow their full detail to be examined. Video, however, can have two alternatives: it 

can either be transmitted as a Java script output while the PDA’s Internet browser 

connects to the A&E’s IP, or it can be slightly buffered and transmitted in a fast 
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store-and-forward technique. The former is a simple solution but unfortunately does 

not output the quality needed as the frame rate of the video tends to fluctuate heavily. 

The most feasible solution that was dictated through experimentation, was to store a 

number of frames, compress them and them transmit them all together. 

Unfortunately, this introduced a 5-6 sec video delay due to compression but the 

frame rate was much more stable (up to 20 fps) and the video could also be 

accompanied by one-way sound. 

Finally, several filters were embedded on the still-image viewing software of the 

PDA, in order to enhance the ability of the system to view DICOM images and 

perform basic processes on them [Fig. 4.11.a,b,c] 

Overall, the use of PDA on the consultant’s side was proven a valuable application 

that permitted mobility to the consultant at a range that was only limited by the range 

of the APs. Java scripts were developed in order for the videostream to be 

compatible with what the PDA expected. Unfortunately, sound and video could only 

be transmitted one way (A&E ward to consultant) as the PDA lacked the ability to 

handle real-time audio and video transmission. During the experimental phase this 

was compensated for, by using a mobile phone. 

 

 

4.4 Range and scalability of the MedLAN system 

As mentioned in the previous chapter, IEEE 802.11b allows clients to roam from one 

AP to another while retaining their connection to the network. This means that 

multiple APs can be placed in strategic locations around a hospital wards, or even 

cover the entire hospital, so MTs can roam around seamlessly while running real-

time applications. It was also mentioned that 802.11b supports three independent 

channels. By carefully placing the APs to specific locations so they would not 

interfere with each other when the same frequencies are reused, the coverage can 

extend to include vast areas, much like the structure of GSM cellular telephony 

[Ban02b]. 

This introduces the concept of site survey and frequency planning: before any 

WLAN installation, specific tools that reveal the signal strength in the region of 

interest have to be used. Following that, the three independent frequencies have to be 

assigned in a way that the range of the AP using the first independent frequency, 
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does not collide with the range of the distant AP reusing the same frequency [Fig. 

3.11]. Newer WLAN hardware has the ability to automatically select the least busy 

channel alleviating this burden from the communications engineer. Most of the site 

survey processes can be performed using software that comes with the WLAN client 

card [Fig. 4.12] 

 

       
Fig. 4.12 Site survey tools provided by Cisco systems indicate signal strength and signal quality. 

 

It is also important for both the management of the hospital and the developing 

engineer to note that [Ban02b]: 

• The range of the WLAN system is directly related to the security of the 

system: the designer of the system should know which area needs protection. 

• The range that the manufacturer suggests is much higher than the actual 

range of the WLAN. 

• Although the PCMCIA card’s transceiver will only work in the effective 

range, by the use of special antennae this range can be widely extended. 

• It is only with a site survey tool and with the use of practical means that the 

developer can estimate the effective range of the WLAN. Simulation and 

modelling tools fail to take into account small details (walls, furniture, 

metallic surfaces) that greatly affect the WLAN range. 

• As the signal quality of the WLAN is reduced, IEEE 802.11b falls-back in a 

lower speed to preserve the signal integrity. The fallback speeds from 11 

Mbps are 5.5, 2 and 1 Mbps. 
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 The site survey was the first action to take place in the Central Middlesex Hospital 

A&E ward when the WLAN was installed. Fig. 4.13 illustrates the range of two APs 

(marked in black circles), one installed in the majors (adults) and one in the minors 

(children) area of the A&E. The ranges overlap each other but without causing any 

interference as the lower user channel 6 and the higher (minors) uses channel 11. 

The specific range displayed in the figure represents connection at 1Mbps. As the 

need for speed increases, the range of the system decreases. Maps of the various 

WLAN speeds and ranges can be found in Appendix D. 

 

 
Fig. 4.13 The range of two APs as revealed after a site survey of the CMH A&E ward. The black 

circles indicate the position of the APs and the grey area indicate their range at 1Mbps 

 

Both the APs are connected to the wired network of the CMH hospital and from then 

on, to the network of North West London Hospitals (NWLH) that includes 

NorthWick Park Hospital (NWPH), Wembley MAT and Willesden Hospital [Fig. 

4.14]. 
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Fig, 4.14 Basic structure of North West London Hospital network.  

The MedLAN system can directly operate between any of those two hospitals. 

 

Any teleconsultation operation that can take place within one of these hospitals using 

WLANs, can also be performed between any other two, as they all belong to the 

same network. All experiments (site survey, frequency planning, videoconferencing, 

etc) that were performed in CMH were also tested in NWPH and Wembley MAT. 

The results were the same (if not better) as in the CMH case, yielding that the 

MedLAN system performs adequately regardless of the environment. As an 

exception, NWPH enjoyed an even better reception of the radio signal. That is 

attributed to the fact that NWPH’s A&E ward is built as a single room with no walls 

in between, in contrast with the thick walls of CMH’s A&E. 

 

 

4.5 Interference with medical equipment 

The increasing number of wireless personal systems (WLANs, PDAs, mobile 

phones, pagers, etc) has led to an increasing concern of the possible interference that 

these systems might have with the existing medical equipment. No medical 

personnel or hospital administration could accept a system that might have an effect 

on the reliability of the existing medical instruments and thus on the safety of the 

patients. 

Several studies so far have dealt with this both in the practical and theoretical aspects 

of the problem. It is however clear that unless practical measurements are taken in 
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the actual hospital environment, one cannot be certain of the effects that these 

electromagnetic frequencies might have on the medical hardware [Boi97], [Vla95], 

[Pha00], [You97]. 

Initially, it is crucial to distinguish between Electro-Magnetic Interference (EMI) 

caused by the use of narrowband radio transmitters, and that caused by spread 

spectrum radios. When referring to EMI from mobile radio, it is a common 

misconception to consider only mobile phones, especially GSM. Contrary to spread 

spectrum, GSM phones use a combination of Time Division Multiple Access 

(TDMA) and Frequency Division Multiple Access (FDMA). They separate the 

available bandwidth to 128 channels (using FDMA) and each of these channels into 

eight time slots (TDMA) and assign one slot for each user operating his/her mobile 

phone at the time. This means that the mobile phone only transmits “bursts” of 

signals every eighth of the time turning its radio amplifier on and off continuously. 

This causes interference to any amplifier, speaker, radio, television and of course, 

some medical equipment built to amplify weak signals and consequently are 

sensitive to this kind of EMI [Fig. 3.4.b]. 

This is very different from the case when WLANs operate. As explained in the 

previous chapter, WLANs use a spread spectrum technique (usually DSSS) to spread 

their signal to the entire available frequency band. As they continuously transmit 

their low power signal, the chance of interfering with any device (medical or not) is 

minimal and always favours DSSS over FHSS. 

 

Nevertheless, the US FDA developed a set of rules recommending that non life 

supporting medical electrical equipment should be resistant to background electric 

fields in the frequency range of 80MHz to 2.5GHz of 3 V/m (130 dBuV/m), 

increasing to 10 V/m (140 dBuV/m) for life supporting medical equipment 

[EMC01]. 

An extensive study of the possible effects of 2.4GHz WLAN operation into the 

hospital environment took place during 2003 in two US hospitals: the Virginia-

Maryland Regional College of Veterinary Medicine (VMRCVM) at Virginia Tech 

and the Carilion Roanoke Memorial Hospital (CRMH) in Roanoke, Virginia giving 

emphasis to locations such as Emergency Rooms, Intensive Care Units, Surgery 

blocks and Radiology. [Kri03] 
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After setting up an infrastructure WLAN and with the help of a measurement test-

bed (vertical dipole, sleeve antenna, low noise power amplifier and finally a 

spectrum analyser), the system took continuous readings of various floors and wards 

of both hospitals, for the duration of the day. The results, illustrated in Fig. 4.15, 

indicate that the worst-case emissions of WLANs are far below the levels of 

resistance proposed by the FDA (the curve found in the 2.44GHz frequency is due to 

the often operation of a microwave oven). 

 

 
Fig. 4.15 worst-case EM emissions recorded from five measurement sites on the South section of the 

Carilion Roanoke Memorial Hospital over a period of 24h. All measurements fall under 130 dBuV/m 

 

A past study in the Johns Hopkins Hospital performed in 1999, also dealt with the 

same issue. This study was performed at the dawn of the WLAN revolution and 

investigated the use of WLANs to fulfil patient record updates, while on the move. 

Several APs were placed inside the hospital and there was an emerging concern on 

the possible effects that these radio frequencies might have on the medical hardware. 

Contrary to the previous one, this study followed a different, yet effective path: it 

placed the WLAN radios near (or in contact with) several medical equipment and 

asked both doctors and engineers to check if they could witness any change in the 

operation of the medical instrument. Table 4.2 summarises the results yielded by this 

experiment. 
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Medical equipment Power at 

2.4GHz 

Hospital Effect 

Bunnel ventilator monitor 100 mW John Hopkins No visible interference 

Escort MDE remote EKG 100 mW John Hopkins Readings affected 5-120 cm 

depending on the radio position 

Fenwal blood warmer 100 mW John Hopkins No visible interference 

Healthdyne infant monitor 100 mW John Hopkins No visible interference 

HP 78173A ECG 100 mW John Hopkins No visible interference 

Imed Gemini PC-2 infusion pump 100 mW John Hopkins No visible interference 

Marquette physiological monitor 100 mW John Hopkins No visible interference 

Nellcor pulse oximeter 100 mW John Hopkins No visible interference 

SensorMedics 3100A oscillator ventilator 100 mW John Hopkins No visible interference 

Table 4.3 Interference of IEEE 802.11b WLAN  

with existing A&E medical devices in John Hopkins Hospital 

 

Using the same procedure, the same experiment was performed in both CMH and 

NWPH during spring of 2002: 

• Each of the devices usually found in an A&E ward or Resuscitation Room 

was tested with emphasis on oscilloscopes, as these tend to be the most 

vulnerable to EMI. 

• Both the client PCMCIA card and the access point were placed in a number 

of different positions near or on the device in question. 

• To ensure realistic conditions, all the above devices were connected to one or 

more patients and possible changes in their vital signs were examined both by 

doctors and by technicians. 

Below is a table that summarizes some of the most frequently used equipment that 

can be found within an A&E room along with the possible interference that the 

MedLAN system could cause in such equipment. No visible interference was noticed 

in all the medical equipment tested in CMH and NWPH. 
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Medical equipment Power at 2.4GHz Hospital Effect 

HP 78353 BU 30 mW / 50mW CMH A&E No visible interference 

VDU monitors 30 mW / 50mW CMH A&E No visible interference 

HP Page Writer Xli 30 mW / 50mW CMH A&E No visible interference 

LIFEPAK 8 cardiac monitor 30 mW / 50mW CMH A&E No visible interference 

Agilent Page Writer 300pi 30 mW / 50mW CMH A&E No visible interference 

Nova SI and Profig Nutra 30 mW / 50mW CMH resuscitation No visible interference 

Passport XG Datascope 30 mW / 50mW CMH resuscitation No visible interference 

Propaq encore 30 mW / 50mW CMH resuscitation No visible interference 

Table 4.4 Interference of IEEE 802.11b WLAN  

with existing A&E medical devices in CMH and NWPH 

 

Conclusively, several experiments (both practical and theoretical) indicate that the 

emerging concern about the possible effects that WLAN emissions might have in 

hospital equipment is unfounded. This is attributed to the use of spread spectrum 

technologies by the WLAN hardware (especially DSSS) and is very different than 

TDMA used by mobile phones. 

 

 

4.6 Testing phase evaluation 

Overall, a great number of visits were made to all NWLHs and in all of them various 

parts, procedures and alternatives of the MedLAN system were tested, along with all 

tests made to the laboratory. In all of these visits and from the moment the first 

MedLAN prototype was used in CMH’s A&E ward, a record was kept of the opinion 

of the various personnel using the system, along with the opinion that the patient had 

when using MedLAN on them. Below is a summary of these records indicating the 

general acceptance of the system. The results concerning the validation of the 

specific system’s outputs will be presented in the next chapter. 

 

4.6.1 Doctors in the A&E ward 

Treating doctors seem to be the most enthusiastic group. They understood the system 

as something new and original in the Telemedical application field. As they were the 

ones working in the A&E ward, they looked at the system as something that has the 

potential to alleviate some of the burden of the A&E procedures since mobility leads 

to effectiveness and better time utilisation. 
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As some of these doctors had basic computer training and experience, they were 

eager to try the system out and to provide all necessary sources for the test. They 

were, however, reluctant towards the possibility of jeopardising the confidentiality of 

the patient and often requested the support and cover of the upper management. 

 

4.6.2 Consultants 

Consultants were very positive in their initial comments. As they were they ones 

suggesting the system in the first place, after witnessing its development from birth, 

they were contempt when the prototype of the system began operation. Their first 

observation was regarding the frame rate fluctuation and the small delay between the 

sender and receiver that was made noticeable as at that time, landline phones were 

also used to verify correct operation. 

After some of the glitches were corrected, they continuously requested for system 

improvements, as they understood that the potential of the system was greater than 

initially planned. Some of their requests include the transmission of the MedLAN’s 

output at their home through the use of DSL lines, being able to use 3G mobile 

device to view video and having access to the MedLAN system from outside the 

NHSnet. 

Most of the problems were regarding the system’s output quality of films (x-rays, 

US, MRI, CT). Doctors felt uncertain that finer details will be able to be recognised 

as they were long used to viewing films on transparency viewer. After some 

brightness adjustments experiments, the results were satisfactory (Chapter 5). 

 

4.6.3 Nurses / healthcare personnel 

Most of the nurses did not seem to grasp the potential of the system and remained 

distant from its use. They were more active in providing initial care for the patients 

in the A&E, rather than investing time to learn about a system that would be used in 

the future. The fact that in its initial stage, the system tended to take some precious 

space in the A&E benches, made their feeling towards the system slightly negative. 
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4.6.4 Patients 

As expected, patients were reluctant about the possibility of using MedLAN to 

transmit their data to a distant point. This can be attributed to several reasons: 

Initially, being in the A&E room as patients inclined them to worry more about their 

current health, rather than the potential of the system. Additionally, when explaining 

to them that their images and video will be transmitted to a distant location there was 

concern about the overall security of the system and of the possibility of others 

viewing their personal data. Finally, it was difficult to explain to some of the patients 

the basic procedures that the system uses. All the above were made even worse when 

dealing with older people. There were of course, many patients that were enthusiastic 

about the possibility that a system so technologically advanced will be used for their 

own benefit.  

To avoid any mishaps and to ensure the legality of the hospital’s actions against the 

patient, a “patient acceptance form” was developed to be signed by the patient 

[Appendix E] 

 

4.6.5 Overall results 

From the testing phase and by using both the feedback forms and the subjective 

opinion of all the groups previously mentioned, a summary of the acceptance of the 

MedLAN system could be created. The population used to create this output, 

included 7 consultants, 15 doctors and 23 nurses from the A&E department and more 

than 35 patients. All of these groups were asked to evaluate different aspects of the 

MedLAN system: among other questions, consultants and doctors were asked about 

the effectiveness, ease and fidelity of the system. Nurses were asked about the 

practicality of the system and the degree at which it might interfere with their work. 

Finally, patients were called to answer if the use of the system increased their 

uneasiness or their concern regarding security. 

Of the above groups, the entire population of both doctors and consultants evaluated 

MedLAN as a system that can have a positive effect in treating a patient. Most of the 

nursing staff (70%) felt that this was a positive step; the rest were mainly concerned 

about the possible effects that the deployment of such a system might have in their 

working environment. Finally, an average of 60% of the patients thought that they 
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would benefit by the use of such a system, while the rest either did not fully 

understood its potential, or seemed slightly intimidated in trying new technology. 

 

4.7 Conclusions 

When evaluating a telemedical system, the objective is to prove that the healthcare 

data provided by telemedicine is as useful as those provided by conventional means 

[Nor02]. As the MedLAN system was developed as an improvement to existing 

videoconferencing systems, our task was to prove that it works as well as (or even 

better than) these conventional systems. 

In that sense, we have presented the system and its abilities and gave a general 

description of its components and the way the data flows from one end to another. 

We have then elaborated on the services that the system can offer (live video, audio, 

still imaging, connection to external sources and wireless network access) along with 

its performance in each of these cases. We have also discussed the possibility of 

MedLAN interfering with existing medical equipment, before we discharged it as not 

applicable in the case of DSSS WLANs. Finally, we have presented a record of the 

remarks and opinions from the persons using the system. 

Overall, the MedLAN system proved that it can perform satisfactorily in a variety of 

scenarios and can outperform existing telemedical systems while having a relatively 

low cost of installation and maintenance. This, coupled with the fact that it is 

completely open-sourced and easily upgradeable (in order to adapt to new trends in 

communication technology), makes the system ideal for use in a number of 

healthcare applications. 

Although the main characteristics of the system were evaluated (mostly using 

practical means and observations), a detailed comparison between MedLAN’s 

outputs and conventional means used until today will be presented in the next 

chapter, with emphasis on the still imaging of the system. 



 

 

93

55..  AAddjjuussttiinngg  DDIICCOOMM  SSppeecciiffiiccaattiioonnss  iinn  aa  
WWiirreelleessss  LLAANN  SSyysstteemm  

  
 

 

 

5.1 Introduction 

As the need for electronic transfer and storage of medical images seemed to increase 

over the years, there was a definite need for standardisation of the format of those 

images. Up until some years ago, the scenery of medical imaging seemed hazy with 

medical images extended to different formats, resolutions, frame rates (video), 

colour depth, contrast, etc. Digital Imaging and Communications in Medicine 

(DICOM) standard has been developed to serve the needs of manufacturers and users 

of medical imaging equipment, for interconnection of devices on standard networks 

[DIC01]. Its multiple parts provide a means of expansion and updating.  

The design of the standard aimed at allowing simplified development of all types of 

medical imaging. It also described a hierarchical structure of communication 

between medical and storage / retrieval devices, as well as specifications on patient 

records. Simply put, DICOM provides a set of specifications for interconnection of 

medical devices.  

In the MedLAN case, however, the limited available throughput of a WLAN system 

makes the use of high demanding specifications, such as DICOM, problematic 

especially when no compression during transmission is used. 

In this chapter, there will be a description of the DICOM specifications and the 

consequences that this poses to a transport layer of a WLAN. More specifically, 

transmission of still images (x rays, CT, MR, etc), video (patient live video, ultra 

sound scan, etc) and sound (heart, lung murmurs) over a WLAN link will be 

investigated and will be contrasted with the DICOM recommendations. Specific 

attention will be given to still images [Ban03]. 
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5.2 DICOM recommendations 

After the introduction of Computed Tomography (CT) and other medical modalities 

some years ago, the American College of Radiology (ACR) and the National 

Electrical Manufacturers Association (NEMA) recognised the need for information 

exchange between medical devices. (until then, devices by different manufacturers 

produced a variety of different file formats). For that reason, ACR and NEMA 

formed a joint committee in 1983 (ACR-NEMA) to develop standards to [DIC01]: 

• Promote communication of digital image information, regardless of device 

manufacturer. 

• Facilitate the development and expansion of Picture Archiving and 

Communication Systems (PACS) that can also interface with other systems 

of hospital information. 

• Allow the creation of diagnostic information databases, which can be 

interrogated by a wide variety of devices distributed geographically. 

These standards were later referred to as DICOM. 

It is important to understand that DICOM standards keep evolving by applying 

enhancements proposed by members and other interested parties. This is crucial in 

order to accommodate for future developments in technology. One such “adaptation” 

of the DICOM standards will be presented in this chapter and concerns the use of 

WLANs in medical image transmission. 

 

5.2.1 Scope of DICOM 

The DICOM Standard facilitates interoperability of medical imaging equipment by 

specifying [DIC01]: 

• A set of protocols to be followed by devices claiming conformance to the 

Standard. 

• The syntax and semantics of Commands and associated information, which 

can be exchanged using these protocols. 

• Information that must be supplied with an implementation for which 

conformance to the Standard is claimed. 

However, the DICOM Standard does not specify for the implementation details of 

any features of the standard on a device claiming conformance, the overall set of 
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features and functions to be expected from that system, nor a testing / validation 

procedure to assess an implementation's conformance to the standard. 

In essence, DICOM standards deal with the field of medical imaging and within that 

field it addresses the exchange of information between medical imaging equipment 

[Fig. 5.1] 

 

 
Fig. 5.1 Scope of DICOM in medical informatics 

 

5.2.2 Goals of DICOM standards 

From the moment of their creation, DICOM standards offered a basis for 

interoperability of medical devices conforming to the DICOM suggestions. More 

specifically DICOM [DIC01]: 

• Addresses the semantics of interoperation commands and associated data (for 

devices to interact, there must be standards on how these devices are 

expected to react to commands and associated data). 

• Is explicit in defining the conformance requirements of implementations of 

the Standard. In particular, a conformance statement must specify enough 

information to determine the functions for which interoperability can be 

expected with another device claiming conformance. 

• Facilitates operation in a networked environment. 

• Is structured to accommodate the introduction of new services, thus 

facilitating support for future medical imaging applications. 

• Makes use of existing international standards wherever applicable. 
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5.2.3 Structure of DICOM standards 

The DICOM standards are structured as a multi-part document. Depending on the 

application used, some or all of these parts are to be used to ensure conformance and 

interoperability. In summary, the following sixteen parts describe its possible 

operations (a more detailed description can be found in Appendix F): 

1. Introduction and Overview 

2. Conformance 

3. Information Object Definitions 

4. Service Class Specifications 

5. Data Structure and Encoding 

6. Data Dictionary 

7. Message Exchange 

8. Network Communication Support for Message Exchange 

9. Point-to-Point Communication Support for Message Exchange 

10. Media Storage and File Format for Data Interchange 

11. Media Storage Application Profiles 

12. Storage Functions and Media Formats for Data Interchange 

13. Print Management Point-to-Point Communication Support 

14. Grayscale Standard Display Function 

15. Security Profiles 

16. Content Mapping Resource 

Number 8, “Network Communication Support for Message Exchange “, number 5, 

“data structure and encoding” and more specifically, number 10, “media storage and 

file format for data interchange”, deal with the way that images are displayed, stored 

and compressed. This will be explained further during this chapter and will be 

contrasted against the abilities of the transport layer of a WLAN. 

All the above parts, and the way they are combined together, are illustrated in Fig. 

5.2 
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Fig. 5.2 Relationship of the first nine parts of the DICOM standards as they appear on the 

specification manuals. Depending on the application, some or all of them are used. 

 

In general, the operations of the DICOM model can be mapped to the seven OSI 

layer model described in chapter 3 [Fig. 5.3]. 

 

 
Fig. 5.3 Mapping the OSI 7-layer model to the DICOM model: two more layers exist in the DICOM 
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5.2.4 DICOM image format 

By far, the most valued DICOM application is the representation and storage of still 

images (x-rays, CT, MRI, etc) and limited frame rate videos (angiography, 

ultrasound, etc). All modalities supported by DICOM, along with their specific 

characteristics, are presented in Appendix G. Network access to patient record and 

medical equipment interoperability are also important tasks but will not be discussed 

in this chapter. 

One of the changes that DICOM imaging has introduced, is the use of a composite 

image: apart from the actual image information, there exists a text file about a page 

long, that offers information about the image: modality, size, data, time, operating 

doctor, patient’s name, findings, etc. This has been proven crucial to the effective 

use of medical images as it can include information on actual image metrics. It can 

also eliminate the danger of the image being mistaken or misplaced. The initial 

DICOM versions kept this additional text file as a separate document, so each 

medical image stored was represented by two files: one *.hdr and one *.img (analyse 

format). Newer versions contain both header and image data on the same file. The 

image data can also be compressed using lossy or lossless variants of JPEG as well 

as run-length encoding format. An analysis of a modern DICOM header (single file) 

reveals its basic structure: the first 794 bytes are used for the DICOM header that 

describes the dimensions of the image to follow, along with other details (mentioned 

above). The image data follows the header information, as they are stored under the 

same file. 

DICOM requires a 128-byte preamble (usually set to zero) followed by the letters 

“D”, “I”, “C”, “M”. After that comes the header information that is organised in 

groups; group 0002h, for example, is the meta file information group and contains 

three elements: group length, file version and transfer syntax. The DICOM elements 

that are required to effectively view a modality (described in part 3) depend on the 

image type. As an example, the image modality “MR” should have an element in its 

header describing the MRI echo time. Absence of this kind of information is a 

violation of the DICOM standard, however, most DICOM viewers will still consider 

these images as valid and allow proper display. 
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ACR-NEMA has proposed guidelines for equipment, covering two basic categories 

of teleradiology: small matrix size (e.g., computed Tomography (CT), magnetic 

resonance imaging (MR), ultrasound, nuclear medicine, digital fluorography, and 

digital angiography) and large matrix size (e.g., computed radiography and digitised 

radiographic films). A small matrix is typically 512 x 512 resolution at minimum 8-

bit depth for processing, manipulation, and subsequent display.  A large matrix 

allows a minimum of 2.5 lp/mm spatial resolution at minimum 10-bit depth 

(translating to about 2048x2048 pixels).  

Furthermore, ACR/NEMA also suggested that reversible or irreversible compression 

could be applied to those image matrices, to reduce their storage size and facilitate 

easier transmission, as long as there is no reduction of information necessary for a 

diagnosis. However, the current trend concerning DICOM images is that there is 

benefit in storing uncompressed medical images, as the possibility of losing valuable 

information is minimised. (Further suggestions made by the ACR-NEMA 

concerning still image capture and storage, can be found in Appendix H [ACR99]) 

 

 

5.3 Image and video compression 

Before further discussing the compression of DICOM images, it is useful to explain 

some fundamentals of image and video compression. 

In a number of applications, our needs tend to grow much faster than the technology 

can keep up with: the demands for speed in the Internet connection, CPU processing 

ability, transmission of high quality video and audio, higher media storage capacity, 

etc. One can consider the example of a plain video stream being transmitted over a 

digital channel: for a European PAL system it has to have 720 x 570 pixels with a 24 

bit colour depth, 25 times per second (fps). For a 90 minute movie, this translates 

into: 720 x 570 x 24 x 25 x 60 x 90 = 1329696000000 bits (approximately 1.2TB); a 

volume too large to be handled by today’s storage media. For that reason, the need 

for compressing data (multimedia or other kind) became apparent, especially during 

the last fifteen years. 

Compression algorithms in general, fall into two categories: entropy encoders that 

manipulate bits regardless of their meaning while being fully reversible and source 

encoders, which take advantage of the bits properties to provide better compression 
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while sacrificing some of the original information. For obvious reasons, the former 

algorithm is preferred for data applications while the latter is more desirable for 

multimedia. An example of a fully reversible algorithm, would be the operation of a 

widely-used compressor; ZIP (Winzip or PKZIP) to reduce the size of a program 

file: it will search throughout the file for groups of similar bytes and will store the 

group’s contents and the places where these group appears. This procedure reduces 

the size of the file by an average factor of 0.5 (50%). The reverse procedure creates a 

file identical to the original. 

Even with this definite gain though, it would be impossible to fit most of multimedia 

applications in conventional storage media. For that reason, more advanced 

techniques came in use. 

Source encoding usually applies to images or image sequences (video). Like the 

entropy encoder, it also manipulates the image bits searching for groups of similar 

properties (chrominance and luminance) to pack them together thus reducing the 

image size to about a half. The major difference is that if it does not find any 

similarities, it creates some by forcing pixels that have similar properties to act as a 

group of pixels with the same properties. This “forcing” of similarities is controlled 

by the user and it balances quality over size: the higher the compression, the less the 

file size. The less file size, the less image quality, as the loss of the original 

information is apparent. 

In general, image formats that use a fully reversible procedure include: .TIFF, .PCX, 

.GIF, .BMP while formats that usually lose some information during decompression 

are: .PNG, .JPG, with the latter being the most widely used format, as it is the de-

facto form for Internet images. 

It is obvious that if an image has a high percentage of similarities (areas with the 

same colour or brightness) the compression algorithm will perform better than in a 

case of high detail and smooth colours. This introduces the term “entropy” that 

simply describes the “randomness” of things. The higher the entropy in an image, the 

lower the compression. 

 

5.3.1 JPEG 

JPEG (Joint Photographic Expert Group) group provides the syntax and the method 

for compressing still images [Ric02]. The JPEG standard includes a set of features 
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designed for a wide range of applications. Further optional modes are defined to 

extend the capabilities of the baseline codec. 

JPEG operates in the following way: the image to be compressed is divided into 

several 8 x 8 pixel blocks and each is processed in a zig-zag manner [Fig. 5.4]  

 

 
Fig. 5.4 zig-zag scan used by the JPEG algorithm 

 

This allows for the grouping of low frequency coefficients in top of vector and the 

transformation of the 8 x 8 blocks into a single 64-element vector. Colour 

components (RGB or chrominance and luminance) may be represented separately or 

interleaved. Each of the 8 x 8 blocks is coded using the procedure illustrated in Fig 5.5. 

 

 
Fig. 5.5 JPEG baseline codec: sequence of events 

 

• Level-shift shifts the data to a value evenly distributed about zero 

• Forward DCT transforms the image to 8 x 8 block 

• In the quantiser, each of the 64 DCT coefficients (Cij) is quantised by an 

integer division Cqij=round (Cij/Qij). Qij is a quantisation parameter and Cqij is 

the quantised coefficient. Larger values of Qij yield for higher compression as 

more coefficients are set to zero after quantisation. This is the parameter 

controlled by the user to set the compression ratio. The 64 values of Qij are 

stored in a quantisation map and can be “weighed” so that low frequency 

coefficients are quantised more than high frequency ones. That achieves a 

better visual result as higher contrast areas are represented in more detail. 
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• Zig-zag reordering rearranges the 8 x 8 block coefficients so that low 

frequencies are grouped together at the start of the array. 

• DC differential prediction attempts to guess the coefficients of neighboured 

blocks, based on the properties of preceding blocks. 

• In the entropy encoding, the differential DC and AC coefficients are encoded. 

• Finally, an optional “marker encoding” can be embedded into the entropy-

coded data sequence to describe several image properties. This is also called 

“metafile” and can contain information on the camera or scanner that took 

that picture, lens distance, speed of shutter, etc 

Figure 5.6 demonstrates the effects of various levels of compression applied in a 

medical image. The “block” effect is evident in the images that were stored using 

higher compression [Fig. 5.6.c] 

 

   
    a       b 

   
                            c           d 
Fig. 5.6 a. detail of an original image. b. The square represents the detail of the original uncompressed 

image c. image compressed as a JPEG with 30:1 compression ratio having a PSNR of 26.2dB. The 

“block” effect and forcing of similarities are apparent.  d. same detailed compressed at 5.5:1 with no 

visible loss of information (PSNR is 21.4 dB) 
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Decompressing the image has the exact reverse procedure as compression. As some 

of the detail is inevitably lost during JPEG conversion, multiple savings of the same 

image (usually after processing it) further degrades the image quality as more 

coefficients are rounded to their nearest integer.  

It is worth mentioning that JPEG also defined a lossless encoding / decoding 

algorithm using a DPCM technique. Lossless JPEG guarantees image quality, but 

only at the expense of poor compression performance. 

 

From the moment of their creation, many coding schemes have been shown to 

outperform baseline JPEG. The need for better performance and higher compression 

ratios led to the development of JPEG 2000, the latest addition to the JPEG family. 

JPEG 2000 is based on a wavelet transform and generally supports [Ric02]: 

• Better compression performance at high compression rates. 

• Efficient compression of mixed images (photographs and text). 

• A choice of lossless or lossy compression. 

• Progressive transmission (to improve transmission over a slow network link). 

• Region Of Interest (ROI) coding allowing for the encoder to specify a region 

within the image that will be treated differently during encoding (better 

quality). That is particularly useful to telemedical applications as in several 

modalities (more often films) there is a demand for the highest detail in a 

very specific part of the image, to facilitate safer diagnosis. 

• Error resilience tools that improve the safety of transmission. 

• Open architecture that allows for future addition to the standard. 

 

A typical objective metric scale for measuring the quality of an image is by using the 

Peak Signal to Noise Ratio of the JPEG reconstructed image, against the original. 

Fig. 5.7 illustrates the difference in performance of JPEG, JPEG 200, PCM (no 

compression) and Differential PCM, for a range of bits per pixel [Lag02] 
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Fig. 5.7 PSNR over bpp for JPEG, JPEG 2000, PCM (uncompressed) and Differential PCM:  

For the same value of bpp, JPEG 2000 outperforms JPEG 

 

Finally, a “motion JPEG” (MJPEG) has also being defined. It is a series of JPEG-

compressed images run as a sequence to mimic motion pictures. Although this 

technique has been used in the early days of JPEG compression, nowadays it is 

deemed obsolete, as it does not exploit inter-frame redundancy and achieves a poor 

compression rate, especially compared to the MPEG algorithm. 

 

5.3.2 MPEG 

The first standard produced by the Moving Pictures Expert Group (MPEG) was 

MPEG-1 and aimed at providing sufficient compression to accommodate 74 minutes 

of compressed video and audio, in a standard CD format; later described as Video-

CD (VCD). VCD was never a commercial success as the quality improvement over 

conventional VHS tape was not sufficient. Moreover, the irritating break of the 

movie on the 74th minute made things even worse. However, MPEG-1 was 

considered valuable for two good reasons: it introduced consumers to the idea of 

digital video storage and transmission (over the Internet) and also opened up the way 

for improvements, such as MPEG-2. Until today, MPEG-1 is considered a fail-safe 

compression algorithm; something that almost all digital devices can reproduce 

(digital cameras, computers, DVD players, etc) [Ric02] 

Details of the operation of the MPEG algorithms are too vast to be mentioned within 

this chapter [Ric02]. However, it is worth mentioning that MPEG-1 encoder works 
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with a typical resolution of 352 x 288 or 352 x 240 pixels. Each frame of video is 

processed in units of  “macroblock” corresponding to a 16 x 16 pixel area in the 

frame that explains the “squaring” effect of a rapidly moving scene encoded using 

MPEG-1. The major advantage of this algorithm over MJPEG, is that it takes into 

account the preceding and succeeding frames to achieve a considerably better 

compression. More specifically, it uses “P-pictures” to forward-predict the next 

frame, based on a reference picture. 

 

With the dawn of digital television some years ago, came the need for an even more 

efficient video compression algorithm. MPEG-2 was designed to support larger 

frame sizes (720 x 576 or 720 x 480) and coding for interlaced video, in contrast 

with MPEG-1 that treated the video frame progressively. This function was proven 

useful when dealing with television frames that were inherently interlaced. MPEG-2 

is considered as a superset of MPEG-1; MPEG-2 decoders can effectively decode 

MPEG-1 video.  

Its major advantages can be summarised below: 

• Efficient coding of television video: its core functions address television 

frames and can efficiently compress and reproduce a television videostream 

with an average bit rate of about 3-5 Mbps 

• Support for coding of interlaced video: encodes separately the two half-

frames that make up the television image. Using that technique, a better 

performance is achieved as the frames are captured at typically 1/50 of a 

second. 

• Scalability: apart from base layer (performing basic encoding functions) 

MPEG-2 supports a set of four enhancement layers (spatial, temporal, SNR 

and data partitioning) to effectively improve the quality of the decoded 

sequence. 

• Support for different profiles and levels: to enhance interoperability between 

different applications, MPEG-2 supports for profiles (simple, main, 4:2:2, 

SNR, spatial and high) and for each of those, four different levels (low, main, 

high-1440 and high). As an example, the “main” profile combined with the 

“main” level describes a digital television transmission with a frame 

resolution of 720 x 576 and 30 fps. 
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MPEG-2’s efficient architecture opened up the way for a new set of exciting 

applications: DVD video, satellite television, cable television, direct recording from 

digital cameras, digital video recording, etc. It is the compression algorithm used by 

all DVDs and it seems that it will be the de-facto compressor for high quality video 

transmission over digital lines, as long as they can handle the high bandwidth 

demands. 

 

With the exception of MPEG-3 that deals exclusively with audio compression, 

MPEG-4 was designed to extend the capabilities of its predecessors. 

The characteristics that make MPEG-4 particularly desirable are summarised below: 

• Support for low bandwidth applications: MPEG-1 and 2 perform 

satisfactorily at bit rates above 1Mbps. However, for applications like 

Internet videoconferencing over POTS or ISDN, or Video on Demand 

(VoD), only MPEG-4 demonstrates efficient compression. 

• Support for object-based coding: probably the most important feature of 

MPEG-4, which separates it from conventional codecs, is the shift towards 

object coding. Using that technique, the scene is handled as a set of 

“foreground” and “background” objects. This opens up a wide range of 

possibilities as the “foreground” objects are usually the ones that are moving 

and require better representation through the compression algorithm, while 

the “background” objects remain relatively stable and can be coded at a lower 

rate. Fig. 5.8 demonstrates these properties [Ric02] 

 

 
Fig. 5.8 VO1 and VO2 are the moving foreground while VO3 is the stable background.  

By distinguishing between the two, MPEG-4 can achieve better compression 
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The basis of the MPEG-4 algorithm is the Video Object (VO). Fig. 5.8 

consists of a background VO and two foreground VOs. As VO1 and VO2 

move into the background about 50% of the whole scene remains unchanged. 

MPEG-4 takes advantage of this property thus achieving a superb 

compression rate relative to the previous compressors. This, however, means 

that a much more complicated algorithm has to be performed to render this 

idea, translating to an increased compression time (a videostream compressed 

with MPEG-4 requires 5-8 more computational time). 

• Toolkit-based coding: contrary to previous compressors, MPEG-4 is 

organised so that new coding tools can be added incrementally as new 

versions of the standards are developed, thus giving the standard an increased 

level of flexibility. 

MPEG-4 compression also forms the basis for a compression algorithm known as 

DiVx. DiVx is able to recompress a 8GB movie stored in a DVD, into a file as small 

as half a GB (1:16 compression ratio), with a visual degradation only perceived by 

an expert’s eye. That supports new applications like video storing, Video on Demand 

through broadband lines and video sharing through the Internet. 

 

Finally, from the wide variety of applications that MPEG-4 supports, the most 

popular element is the core low bit rate codec that is almost identical to the ITU-T 

H.263 standard that is widely used for videoconferencing over ISDN and other slow 

or unpredictable communication links. This is also the codec of choice for the 

MedLAN system, used to transmit video through the WLAN, through a variety of 

software packages (Chapter 4.3.1). The codec is based on an MPEG-4 algorithm, 

thus explaining MedLAN’s inferior performance in fast moving situations when both 

foreground (patient) and background images keep changing. 

H.263 was designed as an improvement of the H.261 compressor. It provided 

increased flexibility along with a greater set of available frame sizes. The target 

application was a low bit rate, low delay, two-way video communication. H. 263 can 

support video communication at bit rates as low as 20 Kbps, but only at the cost of 

visually limited quality. This, however, represents the basis for newly emerged 

applications, like video telephony over 3G mobile phones. 
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5.4 DICOM’s approach to compression 

Based on the above information, ACR-NEMA (and eventually DICOM) was called 

to decide on an appropriate compression technique, especially when dealing with 

still images. Instead of making a specific decision (and by realising that medical 

imaging is a very sensitive subject), the task group limited itself on merely 

suggesting a set of procedures for image storage and transmission. They also allowed 

a wide range of techniques to be used, provided the result is medically acceptable. 

For obvious reasons however, it favoured schemes that produced a lossless result, so 

information would be lost only from the first level of image acquisition (e.g. 

scanning an x-ray film would inevitably introduce some noise, however, saving the 

output image in an uncompressed format would limit the information loss to just the 

scanning operation). 

As mentioned above, DICOM standards are still evolving. Apart from the widely 

used JPEG, DICOM considers a wide variety of other versions and formats, 

including the JPEG 2000, JPEG LS, PNG and many others. 

An independent study of the quality of DICOM alternatives was performed in 2002 

with the objective of finding a balance between the increasingly demanding medical 

applications, the facilities available in an average hospital and the need for accurate 

medical diagnosis [Clu99]. Within this study, 3679 single frame greyscale images 

from multiple anatomical regions, modalities and vendors, were tested. 

The effectiveness of the alternative compression methods was judged based on two 

methods: objective and subjective: 

Using objective methods, both the compression ratio and the time for the completion 

of the operation were recorded. Fig. 5.9 displays the results of compressing 3679 

medical images of various modalities in respect to the performance of the 

compression algorithm (the higher, the better). 
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Fig. 5.9 Performance comparison of various codecs when compressing medical images 

(the higher, the better) 

 

JPEG-LS and JPEG 2000 performed equally well (3.81), almost as well as CALIC 

(3.91), which was only used as a benchmark. Both outperformed existing JPEG (3.04 

with optimum predictor choice per image, 2.79 for previous pixel prediction as most 

commonly used in DICOM). Dictionary schemes performed poorly (gzip 2.38), as 

did image dictionary schemes without statistical modelling (PNG 2.76). Proprietary 

transform based schemes did not perform as well as JPEG-LS or JPEG 2000 (S+P 

Arithmetic 3.4, CREW 3.56). JPEGLS compressed CT images (4.00), MR (3.59), 

NM (5.98), US (3.4), IO (2.66), CR (3.64), DX (2.43), and MG (2.62). CALIC 

usually achieved the highest compression. JPEG-LS outperformed existing JPEG for 

all modalities. 

Considering the time required for the operations, JPEG, JPEG-LS, and SZIP codecs 

were noticeably faster than the others were and CALIC was noticeably slower due to 

the design of the algorithms. CALIC was included in the comparison as it is the 

“gold standard” for the effectiveness of lossless compression, but is considered 

unpractical for most applications. 

Objective performance evaluation methods include quantitative metrics based on the 

analysis of the image pixels and include Mean Square Error (MSE) and Peak Signal 

to Noise Ratio (PSNR). Contrary to those methods, subjective performance 

evaluation methods rely on the human factor to empirically judge the quality and 

usefulness of the output. During the above study, it was found that the observers 

opinion did not correlate well with the objective metrics of the image. Metrics based 
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on models of human visual perception are still in their infancy and unfortunately, the 

observer performance is rarely exhaustively tested since there are many potential 

tasks, and findings from studies of one task may not be applicable to another. 

Furthermore, significant degrees of inter-observer and intra-observer variation on 

particular tasks may reduce the power of experiments on both lossless and lossy 

compression. 

 

Considering studies like the above, (and for the sake of interoperability and wider 

acceptance) DICOM has decided to include compressed image formats in its 

standards [DICOM standards 8.2.1]. However, it applies strict rules before accepting 

these images, for a variety of their characteristics: size, colour depth, compression 

algorithm, etc [DICOM standards 8.2.1 a, b, c]. Furthermore, (indicating that 

medical imaging standardisation is a delicate procedure) it states: “The context where 

the usage of lossy compression of medical images is clinically acceptable is beyond 

the scope of the DICOM Standard. The policies associated with the selection of 

appropriate compression parameters (e.g. compression ratio) for JPEG lossy 

compression is also beyond the scope of this standard”. 

Conclusively, despite DICOM accepting lossy compression schemes, there is a high 

demand by the medical profession for lossless, uncompressed codecs that are 

perceived to offer a better representation of medical images. However, due to their 

high demand for storage space and bandwidth, the use of lossless compressors is not 

always feasible. 

 

 

5.5 Defining the problem 

By comparing the DICOM recommendations discussed so far, with the services that 

WLANs can offer (chapter 3) and the capabilities of the MedLAN system (chapter 

4), it is apparent that a gap exists between what is required and what can be offered, 

in regards to the quality, size and speed of telemedical information. 
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5.5.1 Bandwidth requirements 

As the number of medical applications that require the use of computer imaging 

increases, so does the required storage space (and thus the bandwidth demand for 

transferring the file within a network) for this application [Ban03] 

As shown, increased complexity, high-efficiency algorithms have been developed to 

compress the data before they are stored or transferred. When applied in still 

imaging, these algorithms are divided into lossless and lossy. 

Doctors tend to agree that a lossless compression is more suitable for medical image 

interchange as it retains all its original quality and makes diagnosis more accurate. 

This notion is further supported by DICOM. This is generally true if an infinite 

storage space is offered coupled with a very large bandwidth (although some may 

argue that grouping very similar image components may result in reducing the 

“grain-of-rice” noise effect) [Tob02]. However when trying to make use of the 

image, especially while using wireless networks, the problem becomes apparent. 

Table 5.1 below, summarises the space required to store an image of various sizes. 

 

Storage space required (KB) 
Size Uncompressed Lossless Lossy 

2048x2048 5120 2048-2512 1400-1700 
1024x1024 1280 500-740 100-500 
512x512 327 150-170 30-70 

Table 5.1 Space required for storing a 10-bit colour image using different compressions. 

 

5.5.2 Wireless capabilities 

As discussed in chapter 3 and 4, the wireless network that has been used by the 

MedLAN system is the IEEE 802.11b; the most standard WLAN in Europe having a 

maximum data rate of 11Mbps. 

Unfortunately, and for the best-case scenario of 11Mbps, a relatively small portion of 

it is available to the user. Specifically only 2.3 to 2.8 Mbps are available while the 

rest of the bandwidth is occupied by signalling data, protocols, encapsulation, etc. 

It is apparent that with the average of 2.5Mpbs, transferring the images listed in 

Table 5.1 would require a considerable amount of time. This, combined with the fact 

that the MedLAN system is specifically designed to operate in an Accidents and 

Emergency Department, would render the system problematic. Table 5.2 summarises 

the time required to send an image of various sizes. 
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Time required (sec) 
Size Uncompressed Lossless Lossy 

2048x2048 16 6-8 4-5 
1024x1024 4 1-2 0.5-1.5 

512x512 1 0.5-0.6 0.1-0.2 
Table 5.2 Time required for sending a 10-bit colour image through a WLAN link operating at 

11Mbps. Times triple in actual operation as the advertised speed is much higher than the actual. 

 

Due to several factors like protocol collision and network congestion, all the above 

times increase dramatically when the image file is transferred simultaneously with a 

live video stream. 

There are newer WLAN trends, like IEEE 802.11a that operates in a maximum 

speed of 54Mbps. However, in contrast with the IEEE 802.11b that uses the 2.4GHz 

band, 802.11a uses the 5GHz band thus considerably limiting the range of each AP 

[Ara02]. This means that a much greater number of APs have to be installed in order 

to cover the same space. In a mobile system, this leads to an increase of the hand-

over time (time to disconnect from one AP and connect to another) that varies from 5 

to 15 seconds.  

 

5.5.3 Searching for the “golden rule” 

The MedLAN system is trying to combine a diagnostic acceptable quality with the 

present limitations of the WLAN systems. Therefore, a new set of specifications 

were developed, tested and finally validated by the doctors. 

The basic idea behind these new sets of rules is that a well-compressed image, even 

while being slightly loosely compressed, can maintain its diagnostic value while 

saving a considerable amount of bandwidth and time. 

As a result, the MedLAN system can output images in three different compression 

ratios, to accommodate for different available network speeds: 5.5:1, 10.3:1 and 

14.3:1. Keeping the best (5.5:1) as a default, Table 5.3 summarises some of the 

properties of the system, compared with the DICOM specifications. 

 
 DICOM MedLAN 
Image resolution 512x512 to 2048x2048 640x 480 to 1152x864 

Colour depth 10 bits minimum 16 bits 
Image format DICOM JPEG 
Average size 2048KB 512KB 

Table 5.3 A simple comparison between the DICOM popular format and MedLAN outputs 
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The same rules were used when transferring video and sound: Video stream 

resolution is 320x240 pixels and the frame rate is dynamically adjusted depending on 

the available bandwidth. This means that if a high quality image is being transferred, 

the frame rate (fps) will be reduced. Typical frame rate is about 13-18 fps. Sound is 

being compressed using CCITT A-Law or u-Law with 8 KHz sampling rate, 8 bits 

per sample and monophonic audio transmission. Since heart and lung murmurs use 

the lower band of the acoustic spectrum, 8KHz sampling rate was proven adequate. 

 

 

5.6 Methodology 

Τo evaluate the system’s performance a series of steps were taken involving both 

objective measurement techniques (SNR between original and compressed image, 

compression ratio, Mean Square Error, etc) and the subjective evaluation of the 

results by experts [ITU-T P.910 (9/99)] 

Although the subjective evaluation of decoded video quality is quite fuzzy, 

compared to the calculation of numerical values of the objective quality evaluation, 

it is still preferable especially for low bit rate compression because of the 

inconsistency between the existing numerical quality measurements and the human 

perception of the outputs. 

Furthermore, in error-prone environments, errors might corrupt the coded video 

stream in a way that causes a merge or split to the transmitted video frames. In this 

case an objective numerical method would lead to an inaccurate evaluation of the 

codec performance while a subjective measurement would certainly yield a fairer 

and more precise evaluation of the decoded video quality [Sad02]. 

 

5.6.1 Using test patterns to evaluate performance 

Society of Motion Picture and Television Engineers (SMPTE) patterns have long 

been used by television technicians to isolate faults in television sets and establish 

the quality of video reproduction. SMPTE test patterns have also been used in 

Telemedicine to yield the overall quality of the telemedical system against the more 

conventional approach [Tob02]. 

In the case of the MedLAN system, SMPTE patterns were both photographed and 

videoed using the system’s high quality camera. The results were then evaluated 



 

 

114

with respect to their fidelity. Fig. 5.10 illustrates two SMPTE patterns. The first one 

is electronically created while the second one was photographed deliberately under 

average lighting conditions using the MedLAN system. 

    a        b 

Fig. 5.10 Comparison between an original SMPTE pattern (a) 

and one transmitted using the MedLAN system (b) 

 

One can see that despite some change in the image brightness and a small loss in 

visual information when it comes to finer details (smooth grey-scale variants in the 

edges of the pattern), the reproduction of the image retains the greatest part of the 

original’s information. There was also a marginal addition of noise due to 

digitisation (apparent in the grey areas on the right side of the second pattern) 

creating a grain-like effect. Overall, the Peak Signal to Noise Ratio (PSNR) of the 

reconstructed image was 26.4 dB, yielding a highly accurate reproduction procedure 

(JPEG outputs vary around 18-30 dB; the latter is the best-case scenario when the 

image is almost uncompressed) [Joh98] 

In the case that a videostream was transmitted, greater sacrifices had to be made to 

ensure efficient fps values. As the video compression index increased, the H.263 

algorithm (part of MPEG-4) forced more similarities, both in the current frame and 

between preceding and succeeding frames. 

Fig 5.11 illustrates the video quality degradation of a real-time videostream while 

transmitted using an average (2Mbps) and a very narrowband (32kbps) channel. By 

considering both reconstructions just as a still images, the first one has a PSNR value 

of 25.2 dB while the second has a considerably lower value of 18.4 dB. 
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a 

    
   b             c 
Fig. 5.11  a. Detail of an electronically created SMPTE pattern used for evaluation of video transfer 

through a WLAN link.  b. 2Mbps WLAN channel indicates some visual loss in fine grey-scaled areas 

(arrow).  c. a 32 kbps channel displays severe image degradation due to high compression. 

 

5.6.2 Using expert’s opinion to empirically evaluate performance 

As mentioned previously, even by establishing a relatively low ratio of noise in the 

image or video to be transmitted, it does not guarantee that the output would have 

high diagnostic value. Inevitably, the people that will eventually judge the system 

and benefit from it would be the healthcare experts and it is their opinion that has 

greater value rather than absolute numbers. For that reason, a series of steps were 
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taken to supply doctors with enough material to form a safe opinion of the system’s 

performance: 

• a large number of x-rays, CT and MR have been captured and stored from 

four different hospitals.  

• Several videos were recorded, including connecting the MedLAN system to 

external devices. 

• Numerous heart and lung murmurs were captured and transmitted. Both 

electronic stethoscopes and pre-recorder sounds were used for that matter. 

In total, five consultants within the NHS were asked to evaluate: more than 110 still 

pictures, 28 videos and 45 different sounds. The list of the modalities used exists in 

Appendix I. In the case that the images were converted to DICOM after being 

wirelessly transmitted, the composite DICOM format was chosen (header and image 

information exist in the same file), as it was the predominant standard in the NWLH 

group. In each of the above, three different compression rates were used to define the 

level of medical acceptable quality. The questionnaire included the following 

subject: image clarity, colour fidelity, depth versatility, sound quality, image/sound 

delay, total delay and x-ray grey-scale clarity [Appendix J]. Table 5.4 summarises 

the results of the doctors’ evaluation. For convenience, the average of all the above 

factors are recorded in the appropriate cells.  

  
Compressed sample Quality Poor % Acceptable % Good % 

 low compression 5.5:1 0 15 85 
Still images medium compression 10.3:1 0 30 70 

 high compression 14.3:1 5 80 15 
20 fps 0 50 50 

Video 15 fps 
10 fps 

10 
20 

55 
50 

35 
20 

Sound low compression 0 8 92 
 high compression 5 80 15 

Table 5.4 Evaluation of the MedLAN’s outputs (still images, video and sound)  

performed by a number of consultants. 

 

 

5.7 Results and discussion 

Clearly, Table 5.4 indicates that even when the medical data are compressed in a 

non-reversible way (some information is sacrificed in order to limit the size of the 
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files) the files maintain their diagnostic ability. Especially when low compression 

rates are used, none of the files falls below the “acceptable” threshold. 

The most difficult part was proven to be the acquisition of x-rays. This was because 

the camera was “fooled” by both the low contrast of the film, the room lighting and 

the escaping light from the transparency viewer. Setting a non auto-brightness level 

resulted in the best outputs [chapter 4.10] 

An important point to make is that after the files / videos / sounds have been 

received, the consultant can convert them into a DICOM format by adding additional 

information to the file (such as patient data, dates, diagnosis, etc) and creating the 

DICOM header. This way, files can be stored in a larger format that will follow 

DICOM specifications, but having already saved critical time while being 

transferred. 

Finally, it is essential to understand that medical QoS is a very delicate matter that 

has always been hard to establish. The level of confidence in a pioneering system or 

a new proposal is directly related to the depth of the clinical trials that this has gone 

through. Although the above video and image samples represent a large portion of 

the consultant’s application area, further experimentation with additional data will 

strengthen the proposed notion. 

 

 

5.8 Conclusions 

The use of wireless LANs in hospitals is becoming increasingly apparent. However, 

along with their ease of use, there come some limitations that are directly related 

with their operation: lower bandwidth, security, administration, etc [Ban02b] 

On the other hand, standards like ACR-NEMA’s DICOM, try to impose specific 

rules that are necessary for the interoperability between different medical 

architectures but also stating that the final word concerning the usefulness of a 

telemedical system belongs to the doctors. Furthermore, there is a considerable 

difference between the QoS as defined by objective measurements and that as 

perceived by humans, therefore, it is more important to evaluate the quality of 

medical service, based on human perception, as they would be the end-users of the 

whole procedure. 



 

 

118

Based on the above, it is apparent that there has to be a balance between the 

standardisation (that often means additional overhead) and the flexibility of the 

system. This is especially true in time-critical environments like the Accidents and 

Emergency Departments. 

The MedLAN system is dedicated for use within A&E departments. It tries to 

balance the standardisation of medical procedures and the flexibility of the system 

that has to respond promptly in such a demanding environment. For that reason a 

new set of specifications were tested and finally suggested, that reduce considerably 

the amount of information sent and thus the time before the consulting doctor has the 

data available, while maintaining the information necessary to make a valid 

diagnosis. Within the suggested framework and by using a low compression rate, 

100% of the samples fall within the category of either “acceptable” or “good”. 

 

In this chapter, we have presented some fundamentals of the DICOM standards 

while explaining the need for medical standardisation. Then we moved on to 

explaining some basic compression principals for most kinds of data (images, video 

and sound). Using the low-compression JPEG format as a stepping-stone, we have 

proved that a lossy compression can be very effective (especially in use with 

WLANs) and suggested an alternative / addition to the existing DICOM standards 

while using the MedLAN system. 

The DICOM standards are not carved in stone. According to ACR they are “not 

rules, but guidelines that attempt to define principles of practice that should 

generally produce high-quality care. The physician and medical physicist may 

modify an existing standard as determined by the individual patient and available 

resources” [ACR99]. 



 

 

119

66..  OOFFDDMM  oovveerr  IIEEEEEE  880022..1111bb  HHaarrddwwaarree    
ffoorr  TTeelleemmeeddiiccaall  AApppplliiccaattiioonnss  

  
 

 

 

6.1 Introduction 

Using a wireless Local Area Network (WLAN) to transmit live high-quality video 

suitable for a telemedical application presents many challenges, including ensuring 

sufficient Quality of Service (QoS) for the end-user to be able to make an accurate 

diagnosis. One of the many problems that exist when developing such a system, is 

the multipath effect caused by the reflections of the transmitted signals on various 

surfaces including walls, floors, furniture and people [Fig. 6.1]. This degrades the 

signal quality and reduces the amount of available bandwidth and thus, the quality of 

the image and video, as higher levels of compression are needed.  

Specifically on the MedLAN system, several problems had to be resolved before the 

WLAN system can operate successfully. In Chapters 3 and 7 the problems of range, 

speed, security and interference of a wireless system, are examined. Especially on 

the range issue, several factors can influence the transmission and reception of the 

signal and affect the overall quality of the application.  

In contrast with wired systems that have no range problems (apart from the ones 

dictated by the protocols used and are always predictable), wireless LANs suffer 

from a variety of factors that can influence their active range, with the operating 

terrain being one of the most important. Wireless product vendors acknowledge this 

fact and try to implement as many techniques as possible to ensure that the signal 

will eventually be correctly received. 

 

As explained in Chapter 3, the most widely used wireless protocol today is the IEEE 

802.11b. Being on the market since 2000, it usually uses Complementary Code 

Keying (CCK) and Direct Signal Spread Spectrum (DSSS) techniques to spread its 

signal over a frequency range and avoid interference while achieving a top speed of 

11 Mbps. As sophisticated as this technique is, it behaves relatively poorly in 
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multipath environments when compared with newer modulation schemes like 

Orthogonal Frequency Division Multiplexing (OFDM). 

In this chapter, the balance between wider WLAN range (due to the use of a lower 

frequency band) and higher speed will be presented, along with the effects that an 

average hospital environment will have at the higher frequency spectrum (5 GHz). 

Furthermore, the advantages of using OFDM over IEEE 802.11b hardware will be 

investigated with emphasis on the benefits that the end-users will enjoy when 

working with telemedical applications. The above suggestion will be supported by 

means of simulation using three different simulation packages [Ban04] 

 

 

6.2 Existing technologies 

In a medical system like MedLAN (Chapter 4), QoS plays a critical role. The system 

would be deemed useless if it could not guarantee the level of service necessary for 

accurate diagnosis. Despite the fact that none of the IEEE 802.11 protocols have 

guaranteed QoS, there are several parameters that a developer can optimise in order 

to keep a high operational level of the wireless network. Some of these include: 

connection establishment delay, throughput, transit delay, residual error rate, 

protection, priority and resilience. While protection refers to the security that the 

system applies to the transmitted data [Chapter 6], throughput and resilience are 

definitely some of the most important QoS parameters in a WLAN. In order to 

maximise the throughput one has to minimise the number of errors that appear in the 

communication channel. One of these erroneous factors is the multipath 

phenomenon: 

In most wireless communications, the signal does not travel through a straight line 

from transmitter to receiver. Mountains, buildings, floors, ceilings, furniture and 

even people reflect the signal [Fig. 6.1.a] and that is much depends on the operating 

frequency. The lower the frequency, the more it can penetrate through objects and 

not get reflected. The higher the frequency, the more reflections take place and a 

multipath effect is more dominant [Kap02b]. 
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a 

 
b 

Fig. 6.1  a. Multipath effect: the signal is reflected on various surfaces.  

b. The receiver receives altered versions of the signal (different timing, strength and quality) 

 

During the multipath effect, the receiver not only receives the signal directly from 

the transmitter, but also receives all the reflections of that signal. What makes this an 

undesirable effect is that since the straight-line transmission arrives the earliest, all 

other packet transmissions arrive with a time delay and collide with next-frame data 

[Fig. 6.1.b]. Depending on the distance between receiver and transmitter and the 

number of reflected paths, the signal can be rendered useless, even though its power 

would be sufficient. 

Multipath delay also causes the information symbols represented in an IEEE 802.11 

stream to overlap, something that confuses the receiver. This is often referred to as 

Inter-Symbol Interference (ISI). As the demodulator tries to decode the signal, bit 

errors in the packet will occur and the Cyclic Redundancy Check (CRC) will not 

compute correctly. In response to bit errors, the receiving station will not send an 

ACK to the source, so the entire packet will eventually be retransmitted thus 

lowering the throughput of the WLAN system. 802.11 signals in homes or small 
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offices experience a multipath delay of about 50 ns while in a manufacturing plant 

with a lot of reflecting surfaces, this delay can go as high as 300 ns [Dub03] 

 

Chapter 3 mentioned some basic trends and versions of wireless networks including 

the IEEE 802.11 and the HiperLAN families. Table 3.2 summarises the different 

properties of the most widely use WLAN systems along with their basic 

characteristics. There was an obvious trade-off between the data speeds offered by 

the IEEE 802.11a and the extended range of IEEE 802.11b. To complicate matters 

even further, IEEE 802.11a operates in the 5GHz spectrum; a frequency band that is 

regulated in most European countries and therefore much less populated than ISM. It 

is only until very recently when some countries including UK and The Netherlands 

deregulated this band and although the feeling is that some time in the near future the 

5GHz spectrum will be licence exempt, most of Europe is still awaiting this decision 

from the ETSI. 

 

Apart from the obvious decrease of active WLAN range in the IEEE 802.11a, 

reflections are much more apparent in the 5 GHz spectrum so any kind of reflective 

surface can have devastating effects on signal quality. The most visible consequence 

of the above two problems (lower range and higher reflections) is when trying to 

cover a space with APs, a lot more are needed if 802.11a is used, compared to 

802.11b [Fig. 6.2], [Ban02b], [Ara02]. 
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Fig. 6.2 WLAN range comparison between 802.11a and 802.11b inside the A&E room of CMH 

Hospital. Squares are 802.11b and circles 802.11a APs 

 

Fig. 6.2 shows results of an experiment that took place in Central Middlesex 

Hospital (CMH) that investigated the number of APs needed to cover the Accidents 

and Emergency ward using both 802.11a and b technologies. Squares indicate APs 

using 802.11b while circles show APs using IEEE 802.11a. It is clear that using 

802.11a a greater number of APs (7 APs) are required to cover the same space, 

compared to 802.11b (2 AP). 

Furthermore, (and as mentioned above), 802.11a suffers from signal deterioration 

due to reflecting surfaces. Several studies of the reflection of common materials 

agree that the reflections in the 5 GHz band (UNII) are more severe than in the 2.4 

GHz band (ISM). Table 6.1 summarises some of these effects in both frequency 

bands [Che02], [Wils02]. 
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 T (dB) R (dB) 

Material ISM UNII ISM UNII 
Dry red 

brick 
-4.43 -14.62 -12.53 -8.98 

Drywall 
(12.8mm) 

-0.49 -0.51 -12.11 -11.50 

Drywall 
(9mm) 

-0.50 -0.84 -12.03 -8.87 

Body of 
water 

-14.2 -3.8 -10.50 8.91 

Table 6.1 Transmission and Reflection values of common materials for ISM and UNII bands 

 

It is clear that since thick red brick walls (often found in hospitals) have a greater 

reflection index than concrete walls, they create a stronger multipath phenomenon as 

the operating frequency increases. Note that a body of water simulates the human 

body that mainly consists of water and might move in between the communications 

path. Since the ISM band operates at 2.4 GHz, the transmitted energy is absorbed 

much more by water molecules than in the 5GHz band. However, reflections due to 

water obstacles (and thus human bodies) tend to be less of a factor in the ISM band. 

Conclusively, the potential gains of a UNII 802.11a system due to reduced 

interference (caused by the less populated 5GHz band), are balanced by the 

increased path loss caused by standard obstacles such as walls, floors and water / 

people. Although IEEE 802.11a uses a different modulation technique to combat 

multipath interference, none of the two systems seems to include the optimum 

solution between range and speed. 

 

 

6.3 OFDM 

Orthogonal Frequency Division Multiplexing (OFDM) represents a different design 

approach than CCK [IEC03], [Arm02], [Edf96]. It can be thought of as a 

combination of both modulation and a multiple-access technique that divides the 

channel in such a way that the users can share it (similar to TDMA dividing the 

channel in time and CDMA according to spreading codes). OFDM techniques and 

advantages spread far beyond the scope of this thesis. In this chapter, only an 

introduction to OFDM will be made, necessary to appreciate the research novelty 

that is introduced. 
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Although OFDM was proposed as far back as 1950, it is recent developments in 

VLSI chips and the increased computational power of Digital Signal Processing 

(DSP) that have made it realizable. Due to its advanced nature OFDM found an 

increasingly high number of possible applications in modern communications 

systems. HiperLAN/2 IEEE 802.11a, DSL communication lines and digital TV are 

only a small part of its area of applications. 

To begin with, Frequency Division Multiplexing (FDM) systems separate the 

available bandwidth in a number of intermediate channels. To accommodate 

hardware imperfection and different distances and speeds between transmitter and 

receiver, FDM introduces a number of guard bands (gaps) between each of the 

channels so signal frames do not overlap each other [Fig. 6.3]. Unfortunately, these 

guard bands can sometimes take up to 50% of the available spectrum thus reducing 

the spectrum efficiency. 

 

 
Fig. 6.3 FDM Access in a typical landline exchange centre: many users share the same line occupying 

different frequencies and leaving guard bands between their frequency bands 

 

Much like FDM, OFDM also separates the channel into a number of intermediate 

frequencies channels (approx. 2000-8000 for digital TV and 48 for Hiperlan/2). 

However, in contrast with FDM, OFDM systems do not have any guard bands. In 

fact, OFDM overlapping subcarriers is a desirable characteristic. 

This is done by a careful selection of the frequencies used (subcarriers) so that they 

are orthogonal to each other [Fig. 6.4.a]. Consequently, subcarriers are easily 

separated without causing any interference among them [Fig. 6.4.b]. This special 

property prevents adjacent subcarriers from interfering with each other much like the 

human ear clearly distinguishing each of the tones created by neighbouring keys of a 

piano. This technique (incorporated with a small amount of guard time in each 
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symbol) preserves the orthogonality between subcarriers in the presence of 

multipath. In Fig. 6.4.b, notice that the peak of each one of the five subcarriers 

corresponds to a zero level energy of any other subcarrier, resulting in zero 

interference between them as, when the receiver samples at the centre frequency, 

there is no other energy present than that of the desired signal. 

 

 
a 

 
 

b 
Fig. 6.4  a. In OFDM, carriers are carefully selected so they would be orthogonal to each other. b. by 

having orthogonal subcarriers, the peak of each one corresponds to a zero level energy of any other. 

 

The way that OFDM is modulated is by applying changes in each of the carriers: 

varying its phase, amplitude or both. Typically, high-level modulation techniques, 

such as Quadrature Amplitude Modulation (QAM) are employed to distribute the 

data over the carriers spaced at precise frequencies.  

At the implementation level, OFDM systems take a serial data stream and convert it 

into N parallel data series. Each of these series is then modulated into a subcarrier at 

a unique frequency and then the subcarriers are combined to produce a serial stream 

of transmitted signal.  
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In the core of the OFDM transmitter, theoretically exists N modulators, one for every 

frequency component used [Fig. 6.5].  

 

 
Fig. 6.5 Transmitter design of an OFDM system. The N modulators are replaced by an IFFT operation 

 

In practice, the operation of the multiple modulators can be replaced by an Inverse 

Fast Fourier Transform operation (IFFT) that converts the frequency components 

into the time domain [Hug02]. The decoding procedure involves the exact opposite 

sequence [Fig. 6.6].  

 

Fig. 6.6 OFDM encoding / decoding sequence. The modulator takes a serial data stream and convert it 

into N parallel data streams using an IFFT algorithm. 

 

Since OFDM transmits data in blocks, multipath delay will cause blocks of signals to 

collide with each other causing an Inter-Channel Interference (ICI) as some paths 
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take longer to arrive at the receiving end. This eventually leads to Inter-Symbol 

Interference (ISI) [Fig. 6.7.a] [Keo03]. To address this issue, OFDM uses an 

additional signal that is added to the beginning of each symbol. This added signal 

does not contribute any useful information but acts as a guard band to combat 

channel delay. The most commonly used method of achieving this is the Cyclic 

Prefix where the last useful part of the signal is copied to the start of the signal. As a 

result, the periodicity of the signal is preserved [Fig. 6.7.b] 

 

    
      a      b 
Fig. 6.7  a. When a subcarrier arrives later than expected (signal on path 2), the orthogonality between 

all the subcarriers is destroyed causing ICI and eventually ISI.  b. Cyclic Prefix repeats the “tail” of an 

OFDM symbol as a header. This redundant information serves as a guard band to combat ISI 

 

The cyclic prefix is sized appropriately to serve as a guard time against ISI. This is 

accomplished, as the time dispersion from the channel is smaller than the duration of 

the cyclic prefix. A fundamental trade-off is that the cyclic prefix must be long 

enough to accommodate for the anticipated multipath delay imposed on the system. 

As the cyclic prefix increases, so does the amount of the overhead imposed on the 

useful bandwidth. 

 

As mentioned above, in OFDM systems data streams are transmitted in parallel and 

thus require a longer symbol period allowing the system to cope a lot better in 

multipath environments. For example, in Hiperlan/2, that uses 48 different parallel 

streams, the symbol period is 48 times as long as if it would be transmitted in a 

single stream. This, combined with the Cyclic Prefix, improves considerably the 

tolerance that the signal has against multipath interference: instead of transmitting a 

very fast single stream, multiple streams are transmitted at a much lower frequency 



 

 

129

so that interference can only affect a very small portion of the symbol during its 

initial part. However, the affected part is made up by redundant information 

introduced by the Cyclic Prefix. 

OFDM is also the base of a multiple access system called OFDM Access (OFDMA). 

Here, each user can be assigned a specific number of subcarriers (having a 

predefined bandwidth) or a variable number of subcarriers (having bandwidth on-

demand). This is the basic technique for transmission over DSL lines [IEC03] 

OFDM can also be combined with frequency hopping to create a spread spectrum 

system that will include the advantages of frequency diversity and interference 

averaging (as in CDMA). By switching frequencies at a high rate, the losses due to 

frequency selective fading are minimised.  

Conclusively, OFDM provides the best of two worlds: TDMA, (as users are 

orthogonal to each other) and CDMA, (as mentioned above) while avoiding the 

limitations of each, that includes frequency planning, equalisation and multiple 

access interference [Nee00]. 

 

 

6.4 Methodology 

Based on the first two subchapters, it is easy to realise that there is a fundamental 

gap between QoS (specifically in a hospital environment) and speed : IEEE 802.11b 

is the standard for most of Europe and has a definite advantage in regards to its range 

of operation as it uses the 2.4GHz spectrum that suffers less from reflections. IEEE 

802.11a, on the other hand experiences more reflections as it is operating in a higher 

frequency but uses an advanced modulating technique to reduce multipath 

interference. 802.11a has not been yet cleared for operation around Europe. 

Furthermore, its range of operation is considerably lower than this of 802.11b. 

Even at 11Mbps it is evident that 802.11b will either support low speeds and 

consequently have low multipath distortion or operate at a higher speed but suffer 

from multipath interference. 

 
It is worth mentioning that a new version of wireless networking, IEEE 802.11g 

promises speeds as high as 54 Mbps, at the ISM frequency band. Unfortunately, in 

order to maintain compatibility with both 802.11a and 802.11b, it was forced to 
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adapt all available modulation schemes, along with Packet Binary Convolution 

Coding (PBCC) making the hardware considerably more expensive [Table 6.2]. This 

system is in the process of standardisation, however hardware has already been 

commercially available. 

 
Speed (Mbps)  802.11b 802.11g 802.11a 

 carrier mandatory optional mandatory optional mandatory optional 
1 Single Barker  Barker    
2 Single Barker  Barker    

5.5 Single CCK PBCC CCK PBCC   
6 Multi   OFDM CCK-OFDM OFDM  
9 Multi    OFDM, CCK-OFDM  OFDM 

11 Single CCK PBCC CCK PBCC   
12 Multi   OFDM CCK-OFDM OFDM  
18 Multi    OFDM, CCK-OFDM  OFDM 
22 Single    PBCC   
24 Multi   OFDM CCK-OFDM OFDM  
33 Single    PBCC   
36 Multi    OFDM, CCK-OFDM  OFDM 
48 Multi    OFDM, CCK-OFDM  OFDM 
54 Multi    OFDM, CCK-OFDM  OFDM 

Table 6.2 Comparison table between IEEE 802.11b, a and g in terms of data rates and modulations 

 

In this subchapter, the alternative of using OFDM over 802.11b technology will be 

investigated, with emphasis on the telemedical applications. The idea of OFDM over 

the 2.4GHz band is not very new and has been investigated for a number of years 

and addressed within the IEEE 802.11g. However, there is very little research both 

on the use of this modulation in telemedical applications and on the financial 

advantages of applying OFDM to the existing 802.11b systems, instead of replacing 

them entirely with new 802.11g hardware. 

Fortunately, most wireless hardware (APs and client cards) on the market today offer 

the user the ability to upgrade the firmware (software inside ROM) of the system in 

order to support different technologies. In addition, today’s hardware has embedded 

microprocessors that can perform a wide variety of tasks, including IFFT and FFT, 

necessary for OFDM modulation. 

 

The simulation that follows investigates the advantages that OFDM modulation 

would have, compared to CCK in 802.11b, with regard to both the signal-to-noise 

ratio and the total speed achieved by the wireless network. Three different simulation 

packages will be used to do the simulation. 

In order to justify the proposed use of OFDM over 802.11b hardware for 

telemedicine applications, models have been built and tested in various simulation 
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environments. For the lower OSI layers (physical) Matlab 6.5 and VisSim Comm 5 

were used. These software packages can simulate the PHY layer very well and allow 

the user to introduce several variations to the communications channel like multipath 

noise, Rice / Rayleigh effects, selected frequency fading etc. 

For the upper OSI layers (up to the presentation layer) OPNET Modeler 9.1 was 

used, and allowed the opportunity to adjust data links (wired to wireless), transport 

sessions (the priority the video stream will have over other data flowing into the 

network), even the presentation environment (video resolution and frame rate). 

These software tools complement each other as OPNET Modeler had insufficient 

representation of the PHY layer and the multipath environment while Matlab and 

VisSim describe the lower level very effectively but fail to give the user the ability to 

investigate changes at higher levels. In summary, VisSim and Matlab simulation 

supports the proposal of using OFDM over 802.11b while OPNET Modeler 

investigates the practical results that this notion would have in a telemedical 

application such as MedLAN. 

Due to the complexity of the tasks involved, both the simulating environments 

mentioned above have a great number of parameters that have to be set. It would be 

outside the scope of this chapter to mention all of them, thus only the basic settings 

will be included for reference purposes. 

 

6.4.1 Physical layer simulation 

In general, the PHY layer of any IEEE 802.11 protocol that uses OFDM, follows this 

sequence, from Data-link layer to PHY bursts: 

 
Scrambling ½ rate convolutional coding  puncturing  interleaving  mapping  OFDM 

 

Fig. 6.8 describes how the model was built in VisSim Comm 5 (some modules were 

taken from Matlab): A random bit generator passes its output to a standard 802.11 

scrambler. The scrambled data is input to a convolutional encoder consisting of a ½ 

rate initial code and subsequent puncturing. The coded data is interleaved to avoid 

error bursts to be input to the convolutional decoding process. The interleaved data is 

subsequently mapped to data symbols (using BPSK, QPSK, etc). Finally, the output 

is fed into an OFDM complex modulator consisting of 48 data and 4 pilot subcarriers 

and converted using a 64-point FFT. After that, the whole train is transmitted over 
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the air. It is worth mentioning that the above procedure is also fundamental for the 

operation of both IEEE 802.11a and HiperLAN/2. Table 6.3 summarises the basic 

parameters of the system: 

 
Parameter Value 
Modulation BPSK, QPSK 
Coding rate ½ 
Coded bits per subcarrier 2 
Coded bits per OFDM symbol 96 
Data bits per OFDM symbol 48 
Number of data subcarriers 48 
Number of pilot subcarriers 4 
FFT size 64 
OFDM output rate (11*64/48) 14.666 MHz 
Guard time duration 0.8 us 
Number of paths 2 (multipath noise) 
Power of additional path 10, 20% of original 

Table 6.3 PHY layer parameters of the model 

 

Inside the AWGN box and for the single-path experiment, is a white Gaussian noise 

generator with a noise level equal to the value of the EbNo box. For the multipath 

environment simulation, a multipath noise generator was added alongside the 

AWGN one [Fig. 6.8].  
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Fig. 6.8 Defining the noise sources of the model: an AWGN generator with a value that is user 

defined, followed by a multipath generator having two or three alternative paths. 

 

Although the number of multipaths is user defined, as their number increased, the 

simulation time of the system increased exponentially. To simplify matters, there 

were either one or two reflected paths defined. During the first scenario, the reflected 
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path had 10% of the power of the main transmission. In the second scenario, the first 

reflected path had 20% and the second 10% of the power of the main path. 

Much like Matlab, VisSim consists of a number of modules that work jointly with 

each other [Fig. 6.9]. The contents of each of the modules / procedures involved, can 

be found in Appendix K. 
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Fig. 6.9. Block diagram representation of the physical layer of 802.11b, using OFDM modulation 

 

On the demodulating side, the reverse procedure was applied. The Bit Error Rate 

(BER) was measured against the original signal and a power spectrum analyser 

displayed the original signal before it went over the noisy channel. 

Overall, the transfer of a file of about 14KB (110 Kbits) was simulated at a speed of 

11Mbps. Larger files produced the same average BER. 

 

6.4.2 Upper layer simulation 

A complete model of the MedLAN hospital environment was built using OPNET 

Modeler. The model represents the Accidents and Emergency (A&E) ward for both 

majors and minors, of the Central Middlesex Hospital (CMH), West London [Fig. 

6.10]. To simplify matters, only one AP was modelled, even though there is an 

option to use two (one in the majors and one in the minors) or more to extend the 

WLAN cover space. [Ban01b] 
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Fig. 6.10 Model of the A&E room of the Central Middlesex Hospital: 

The WLAN is installed in that ward, and is connected to the rest of the hospital via the wired network 
 

As described in chapter 4, the simulated environment is a hospital requiring a 

wireless videoconferencing application between the A&E department and a 

consultation point either within or outside the hospital. The rooms suffer from signal 

deterioration that can be attributed to both reflected signals due to the thickness of 

the walls (CMH is an old hospital) and to the existence of several noisy sources 

(medical equipment, microwave ovens, etc). 

The AP is located in the centre of the A&E ward and a mobile client is free to move 

around the room while being in communication with the AP, which in turn, is 

connected via wire to the hospital backbone. Several other hospital computers are 

also connected to the same backbone running various other applications (www 

browsing, email, ftp, etc). All these details are described in the “Applications” and 

“Profiles” boxes of the model. One of these computers is the “consultant” that 

resides within the same hospital. Alternative scenarios have investigated the effect of 

having the “consultant” computer placed in another hospital that belonged to the 

NWLH domain [Fig. 4.15]. Since the lines used to connect these hospitals run on 

fibre optics (thus having adequate capacity) and their utilisation index is very low (2-
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5% on an average day), practically the same results were output by the simulator 

regardless of if the “consultant” resides in the CMH or in another NWLH hospital. 

The path of the mobile client was chosen to be non-static with an average distance of 

15m between the client and the AP. The initial 802.11 modulation is QPSK and 

thereafter OFDM. Power was set to a standard 30mW to simulate a standard Cisco 

340 AP, although newer APs offer power in excess of 100mW thus improving the 

range considerably. Background noise levels were set to 5 dB to simulate an average 

A&E environment. To maintain comparability, frames are not fragmented and no 

RTS/CTS commands are used as it is assumed that the mobile client would be in 

constant communication with the AP and there will only be one MT associated with 

the AP. 

For the upper layers, a videoconferencing application was chosen having a VCR 

quality and a frame rate of 30 frames per second (fps). Every effort was made to 

keep the simulation parameters for both environments (CCK and OFDM) precisely 

the same. This, however, cannot be extended to every small detail like the buffer of 

the OFDM scenario that had to be bigger to accommodate for the IFFT calculations. 

The whole model was run to simulate 300 seconds of real time communication and 

took about 30 minutes to run on a P-III/850MHz/256MB RAM. However, the above 

figure depended a lot on the alternative scenarios used, as well as on the version of 

OPNET Modeler. Some of these alternative scenarios included transmitting data 

through a DSL line to the doctor’s home or using 3G telephony to stream the video 

into the doctor’s mobile phone while he/she is on the move. However, in these 

scenarios, the destination terminals experienced reduced bandwidth availability, so 

using OFDM modulation played little or no role at all. 

Finally, it is worth mentioning that the first 100 sec had zero network traffic to 

simulate the setting up of networking hardware. That explains the flat lining of the 

first 100 seconds in Fig. 6.11. 

 

 

6.5 Results 

For the above simulation environment, both the single-path and multi-path 

alternatives were investigated either with standard 802.11b modulation (QPSK/CCK 
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at 11Mbps), or with the addition of the OFDM modulation (QPSK/OFDM at 

11Mbps). 

Fig. 6.11 displays the BER vs. Eb/No of the transmitted data stream over a channel 

that is affected by both AWGN and multi-path noise under three different 

modulations: QPSK/OFDM, BPSK/OFDM and QPSK/CCK, the last being the 

standard modulation for 802.11b at 11Mbps. It is evident that when there is no 

multipath noise, OFDM modulation behaves similarly to standard 802.11b 

modulation [Fig. 6.11.a]. 
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            c 
Fig. 6.11 Eb/No of the signal versus BER for various scenarios: a. no multipath noise; just AWGN, b. 

two paths (second is 10% of main path), c. three paths (second is 20% and third 10% of original) 

 

On the multipath noise scenario [Fig. 6.11.b and c] noise values ranging from 1 to 10 

dB were tested with 7dB being a typical noise figure in an average environment. For 

the above values, it can be seen that a clear 1 dB difference exists in favour of the 
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QPSK/OFDM modulation, something that is attributed to the more effective way that 

the OFDM deals with multipath interference. Both BPSK and QPSK behave 

similarly with QPSK having just a slight (but constant) advantage [Fig. 6.11.b].  

As more paths were added the gap between the CCK and OFDM modulation grew 

even bigger and in some cases reached up to 2 dB [Fig. 6.11.c]. This also applies for 

different kinds of noise (frequency selective fading, Rice / Rayleigh effects having 

250ns RMS delay spread in a NLOS environment, etc), or a combination of noise 

sources. The above simulation set was run multiple times and yielded an average 

statistical error between measurements, of 4.5%. This is an expected variance as the 

input to the modulator was random numbers. 

 

For the upper layers that were simulated in OPNET, a great variety of statistical 

outputs were available, including throughput, delay, gain (dB), noise, 

videoconferencing delay, load for any of the network components (both wired and 

wireless) and many others. However, the throughput of the wireless client and the 

AP is of great importance, as it summarises many of these outputs and indirectly 

yields the overall videoconferencing quality: the higher the available bandwidth, the 

lower the compression and thus the higher the image quality. 

 

 
Fig. 6.12 An average increase of 1 Mbps was observed in the simulation,  

while using OFDM in a multipath environment 
 

An average of 1Mbps improvement in the throughput was observed mainly due to 

the increase of Eb/No ratio described in the last paragraph [Fig. 6.12]. 
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The above improvement would mean that more data can safely go through the 

communication channel and, for the specific telemedical application, a better video 

quality can be transmitted and consequently the doctors can make a more accurate 

diagnosis. 

 

 

6.6 Summary and conclusions 

In chapter 3 we presented several versions of WLANs that are on the market today, 

with IEEE 802.11a being one of the most recent to be commercially available in 

Europe and concluded that regardless of the countries that will deregulate the 5 GHz 

band (necessary to operate 802.11a) the dominance of 802.11b all over Europe 

today, is undisputable.  

Based on that, in the current chapter we tried to suggest an alternative modulation 

technique for 802.11b that will offer distinct benefits to telemedical applications. 

Doing so, we started by identifying some typical problems that affect the QoS of a 

WLAN; namely the multipath interference and the relation between operating 

frequency and range or, in other words, the effects that reflecting paths have in the 

WLAN operation. We continued by laying out the basics for an advanced 

modulation technique (OFDM) and presented the benefits of using that modulation 

in an average healthcare environment. 

This chapter continued with showing that for specific applications like Telemedicine, 

the best of the two worlds can be combined: from the 802.11b, we can use the 

extended range it has, its increased compatibility with radio regulatory committees 

all over the world and its relatively cheap hardware and from the 802.11a we can use 

its higher tolerance to multipath noise, a factor that affects extensively the signal 

quality and speed of the WLAN. The way this can be done is by replacing IEEE 

802.11b’s modulation with that of IEEE 802.11a thus using OFDM modulation 

instead of CCK. 

Since 802.11a and 802.11b do not internally support QoS, real time applications are 

left to the mercy of the transport layer that, in turn, is highly dependent on the 

physical layer of the system. Real time applications would benefit considerably by 

minimising the number of errors due to signals being reflected over various surfaces 

and decreasing the quality of the communication channel. 
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Telemedical applications like MedLAN could take advantage of this “safer” 

communication environment and could be able to deliver a larger amount of data (in 

a highly reflective terrain like an old hospital) that would result in safer and more 

accurate diagnosis.  

To implement the above most hardware manufacturers give end-users the ability to 

upgrade (flash) their firmware to include newer modulation techniques and 

advances, at no cost and through their support web pages. Provided that these 

hardware manufacturers will make such alternative firmware available, it would only 

take hospital network managers a small amount of time and no cost to include 

OFDM to the available IEEE 802.11b modulations. This offers a great advantage 

compared with the costly and time-consuming procedure of replacing and 

reconfiguring the entire WLAN with either IEEE 802 or the newer IEEE 802.11g: a 

compete replacement of APs is needed in the former, while in the latter the cost of 

the newly released hardware is considerable. 

 

The above proposal has been modelled using two different simulation packages that 

specialise in different OSI layers. The conclusion based on the simulations is that 

despite the slightly increased computational power required of the WLAN’s CPUs, 

using OFDM modulation over IEEE 802.11b hardware, can reduce considerably 

the multipath noise thus increasing the available bandwidth. 

 

During the next chapter, we will deal with the task of securing a wireless telemedical 

system. We will present a spherical approach to the problem, identifying some basic 

weaknesses of the existing WLAN protocols. We will then attempt to find easy and 

reliable ways to overcome these problems. We will also set a multiple-step 

procedure for securing a telemedical WLAN that deals not only with the lower layers 

of the system (MAC) but with the administrational aspect as well. 
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77..  SSeeccuurriinngg  aa  WWiirreelleessss  TTeelleemmeeddiiccaall  SSyysstteemm  
  

 

 

 

7.1 Introduction 

When using a WLAN system in a medical environment, the issue of confidentiality 

is instantly raised. Within chapter 2, it was made clear that in a telemedical session, 

security and confidentiality between the treating doctor and the patient is vital and 

must be preserved at almost any cost. Moreover, the NHSnet, responsible for 

supplying the data communication foundation of telemedical applications within the 

United Kingdom, has revised a set of rules to govern the various issues of 

exchanging medical information over its network and more specifically to ensure 

that these exchanges have adequate security. 

As the MedLAN system relies on the use of WLANs to facilitate data exchange, 

there has to be a way of securing these data transmitted over the wireless link. 

WLAN vendors offer a set of four security measures for that purpose: SSID, MAC 

filtering, authentication and Wired Equivalent Privacy (WEP). Of those, WEP has by 

far raised a lot of ambiguity lately as, based on several publications, attacks on its 

basic encryption algorithm (RC4) can be proven successful thus destroying the 

overall system security. 

This chapter will attempt to shed some light into some fundamental problems of 

securing a WLAN system, especially when this is addressing a medical environment. 

It will start by explaining some of the basic procedures of WEP along with some of 

its fundamental flaws that were discovered. It will argue that despite the recent 

mistrust of the WEP system, there are easy ways of minimising the risks that it 

poses. Furthermore, for implementing the highest level of security an alternative 

model will be presented, that will include the encapsulation of WEP over IPSec; an 

encryption algorithm that is used for implementing Virtual Private Networks (VPN). 

Practical experiments and benchmarks will reveal the advantages of this method 

along with any overhead imposed on the system. This approach is not novel in 

networking, but its application to a wireless system like MedLAN contributes in the 

Telemedical science. 
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7.2 Current security standards 

Now that WLANs have become mainstream, organisations look positively on the 

benefits that they provide and are willing to deploy them in their working 

environment. However, network managers are reluctant or unwilling to accept this 

change without being sure that this innovation will offer the same amount of security 

found in wired LANs. 

Security usually consists of privacy and access control. The former ensures that the 

data travelling within the WLAN can only be received and understood by the 

intended receiver. The latter ensures that data can only be accessed by authorised 

users [Cis00]. 

In wired LANs data travels through a cable and access to the LAN is governed by 

access to an Ethernet port. This means that privacy cannot be compromised unless 

there is a physical interception to the network hardware carrying the data. Contrary 

to wired LANs, WLANs data are broadcasted over the air and can be received by 

any potential client. As radio waves often extend outside the vicinity of the 

enterprise, installing a WLAN might seem like putting Ethernet ports everywhere, 

including the parking lot or the cafeteria across the street! 

IEEE 802.11 task force recognised early the need for data security to ensure access 

control and privacy to the nominal users of these systems. For that reason, four basic 

security mechanisms are embedded into all modern IEEE 802.11 networking 

hardware: SSID, MAC filtering, WEP and authentication. Each of those will be 

explained, with emphasis on WEP. 

• Service Station IDentifier  (SSID) can simply be considered as the name of 

an AP. Naming APs is mandatory in an IEEE 802.11 network and its 

usefulness becomes apparent when several APs are deployed, that might be 

running on different properties. 

Mobile terminals are requested to log in to the AP by using its SSID name. If 

this information is not known, the association procedure with the AP cannot 

be initiated and therefore the AP denies service to the MT. 

The sole use of the SSID, however, is not considered a strong security 

method for two reasons: Unlike passwords, the SSID name tends to leak out 

to public (as a lot of people possess that information). Moreover, to simplify 

the installation and connection procedure, vendors tend to ship WLAN 
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hardware with the SSID turned to “broadcast” mode; transmitting its name 

along with every packet sent. 

• Using MAC filtering is yet another way to control the access of users in a 

WLAN system: Each LAN hardware (LAN cards, routers, WLAN MTs, etc) 

has a unique six-byte identifier embedded in its hardware by the 

manufacturer, called “MAC address”. This is used to uniquely identify the 

hardware, especially in large networks or the Internet. The user can create a 

list of nominal MAC addresses (or MAC address ranges) that will be allowed 

to connect to the WLAN, while excluding any others [Fig. 7.1]. The 

downside of this is that when the WLAN system is rapidly expanding, the 

network manager is constantly obligated to add new users to the list. 

Furthermore, there exist programs on the market that can masquerade the 

MAC address of one hardware into another thus rendering this method of 

security inefficient. 

 

 
Fig. 7.1 SSID and MAC filtering process in an infrastructure WLAN 

 

• WEP offers an integrated security mechanism that is aimed at providing the 

same level of security experienced in wired networks. The goals of WEP 

include: Access control, that prevents unauthorised users who luck the 

correct key to gain access to the network and privacy to protect WLAN data 
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streams by means of encryption, allowing decryption only to users possessing 

the correct key. WEP will be explained further during the next subchapter. 

• Another mechanism for controlling the access of users to the WLAN, is the 

authentication procedure, as defined in chapter 3.9 IEEE 802.11 provides 

two types of authentication: Open system authentication simply permits the 

interacting parties to exchange their identities within the MAC control frame. 

This method provides no security benefits. Alternatively, shared key 

authentication requires the two parties to share a secret key, not shared by 

anyone else. The authenticating procedure for parties A and B is as follows: 

o A sends a MAC authentication frame that contains an authentication 

algorithm along with the SSID. 

o B responds with a 128-octet challenge text created using the WEP 

pseudo random number generator. 

o A transmits an authentication frame that includes the challenge text 

received from B and the entire frame is encrypted using WEP. 

o B receives the encrypted text and decrypts it using WEP and the 

secret key. If CRCs match, it means that the decryption is successful 

so B compares the output text with the one that was sent as a 

challenge. If the two match, then the procedure is authenticated. 

 

 

7.3 WEP 

To ensure access control, privacy and data integrity, WEP uses an encryption 

algorithm based on the RC4 [Sta01]. RC4 is a well-established algorithm that is 

currently used to encrypt data in e-commerce transactions and is considered 

adequately safe. 

 

7.3.1 WEP encryption / decryption process 

Fig. 7.2 shows the encryption process [Sta01]. The integrity algorithm is simply the 

32-bit CRC check that is embedded at the end of each MAC frame [Fig. 3.5]. 
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Fig. 7.2 Encryption and decryption process of the WEP algorithm based on an RC4 encryption. 

 

For the encryption process, a 40 or 128 bit key is shared by both receiver and 

transmitter. An Initialisation Vector (IV) is created using this key (explained later). 

The output is fed to the Pseudo Random Number Generator (PRNG) defined in RC4 

thus generating a bit sequence with the same length as the MAC frame plus the CRC. 

A bit by bit XOR between the MAC frame and the PRNG outputs the ciphertext. The 

IV is attached to the ciphertext and the whole train is transmitted [Fig. 7.2.a]. The IV 

is changed periodically (can change as often as each packet transmission depending 

on the hardware used). The more frequent the change of the IV is, the harder it 

becomes for an eavesdropper to decode the sequence.  

At the receiving end, the receiver retrieves the IV from the data block and 

concatenates this with the shared key to generate the same key sequence as the 

sender. The output is XORed once again against the incoming block to recover the 

plaintext, taking advantage of the property of XOR: ABBA =⊕⊕  [Fig. 7.2.b]. 

Finally, the receiver compares the incoming CRC, with the CRC calculated at the 

receiver to ensure data integrity. 

 

When defining the above procedure mathematically, the following procedures take 

place: [Bor01] 
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• A secret key “k” is selected and shared between sender and receiver. 

• Having the message M, its checksum is computed c(M). The concatenation 

of the two yields the plaintext: P={M,c(M)}. Note that c(M) and thus P does 

not involve the secret key k. 

• As a second stage, the P is encrypted using the RC4 algorithm: an IV “v” is 

chosen and RC4 generates a long pseudorandom sequence as a function of v 

and k denoted as RC4(v,k). Then, the plaintext is XORed with the above 

sequence: C=P ⊕ RC4(v,k).  

• Finally, the IV and the ciphertext is transmitted over the air [Fig. 7.3]:  

A  B: v,{(P ⊕ RC4(v,k)} 

 

 
Fig. 7.3 Encrypted WEP frame 

 

The decryption process is the exact opposite of the encryption as RC4 is a symmetric 

algorithm: 

The keystream RC4(v,k) is generated and is XORed against the ciphertext to recover 

the initial plaintext: 

P’=C ⊕ RC4(v,k) 

={P ⊕ RC4(v,k)} ⊕ RC4(v,k) 

=P 

(M is the message, P is the plaintext and C is the ciphertext) 

Finally, the receiver verifies the CRC checksum of the decrypted plaintext P’ by 

splitting it into the form (M’, c’), recalculating its checksum c(M’) and checking that 

it matches the received c’ to ensure that only frames with a valid checksum will be 

accepted by the receiver.  
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7.3.2 WEP implementation 

To render the above encryption, hardware manufacturers ship their products with 

software suitable for changing and administering WEP keys. In the MedLAN case, 

the WLAN hardware used were produced by Cisco. Both 340 and 350 WLAN series 

were used, either on a stand-alone basis, or in collaboration with each other. This 

hardware has an extended Read Only Memory (ROM) embedded in the main board 

so an advanced firmware (software inside ROM) can be used to perform all 

necessary tasks. 

Each AP gets a unique IP (either by the user, or by the DHCP server). The way to 

administer it is to use an Internet browser and direct it to the AP’s IP address. 

Administering the AP through a web page simplifies the procedure for the novice 

user and does not decrease the level of functionality required by an expert user. Most 

of WLAN manufacturers use this web-page method for setting up their hardware. 

One of the administration pages existing in the AP’s firmware is “AP radio data 

encryption” [Fig. 7.4] 

 

 
Fig. 7.4 Through a web page, the key (k) can be set for use by the AP. The key can either be 40 or 128 

bits long in form of bytes. Note the “open” or “shared key” authentication method selection. 

 

This allows the user to set up to four different keys (k) with either 40 or 128 bits of 

security. As inserting 128 bits can be proven confusing, the key’s elements are 

organised in bytes. Only one of the four keys can be used at a time. Keys are being 
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kept secret (even to the nominal user) after being inserted to the AP. Keys can be 

deleted but not altered. 

On the MT side, a similar procedure takes place: the user, having possessed the key 

(k) must enter it using a special program in order to establish communication with 

the AP. The MT card has an EEPROM memory that can store this key, even in the 

absence of electrical power. In other words, the key is permanently stored in the 

card; something that may be considered as a security risk. 

 

 
Fig. 7.5 Setting the WEP key on the MT’s side 

 

Some hardware vendors give the user the ability of setting either a “persistent” 

(constantly stored in the card) or “temporary” key that will be lost after rebooting the 

machine [Fig. 7.5]. 

 

7.3.3 WEP overhead benchmark 

Considering Fig. 7.3, it is expected that since the procedure of using a WEP key 

generates additional traffic, it will have some effect on the performance of the 

wireless network throughput. Unfortunately, metric procedures for these kinds of 

operations are in their infancy, so one has to rely more on practical measurements 

[Wil01]. 

A number of publications have considered this issue and almost all of them tend to 

agree that the use of WEP has the effect of increasing the computational power of 

the hardware (handled by the WLAN), rather than the throughput itself. Table 7.1 

illustrates this notion [Wil01], [Fli03]. 
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Speed (Mbps) No WEP 40-bit WEP 128-bit WEP 

1 1048576 1175773 1178175 

2 2128106 2120282 2116391 

5.5 3673355 3627149 3650106 

11 4164020 3857637 3806711 
Table 7.1 Effects of WEP encryption on the IEEE 802.11b throughput 

 

The experiment was conducted while receiver and transmitter had a nine meter 

distance through three walls and a solid wood door. Notice that for low speeds, the 

use of WEP plays almost no role at all. On the maximum speed of 11Mbps, a 

decrease of 8-16% was observed. The same experiment was repeated at CMH 

producing similar results. 

Conclusively, despite the general feeling that WEP use can produce a high volume of 

unnecessary overhead, experiments tend to agree that this is actually kept to a 

minimum. 

 

 

7.4 WEP vulnerabilities 

In the past two years, various research groups have published a number of papers 

indicating that the IEEE 802.11 is open to attacks by attackers using relatively easy 

methods [Arb01], [Bor01], [Flu01], [Stu01]. These papers also indicated that poor 

authentication implementations and bad management could further decrease the level 

of security in a WLAN. Some of them went further to suggest ways to improve 

security and even countermeasures against the attackers [Wil02], [Joh02]. Articles 

on the researchers’ findings appeared in the Wall Street Journal, among other 

publications, and raised the concern of the public who, up until then, considered 

WEP as a solid security solution. The articles reported that these attacks tend to 

undermine the ability of 802.11 to perform adequately on its basic objectives: 

confidentiality, access control and data integrity. 

In the remaining of this subchapter, there will be a basic description of the flaws 

embedded in the WEP implementation, along with the corresponding attacks that can 

be performed by taking advantage of these flaws. Note also that WEP has been 
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implemented in two versions: 40-bit and 128-bit key. The 40-bit key was defined in 

the standard to accommodate for US regulations. Unfortunately, by applying a brute-

force attack, 40-bit keys can be broken in a modest time frame. 128-bit key, on the 

other hand, seem to be invulnerable to brute force attacks, although shortcut methods 

can be used. 

 

7.4.1 Risk of keystream reuse 

As WEP uses a stream cipher (RC4), that operates by expanding a secret key into an 

arbitrary long keystream of pseudo random bits, encryption is performed by XORing 

the generated keystream with the plaintext. A well-known disadvantage of those 

ciphers is that encrypting two messages under the same IV can reveal information 

about both messages [Bor01]: 

If C1=P1 ⊕ RC4(v,k) 

and C2=P2 ⊕ RC4(v,k) 

then C1 ⊕ C2={ P1 ⊕ RC4(v,k)} ⊕ { P2 ⊕ RC4(v,k)}=P1 ⊕  P2 

meaning that by XORing C1 and C2, the result is the XOR of P1 and P2 

This can lead to a number of attacks, especially if any part of the text in known 

[Daw96]. The trick to avoid this is to have the ability to change the IV with every 

packet sent; something that is suggested in the WEP specifications. Unfortunately, 

these specifications fail to indicate how to do so, thus many implementations do it 

very poorly: with a starting value of zero, the IV is incremented by one every time a 

packet is sent. When the hardware is powered off, the procedure begins once again 

from zero. Even worse, as the IV is always 24 bit wide and with a speed of 11Mbps 

and a packet size of 1500 bytes, it is guaranteed that the same IV will appear every 

about 12 hours. 

Once two packets encrypted by the same IV are discovered, various methods of 

attacks can be applied to recover the plaintext: 

• Many fields of the IP traffic are predictable and so are many initial states of 

the login procedure (e.g. a remote computer usually displays the word 

“password” while initialising a connection). 

• Another way to do so is to cause a known plaintext to be transmitted over the 

air (for example send some IP traffic directly to the mobile host using the 

Internet). 
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• Finally, even if no plaintext is known, some analysis is still possible by 

performing an educated guess about the traffic.  

After the plaintext of a packet becomes known by using any of the above methods, 

the attacker can use this same keystream to decrypt any other message encrypted 

with the same IV. By persistent work, a complete dictionary of IVs and 

corresponding plaintexts can be built having a modest size of about 224=24GB. This 

way, an attacker can take advantage of the low frequency that the keys are renewed 

in the system and immediately decrypt any broadcasted message. 

Finally, it is worth mentioning that there is no standardisation as to the way that the 

keys (k) are distributed among the users. Since there is usually a single key for all 

MTs, the task of key insertion is performed by the network administrators manually, 

something that poses a great deal of managerial overhead. 

 

7.4.2 Message authentication 

CRC is a field used by WEP to ensure that the contents of the packet have not been 

modified during transmission. This CRC-32 is embedded in the encrypted part of the 

packet. 

CRC, however, is not a cryptographically secure algorithm and leaves the system 

open to a number of malicious attacks, described below: 

“Message modification” means that contrary to security goals, a message can be 

modified during transmission, without disrupting the checksum. This method takes 

advantage of the linearity properties of WEP: c(x⊕ y)=c(x) ⊕ c(y) for all choices of 

x and y. Let us assume that C corresponds to some unknown message M so that 

C=RC4(v,k) ⊕ {M,c(M)}. There can be a C’ that decrypts M’ where M’=M ⊕ D and 

D can be chosen by the attacker. Then the attacker can substitute C with C’ thus the 

recipient will receive a modified message M’ with the correct CRC. To obtain C’ 

from C (so that C’ decrypts to M’ instead of M) we use the following equation: 

C’=C ⊕ {D, c(D)} 

= RC4(v,k) ⊕ {M,c(M)} ⊕ {D.c(D)} 

= RC4(v,k) ⊕ {M ⊕ D,c(M) ⊕ c(D)} 

= RC4(v,k) ⊕ {M’,c(M ⊕ D)} 

= RC4(v,k) ⊕ {M’,c(M’)} 
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“Message injection” refers to the ability of an attacker to inject arbitrary data into a 

message. This takes advantage of the fact that CRC can also be computed by the 

attacker who has intercepted the message: if an attacker knows the plaintext 

corresponding to a frame of transmitted data, it will be possible to inject arbitrary 

data into the network. 

As shown earlier, knowledge of both plaintext and ciphertext reveals a keystream 

that can be reused to create a new packet using the same IV: 

P ⊕ C=P ⊕ {P ⊕ RC4(v,k)}=RC4(v,k). 

A message M’ can be constructed, where  

C’={M’,c(M’)} ⊕ RC4(v,k). 

Note that the rough message uses the same IV as the original. However, it is a 

fundamental property of WEP that older IVs can be reused. This property allows for 

packets that were delayed in transport to be considered valid by the system. Not 

accepting older IVs will risk no compliance with the WLAN system. This is 

considered a fundamental flaw of the WEP implementation. 

Furthermore, the same technique can be used during an authentication procedure, 

using a shared-key: if the attacker posseses a set of plaintext / ciphertext (after 

monitoring a legitimate authentication sequence), it is trivial to derive the keystream 

used to encrypt the response. Since all authentication responses are of the same 

length, the recovered keystream will be sufficient to create a proper response for a 

new challenge, and subsequently, authenticate oneself into the network. 

In “message decryption”, the attacker tries to decrypt the entire ciphertext. As a 

direct attack on the cryptography of WEP is pointless, the trick is to have another 

device that can perform this task. Such a device is the AP that is obligated to possess 

the key and the ability to decipher the encrypted message. Basically, in this type of 

attack, the adversary uses the AP as an aid to perform the attack. 

One way to do so, is to modify the destination address of an IP packet, so the AP will 

send it to an address that is controlled by the attacker. Since most firewalls limit 

incoming traffic but allow for outgoing traffic, this should not be so difficult. 

The easiest way to modify the IP address is to try to guess a nominal destination 

address; something that is not as hard as it sounds: most traffic have a small range of 

destinations. The trick is to be able to inject the new IP address without alarming the 

CRC checksum of the packet; something feasible and documented in the 

bibliography [Bor01]. 
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Another way to implement message decryption is to use a fundamental property of 

the TCP protocol (most network communications rely on using this). In this kind of 

attack, the reaction of the TCP protocol is monitored: whenever a nominal TCP 

packet is accepted (having the correct checksum), a fixed-length response is being 

transmitted from the receiver to the sender. This response, although encrypted, is 

easily detected by its format. 

In the attack, a ciphertext (v,C), with an unknown P, is intercepted. A few bits of C 

are flipped and CRC is adjusted accordingly to obtain a new ciphertext C’. After 

transmitting the C’ the attacker monitors if the AP will send an ACK packet back or 

it will discard the packet completely. 

The trick is to cleverly choose the bit positions that are flipped, so the TCP 

checksum remains undisturbed exactly when the one-bit condition Pi ⊕ Pi+16=1 on 

the plaintext, holds. Thus, the presence or absence of a ACK packet will reveal one 

bit of information on the unknown plaintext P. By repeating the attack for many 

choices of i, one can learn almost all of the plaintext P [Bor01]. 

 

7.4.3 Future improvements: AES and WPA  

Following the concern the above mentioned vulnerabilities of WEP caused to the 

public, the newly formed IEEE 802.11i task group was charged by standardising a 

better, more secure method for operating WLANs. The 802.11i is a work in progress 

and is just beginning to publicise some of its recommendations. Final standards are 

not expected before mid 2004. 

This standard promises to completely revamp the architecture of WLAN security 

environment by upgrading the entire secure-key procedure. The RC4 algorithm will 

be abandoned and will be replaced by the newer Advanced Encryption Standard 

(AES) (it must be clear that the RC4 algorithm does not suffer from any fundamental 

flaws and is still used by banks to perform secure on-line transactions; it is its 

implementation inside the WEP protocol that was poorly designed). 

AES is a relatively new cryptographic algorithm that can be used to protect 

electronic data. Specifically, AES is an iterative, symmetric-key block cipher that 

uses keys of 128, 192, and 256 bits long, and encrypts and decrypts data in blocks of 

128 bits (16 bytes). Unlike public-key ciphers, which use a pair of keys, symmetric-

key ciphers use the same key to encrypt and decrypt data. Encrypted data returned by 
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block ciphers have the same number of bits that the input data had. Iterative ciphers 

use a loop structure that repeatedly performs permutations and substitutions of the 

input data [Caf03]. 

AES is the successor to the older Data Encryption Standard (DES). DES was 

approved as a Federal standard in 1977 and remained viable until 1998 when a 

combination of advances in hardware, software, and cryptanalysis theory allowed a 

DES-encrypted message to be decrypted in 56 hours. Since that time numerous other 

successful attacks on DES-encrypted data have been made and DES is now 

considered to have past its useful lifetime. It has been calculated that if a machine 

could recover a DES key in a second (i.e., try 255 keys per second), then it would 

take that machine approximately 149 trillion years to crack a 128-bit AES key 

[NIS04] 

AES was created in 1999, using the “Rijndael” algorithm, created by researchers 

Daemen and Rijmen [Dae99]. It was selected by the NIST as the proposal that best 

met the design criteria of security, implementation efficiency, versatility, and 

simplicity. AES is widely expected to become the de facto standard for encrypting 

all forms of electronic data including data used in commercial applications such as 

banking and financial transactions, telecommunications, and private and Federal 

information [NIS04], [Caf03]. 

 

Until the IEEE 802.11i standard comes into effect, the Wi-Fi alliance recommends a 

subset of the 802.11i standard to replace the current WEP implementations. The Wi-

Fi Protected Access (WPA) is an interim solution that will increase security over 

current WLANs and open the way to 802.11i future developments [Wil02] 

WPA will work like the authentication system in 802.1x. MTs and APs must both 

support WPA and the access point will need to be connected to a Radius server, (that 

supports 802.1x and EAP) to perform an authentication procedure. The Radius 

server will then provide the same authentication service performed by dial-up 

modem users: it will block all access to WLAN until the client has been 

authenticated, usually through a login procedure (username and password). Once this 

procedure has been completed, the Radius server sends the WEP session key to the 

client and both MT and AP use this key for that WLAN session [Fig. 7.6]. The 

complete sequence of events using a Radius server, can be found in Appendix L 

[Cis00], [Cis02a], [Cis02b]. 
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Fig. 7.6 Using a Radius server as an interim solution between the existing WEP  

and the future 802.11i: sequence of events 

 

The advantage of this approach is that it relies on user-memorable information 

(password) rather than keys permanently stored on a card. The drawback, on the 

other hand, is that it requires the existence of a separate Radius server to authenticate 

the user; a luxury that SOHO users cannot usually afford. 

 

7.4.4 Concerns and unjustified fears of WLAN security 

It is important at this point to make a clear distinction between the theory and the 

practice of WLAN security attacks: it is one issue to be able to prove that under 

given circumstances there is a mathematical chance of penetrating the WLAN WEP 

security, and a very different issue to prove that this is generally feasible and 

relatively easy to implement.  

Almost all of the above mentioned studies, were basing their conclusions on a 

number of prerequisites: using a low-end WLAN card, using weak keys, not 

changing the session keys, partial knowledge of the text, assumption that it is text 

that is sent over the WLAN, adversaries that are extremely well equipped or even no 

existence of WEP. Even if one of these circumstances did not apply, the attack 

would not be successful. 



 

 

155

It is the author’s opinion that some fundamental weaknesses of the WEP 

implementation were exaggerated and over-publicised by the press using fearsome 

titles like “Your WLAN security has no cloths”. This approach raised a partially 

unnecessary concern to the public that has no specific knowledge on how WLANs 

work and sometimes resulted in enterprises shutting down their WLANs in a state of 

panic. 

To make matters worse, these concerns were shared by some of the doctors and 

patients while the prototype MedLAN system was under development. This 

seriously undermined the trust between the treating doctor and the patient; a trust 

that is fundamental during any telemedical procedure [chapter 2.4.1]. 

At the risk of investing a considerable amount of time to explain to every user of the 

system the particularities of the MedLAN system and the many reasons why 

MedLAN is tolerable to these kinds of attacks, the security of the MedLAN system 

was improved even further, to ease the concerns of both the healthcare personnel and 

the patients. 

 

 

7.5 Management and human issues of telemedical security 

It would be pointless to view the security of a telemedical system while giving 

concern only to the mathematical and technical properties of the system. To address 

the issue spherically, one should be concerned with the possibilities of security 

threats via other means that are not referred to in the bibliography so often. What 

good is a very efficient encryption algorithm, if a password can be easily leaked by 

an unhappy employee, or if a spy camera can be placed near the operation terrain of 

the WLAN? 

Moreover, it is imperative to understand that network security should not only be 

handled by a qualified engineer but should be documented with the help of the 

management of the enterprise. They are the ones who will give guidance and will set 

the rules that the security policy should follow. 

 

7.5.1 Management issues 

To understand how to secure wireless links, it is necessary to understand how the 

system can be attacked [Owe01]. In rare circumstances, and even if the encryption 
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cannot be broken, it can be forced to be weak by interfering with the key generation 

system on purpose. It may even be possible to make the WLAN cards radiate the 

unencrypted wireless message or a subliminal channel could be added to make the 

cards leak the keys onto a predefined destination. These attacks could be put into 

place during product design and development, before the cards are shipped to the 

hospital, or during maintenance and system upgrades. Despite this scenario 

resembling a scientific fiction movie, there is a much higher probability of this 

happening rather than breaking a properly configured WEP encryption, as it is today. 

There are a number of other things that can be done that do not directly involve the 

secure wireless link. Bugs can be installed inside the computer or in the A&E room. 

The people using the system can be bribed and so forth. The hospital management 

cannot reasonably expect the secure wireless links to be able to deal with such 

threats. 

Implementing a security policy is the only way to address the problem spherically. 

A security policy for a system defines the aims goals and addresses the threats and 

provides a framework for selecting and implementing countermeasures against these 

threats. A single written policy forces every employee to its guidelines. Such policy 

should clearly state who is responsible for what (implementation, enforcement, audit 

review). Finally, a hospital’s data security policy would have to be expanded to 

accommodate for future telemedical systems when they are introduced. 

 

After a risk has been identified, one of three things can be done: the risk can be 

accepted, reduced, or it can be insured against. Security does not have to be 

perfect but the risks have to be manageable. Technical solutions mitigate risk to 

the point where it is insurable. The need to insure the security of the data handled by 

the MedLAN system will have to be budgeted for on a yearly basis. 

Counterintelligence is the only way to stay abreast of what is really going on. 

Insurance will handle the residual risk but it is the job of the experts to keep being 

informed of new securities and security threats. 

In the near term, it is expected that a variety of outsourced security services will 

become available. Managed security monitoring is required, as someone has to 

monitor security products in real time and respond to events as they occur. The same 

person has to be able to maintain the security products in the face of an ever-

changing network and ever-changing services running on the network. Hospitals 
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cannot do this for themselves and the demand for such services, generated by the 

MedLAN system, will have to be budgeted for on a yearly basis. 

 

7.5.2 Human issues 

For some time, there has been the problem of confidentiality in telemedicine. 

[Tac96]. In a public opinion survey, it was found that patients were very concerned 

that details of their illness could be available to relatives or strangers. One comment 

was: “how do I know that someone won’t scoop an armful of videos and laugh at a 

whole lot of patients?”. These comments were further aggravated by the recent 

publication of the WEP security flaws, giving rise to further concerns. 

 

There is also the risk of the teleconsultation being physically overheard. Luckily, one 

of the great advantages of a WLAN system like the MedLAN is the ability of the 

trolley to be wheeled around a ward area so that the above risk is reduced. 

During the following subchapter, there will be an analytical description of the 

problem of securing a medical WLAN, the concerns, the attitude to follow and the 

steps that were taken to ensure against such attacks. Overall, a set of 

countermeasures for the attacks described below will be presented, along with a 

complete security solution, realisable using currently available technology. 

 

 

7.6 Creating a set of countermeasures 

As mentioned above, there exist a number of indirect attacks that can take place, to 

compromise the security of a WLAN. Apart from the attacks to the RC4 

implementation, a malicious party can also go into extreme lengths: theft of already 

set hardware, bribe disloyal or unhappy personnel, or even place rough APs to 

disrupt the operation of the WLAN. (A possible attack to the system could be made 

by placing a dummy AP close to the existing WLAN. As clients will always try to 

associate with the AP that offers the best signal to noise ratio, they will connect to 

the dummy AP losing contact to the valid network. However, a simple site survey 

reveals the “hidden” APs) [Ban02b] 

A summary of simple steps that both the developing engineer and the management 

can take to reduce considerably the security risks, are listed below [Joh02]: 
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7.6.1 Immediate Actions  

• Regardless of any problems that WEP might have, use it to encrypt the 

transmitted data.  

• Change the default SNMP community strings (passwords). The common 

management protocol used to manage all Access Points is SNMP (Simple 

Network Management Protocol). SNMP stores its management information 

in a special database called a MIB. Access to the MIB is controlled with a 

password (officially called a community string). Every manufacturer 

configures its products with a default community string that should be 

changed as soon as possible (e.g. username: admin, password: admin) 

• Change the default Access Point SSID. To start a connection (authenticate 

and associate) with an Access Point, the client needs to know its SSID. This 

information can be possessed in a number of ways:  

o It is revealed by the network administrator. 

o the AP is broadcasting it. 

o the AP has been set to a NULL SSID and will accept connections 

from any MT. 

o the AP SSID has not been changed since it was taken out of the box 

and it still has the one set by the manufacturer. 

• Disable the broadcast SSID feature of the AP (unless really needed in cases 

like internet cafes or public access WLANs where is necessary) 

• Change the default password for administrative access to your Access Point. 

All manufacturers have default passwords that are public knowledge. It 

should be changed (and should have strong password quality characteristics) 

as soon as possible to prevent unauthorised users from connecting to the AP 

and making unauthorised configuration changes that can lead to them taking 

over the control of the WLAN. 

• Survey your site to understand how far the APs are actually broadcasting 

their signals. If it is a multi-floor building, one must remember to map the 

vertical coverage too. Account for rough APs that can disable the normal 

WLAN operation. 

• To restrict the signal, one can change the placement of the APs or to consider 

the use of more specialised (directional) antennae. 
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• There is also the option to restrict the strength of the antenna signal, if the 

manufacturer of your AP allows it. This will reduce the overall coverage area 

(e.g., to keep it within your physical boundaries and not radiate past the 

walls). Nevertheless, one should also keep in mind that the adversary might 

utilise a sophisticated antenna with a longer range than found on a typical 

802.11 configuration [Stu01]. 

• Given the ease of deploying wireless network extensions and the current state 

of wireless insecurity, it is vital to monitor for unauthorised or inappropriate 

traffic. 

• If sensitive data is going to be transmitted to or from the clients, one needs to 

look into some type of end-to-end security solution to protect it (explained 

later in this chapter). 

 

7.6.2 Configuration and Management Actions 

• Consider the use of MAC level (Ethernet) address filtering to limit the 

number of clients the AP will “pay attention” to.  

• Treat all systems connected via a 802.11 as external. Consider placing the AP 

in the De-Militarised Zone (DMZ) (as opposed to being attached directly to 

your internal networks) and in front of a firewall. Having a firewall between 

the internal network and the Access Point is always a good practice because 

it gives the management flexibility and control [Fig. 7.7] 

 

 
Fig. 7.7 Treating the WLAN system as external: placing the AP behind the enterprise’s firewall. 
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• Consider configuring the Access Point so that it will not respond to “probe-

response” requests. This means that clients will have to explicitly know the 

Access Point connection information beforehand. The publicly available 

“war driving” tools use this technique; they constantly send out “probe-

response” packets on all channels and record all Access Points responses. 

• Consider whether the AP should offer DHCP for new clients. While most AP 

manufacturers provide the capability for the device to offer dynamic IP 

addresses via the DHCP protocol, enabling this feature means that any client 

will also be offered this service to connect to the network infrastructure. 

• Support mutual authentication between a client and an authentication server 

using Radius servers described above [Cis00]. 

• Base WLAN security on device-independent items such as usernames and 

passwords, on top of existing WLAN security. 

• Use WEP keys that are generated dynamically upon user authentication, not 

static keys that are physically associated with a client. Furthermore, support 

for session-based WEP keys. 

 

 

7.7 IP Secure (IPSec) 

Designed by the Internet Engineering Task Force (IETF) as the security architecture 

for the Internet Protocol (IP), IPSec defines IP packet formats and related 

infrastructure to provide end-to-end strong authentication, integrity, anti-replay, 

and (optionally) confidentiality for network traffic. It is specified by a set of IETF 

standard documents (RFCs 2401 to 2411 and 2451), which define an architecture for 

encryption. An on-demand security negotiation and automatic key management 

service is also provided using the IETF-defined Internet Key Exchange (IKE), (RFC 

2409). IKE is used to set up the trust relationship between two peers [Tah03]. 

IPSec is a framework of open standards for ensuring secure private 

communications over Internet protocol networks. Open standards means that IPSec 

does not specify exactly which encryption algorithms must be used by its 

applications, but instead provides an empty infrastructure (shell) where the desired 

algorithms can be set. This actually is an efficient design, as it allows the 
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implementations to be modular, customisable for specific problems (WLANs) and 

easily upgradeable with new algorithms. That is the reason why IPSec is the basic 

algorithm of Virtual Private Networks (VPN). 

Depending on which devices it is deployed, the implementation of IPSec takes the 

form of one of the following typical scenarios: 

• Host-to-host communication: IPSec is deployed on each host that requires 

secure communication services. Each host-pair negotiates its own IPSec 

parameters and establishes its own connection. This would be typically the 

case when two users wish to share a private connection over the WLAN and 

will be explained later in reference to the MedLAN system. 

• Gateway-to-gateway communication: IPSec is deployed on network 

gateways, which can be either routers or special firewalls. Each pair of 

security gateways establishes a secure tunnel over which all the hosts in the 

LAN send protected packets. This is completely transparent to the hosts, 

hence it is well suited for connecting distant LANs over the Internet or over 

the insecure WLAN 802.11b. 

• Host-to-gateway communication: IPSec is deployed both on a security 

gateway (already defined above) and on a host (typically, a mobile station) 

that remotely connects to it. In this scenario, a remote user (e.g. a tele-worker 

or a WLAN user) is able to reach a private / backbone LAN, without 

requiring a dedicated connection as the IPSec environment between the 

station and the gateway ensures that all the packets are protected.  

 

7.7.1 IPSec architecture and function 

The security services within IPSec are provided by one of two protocols, the 

Authentication Header (AH) and the Encapsulation Security Payload (ESP). 

Each of these provides certain services and may be used separately or together. 

• AH packets are IP packets with the purpose of providing data source 

verification, packet integrity and replay protection, but not data or traffic 

flow confidentiality. Connectionless data integrity means that the original IP 

packet was not modified in transit from the source to the destination. Data 

source verification confirms the source of the data. Together these two 

combined services are referred to as “authentication”. The AH is either 
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inserted between the original IP packet header and payload, e.g. TCP header 

+ data, for the “Transport Mode”, or prefixed to the original header along 

with a new IP header in “Tunnel Mode” (more details concerning IPSec 

modes can be found on Appendix M). The AH contains a cryptographic 

checksum. The default cryptographic algorithms for calculating the 

checksum are hash-based message authentication code (HMAC) coupled 

with the Message Digest 5 (MD5) hash function or HMAC coupled with the 

SHA-1 hash function.  

A hash algorithm is a one-way mathematical function that takes a variable-

length message and produces a unique fixed-length value. SHA-1 is 

considered a stronger hash function as it produces a 160-bit authenticator 

value (cryptographic checksum), versus a 128-bit authenticator produced by 

MD5. AH also provides an anti-replay service that can be used to counter an 

attack based on an attacker’s intercepting a series of packets and then 

replaying them. 

• ESP packets are similar to AH packets. ESP provides data confidentiality, as 

well as authentication and anti-replay capabilities. Under the right 

circumstances, it can also provide some traffic flow confidentiality.  

Confidentiality is achieved through encryption. ESP supports a variety of 

symmetric encryption algorithms for the encryption of the data. The default 

algorithm, Data Encryption Standard (DES), has been in use for about 20 

years now. DES uses a 56-bit key. However, because it has shown to be 

cracked by brute-force attacks, Triple DES (3DES), is considered better. In 

addition, the newer, faster, and more secure standard encryption algorithm, 

(AES) can be implemented within IPSec. 

 

7.7.2 IPSec key advantages 

In an earlier subchapter, there was a mention of a fundamental flaw of WEP 

encryption: the limited number of possible IV keys (224) can lead to IV collision.  

In contrast with WEP, IPSec uses a unique key for each direction of each session 

over each (virtual) link. As it uses 3DES with an effective key strength of 112 bits, 

there must be about 256/2=255 sessions before there is any significant chance of 

collision between two randomly generated keys. An attacker has to assemble a very 
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large database of cipher texts before a hope of discovering a collision. Furthermore, 

255 translate to about 236 (64 billion) new sessions, each second for over twenty 

years. 

When using 3DES, each session takes its IVs from a 64-bit space (128-bit space 

when AES is used). This means there is no significant chance of randomly selected 

IV collision until after about 232 packets so IPSec renders such a collision probability 

too unlikely to worry about.  

IPSec also allows a single key to encrypt 232 packets at most, so the probabilities add 

up against an attack. 

 

7.7.3 Authentication and key management 

Similar to WEP, the whole IPSec architecture is based on the presence of some 

common secret keys on both peers. Because all keys have to be exchanged in order 

for the parties to communicate securely, key exchange and management is an 

important part of IPSec. Contrary to WEP, which uses manual methods of doing so, 

two methods of handling key exchange and management are specified within IPSec: 

manual keying and Internet Key Exchange (IKE). 

The first method (similar to WEP) has proved to be deficient when the key length is 

high and the number of stations sharing the same key is growing. Therefore, to 

handle the key problem, IPSec uses the Internet Key Exchange (IKE) protocol that 

automates the keying and re-keying processes. 

A Diffie-Hellman exponentiation is used to assist in generating a strong initial key. 

Before IKE proceeds, the potential parties must agree on a way to authenticate 

themselves to each other.  This authentication method is negotiated during the IKE 

phase main mode exchange. Digital certificates involve the use of a trusted third 

party, called a Certificate Authority (CA), to validate the authentication of each peer. 

Digital certificates offer the added benefit of no repudiation, in the sense that a peer 

can verify that communication actually took place [Tah03], [Sta02] 

 

7.7.4 Using IPSec 

IPSec consist of a set of rules along with their corresponding actions and settings. 

Rules determine which types of traffic IPSec must examine, how traffic is treated, 

how to authenticate an IPSec peer, and various other settings. 
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An IPSec policy consists of one or more rules that determine IPSec behaviour. Each 

IPSec rule contains the primary following configuration items: 

• Filter list: A single filter list contains one or more predefined packet filters 

that describe the types of traffic to which the configured filter action for this 

rule is applied. 

• Filter action: A single filter operation that includes the type of action required 

(permit, block, or secure) for packets that match the filter list. For the secure 

filter action, the negotiation data contains one or more security methods that 

are used (in order of preference) during IKE negotiations and other IPSec 

settings. Each security method determines the security protocol, the specific 

cryptographic algorithms and session key regeneration settings used. 

• Authentication methods: One or more authentication methods are configured 

(in order of preference) and used for authentication of IPSec peers during 

main mode negotiations. One of the available authentication methods is the 

Kerberos V5 protocol that is used in cases of a certificate issued from a 

specified certification authority, or a pre-shared key.   

 

Fig. 7.8 illustrates a practical example of using IPSec: a user on Host A is sending a 

message to a user on Host B assuming that IPSec has been employed for both 

computers. At the user level, the process of securing the IP packets is transparent. 

 
Fig. 7.8 Implementing IPSec in a standard network:  

the procedure is transparent to both users as IP packets are encapsulated within IPSec 
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The IPSec policies assigned to the domain system containers of Host A and Host B 

determine the level of security for the communication. The IPSec policies are 

retrieved by the IPSec Policy Agent and passed to the IKE module and the IPSec 

driver. The IKE module on each computer uses the negotiation settings of the IPSec 

policy to perform computer-level authentication, determine the secret key and how to 

negotiate the protection of IPSec traffic and IPSec-secured traffic. The IPSec driver 

uses the IP filter settings of the IPSec policy to determine what types of traffic are to 

be protected. 

 

Assuming that Host A and Host B are not already communicating securely and a 

message that Host A sends to Host B must be secured, IPSec works in the following 

way [Fig. 7.8]: 

• User on Host A wishes to sent a message to the user on Host B. The message 

is passed to TCP/IP and is intercepted by the IPSec driver on Host A. 

• The IPSec driver on Host A checks its IP filter lists to determine whether the 

message should be secured.  

• The IPSec driver notifies the IKE module to begin negotiations.  

• The two computers use IKE to authenticate each other and determine the 

secret keying material, the type of protection for future IKE traffic, and the 

type of protection for the message that is being sent.  

• The sets of parameters that determine the protection, known as Security 

Associations (SAs), are sent to the IPSec driver. The IPSec driver uses SA 

information to protect the message. 

• The IPSec-protected message is forwarded to Host B.  

• The IPSec-protected message is received by the IPSec driver on Host B. 

• The IPSec driver on Host B validates authentication and integrity and, if 

required, decrypts the message.  

• The IPSec driver passes the validated and decrypted message to TCP/IP, 

which passes it to the receiving application on Host B. 
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7.8 Securing a telemedical WLAN 

By reading the previous subchapters, the following conclusions can be drawn: 

• Using WEP to secure WLANs systems has been the recipient of a number of 

negative remarks. 

• Not all of these remarks, on the possible attacks to the WEP protocol, are 

considered to pose a clear and realistic danger, as many of these attacks 

require specific prerequisites. 

• There are simple ways to secure a network using WLANs 

• There is an ongoing fear of the general population as to the possible attacks 

that were publicised recently. Furthermore, these concerns are also shared by 

the patients and the healthcare workers. 

The trust between doctor and patient should remain on the highest level of priority, 

for any research project like MedLAN. This dictated that any fears and insecurities 

of both patients and doctors should be addressed before the successful deployment of 

a system like MedLAN. 

As proved, IPSec offers a superb level of security; much higher than previously set 

by WEP. By using (encapsulating) WLAN data into IPSec frames (with or without 

WEP security), the WLAN level of security is increased and the confidence to the 

overall MedLAN system is retained. Below, the methodology and results of this 

experiment will be explained. 

 

7.8.1 Methodology 

A number of different topologies, both wired and wireless, were secured using IPSec 

protocol in tunnel mode, with a primary intention of investigating the possible 

overhead that such a protocol would impose on a system. The interest, in particular, 

was focused on the possible effects that this kind of encapsulation would pose in a 

real time videoconferencing system; specifically one destined for telemedical use. 

As the overhead added by the IPSec protocol increases, the bandwidth available for 

the videoconferencing application decreases (the overall speed remains the same). 

This means that (as the available bandwidth that the video compression algorithm 

can use decreases) the compression must increase and the quality eventually is 

degraded. 
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The theoretical overhead of IPSec is about 15-20% of the data packets (at any given 

speed). Practical experiments reveal the actual overhead. 

For these experiments, three different scenarios were chosen for a node-to-node 

communication: wired, wireless without AP (ad-hoc mode) and wireless with AP 

(infrastructure mode). For each of those, variable-sized files were used (small and 

large) in order to define the effect that IPSec would have. 100% was defined as the 

time that a wired network (using a cross-wired cable to avoid any delays introduced 

by the HUBs and switches or by packet collisions) takes to transfer a large file from 

one computer to another, using the same speed as the WLANs (the maximum IEEE 

802.11b speed of 11Mbps). The file simulates the constant videoconferencing data 

stream introduced while videoconferencing. 

The testbed included two computers (a laptop and a desktop) that run Windows XP 

Professional and supported internally the use of the IPSec protocol. The MMC 

command was used to add the IPSec protocol and configure the security policies 

[Fig. 7.9] [Dix03] 

 

 
Fig. 7.9 running the MMC program permits the user to select the kind of security  

and the settings (rules) to which it applies. 
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Several scenarios were tested, having different security properties. For the most 

common scenario, both clients were running under IPSec, the negotiation has already 

taken place and normal communication between them has been established. The 

overall procedure was transparent to the users. (there is a great level of detail 

involved in establishing and configuring IPSec, but for reasons of simplicity, only 

the most common procedures are mentioned). 

The following table indicates the IPSec overhead: 

 
File size (in MB) 83.70 73.00 47.20 

FTP time 276 sec 232 sec 152 sec 

FTP time with WEP 296 sec 268 sec 160 sec 

FTP time with IPSec 292 sec 254 sec 205 sec 

FTP time with WEP and IPSec 303 sec 348 sec 214 sec 

Overheads for WEP 117.20% 115.51% 110.5% 

Overheads for WEP and IPSec 110.9% 115% 114% 

Table 7.2 Overheads introduced while transferring various size files by using WEP,  

IPSec or a combination of both. 

 

7.8.2 Discussion 

By taking into account the experiment results, the following remarks can be made: 

• Both the overhead of WEP and IPSec remain in a relatively low level. This 

means that for an average WLAN traffic, both solutions do not impose a 

considerable burden into the data stream. Consequently, either method can be 

used without any major problems. 

• Despite the fact that the speed of the WLAN is 11Mbps, the actual speed left 

to be used is about 2.5-3Mbps. Of this, only about half is being occupied by 

the videoconferencing application of MedLAN. As the overhead of the above 

security solutions is about 12%, that means that no visible degradation of the 

videostream will take place. This notion has been verified through practical 

experimentation. 

• There was no measurable delay introduced to the system while using WEP, 

IPSec or both. The reason for that was that WEP additional calculations are 

handled by the WLAN hardware.  IPSec, on the other hand, is handled by the 

computer CPU, which seemed able to perform this task in real-time without 

any additional delay. 



 

 

169

• Initially it seems that encapsulating IPSec over WEP is an unnecessary task, 

as IPSec offers a greater level of security and is considered superior to the 

WEP service. However, in contrast with IPSec, which requires a rather expert 

installation and configuration, WEP can be enabled or disabled easily by the 

user of the WLAN system. Furthermore, it is more common for WLAN 

hardware to be WEP-enabled, than to be configured to run under IPSec as 

sometimes this service may not be available. 

• Finally, as the overhead introduced was not big enough to cause any 

significant delays or overloads to the WLAN traffic, the integrity of the 

MedLAN system operation was preserved, while the security level was 

increased. 

 

 

7.9 Conclusions 

During this chapter, we have presented a brief overview of the existing security 

techniques, embedded in the IEEE 802.11 WLANs. Apart from SSID and MAC 

filtering, further attention was given to the WEP security protocol and the way it is 

implemented and configured. 

We also discussed the possible vulnerabilities that the WEP implementation has 

(using the RC4 algorithm), as they were presented recently to the press. That led to 

an increased concern about the security of WLANs. It is the author’s opinion that 

this concern is exaggerated and overestimated. There are poor implementations of 

several details of the WEP protocol. However, a list of simple rules to be followed 

has also been included in this chapter; rules that render wireless security equal to 

wired security. 

Nevertheless, as non-expert users tend to jump to conclusions regarding the security 

of the WLANs, a complete and integrated security solution was added to this 

chapter, to ease these concerns (especially these of the patients, that seem to worry 

the most). This solution proposes the encapsulation of WEP inside the IPSec security 

architecture; something that has been proven reliable over the years and has been 

exploited within VPNs. The encapsulation of WEP over IPSec is not a unique 

concept, however by the methods described in this thesis, it contributes to an 
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increase of security in a wireless telemedical system by means of a carefully 

balanced integration. 

The experiments carried out in the hospital, illustrated that this solution is not only 

feasible and relatively easy to implement, but also adds no significant overhead to 

the wireless datastream, used by the MedLAN system to carry video and data. 

Another important point to mention is that apart from the data security due to the 

advantages or disadvantages of the algorithm, there are also managerial issues that 

can pose bigger challenges than technical issues. These should be anticipated, 

decided, documented and delegated, before the start of the operation of any 

telemedical system. 

In conclusion, like most advances, WLANs pose both opportunities and risks 

[Sym02]. This technology can represent a powerful complement to a healthcare-

sector networking capabilities enabling fast and effective delivery of care when it is 

needed, while reducing cost. To minimise the risks, network administrators can 

implement a range of measures and practices, while being confident that this 

expanding technology is as safe as possible. 
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88..  CCoonncclluussiioonnss  
  

 

 

 

8.1 Summary and conclusions 

MedLAN is a system dedicated for use in the hospital accidents and emergency 

wards. It has been developed to serve the need for mobile videoconferencing and 

wireless network access of healthcare personnel. 

A number of reasons contributed to the need of such a system, with the main ones 

being: the need for mobility inside the A&E rooms to increase the healthcare quality 

and the productivity, the need for consulting an expert that can reside inside or 

outside the hospital, the inefficiency (or even potential danger) of moving the patient 

to a room dedicated for videoconferencing, and finally the high cost and reduced 

flexibility of the existing ISDN videoconferencing systems. 

Within this thesis, the overall concept of such a wireless medical system was 

presented, along with its advantages and its potential limitations. As this thesis 

presented a two-fold application (Telemedical and communicational), it attempted to 

keep a balance between those two.  

In summary, we started by introducing some basic concepts of Telemedicine and 

Telecare along with a list of properties that a telemedical system should possess. We 

continued by introducing the reader to basic WLAN principles before moving on to 

the actual operation and properties of the MedLAN system. Next, we presented an 

alternative method of transferring images over a wireless channel; something that 

was proven essential for the operation of a wireless system such as the MedLAN. On 

the communicational side, we also presented a modulation alternative to that of the 

IEEE 802.11b, which was proven to cope better within a multipath environment 

often caused by thick hospital walls. Finally, we have presented some potential 

security problems that the 802.11 system suffers from and proposed not only a 

simple list of countermeasures that can be adopted, but also an integrated security 

solution that guarantees the confidentiality and integrity, when using a telemedical 

system such as MedLAN. 
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Chapters three to eight include one or more contributions to knowledge, as defined in 

the beginning of this thesis. Below is a summary of the conclusions that can be 

drawn from the entire thesis: 

• The MedLAN system was developed to fill in the space of some very specific 

needs, as set by the doctors. However, its specifications and its range of 

applications were extended far beyond those initially set by doctors. The 

resulting prototype is capable of handling live videostream, high quality still 

images, sound, patient data, and allows the operator to be wirelessly 

connected to the hospital’s network while roaming around the A&E room. 

Further development showed that the system could also exist in handheld 

versions, to allow complete autonomy of the healthcare personnel. 

The majority of the tests performed in the hospital proved that the system 

behaves very well, is easy to use, it costs less than the existing systems and, 

more importantly, can effectively assist to save lives. Furthermore, it poses 

no danger due to the use of radio waves, both to the people in close 

proximity, and to the existing medical instruments. 

• As the most interesting feature of the MedLAN system is its ability to send 

still images and video, there was the problem of standardisation of its 

outputs. DICOM has proposed a detailed list of specifications for the 

DICOM-compliant hardware. These specifications, however, do not take into 

account the particularities of wireless systems and more specifically the low 

bandwidth available to wireless networks, compared to their wired 

equivalent. 

Within this thesis, an alternative set of specifications was suggested, that 

allowed for a small percentage of compression of medical images while 

saving a considerable percentage of storage space and transfer time. The 

images that were compressed using this technique were evaluated by several 

doctors that verified that their quality maintains its diagnostic abilities, 

despite their lossy nature. 

• On the communication part of the thesis, there was an apparent dilemma 

regarding the physical layer of the wireless system. The choice was either to 

select a protocol that would cope better with multipath noise but have a 

limited range of operation (due to the frequency band used), or to have a 
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wide radius of coverage but allow for signal degradation due to reflecting 

surfaces, often found in hospitals. 

What was proposed is to take the best of the two worlds: increased range and 

better immunity to multipath noise. OFDM modulation was applied to the 

existing IEEE 802.11b protocol in order to prove the above suggestion. The 

whole notion was supported by means of simulation using various simulation 

packages. The result was a system that is tolerable to multipath noise and 

maintains its increased range of coverage, while operating in the 2.4GHz 

spectrum. 

This alternative suggestion is highly effective for use in Telemedical systems 

such as MedLAN, where the available bandwidth also defines the level of 

compression of the video and images sent, and thus the overall quality. Under 

the above scheme, a clear 2dB noise reduction was experienced; something 

that translated to a throughput increase in the order of 1Mbps. 

• Finally, as the data handled by the MedLAN system is of a very delicate 

nature, it had to be proven that the system could maintain a high level of 

security and confidentiality, which is the cornerstone of any patient - doctor 

relationship. The fact that the MedLAN system uses the IEEE 802.11b 

protocol gave rise to a number of concerns regarding the effectiveness of its 

encryption algorithm; WEP. Based on recent publications, WEP has been 

found to suffer from a number of vulnerabilities that an attacker can take 

advantage of, to extract information out of the wireless data stream. Despite 

the fact that to perform such actions very specific prerequisites had to exist, 

there was an increased concern from both patients and healthcare personnel. 

To address this issue, an alternative to WEP security was suggested: 

encapsulating IPSec over WEP. This is not a novel approach, but is uniquely 

applied in a wireless telemedical system. 

The experiments carried out in the hospital showed that this operation offers 

the highest level of security for a telemedical system like MedLAN. 

Furthermore, the overhead introduced by both WEP and IPSec remains in 

such low levels, that it does not interrupt the normal operation of MedLAN: 

an average of 12% reduction of the available wireless bandwidth had no 

effect on the videoconferencing system that only used 50% of the wireless 

link. 
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8.2 Future directions 

As expected with this kind of research projects, the more the research was 

progressing, the more opportunities arise for expanding its capabilities to meet 

additional telemedical needs. This was made apparent at the early stages of 

development and consequently many more functions were added to MedLAN than 

those originally planned. 

This kind of application opened many new opportunities for both doctors on the 

move and patients in need of care; many more than those described in this thesis. A 

short list of additional paths that can be followed to complement or expand 

MedLAN’s capabilities is given below: 

• Expand the WLAN coverage to include the entire hospital: Although this 

kind of application has been applied some years ago in the Johns Hopkins 

Hospital, it was limited into just supporting the transmission of data at low 

speeds to accommodate for patient record update. The MedLAN system dealt 

with only covering a limited part of the hospital, mainly the A&E ward and 

the areas surrounding it, along with the A&E offices. For that reason it used a 

limited number of APs. The majority of the hospital area, however, remained 

uncovered. By performing a careful network planning (regardless of the 

WLAN technology that will be used) and by placing a large number of APs 

to cover the entire hospital area, new applications can emerge: 

o Videoconferencing between healthcare personnel, while being on the 

move inside the hospital. 

o Voice over IP conversations. 

o Freedom of movement of any computer or network equipment 

(modern ECG, etc) within the vicinity of the hospital. 

o Access / update of patient records from anywhere inside the hospital. 

o Easy network expansion while avoiding needless infrastructure 

(lengthy cables, holes in the hospital walls, etc). 

o Increased network capacity while avoiding bottlenecks in crowded 

areas. 

 

• Use PDAs for an all-wireless hospital: a number of benefits exist of using 

PDAs, as demonstrated in the MedLAN example. Alternatively, the entire 



 

 

175

hospital staff can be equipped with small and light PDAs that can internally 

support WLAN connection. Assuming that the hospital would already be 

covered with APs, this project will revolutionalise the order of operations in 

the entire hospital. Some of the benefits include: 

o Healthcare personnel will be in constant contact with each other while 

only carrying a device weighing less than 200g. 

o Health care delivery will be faster and more efficient. 

o PDAs can have access to any kind of data or software that a desktop 

computer can. 

o Video and audio conversation can take place between two or more 

participants. 

o Intranet and Internet access will be even easier. 

o An adequate level of confidentiality and security. 

o The running cost of such an operation is minimal. 

 

• Take advantage of the growing WLAN infrastructure: Many 

telecommunication companies around the world have announced the 

deployment of WLAN infrastructures to cover a range of areas, from 

hotspots, to entire cities. As the future of communications is undoubtedly 

wireless, it is more than certain that this project will one day cover a vast area 

of a country, much like GSM evolved. 

By taking advantage of such infrastructures, the operation of MedLAN, and 

every other wireless system, can be extended outside the hospital. This way, 

the consultant (or even the patient) can be reached at any location covered by 

WLAN access. This kind of innovation will radically change the view of 

health care delivery as we understand it today. 

Nevertheless, there are fundamental problems to be resolved before this 

notion can take off. Some of these include: 

o Security of the system, as the link will be handled by an “outside” 

provider. Some kind of encapsulation (possibly IPSec) should take 

place to ensure confidentiality of patient data. 

o Link quality: As many other users will share the same link, the 

bandwidth available for telemedical purposes will fluctuate heavily. 

There needs to be a method of ensuring constant bandwidth. 
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o The running cost of the system would be relatively high, as large 

amounts of data have to be transferred for a successful 

videoconferencing session. 

 

• Use of 3G mobile devices to perform teleconsultation: As the deployment 

of WLAN as MANs is still under development, the intermediate solution for 

mobile videoconferencing is the use of the growing 3G infrastructures. 

3G cells offer a high speed connection to MTs that can extend up to 2Mbps, 

when in a stable position. The actual speed falls to about 64-128 Kbps for 

normal use in order to maintain the financial feasibility of the system. Even at 

those speeds, however, the healthcare staff can still initiate a proper 

teleconference session. Furthermore, and as the system supports IP packet 

transmission, a consultant can be connected to the MedLAN system 

(operating inside the A&E) and perform an all-mobile teleconsultation. A 

mobile computer, PDA or even a 3G mobile telephone at the consultant’s end 

can perform this function adequately. 

Similar problems with the use of WLAN MANs (described above) regarding 

the security and bandwidth of the system exist in this notion and have to be 

researched before successful operation. 

 

• Use of newer and faster protocols: While writing this thesis, an 

improvement to the existing IEEE 802.11a and b was added to the WLAN 

family; IEEE 802.11g. “g” promises speeds up to 54 Mbps at an operating 

frequency of 2.4GHz, while employing advanced modulation techniques. 

By having almost four times as much bandwidth as the 802.11b available, 

several applications can be improved or emerged altogether (especially in 

relation to the deployment of APs around the entire hospital space): 

o Telemedical videoconferencing can enjoy increased bandwidth. This 

translates to lower video compression and thus higher video and 

image quality. 

o Network administrators can look favourably to complement / replace 

the existing wired LANs with wireless ones, as the speed of the 

802.11g is more than half of the standard 100Mbps Ethernet. 
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o Wireless bridges supporting IEEE 802.11g can be deployed between 

hospital campuses, to link hospitals together and cut the cost of leased 

lines. 

 

Overall, by using open-ended architectures, the MedLAN system has not only 

proven that it can effectively assist the healthcare personnel to perform a range of 

duties better, faster and safer, but it also has limitless possibilities for future 

expansions. 
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CC..  SSppeecciiffiiccaattiioonnss  ooff  tthhee  MMeeddLLAANN  ssyysstteemm11  
  

 Mobile computer Video camera WLAN 

Type Sony VAIO PCG SRX 51 Sony DCR-PC110E Cisco 350 series 

CPU P-III / 800MHz   

RAM 256MB  2MB EEPROM 

Additional functions DVD, IEEE 1394, LAN, 

modem, Internal IEEE 

802.11b 

DV in/out, memory 

stick, IEEE 1394, 

video in/out 

Line-in power, 

DHCP, 128 bit 

WAP, remote 

configure 

Storage 30GB HD 64MB memory stick  

O.S. Windows XP Pro   

    

Video Inter 815 PAL colour CCIR 

standards 

 

Audio Yamaha sound Max PCM quantisation 12, 

16 bits 

 

Resolution 1024 x 768, 10.4” TFT 1.070.000 active pixels  

Lens  Carl-Zeiss Vario sonar  

Zoom  10x optical, 40x digital  

Focal lengths  40-480mm  

Focus  0-infinity  

Illumination  7 lux minimum, 0 lux 

in night shot 

 

WLAN speeds   1,2,5.5, 11 Mbps 

Typical range   400m@1Mbps 

90m@11Mbps 

Operating 

temperature 

0-40 C 0-40 C 0-55 C 

Power consumption 10W (LCD half on) 4.1W (LCD screen) 

3.5W (viewfinder) 

5V, 800mA 
Max power output: 
50mW 

Weight 1200g (including battery) 690g (including 

battery) 

350g 

Autonomy (on 

battery) 

180-240 min while 

videoconferencing 

160 min  

                                            
1 There exist a number of combinations between mobile computer, video camera, 
WLAN, etc, to fit various needs and budgets. A number of specifications depend on 
the combination selected. 



 181

DD..  RRaannggee  ooff  tthhee  MMeeddLLAANN  ssyysstteemm  iinn  CCMMHH  AA&&EE  
  

  
 

Coverage of a single AP (at 1Mbps) placed in the A&E majors room (marked white) 

  
 

Coverage of a single AP (at 1Mbps) placed in the A&E minors room (marked white)
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EE..  PPaattiieenntt  aacccceeppttaannccee  ffoorrmm  
 
 
 
North West London Hospitals are devoted to constantly improve the quality of 
services offered to patients. For that reason, NWLH has funded a project called 
MedLAN. It is a telemedical system that will allow easy teleconsultations between 
the hospital that you are in now, and a consultant in a different hospital (mostly 
within NWLH). The purpose of the system is to provide a second opinion from an 
experienced doctor, without having to move you to another part of the hospital or 
use any big and heavy teleconference equipment inside the Accidents and 
Emergency department. The MedLAN system is a very light and convenient system 
and most of all it is wireless so it can freely roam around the department. 
The system is in its second year of development and as the prototype is already 
built and tested, there is the obvious need to test it in real life situations. In that 
sense, by allowing the hospital staff to use this system in your case not only you 
would be contributing towards research but you would gain by being examined 
twice: once by the doctor next to you and another by a consultant in another 
hospital. 
Here are some points to ease your mind: 
� It is only a video-conferencing system 
� There will be no physical contact between you and the system 
� You would feel absolutely nothing 
� It uses radio frequencies of very low power to transmit the signal. These have 

been tested extensively and do not interfere with any of the hospital equipment 
(unlike mobile phones do) 

� The system uses a highly sophisticated encryption algorithm that makes sure 
that the videoconference is limited only between you and the remote doctor. 

� No recording is made of the consultation. 
 
Your help will be much appreciated 
 
 
 
 
 
I authorize the use of the Telemedical equipment to allow for the 
Teleconsultation between the hospital that I am in and a remote hospital. All 
my personal data will be jealously protected and I expect the minimum 
inconvenience. 
 
Patient name:___________________ Patient signature:_______________ 
 
Date:   ___________________ 
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FF..  SSttrruuccttuurree  ooff  DDIICCOOMM  ssttaannddaarrddss  
 
 
The DICOM standard is composed of 13 parts: 
 
PART 1: Introduction and Overview 
Describes the overall structure of the Standard 
PART 2: Conformance 
Specifies the general requirements which must be met by implementations claiming 
conformance and defines contents of a Conformance Statement 
PART 3: Information Object Definitions 
Specifies the structure and attributes of objects, which are operated upon by 
Service Classes (Part 4). 
These objects include images, studies, and patients 
PART 4: Service Class Specifications 
Defines the operations that can be performed on instances of Information Objects 
(Part 3) to provide a specific service. These services include image storage, 
retrieval and printing. 
PART 5: Data Structure and Semantics 
Specifies the encoding of the data content of messages, which are exchanged to 
accomplish the operation used by the Service Classes (Part 4). 
PART 6: Data Dictionary 
Defines the individual information attributes that represent the data content (Part 3) 
of instances of Information Objects. 
PART 7: Message Exchange 
Specifies the operations and protocol used to exchange messages. These 
operations are used to accomplish the services defined by the Service Classes 
(Part 4). 
PART 8: Network Communication Support for Message Exchange 
Defines the services and protocols used to exchange messages (Part 7) directly on 
OSI and TCP/IP networks. 
PART 9: Point-to-Point Communication Support for Message Exchange 
Defines the services and protocols used to exchange messages (Part 7) directly on 
the DICOM 50-pin interface (obsolete). 
PART 10: Media Storage and File Format (Supplement 1) 
Defines the logical formats for storing DICOM information on various media. 
PART 11: Application Profiles (Supplement 2) 
Defines a means for users and vendors to specify a selection of Media among those 
in Part 12 and of Information Objects among those defined by DICOM Part 3. 
PART 12: Media Formats and Physical Media for Data Interchange (Supplement 3) 
References industry specifications for the Physical Media and Media formatting file 
systems. It includes 5 types of Media: CD-R 650 Mbyte, 5.25" MOD 650 Mbytes, 
5.25" MOD 1.3 Gbyte, 3.25" MOD 128 Mbyte, and the 3.5" Floppy Disk. 
PART 13: Print Management Point-to-point Communication Support (Supp 4) 
PART 14: Grayscale Standard Display Function 
PART 15: Security Profiles illustrating possible security scenarios to ensure privacy 
PART 16: Content Mapping Resource 
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GG..  MMooddaalliittiieess  ssuuppppoorrtteedd  bbyy  DDIICCOOMM  
 
Computed Radiography (CR) 
Multiframe, etc.: No 
Bits Allocated: Unrestricted 
Bits Stored: Unrestricted 
High Bit: Unrestricted 
Pixel Representation: Any 
Samples per Pixel: Any (1,3,4 defined) 
Planar Configuration: Any 
Coordinate System: Unspecified 
 
Computed Tomography (CT) 
Multiframe, etc.: No 
Bits Allocated: 16 
Bits Stored:12 to 16 
High Bit: Bits Stored - 1 
Pixel Representation: Any 
Samples per Pixel: 1 
Coordinate System: Frame of reference, Image Plane 
 
Magnetic Resonance (MR) 
Multiframe, etc.: No 
Bits Allocated: 16 
Bits Stored: Anything up to 16 
High Bit: Anything that fits Bits Stored within the 16 bits allocated 
Pixel Representation: Any 
Samples per Pixel: 1 
Coordinate System: Frame of reference, Image Plane 
 
Nuclear Medicine (NM) 
Multiframe, etc.: Yes 
Bits Allocated: 8 or 16 
Bits Stored: Bits Allocated 
High Bit: Bits Stored - 1 
Pixel Representation: Any 
Samples per Pixel: 1 
Coordinate System: Frame of Reference with Projection angles, patient or table based 
 
Secondary Capture (SC) 
Multiframe, etc.: No 
Bits Allocated: Unrestricted 
Bits Stored: Unrestricted 
High Bit: Unrestricted 
Pixel Representation: Any 
Samples per Pixel: Any (1,3,4 defined) 
Coordinate System: Unspecified 
 
Ultrasound (US) 
Multiframe, etc.: Yes 
Bits Allocated: 8 or 16 
Bits Stored: Bits Allocated 
High Bit: Bits Stored - 1 
Pixel Representation: Any 
Samples per Pixel: 1,3 
Coordinate System: Unspecified 
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HH..  AACCRR//NNEEMMAA  EEqquuiippmmeenntt  SSppeecciiffiiccaattiioonn  
 
Specifications for equipment utilised in teleradiology will vary depending on the 
individual facility's needs but, in all cases, should provide image quality and 
availability appropriate to the clinical need. 
Compliance with the ACR/NEMA (National Electrical Manufacturers Association) 
Digital Imaging and Communication in Medicine Standard (DICOM) is strongly 
recommended for all new equipment acquisitions and consideration of periodic 
upgrades incorporating the 
expanding features of that standard should be part of the ongoing quality-control 
program. 
Equipment guidelines cover two basic categories of teleradiology when used for 
rendering the official interpretation: small matrix size (e.g., computed tomography 
(CT), magnetic resonance imaging (MR), ultrasound, nuclear medicine, digital 
fluorography, and digital 
angiography) and large matrix size (e.g., computed radiography and digitised 
radiographic films). 
Small matrix: A data set should provide full-resolution data (typically 512 x 512 
resolution at minimum 8-bit depth) for processing, manipulation, and subsequent 
display. 
Large matrix: A data set allowing a minimum of 2.5 lp/mm spatial resolution at 
minimum 10-bit depth should be acquired. 
 
A. Acquisition or Digitisation Initial image acquisition should be performed in 
accordance with the appropriate ACR modality or examination standard. 
1. Direct image capture 
The image data set produced by the digital modality both in terms of image matrix 
size and pixel bit depth should be transferred to the teleradiology system. It is 
recommended that the DICOM standard be used. This is the most desirable mode 
of digital image acquisition for primary diagnosis. 
2. Secondary image capture 
a. Small matrix images. Each individual image should be digitised to a matrix size 
as large or 
larger than that of the original image by the imaging modality. The images should be 
digitised to a bit depth of 8 bits per pixel or greater. Film digitisation or video frame 
grab 
systems conforming to the above specifications are acceptable. 
b. Large matrix images. These images should be digitised to a matrix size 
corresponding to 2.5 lp/mm or greater, measured in the original detector plane. 
These images should be digitised to a bit depth of 10 bits per pixel or greater. Film 
digitizers will generally be 
required to produce these digital images. 
3. General requirements 
At the time of acquisition (small or large matrix), the system must include: 
Annotation capabilities including patient name, identification number, date and time 
of examination, name of facility or institution of acquisition, type of examination, 
patient or anatomic part orientation (e.g., right, left, superior, inferior, etc.), amount 
and method of data compression. The capability to record a brief patient history is 
desirable. 
 
B. Compression 
Data compression may be performed to facilitate transmission and storage. Several 
methods, including both reversible and irreversible techniques, may be used, under 
the direction of a qualified physician, with no reduction in clinically diagnostic image 
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quality. The types and ratios of compression used for different imaging studies 
transmitted and stored by the system should be selected and periodically reviewed 
by the responsible physician to ensure  appropriate clinical image quality. 
 
C. Transmission 
The type and specifications of the transmission devices used will be dictated by the 
environment of the studies to be transmitted. In all cases, for official interpretation, 
the digital data received at the receiving end of any transmission must have no loss 
of clinically significant information. The transmission system shall have adequate 
error-checking capability. 
 
D. Display Capabilities 
General: Display workstations used for official interpretation and employed for small 
matrix and large matrix systems should provide the following characteristics: 
1. Luminance of the gray-scale monitors should be at least 50 foot-lamberts. 
2. Care should be taken to control the lighting in the reading room to eliminate 
reflections in the monitor and to lower the ambient lighting level as much as is 
feasible. 
3. Provide capability for selection of image sequence. 
4. Capable of accurately associating the patient and study demographic 
characterisations with the study images. 
5. Capable of window and level adjustment, if those data are available. 
6. Capable of pan functions and zoom (magnification) function. 
7. Capable of meeting guidelines for display of all acquired data. 
8. Capable of rotating or flipping the images, provided correct labelling of patient 
orientation is preserved. 
9. Capable of calculating and displaying accurate linear measurements and pixel 
value determinations in appropriate values for the modality (e.g., Hounsfield units 
for CT images), if those data are available. 
10. Capable of displaying prior image compression ratio, processing, or cropping. 
11. Elements of display that should be available include: a. Matrix size. b. Bit depth. 
c. Total number of images acquired in the study. 
There may be less stringent guidelines for display systems when these display 
systems are not used for the official interpretation. 
 
E. Archiving and Retrieval 
If electronic archiving is to be employed, the guidelines listed below should be 
followed: 
1. Teleradiology systems should provide storage capacity capable of complying with 
all facility, state, and federal regulations regarding medical record retention. Images 
stored at either site should meet the jurisdictional requirements of the transmitting 
site. Images interpreted off-site need not be stored at the receiving facility, provided 
they are stored at 
the transmitting site. However, if the images are retained at the receiving site, the 
retention period of that jurisdiction must be met as well. The policy on record 
retention should be in writing. 
2. Each exam data file must have an accurate corresponding patient and 
examination database 
record, which includes patient name, identification number, exam date, type of 
examination, facility at which examination was performed. It is desirable that space 
be available for a brief clinical history. 
3. Prior examinations should be retrievable from archives in a time frame 
appropriate to the clinical needs of the facility and medical staff. 
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4. Each facility should have policies and procedures for archiving and storage of 
digital image data equivalent to the policies that currently exist for the protection of 
hard-copy storage media to preserve imaging records. 
 
F. Security 
Teleradiology systems should provide network and software security protocols to 
protect the confidentiality of patients' identification and imaging data. There should 
be measures to safeguard the data and to ensure data integrity against intentional 
or unintentional corruption of the data. 
 
G. Reliability and Redundancy 
Quality patient care depends on availability of the teleradiology system. Written 
policies and procedures should be in place to ensure continuity of care at a level 
consistent with those for hard-copy imaging studies and medical records within a 
facility or institution. This should include internal redundancy systems, backup tele-
communication links, and a disaster plan. 
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II..  MMooddaalliittiieess  uusseedd  
  
• Images, sounds and video for MEDLAN 

Radiology Images (JPEG, forced DICOM, originals) 
1 CT scan of knee consisting of 1 image 
1 CT of elbow consisting of 4 images 
1 CT of elbow consisting of 6 images 
1 MRI transverse cut of abdomen with Gastrographin) 1 image 
1 MRI transverse cut of abdomen with Gastrographin) 12 images 
1 MRI transverse cut of abdomen with Gastrographin) 4 images 
1 ultrasound abdomen consisting of 1 image 
1 ultrasound of abdomen consisting of 4 images 
I ultrasound of limb consisting of 1 image 
Ultrasound of limb consisting of 1 image 
Ultrasound of limb consisting of 1 image 

 
• Plain X-rays (B&W, colour, forced DICOM) 

Cervical and thoracic spine consisting of 1 image 
Mammogram consisting of 1 image 
Lateral view of chest consisting of 1 image 
PA view of chest consisting of 1 image 
AP view of chest consisting of 1 image 
Gastrographin study of stomach consisting of 1 image 
Gastrographin view of duodenum consisting of 1 image 
Gastrographin study of jejunum consisting of 1 image 
Gastrographin study of jejunum consisting of 1 image 
X-ray of both feet consisting of 1 image 
Subcutaneous emphysema chest PA chest consisting of 1 image 
Subcutaneous emphysema chest AP consisting of 1 image 
Nail plate of hip consisting of 1 image 
Nail plate of hip consisting of 1 image 
Nail plate of hip consisting of 1 image 
Charnley hip replacement consisting of 1 image 
Elbow AP with healed fracture of midshaft of ulna consisting of 1 image 
Elbow lateral view of healed fracture of midshaft of ulna consisting of 1 image 
AP view of ankle consisting of 1 image 
Multiple myeloma of long bone consisting of 1 image 
Multiple myeloma of bone consisting of 1 image 
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Salter-Harris fracture lateral of wrist consisting of 1 image 
Salter-Harris fracture lateral of wrist consisting of 1 image 
Salter-Harris fracture of wrist with gross displacement consisting of 1 image 
Salter-Harris fracture of wrist with displacement consisting of 1 image 
Sacro-iliac joints on AP film 
Supra-condylar fracture humerus oblique consisting of 1 image 
Supracondylar fracture of humerus lateral view consisting of 1 image 
Supra-condylar fracture of humerus AP view consisting of 1 image 
Supra-condylar fracture of humerus AP view consisting of 1 image 
Orthopantomogram consisting of 1 image 
Orthopantomogram consisting of 1 image 
Pelvis AP consisting of 1 image 
Pelvis & hips consisting of 1 image 

 
• Pictorial images 

Skin 
Eye 
Close-up of hair 
Fingernail 

 
• ECGs 

Echocardiogram with 1 client 
Echocardiogram with 2 clients  
Echocardiogram with 3 clients 

 
• Videos 

Videos of conversation with 1 client 
Videos of conversation with 2 clients 
Videos of conversation with 3 clients 

 
• Heart sounds [ADPCM (Adaptive Differential Pulse Code Modulation), 

CCITT’s A-law, CCITT’s Original] 
Normal heart sounds 
Mid-systolic click 
Gallop rhythm 
Split first sound 
Split second sound 
Split first and second sounds 
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JJ..  DDooccttoorr’’ss  QQuueessttiioonnnnaaiirree  
  

MedLAN 
wireless videoconference system 

 
 

Date   Name of Doctor in  
Time   MedLAN site  
MedLAN site   Name of Doctor in  
Remote site   Remote site  

 
 
 

 Poor Acceptable Good N/A Notes 
Image clarity 
 

     

Colour 
 

     

Depth versatility 
 

     

Sound 
 

     

Image / sound 
delay (lip synch) 

     

Total delay 
 

     

X-ray detail 
 

     

 



 191

KK..  VViissSSiimm  mmoodduulleess  
 

in
ck
rs

Fr ck

[ ]
Buffer (48)
FIFO

Z
re
im

Cplx to
Re/Im

in
ck
rs

Fr ck

[ ]
Buffer (48)
FIFO

Fr ck
[ ]Data_I
[ ]Data_Q
[ ]Pilot_I
[ ]Pilot_Q

Fr ck

Re[ ]

Im[ ]

OFDM Pilot
Mapper
 (64)

Fr ck
[ ]Re
[ ]Im
GI
extnd
[ck]

I

Q

ck

OFDM Mod
(64pt. IFFT)

FrClk

Map data to
BPSK Constellation

Mapped data is grouped into
frames of size 48

[1;1;1;-1]

[0;0;0;0]

data
ck
[InitVal] 
Reset

out

ck

802.11a
Scrambler

0

*-2x +1

Pilot Tones are multiplied
by the 802.11a PN sequence
(once per frame)

Pilot Tones Imaginaray part

Pilot Tones Real part

No Guard Interval used in this
example (GI input not connected)

OFDM output rate= 11 * 64/48 = 14.667 MHz

b
clk

Z
ph

BPSK Mod
Fc= 0 Hz

 
OFDM modulator 

 
 

Z
Z

Es/No
AWGN Z

re
im

Cplx to
Re/Imre

im
Z

Re/Im
to Cplx

NOTES ON PROPERLY SETTING THE
AWGN BLOCK PARAMETERS :

The OFDM Tx power is in 52 subcarriers (out of 64),
but only 48 are data, so the true reference power
must be adjusted by 48/52 ( -0.348 dB)

Z
rs

Av. Complex
Power (dBm) 12.1085

Measure OFDM Tx power (about 12.1 dBm)

In addition, since at the receiver we are only using
one sample out of three from the OFDM signal
(sim rate is 44 MHz but OFDM Tx rate is 14.67 MHz)
the noise must be scaled by an additional 4.77 dB

(See adjustments inside AWGN settings)

Impulse
t= 0.0001

Z ZMultipath
Channel (2)

 
Channel noise 

 
 

Fr ck
[ ]
[ck]

out

ck
Unbuffer (48)
FIFO

Fr ck
[ ]
[ck]

out

ck
Unbuffer (48)
FIFO

re
im

Z
Re/Im
to Cplx

Fr ck

Re[ ]

Im[ ]

Fr ck
[ ]Data_I

[ ]Data_Q
[ ]Pilot_I

[ ]Pilot_Q

OFDM Pilot
Extractor
 (64)

Trig
I
Q
ck

Fr ck

Re[ ]
Im[ ]

OFDM Demod
(N= 64, k= 0)

Note:  For simplicity, the OFDM Tx clock is used
at the receiver to clock in the OFDM samples 

Z
ck

b
ck

BPSK
Detect

 
OFDM demodulator 



 192

LL..  UUssiinngg  aa  RRaaddiiuuss  sseerrvveerr::  sseeqquueennccee  ooff  eevveennttss  

 
• Using open authentication, a wireless client associates with an access point. 

• The access point blocks all attempts by the client to gain access to network 

resources until the client logs on to the network. 

• The user on the client supplies a username and password in a network logon 

dialog box or its equivalent. 

• Using 802.1x and EAP, the wireless client and a RADIUS server on the wired 

LAN perform a mutual authentication through the access point. As part of the 

authentication process, the client passes the username and a one-way hash of the 

password to the RADIUS server. The RADIUS server checks the username and 

one-way hash of the password against a database of valid usernames and 

passwords to determine if it should authenticate the client. 

• When mutual authentication is successfully completed, the RADIUS server and 

the client determine a WEP key that is distinct to the client and provides the 

client with the appropriate level of network access, thereby approximating the 

level of security inherent in a wired switched segment to the individual desktop. 

The client loads this key and prepares to use it for the logon session. 

• The RADIUS server sends the WEP key, called a session key, over the wired 

LAN to the access point.  

• The access point encrypts its broadcast key with the session key and sends the 

encrypted key to the client, which uses the session key to decrypt it. 

• The client and access point activate WEP and use the session and broadcast WEP 

keys for all communications during the remainder of the session [Cis00] 
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MM..  IIPPSSeecc  mmooddeess  
 

 
• Tunnel mode is used when one or both sides of the IPSec connection is a 

security gateway and the actual destination hosts do not support IPSec. 

• In Tunnel mode, entire IP packets are encapsulated within AH or ESP, and 

then a new IP header is placed around it. 

• Traffic analysis can only determine that encrypted data are traversing the 

network between two tunnel endpoints. 

 

 

 
• Transport mode is for host-host communications. 

• In transport mode, only the original packet’s payload is sent. The AH or ESP 

is placed after the original IP header. 

• Third party traffic analysis (eavesdropping) can determine IP protocol types 

and port numbers. 
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GGlloossssaarryy  
  
Communication terms 
3G Third Generation 
ACK ACKnowledgment 
ADPCM Adaptive Differential Pulse Code Modulation 
ADSL Asymmetric Digital Subscriber Lines 
AES Advanced Encryption Standard 
AH Authentication Header 
AMPS Advance Mobile Phone System 
ANSI American National Standards Institute 
AP Access Point 
ATM Asynchronous Transfer Mode 
AV Audio Video 
AWGN Additive White Gaussian Noise 
BER Bit Error Rate 
BPSK Binary PSK 
BR (ISDN) Basic Rate 
BS Base Station 
BSS Basic Service Set 
CA Certificate Authority 
CCD Charge Coupled Device 
CCI Co-Channel Interference 
CCITT Comité Consultatif International Téléphonique et Télégraphique 
CCK Complementary Code Keying 
CRC Cyclic Redundancy Check 
CRT Cathode Ray Tube 
CSMA/CD Carrier Sense Multiple Access with Collision Avoidance 
CTS Clear To Send 
DCF Distributed Coordination Function 
DCT Discrete Cosine Transfer 
DES Data Encryption Standard 
DHCP Dynamic Host Configuration Protocol 
DIVX DIgital Video eXpress 
DMZ De-Militarised Zone 
DPCM Discrete Pulse Code Modulation 
Dpi Dots per inch 
DSP Digital Signal Processing 
DSSS Direct Sequence Spread Spectrum 
DSVD Digital Simultaneous Voice and Data 
DVD Digital Versatile Disc or Digital Video Disc 
Eb/No Energy per bit to the spectral Noise density 
EDGE Enhanced Data for Global Evolution 
EEPROM Electrical Erasable / Programmable ROM 
EMI Electro-Magnetic Interference 
ESP Encapsulation Security Payload 
ESS Extended Service Set 
ETSI European Telecommunication Standards Industry 
FCC Federal Communications Commission 
FDM Frequency Division Multiplexing 
FDMA Frequency Division Multiple Access 
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FHSS Frequency Hopping Spread Spectrum 
Fps Frames per second 
GPRS General Packet Radio Service 
GSM Global System Mobile 
HIPERLAN HIgh PERformance LAN 
HMAC Hash-Based Message Authentication Code 
HSCSD High Speed Circuit Switched Data 
ICI Inter-Channel Interference 
IEE Institute of Electrical Engineers 
IEEE Institute of Electrical and Electronic Engineers 
IETF Internet Engineering Task Force 
IFFT Inverse Fast Fourier Transform 
IKE Internet Key Exchange 
IMTS Improved Mobile Telephone System 
IP Internet Protocol 
IPSec IP Secure 
IR InfraRed 
ISDN Integrated Services Digital Network 
ISI Inter-Symbol Interference 
ISM Industry Science and Medicine 
ISO International Standards Organisation 
ISP Internet Service Providers 
ITU International Telecommunication Union 
IV Initialisation Vector 
JPEG Joint Pictures Expert Group 
LCD Liquid Crystal Display 
LLC Logical Link Control 
LOS Line Of Site 
MAC Medium Access Control 
MD Message Digest 
MIB Management Information Base 
MMC Microsoft Management Console 
MNM Microsoft NetMeeting 
MPEG Moving Pictures Expert Group 
MSE Mean Square Error 
MT Mobile Terminal 
MTS Mobile Telephone System 
NEMA National Electrical Manufacturers Association 
NIC Network Identification Card 
OCR Optical Character Recognition 
OFDM Orthogonal Frequency Division Multiplexing 
OSI Open Systems Interconnection 
PACS Picture Archiving and Communication Systems 
PBCC Packet Binary Convolution Code 
PBX Public Box eXchange 
PC Personal Computer 
PCF Point Coordination Function 
PCM Pulse Code Modulation 
PCMCIA Personal Computer Memory Card International Association 
PDA Personal Data Assistant 
PDU Protocol Data Unit 
PHY Physical layer 
POTS Plain Old Telephone System 
PPM Pulse Position Modulation 
PR (ISDN)  Primary Rate 
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PRNG Pseudo Random Number Generator 
PSK Phase Shift Keying 
PSNR Peak Signal to Noise Ratio 
PSTN Public Switch Telephone Network 
QoS Quality of Service 
QPSK Quadrature PSK 
RFC Request For Comments 
RGB Red Green Blue 
ROM Read Only Memory 
RTS Request To Send 
SA Security Associations 
SMPTE Society of Motion Picture and Television Engineers 
SMS Short Message Service 
SNMP Simple Network Management Protocol 
SNR Signal to Noise Ratio 
SOHO Small Office / Home Office 
SpO2 Oxygen saturation 
SSID Service Station IDentifier   
TACS Total Access Communication System 
TCP Transmission Control Protocol 
TDM Time Division Multiplexing 
TDMA Time Division Multiple Access 
UMTS Universal Mobile Telecommunication Services 
UNII Universal Networking Information Infrastructure 
UPS Uninterruptible Power Supply 
USB Universal Serial Bus 
VCD Video Compact Disc 
VO Video Object 
VoD Video on Demand 
VPN Virtual Private Networks 
WCDMA Wide Code Division Multiple Access 
WECA Wireless Ethernet Compatibility Alliance 
WEP Wired Equivalent Privacy 
WLAN Wireless Local Area Networks 
WMP Windows Media Player 
WPA Wi-Fi Protected Access 
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Medical terms 
A&E Accidents and Emergency 
ACR American College of Radiologists 
BP Blood Pressure 
CMH Central Middlesex Hospital 
CT Computed Tomography 
DICOM Digital Imaging and Communications in Medicine 
ECG ElectroCardioGram 
EEG ElectroEncephaloGram 
ETM EuroTransMed 
FDA Food and Drug Administration 
GP General Physician 
HR Heart Rate 
MRI Magnetic Resonance Imaging 
NELH National Electronic Library for Health 
NHS National Health Service 
NWL National Library of Medicine 
NWLH North West London Hospitals 
NWPH NorthWick Park Hospital 
ROI Region Of Interest 
US Ultra Sound 
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