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Abstract

Immunological algorithms are a kind of bio-inspired intelli-
gence methods which draw inspiration from natural immune
systems. The problem-solving performance of immunologi-
cal algorithms mainly lies on the utilization of learning (i.e.
mutation) operators. In this paper, nine different learning op-
erators in a standard immune algorithmic framework are in-
vestigated. These learning operators consist of eight exist-
ing operators and a newly proposed search direction based
operator. Experiments are conducted based on nine variants
of immunological algorithms that use different learning op-
erators. Simulation results on a large number of benchmark
optimization problems give a deep insight into the character-
istics of these operators, and further verify that the proposed
new learning operator can greatly improve the performance
of immunological algorithms.

Introduction
Many difficulties such as dimensionality, differentiabili-
ty and multimodality are associated with the optimization
of large scale problems. To address such problems, bio-
inspired intelligence algorithms (Da Silva Santos et al.,
2010; Gao, 2012) have attracted more and more interest,
among which the immunological algorithm (IA) is a par-
ticular class of optimization methods inspired by the basic
features of adaptive immune response to antigenic stimu-
lus. Most IAs mimic the metaphors of clonal selection prin-
ciple (de Castro and Zuben, 2002), hypermutation (Freitas
and Timmis, 2007), receptor editing (Gao et al., 2007) and
lateral interaction effect (Whitbrook et al., 2007), providing
a promising search mechanism by exploiting and exploring
the solution space in parallel and effectively (Dasgupta et al.,
2011). The main unique property of IAs is the utilization of
the clonal proliferation, and the clonal selection which re-
turns promising solutions acquired in the learning process.
It is evident that IAs possess good features of maintaining
population diversity, and capability of allocating multiple
optimal solutions (Haktanirlar Ulutas and Kulturel-Konak,
2011). Although IAs have achieved good performance in
solving various kinds of practical problems, such as dig-
ital signal processor (Mitra and Venayagamoorthy, 2010),

nonlinear classification (Ozsen et al., 2009), fault diagno-
sis (Hao and Sun, 2007), etc, their performance is limited in
solving optimization problems (McEwan and Hart, 2009).
Compared with other bio-inspired algorithms, such as the
well-known evolutionary computation (Yao and Xu, 2006),
IAs still greatly suffer from the issues of stagnation and s-
low convergence. The reason seems to be that the learn-
ing capacity (involving hypermutation and receptor editing)
has not been fully exploited, i.e., no sophisticated learning
operator can be found in the literature (Jansen and Zarges,
2011). Based on the above consideration, we review and an-
alyze the existing learning operators commonly used in IAs,
and propose a new search direction based learning opera-
tor (Lsd) to encourage the antibodies to utilize the informa-
tion of its surrounding antibodies, by means of moving the
antibody toward the nearby antibodies with higher affinities
and meanwhile away from the antibody with lower affinities.
Therefore, the Lsd operator can not only evolve antibodies
into promising search areas to accelerate convergence speed,
but also prevent antibodies from entering undesired regions
to jump out of local optimal solutions. The experiments of
using all learning operators in IAs are conducted based on
a large number of benchmark numerical optimization prob-
lems. The results show the characteristics of each learning
operator, and further indicate that the proposed Lsd operator
manipulates the best performance.

Immunological algorithm
To investigate the effect of learning operators, a standard
immunological algorithm framework (called IA) is utilized
(de Castro and Zuben, 2002; Kelsey and Timmis, 2003). I-
A evolves a population of antibodies (B cells) towards a
global optimum through a process of evaluation, cloning,
learning (i.e. mutation) and selection. The evaluation proce-
dure computes the affinity function values for all antibodies.
Affinity is an important measure to represent the fitness of
antibody to antigen. For a minimization optimization prob-
lem, higher affinity values of antibodies correspond to better
solutions for the problem needed to be solved. The cloning
proliferation is a mitotic procedure whereby the cells divide
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themselves, creating a set of clones identical to the paren-
t cell. Generally, the proliferation rate is directly propor-
tional to the affinity level. The learning procedure (involv-
ing hypermutation or receptor editing) performs the explo-
ration and exploitation within solution search space, guid-
ing antibodies to the global optimum. It plays a key effect
on the search performance of the algorithm. The selection
procedure picks up the antibodies with higher affinities and
meanwhile eliminates those with lower affinities to reduce
the computational complexity.

From the perspective of optimization, a learning operator
L mutate a candidate solution Ab = (x1, x2, ..., xD) to a
trial one Ab′ = L(Ab) = (x′

1, x
′
2, ..., x

′
D), where D is the

dimension of the problem. In the literature, there are several
learning operators commonly used in IA. They are summa-
rized in the following.

• Gaussian mutation Lgs(Yao et al., 1999; de Castro and
Timmis, 2002; Xu and Zhang, 2007; Khilwani et al.,
2008; Song et al., 2006; Woldemariam and Yen, 2010):
Ab′ = Ab+ αN(0, 1), where N(0, 1) is a random Gaus-
sian number generated by the Gaussian function given as
fGaussian(x) = 1√

2π
e−

x2

2 , and α controls the learning
intensity imposed on the antibodies.

• Cauchy mutation Lcy (Yao et al., 1999; Xu and Zhang,
2007; Khilwani et al., 2008): Ab′ = Ab+αδk, where δk is
a Cauchy random variable with the scale parameter t = 1
and satisfies the density function fCauchy(x) =

t
π(t2+x2) .

• Static Hypermutation Lh1 (Cutello et al., 2004; Gong
et al., 2008): the number of mutations is independent from
the affinity of the antibody. That is to say, Ab′ will under-
go a constant number c of mutation times. Each muta-
tion act on Ab is implemented through replacing a certain
number of Ab at a random dimension with a random inte-
ger between 0 and 9 (Gong et al., 2008).

• Proportional Hypermutation Lh2 (Cutello et al., 2004):
the number of mutations is proportional to the normalized
affinity value, that is, f̂(Ab)× c×D, where f̂(Ab) is the
normalized affinity distributed in the interval of [0, 1]. c is
a constant number, representing the maximum mutation
intensity.

• Inversely proportional hypermutation Lh3 (Cutello et al.,
2004, 2005, 2006): the number of mutations is inverse-
ly proportional to the normalized affinity value, i.e., the
higher affinity of an antibody, the less times of mutations
will be carried out on it. It is reasonable to make such
an inverse choice, since better antibodies usually contain
more useful information for evolution. Too many muta-
tions might have higher probability to destroy these infor-
mation, thus depressing the learning performance.

• Hypermacromutation Lm (Cutello et al., 2004): the num-
ber of mutations is independent from the affinity and the
parameter c. Instead, the operator mutates at most j−i+1
values in the interval of [i, j], where two randomly gener-
ated integers i and j satisfy the condition of i < j ≤ D.

• Lateral interaction mutation Lli (Cutello et al., 2006;
Pavone et al., 2011): in addition to hypermutation and re-
ceptor editing, the lateral interaction during different anti-
bodies also takes place according to the idiotypic network
theory (Gao et al., 2008). In other words, each paratope
on an antibody can not only recognize a foreign antigen,
but also can be recognized by external idiotopes. Motivat-
ed by this mechanism, similar to the crossover operator in
evolutionary computation, an antibody is attracted by oth-
er antibodies, i.e., Ab′i = (1 − β) × Abi + βAbj , where
Abj ̸= Abi is a randomly selected antibody in the popu-
lation.

• Baldwinian learning Lbl (Gong et al., 2010): learning
mechanism can provide an easy evolutionary path towards
co-adapted alleles in environments, by means of employ-
ing differential information during other antibodies. It is
realized as Ab′i = Abi+ s× (Abj −Abk) in a probability
of p, where i ̸= j ̸= k, Abj and Abk are randomly select-
ed from the population, and s represents the Baldwinian
learning strength.

Intuitively, all the above eight learning operators are able
to evolve antibodies to matured ones in semi-blind manner-
s, although some of the matured ones might possess lower
affinities. However, as the parallel feature of the immune
algorithm, there did exist a probability of making progress
to improve the affinity of antibodies. After the clonal selec-
tion progress, the most improved antibodies are reserved and
enter into the next generation of evolution.

Search direction based learning operator
Even though the above learning operators used in IA can ex-
plore/exploit the solution space in an effective manner, as
we observed, they are not fully developed from the aspect of
utilizing the information in environment. In Fig. 1, we sum-
marized the characteristics of the learning operators. The
solid rectangle S show the solution space of the optimization
problem. The dashed circles denote contour lines of affini-
ty, and the inner circles indicate that they represent higher
affinities than the outer ones.

From Fig. 1, we can notice that the learning mechanism-
s used in (1)-(6) on the antibody Ab only utilize random
perturbation on the antibody itself, while those in (7)-(8)
make use of information in the environment. As reported
in (Cutello et al., 2006; Gong et al., 2010), learning from the
environment provides an encouraging alternative method,
probably a more easy way to achieve better search perfor-
mance. In details, the mechanism in (7) uses the informa-
tion of a randomly selected antibodies in the population to
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guide the current search. A successful guide is strongly de-
pending on the quality of the selected guiding antibody Abj ,
implying that there must be amount of redundant search if
the guiding antibody is far away from the global optimal
solution. Instead, the mechanism in (8) utilizes the differen-
tial information between two other antibodies Abj and Abk
in the population. The learning acting on this differential
information might have ability to use the mutual beneficial
components, thus exhibiting more promising properties for
searching.

Based on the above analysis, we can find that the mecha-
nisms used in (7) and (8) don’t use any measurable knowl-
edge from the population, i,e, the guiding antibodies (Abj
and Abk) are randomly selected without any relevance of the
current antibody Ab, therefore hindering the effectiveness of
the learning performance. In view of the limitations of the
above learning operators, we propose a new search direction
based learning operator Lsd, not only to provide another al-
ternative mutation method, but also aiming to achieve a bet-
ter search capacity. The Lsd is formulated in Eqs. (1)-(3):

In these equations, ∆repulsion and ∆attraction are repul-
sion and attraction effect on Abi respectively. In a single
learning procedure of Lsd, if a randomly selected guiding
antibody Abj whose affinity is lower that the base antibody
Abi, then the repulsion effect will be implemented with a
probability of pr, for the purpose of preventing the base an-
tibody from entering undesired region of the search space.
On the other hand, the attraction effect takes place with a
probability of pa when the affinity of the selected guiding
antibody Abk is higher, thus enhancing the capacity of ex-
ploiting the promising regions of the search space. In addi-
tion, to improve the randomness of the learning mechanism,
the attraction and repulsion scaling factors α1 and α2 are set
as random numbers generated in the interval [0, 1]. From Eq.
(3), it is clear that the search direction of the base antibody is
guided to move towards the regions with higher affinity, and
meanwhile away from the regions with lower affinity, thus
enabling the algorithm to possess better exploitation capaci-
ty and the ability of jumping out of local optimum.

Experimental results and discussions
The computational progresses of nine learning operators
used in IA described above have been implemented in C++
program under Visual Studio 2010. In order to evaluate the
performance of the proposed Lsd learning operator, it is val-
idated using some well-known benchmark numerical opti-
mization problems obtained from the literatures (Yao et al.,
1999; Cutello et al., 2006; Gong et al., 2010). Table 1 lists
the details of the benchmark functions. f1−f5 are unimodal
functions which are relatively easy to be optimized, but the
difficulty increases as the dimension size increases. f6 is the
step function, while f7 is a noisy quartic function. f8 − f13
are multimodal functions with plenty of local minima which
represent the most difficult class of problems for many op-

timization algorithms; f14 − f23 is a multimodal function
with only a few local optima. The different type of bench-
mark functions test the searching ability of learning opera-
tors from different aspects, that is, unimodal functions trend
to reflect the convergence speed of the opearator in a direc-
t manner, while multimodal functions are likely to estimate
the operator’s capacity of escaping from local optima.

Owing to the random nature of the IA and the learning
operators, to evaluate the performance of each learning op-
erator, their performance cannot be judged by the result of a
single run. Many trials with independent population initial-
ization should be made to obtain a useful conclusion of the
performance of the approach. Therefore, in this study the
results are obtained in 30 trials. In the experiment, the user-
defined parameters are set as follows: the population size is
set to be 30, the clone size is 5. It is worth mentioning that
we use equal cloning strategy in this study to reduce the in-
fluences of cloning operator. By doing so, each antibody in
the population has the same probability to undergo the learn-
ing mechanism, thus we can make a direct comparison of
the performance during all learning operators. In addition,
the termination condition of the algorithm is set to be that
when the maximum number of function evaluations reaches
150000. Fig. 2 depicts the sketch of the Sphere function f1
when its dimension D is set to be 2, and the corresponding
convergence graphs of each learning operator. It is obvious
that, for such unimodal function, all learning operators can
evolve the antibodies effectively. In particular, the learning
operator Lsd possesses the fast learning speed and the most
precise solution.

To further demonstrate the effectiveness and robustness
of the proposed Lsd, all learning operators are carried out
on all tested 23 benchmark functions. One of the effective
strategies to perform a comparative study between the vari-
ants of IAs is to use the oracle-based view of computation
(Wolpert and Macready, 1997). Based on this method, the
best solution should be found within a certain number of
function evaluations. Herein, the best values can be used for
comparison because of the equal number of function eval-
uation for all operators in all cases. To make an intuitive
comparison during the variants, the results of best run are
normalized between 0 and 1, therefore the worst and best
values of each best solution are changed to 0 and 1, respec-
tively. The normalized results for all benchmark functions
are presented in Table 2. To achieve a general conclusion
based on the oracle-based view, three kinds of the sum of
scores and rank of each learning operator are presented in
this table. The symbol

∑
u denotes the sum of scores on

unimodal function f1− f5, while
∑

m is the sum on multi-
modal functions f8 − f13.

∑
represents the total sum on all

tested benchmark functions. At first glance, it is clear that
the learning operator Lsd works very well because it has the
best performance with the score of 22.940 to 23, and has a
rank of 1 among 9 operators. Furthermore, as the

∑
u of
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Figure 1: The learning characteristics of all nine operators.

Lsd is 4.941 which is also the best one among all operators,
thus confirming that Lsd has a fastest convergence speed for
unimodal functions. On the other hand, the biggest value
of

∑
m of Lsd also verifies the capability of escaping from

local optimum for multimodal functions.

Based on Table 2, there are some remarks should be em-
phasized concerning all learning operators. The first six
learning operators mutate the base antibody only utilizing
random perturbation, while the last three ones make use of
information in the population either semi-blind or search di-
rection based. The population information utilization based
learning operators have ranks of 1, 2, 3, significant better
than the others, suggesting that the interaction of informa-
tion in the population is likely to improve the search per-
formance. Thus, we can conclude that the former operators
mainly act as the exploitation in the search space, while the
latter ones mainly employed as exploration. In the further,
it is a promising research direction to combine one of for-
mer six operators with the one of latter ones, and it can be
expected to achieve a better performance.

Conclusions
In this paper, we made a comprehensive study on the learn-
ing operators used in the immunological algorithms. Nine
different learning operators, maturing the antibody either by
utilizing random perturbation or by utilizing the guiding in-
formation from other antibodies, are implemented and ana-
lyzed. In view of the limitations of the existing operators,
the newly proposed search direction based learning mecha-
nism can not only attract the antibody to promising regions
in search space, but also preventing from entering undesired
regions by means of the information contained in the anti-
bodies with worse affinities. Experimental results on a large
number of benchmark numerical optimization problems ver-
ified the effectiveness and robustness of Lsd, suggesting that
the useful information during the whole population should
be sufficiently utilized to improve the search performance of
the algorithm.
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∆repulsion =

{
Abj −Abi, if rand() < pr for ∀ f(Abj) < f(Abi)
Abi, otherwise

(1)

∆attraction =

{
Abk −Abi, if rand() < pa for ∀ f(Abk) ≥ f(Abi)
Abi, otherwise

(2)

Ab′ = Ab+ α1 ×∆attraction − α2 ×∆repulsion (3)
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Table 1: Benchmark problems used in the experiments.

Function Definition Dim. Domain S fmin

f1(X) =
∑n

i=1 x
2
i 30 [−100, 100]n 0

f2(X) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [−10, 10]n 0
f3(X) =

∑n
i=1(

∑i
j=1 xj)

2 30 [−100, 100]n 0
f4(X) = max{|xi|, 1 � i � n} 30 [−100, 100]n 0
f5(X) =

∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2] 30 [−30, 30]n 0

f6(X) =
∑n

i=1(⌊xi + 0.5⌋)2 30 [−100, 100]n 0
f7(X) =

∑n
i=1 ix

4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(X) =
∑n

i=1 −xisin(
√
|xi|) 30 [−500, 500]n -12569.5

f9(X) =
∑n

i=1[x
2
i − 10cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(X) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i )

−exp( 1n
∑n

i=1 cos(2πxi)) + 20 + e 30 [−32, 32]n 0
f11(X) = 1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos( xi√

i
) + 1 30 [−600, 600]n 0

f12(X) = π
n{10sin2(πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10sin2(πyi+1)]

+(yn − 1)2}+∑n
i=1 u(xi, 10, 100, 4), 30 [−50, 50]n 0

yi = 1 + 1
4 (xi + 1)

u(xi, a, k,m) =





k(xi − a)m, xi > a
0, −a ≤ xi ≥ a
k(−xi − a)m, xi < −a

f13(X) = 0.1{sin2(3πx1) +
∑n−1

i=1 (xi − 1)2[1 + sin2(3πxi+1)]
+(xn − 1)[1 + sin2(2πxn)]}+

∑n
i=1 u(xi, 5, 100, 4) 30 [−50, 50]n 0

f14(X) = [ 1
500 +

∑25
j=1

1
j+

∑2
i=1(xi−aij)6

]−1 2 [−65.536, 65.536]n 1

f15(X) =
∑11

i=1[ai −
xi(b

2
i+bix2)

b2i+bix3+x4
]2 4 [−5, 5]n 0.0003075

f16(X) = 4x2
1 − 2.1x4

1 +
1
3x

6
1 + x1x2 − 4x2

2 + 4x4
2 2 [−5, 5]n -1.0316285

f17(X) = (x2 − 5.1
4π2x

2
1 +

5
πx1 − 6)2 + 10(1− 1

8π cosx1 + 10 2 [−5, 10]× [0, 15] 0.398
f18(X) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]×

[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2] 2 [−2, 2]n 3

f19(X) = −∑4
i=1 ciexp[−∑3

j=1 aij(xj − pij)
2] 3 [0, 1]n -3.86

f20(X) = −∑4
i=1 ciexp[−∑6

j=1 aij(xj − pij)
2] 6 [0, 1]n -3.32

f21(X) = −∑5
i=1[(X − ai)(X − ai)

T + ci]
−1 4 [0, 10]n -10.1422

f22(X) = −∑7
i=1[(X − ai)(X − ai)

T + ci]
−1 4 [0, 10]n -10.3909

f23(X) = −∑10
i=1[(X − ai)(X − ai)

T + ci]
−1 4 [0, 10]n -10.53
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Table 2: Normalized statistical results of learning operators, Lgs, Lcy , Lh1, Lh2, Lh3, Lm, Lli, Lbl, Lsd for the benchmark
problems.

Function Lgs Lcy Lh1 Lh2 Lh3 Lm Lli Lbl Lsd

f1 0.856 0.901 0.285 0.000 0.800 0.915 1.000 1.000 1.000
f2 0.000 0.785 0.567 0.234 0.965 0.865 0.999 1.000 1.000
f3 0.000 0.235 0.245 0.345 0.657 0.768 0.987 1.000 1.000
f4 0.000 0.324 0.156 0.000 0.483 0.481 0.925 1.000 0.956
f5 0.000 0.124 0.000 0.235 0.210 0.454 0.768 0.923 0.985
f6 0.125 0.248 0.000 0.000 0.358 0.405 0.567 0.999 1.000
f7 0.450 0.500 0.000 0.000 0.146 0.056 0.679 0.956 1.000
f8 0.235 0.167 0.250 0.000 0.580 0.375 0.788 0.876 1.000
f9 0.000 0.056 0.120 0.000 0.450 0.734 0.567 0.752 1.000
f10 0.125 0.450 0.045 0.000 0.236 0.678 0.458 1.000 0.999
f11 0.250 0.467 0.000 0.011 0.235 0.385 0.572 0.750 1.000
f12 0.000 0.450 0.245 0.000 0.560 0.476 0.877 0.999 1.000
f13 0.258 0.782 0.000 0.000 0.450 0.359 0.578 0.974 1.000
f14 0.856 0.978 0.450 0.000 0.874 0.385 0.683 0.999 1.000
f15 0.784 0.654 0.000 0.000 0.487 0.530 0.976 0.965 1.000
f16 0.460 0.750 0.000 0.674 0.576 0.045 0.956 0.999 1.000
f17 0.470 0.865 0.000 0.000 0.430 0.012 0.995 0.999 1.000
f18 0.956 1.000 0.385 0.000 0.450 0.755 0.999 0.999 1.000
f19 0.845 0.999 0.568 0.000 0.450 0.785 1.000 1.000 1.000
f20 0.864 0.968 0.452 0.000 0.969 0.704 0.933 0.999 1.000
f21 0.765 0.742 0.000 0.011 0.345 0.358 1.000 1.000 1.000
f22 0.875 0.785 0.075 0.000 0.550 0.340 1.000 1.000 1.000
f23 0.920 0.965 0.105 0.000 0.568 0.285 1.000 1.000 1.000∑

u 0.856 2.369 1.253 0.814 3.115 3.483 4.679 4.923 4.941∑
m 0.868 2.372 0.660 0.011 2.511 3.007 3.840 5.351 5.999∑

10.094 14.195 3.948 1.510 11.829 11.150 19.307 22.189 22.940
Rank 7 4 8 9 5 6 3 2 1
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