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Abstract. A Cell Based Optimization (CBO) algorithm 
is proposed which takes inspiration from the collective 
behavior of Cellular Slime Molds (Dictyostelium 
discoideum).  Experiments with CBO are conducted to 
study the ability of simple cell-like agents to 
collectively manage resources across a distributed 
network.  Cells, or agents, only have local information 
and can signal, move, divide, and die.  Heterogeneous 
populations of the cells are evolved using Cartesian 
Genetic Programming (CGP).  Several Experiments 
were carried out to examine the adaptation of cells to 
changing user demand patterns.  CBO performance 
was compared using various methods to change 
demand.  The experiments showed that populations 
consistently evolve to produce effective solutions.  The 
populations produce better solutions when user 
demand patterns fluctuated over time instead of 
environments with static demand.  This is a surprising 
result that shows that populations need to be 
challenged during the evolutionary process to produce 
good results. 

1 Introduction 

Information Systems are becoming increasingly complex 
and dynamic.  One example of this trend is the Internet.  
The Internet can be described as an Information 
Ecosystem where a complex web of information 
producers and information consumers interact in a 
constantly growing and changing environment (Marrow, 
et al., 2001).  As complexity continues to increase, it 
becomes difficult to continue building systems using 
traditional design methods.  Instead of the current 
centralized top-down methods, bottom-up approaches 
must be explored.  Bottom-up methodologies start the 
design process with simple components and work 
towards a more complex whole.  An example of a 
bottom-up process in nature is the emergent behavior in 
ant colonies, which are able to perform complex tasks 
even though the components, the ants themselves, are 
simple.   

One problem with designing systems this way is that 
humans have a hard time understanding bottom-up 
systems.  Humans have a centralized mind-set (Resnick, 
1994), which often forces us to see systems using a 
centralized organization.  Once systems become 
decentralized, it is hard for humans to understand how 

their components work together to perform its complex 
functionality.  It is even harder for us to design this 
behavior.  One way that we may be better able to 
understand decentralized systems is looking towards 
nature.  Swarming insects such as ants and bees have 
decentralized functionality.  Another example is Cellular 
Slime Molds (Dictyostelium discoideum).  Slime Molds 
spend most of their life as single celled organisms but 
occasionally exhibit behaviors associated with multi-
celled organisms.   

When Slime Mold cells begin to deplete their local 
food source, they aggregate to form a slug-like creature 
that helps relocate the population to a more fruitful 
environment.  This is done via cell-cell signaling 
combined with a positive feedback mechanism.  It was 
once thought that there was a leader for this aggregation 
but it is now known to be a decentralized process (Keller 
& Segel, 1970).  The emergent behavior of Slime Molds 
is an example of order arising from simple decentralized 
parts.  Their collective behavior has been demonstrated 
by showing that they can find the shortest path through a 
maze (Nakagaki et al., 2000). 

This paper aims to test a model based on the behaviors 
of Cellular Slime Molds applied to an optimization 
problem in the Information Ecosystem domain.  The 
Cell-Based Optimization (CBO) model was extended 
from a previous research project (Rothermich & Miller, 
2002) to include simulated user requests and their 
processing by cell-like agents.  Several experiments are 
conducted to study the ability of evolving populations of 
agents to effectively treat user requests in a changing 
environment. 

There has been a large amount of study in the 
application of ideas from nature to computer science.  
Ant Systems (AS) and Ant Colony Optimization (ACO) 
(Dorigo & Gambardella, 1997; Dorigo & Di Caro, 1999) 
have been applied to optimization problems such as 
routing and scheduling.  Previous cell-based models have 
been created by Agarwal (1995), Fleischer and Barr 
(1992), Ray (1994), Resnick (1994).  This paper differs 
in that cell behavior is autonomously evolved through a 
form of genetic programming called Cartesian Genetic 
Programming (CGP) and in its application to an 
optimization problem. 

Multi-agent systems have been used in Information 
Ecosystems in research such as InfoSleuth (Bayardo et 
al., 1997), Amalthea (Moukas, 1997), and the 
InfoSpiders project (Menczer & Monge, 1999).  These 
projects differ in that they often focus on search and 



identification of information instead of allocation of 
resources.  There is a large amount of research in 
distributed load balancing optimization (Chavez et al., 
1997; Schaerf, Shoham, & Tennenholtz, 1995; Pulidas, 
Towsley, & Stankovic, 1988).  These projects consider 
the capacity at each location to be fixed, while the jobs 
that need to be performed can be shifted to different 
locations.  This is the inverse of the problem faced in this 
paper since the user requests are generated at a certain 
database and cannot be transferred.  The capacity, i.e., 
the agents, can however be transferred to different 
locations.  

This paper proposes Cell-Based Optimization (CBO) 
to maximize the processing of user requests in a 
distributed information ecosystem. A set of simple 
information agents is utilized to retrieve information for 
users, each of which is equipped with a cell-based model. 
Without full knowledge of the ecosystem, cell-like agents 
are evolved to serve user requests in local environments 
or migrate to remote environments searching for 
additional requests. The collective behavior of the agents 
results in timely request processing, which is adaptive to 
changing user demands.  This model has been 
implemented in a Java application and also within the 
DIET (Decentralized Information Ecosystem 
Technologies) Platform (Hoile et al., 2002).   This is a 
mobile agent toolkit that creates a foundation for building 
scalable simulations and applications of interacting, 
lightweight Infohabitants (entities that can process 
information).  

The remaining sections of this paper are organized as 
follows.  The next section introduces the design of the 
cell-based model used for the creation of agents. Section 
3 explains the resource optimization problem in 
information ecosystems and how cell-like agents are used 
to solve this problem.  Experimental results are shown in 
Section 4. The last section draws conclusions from the 
experimental results and proposes future work.  

2 Cell-based model design 

Similar to Slime Mold Cells, cell-like agents have inputs 
and outputs, and various functions. This model does not 
intend to create a detailed model of natural cells, instead 
the abilities of cells are abstracted at a high level.  The 
internal processing of agents is controlled by statements 
generated through evolution and the use of Genetic 
Programming. 

2.1 Cell Inputs 

Natural cells have the ability to sense and absorb 
chemicals from their environment.  They can either 
absorb chemicals directly, or the cell can accumulate the 
chemical in a receptor that only allows chemicals to be 
absorbed after a certain threshold has been passed.  A set 
of imaginary chemicals was used in the cell-based model.  
One chemical represented an energy source for the cells.  

The other chemical was emitted by the cells themselves, 
simulating cell-cell signaling. 

Real cells do not have any information about their 
location.  They only know what chemicals are present 
around them and the concentration gradients for each.  
The cell-based model followed a similar approach where 
cells do not know their location or neighbors but can 
sense the chemicals being emitted by them. 

A threshold parameter similar to receptors in nature 
was used for cell inputs.  This allowed the sensitivity of 
the cells to vary.  Cells in the cell-based model also have 
the internal input of knowing how much energy they 
have.  This means the actions they choose might be 
dependent upon their current health. 

2.2 Cell Functions 

2.2.1 Movement 

Cells have the ability to move towards or away from 
chemical gradients, called chemotaxis.  The cells created 
by the cell-based model have similar functionality. They 
can be programmed to move in relation to gradients of 
simulated chemicals.  A small degree of randomness is 
also added to the direction of the cell’s movement. 

2.2.2 Cell Division 

The cells in the cell-based model also have the ability to 
divide.  Once a cell divides, the cell itself no longer exists 
and is replaced by two offspring.  Each offspring has half 
of the energy of the original cell plus a small energy cost 
for the division process.  The offspring inherit the genes 
of the parent cell plus some possible mutation. 

2.2.3 Chemical Signaling 

Cells have the ability to release a simulated chemical into 
the environment.  This gives the cells a way to 
communicate with each other similar to the way that 
Cellular Slime Molds signal with chemical signals, called 
cyclic AMP, during their aggregation phase. 

2.3 Cell evolution and Genotype Representation 

2.3.1 Cartesian Genetic Programming 

The cell-based model utilizes Cartesian Genetic 
Programming (CGP) to evolve cell functions. A genotype 
in Cartesian Genetic Programming is an integer string 
that encodes an indexed, feed forward, acyclic graph 
(Miller and Thomson, 2000). Unlike the parse tree 
representation in the standard GP (Koza, 1992), a 
genotype-phenotype mapping is used to create the graph 
phenotype from the integer string genotype. Each node in 
the genotype contains two types of genes: connection 
genes that represent how the inputs to the node are 
connected to program inputs or the outputs of other 
nodes, and a function gene that represents the operation 
that the node carries out on the inputs it receives. The 



nodes that are not involved in the linked path between the 
inputs and outputs of the program are inactive in the 
phenotype. Such nodes have no effect on the behavior of 
the phenotype.  However a point mutation operator can 
re-connect inactive nodes or disconnect active ones. This 
allows neutral drift to take place. This has been shown 
elsewhere to be extremely beneficial to the search process 
for a number of problems (Miller and Thomson, 2000, 
Vassilev and Miller, 2000, Yu and Miller, 2001). 

2.3.2 Cell-Based CGP Representation 

As in standard CGP, the genome consists of a number of 
genes that are linked to form a graph.  The right-most 
gene is executed first, and each gene can be connected to 
any other gene on its left.  The final gene on the left is 
always a ‘do nothing’  function.  During the decoding of 
the phenotype, if no action has been reached while 
traversing the graph, then eventually the left-most ‘do 
nothing’  gene will be called and the cell will not perform 
an action.  This case occurs less often as the genotype 
length parameter is increased.  In the following 
optimization experiments, an empirical genome length of 
20 genes was used. This genome allowed for complex 
behaviors (actions based on nested conditions) with a 
reasonable length. 

Each gene in the CGP genome consists of an array of 
four numbers (e.g., 1012), representing the function (1) 
of the gene, an external chemical input (2) of the gene, 
and two connections (3) and (4) of the gene with other 
genes in the genome. A pictorial illustration of a single 
gene is shown in Figure 1. The node number in Figure 1 
is an identifier used to indicate the location of a gene in a 
genome.  

(1) Function

(2) External Input

(3) Connection 1

(4) Connection 2

Node number(1) Function

(2) External Input

(3) Connection 1

(4) Connection 2

Node number

  

Figure 1: A Single Gene In The CGP Representation 

In order to maintain the basic actions of Slime Mold 
Cells, a series of functions are designed including 
conditional and unconditional functions.  The conditional 
functions provide the cells with the ability to act 
according to external stimuli or internal conditions such 
as a cell energy level.  For the information-retrieving 
agents in information ecosystems, we use the functions 
shown in Table 1. These actions provide the basic 
functions and conditions of Slime Mold cells.  As an 
example, if a gene is coded with function one, it will 
move towards the chemical referenced in the external 
input (2).  If a cell is coded with function three, the cell 
will check for the presence of the chemical referenced in 
(2) and then execute the gene referenced in the 
connection (3) or (4) accordingly.  The parameters 
UPPER_THRESHOLD and LOWER_THRESHOLD used 

in functions five and six are local variables for each cell 
that are considered part of the evolving genotype. 

Table 1: Cell Functions 

Function Description 
0 Do Nothing 
1 Move towards (2) 
2 Move away from (2) 
3 If (2) is present do (3), else do (4) 
4 If (2) is present do (4), else do (3) 
5 If energy is above UPPER_THRESHOLD 

do (3), else do (4) 
6 If energy is below LOWER_THRESHOLD 

do (3), else do (4) 
7 Perform (3) then divide 
8 Perform (3) then release chemical signal 

 
In order to fully explain the decoding process for a 

phenotype, it is helpful to give an example.  Figure 2 
shows a sample genotype with five genes.  The positions 
containing functions are underlined.  The same genotype 
can be represented pictorially as shown in Figure 3. 
 

 
0    1    2    3    4    5 

|0000|7100|1010|1012|3100|3024| 
 

Figure 2: Example Cell Genotype In CGP 
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Figure 3: Pictorial Representation Of Example Genotype 

 
  If Chemical 0 is present 
  Move towards Chemical 0 
  Else 
  If Chemical 1 is present 
  Do nothing 
  Else 
  Do nothing 
 

Figure 4: Example Decoded CGP Cell Phenotype 

The genotype is mapped to a phenotype by traversing 
the graph starting at the right-most gene.  The function 
assigned to gene five is function 3: If (2) is present, do (3) 
else do (4).  In this model, a zero represents the energy 
chemical and a one represents the chemical signal 
emitted from cells.  The value in position (2) is zero, so if 
the energy chemical is present, decode and perform the 
gene identified by position (3): which is gene number 
two.  Otherwise, perform the gene referenced in position 
(4): which is gene number four.  This process continues 
until an action is found or the genotype has been 



completely decoded without an action, which would 
result in a “Do Nothing”  function. 

The fully decoded phenotype for this example 
describes the cell’s behavior and is a series of IF-ELSE 
statements.  The phenotype is shown in Figure 4. 

2.4 Evolution 

2.4.1 Genetic Operators 

When a cell divides, one of its offspring is mutated and 
the other inherits the parent’s genes exactly.  This allows 
for a type of elitism so that well conditioned genotypes 
are not lost in the next generation.   

A first mutation consists of randomly changing one of 
the integer values in the genotype’s CGP string.  Only 
one value is changed per mutation.  A mutation can 
modify the function, chemical input, or connections in a 
gene.  Since only a portion of the genotype is decoded 
into the phenotype, mutations often do not affect the 
behavior of a cell. 

A second mutation was implemented by adding or 
subtracting a random number to the upper and lower 
energy threshold variables.  If thresholds overlap, e.g., 
the upper is lower than the lower threshold, the model 
still operates since thresholds are used in separate 
conditional functions. 

2.4.2 Cell Population and Fitness Evaluation 

A random population of cells is created for each 
execution.  The initial, maximum and minimum number 
of cells in a population can be controlled through 
program parameters. If the population size falls below the 
minimum, new random cells are be created.  When the 
maximum population size is reached, cells are no longer 
permitted to divide.  Cells need to compete or cooperate 
for a limited amount of resources from the environment.  
If cells are not successful in getting energy, they die.   

Fitness is not explicitly measured, but instead fit 
individuals are those that survive by collecting energy 
and/or passed on their genes to future generations.  
Therefore the concepts of fitness evaluations and 
generations from typical Evolutionary Algorithms are not 
needed in this model. 

3 Test Design 

3.1 Problem Definition 

In an Information Ecosystem, databases or information 
services are distributed throughout a network.  At each 
location in the network, users make requests, or queries, 
for information from these services.  An appropriate 
number of agents are required at each location to treat a 
demand level for a database.  The problem is shown 
pictorially in Figure 5. 
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Figure 5: Resource Allocation Problem 

As shown in Figure 5, several databases (1, 2, 3, …N) 
are distributed across a network.   Assume each user 
makes one request per time-period, so Database 1 will 
have an average of four user requests per time-period; 
Database 2 will have an average of one request; and 
Database 3 an average of eight.  There are six agents at 
Database 2 but only one user requesting service.  
Database 3 has a shortage of agents.  The figure shows 
agents migrating from Database 2 to Database 3 to help 
balance out this discrepancy. 

The task of allocating agents is easy to solve with a 
global knowledge of resources and demand across the 
network.  However in open distributed networks, usually 
only local knowledge is known.  The central maintenance 
of this information would not only prevent scalability and 
create risks of single points of failure, but may be 
impossible in a truly distributed network such as the 
Internet.   

The problem is made more complicated in that the 
user demand may not always stay constant.  An example 
of this would be web sites that are popular because of a 
current trend or news story but then fade in popularity 
after the topic has become outdated. 

The problem can be stated as this: Can a group of 
information processing agents collectively distribute 
themselves across a network to maximize the processing 
of user requests given the following? 

• The agents only have local information. 

• The user demand patterns may or may not change 
with time 

• The number of agents should be appropriate for the 
level of demand (i.e., there is a limited capacity for 
agents in the system). 

3.2 Test design 

3.2.1 Test Approach 

The cell-based model introduced in Section 2 is 
utilized to create cell-like agents to solve the resource 
management problem discussed above. Cell-like agents 
can process one user request per time-step.  Databases 
signal the number of untreated local requests as a 
chemical.  The level of chemical at a single location is 



equal to the number of outstanding local requests, plus 
the amount of chemical that has diffused from neighbor 
locations.  A neighbor’s chemical level indicates the level 
of unfulfilled demand at that location as well as the 
chemical it has received from its neighbor’s locations.  
Since chemicals diffuse throughout the web of connected 
databases, the chemical signal is decreased as distance 
from the source database increases. Agents gain energy 
by processing user requests but lose energy continuously 
for other activities (e.g., migration) or doing nothing 
(e.g., their metabolism). 

Tests were conducted using 50 trials per experiment.  
After several informal tests, 7,000 time-steps were 
determined to be an adequate experiment length to ensure 
completeness. 

The network is represented as a grid pattern, however 
any type of network connectivity, including random 
connections, can be used.  Each database is connected to 
its four adjacent neighbors.  A ten by ten sized grid 
creates a network of 100 databases.  This size is chosen 
so that performance is acceptable and there are enough 
databases to present a challenge to manage resources.   

An average of ten new user requests per time-step are 
generated at each database.  Using a Poisson distribution, 
λ represents the average number of new requests at each 
database per time-step.  A unique λ is assigned for each 
database by using a Poisson distribution with mean of 10.  
Tests are performed using an initial population of 1000 
randomly programmed cells.  Each cell starts with 10 
units of energy and 0.3 units are deducted during each 
time-step.  Cells receive one unit of energy for processing 
a user request.  The cells have 15% randomness in their 
direction of movement and have no polarity.  This set of 
parameters provided reasonable results during several 
informal tests; it was decided that this set of parameters 
used across all experiments would serve as a consistent 
basis for experimentation. 

Although the model is also implemented within the 
DIET platform, the experiments in this paper were 
performed in a separate stand-alone custom Java 
application.  This application took advantage of previous 
work including visualization and the collection of 
metrics.  However, unlike DIET, it does not scale well for 
large networks. 

3.2.2 Experiments Conducted 

A comparison is made between hard-coded cell 
designs and evolved designs.  This provides a way to 
assess the performance of the evolving populations versus 
a human-designed baseline solution. The stability of 
evolved solutions is judged by monitoring the completed 
user requests across experiments.   

Adaptability is assessed by monitoring the 
performance of cell populations when user demand 
patterns vary over time.  Three methods are used to test 
the effects of changes in demand patterns over time: 
 

Simultaneous Shift in Demand.  One set of tests is 
carried out using a simultaneous shift in demand.  Every 

500 time-steps, the values for 
�
 in the Poisson 

distribution are globally reassigned.  The reassignment is 
carried out instantaneously across all locations.  The 
global system demand remains the same overall, but 
demand within each environment changes. 
 

Gradual Shift in Demand.  Another test conducted is 
to change the demand patterns gradually.  This approach 
still resets each environment’s 

�
 every 500 time-steps, but 

the new 
�
’  is updated gradually.  Each time-step after the 

global demand distribution is reset, a number of 
environments are called to increment or decrement their 
current 

�
 in the direction of the new value 

�
’ .  This 

continues until the value 
�
 in each environment equals its 

�
’ . 

 
Fixed Demand.  Some tests are also performed using 

a fixed demand pattern for the duration of the test.  This 
does not test the system’s ability to be adaptive, but 
instead tested the ability of a population to learn the best 
solution for a constant demand. 

4 Results 

4.1 Population Dynamics 

Populations of cells consistently evolve solutions with 
stable population sizes.  Figure 6 shows experimental 
results using the immediate shift in demand method with 
1,000 new requests being generated on average 
throughout the network per time-step.  
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Figure 6: Population Size during 7,000 Time-steps 

The population size stabilizes at around 1,100 cells 
and an average of 87.83% of user requests are completed.    
During an experiment, the number of cells usually varies 
greatly during the first 1,000 time-steps but then 
stabilizes for the remainder of the tests, even as demand 



patterns continues to be reassigned every 500 steps.  The 
average population size of 1,100 is a reasonable number 
of cells to handle the 1,000 new requests created on 
average at each time-step throughout the network.  The 
average population size is 10% greater than the number 
of new requests.  Completing 87.83% of user requests 
with a stable population size proves the ability of cells to 
optimize their performance. 

4.2 Evolution versus Human Design 

The CBO Algorithm is compared against several human 
designed agents.  Many designs for agents were 
considered and tested.  The best performing program is 
one where cells move towards the food source and divide 
when they are healthy (i.e., when there is food nearby).  
The program for this behavior was ‘ If energy is greater 
than 30, divide.  Else, move towards the food chemical’ .  

As shown in Table 2, during 50 trials using the 
gradual shift in demand method, the evolved solutions 
perform better than the human designed solution.  The 
evolved solution performs worse than human designed 
solutions during the initial time-steps of the program, but 
performs better after a few hundred time-steps. 

Table 2: Average % Complete – Evolved vs. Human Design 
(Average of 50 trials between t=5000 and t=7000) 

 EVOLVED 
SOLUTION 

HUMAN DESIGNED 
SOLUTION 

AVERAGE % 
COMPLETE 

93.74% 42.00% 

STANDARD 
DEVIATION 

0.07 0.03 

 
An advantage that the evolved design has is that its 

population is heterogeneous.  The human design is a 
homogeneous population of cells, all sharing the same 
behavior.  Although it is easy to imagine cell programs 
that might work efficiently, it would be hard for a human 
designer to create a diverse population that can work 
collectively to allocate resources.  In the evolved solution, 
certain cell groups evolve to play diverse roles.  Some 
cells might be greedy (always following the database 
chemical), while others might be lazy (only following the 
database chemical when they are running out of energy).  
Also, some cells may even help the overall system’s 
effectiveness by moving away from the database 
chemical.  This could possibly help the population spread 
itself out in the network instead of cells clustering where 
demand is strong. 

Planned heterogeneity could be tested by hard-coding 
groups of human designed cells.  However, it would be 
difficult to determine how many roles are required, the 
proportions of cells in each role and specific thresholds 
each role should have in their programs.  This type of 
design would probably have to be ‘manually evolved’  
through sample runs and would not be adaptive to new 

types of networks and demand patterns.  The benefit of 
naturally heterogeneous systems is discussed by Kephart 
et al. (1980) in their studies of computational ecosystems.  
They found that heterogeneity could create stability and 
that trying to design too much sophistication at the agent 
level lead to oscillations and chaos. 

4.3 Adaptation 

The adaptability of cell populations is tested by 
monitoring performance when patterns of user demand 
are shifted.  The three methods for shifting demand 
mentioned in Section 3.2.2 are used for comparisons.  
The anticipated outcome was that the immediate, 
simultaneous shift in demand would have the worst 
performance, the gradual shift better, and no shift in 
demand would be the best. 

The rationale for the anticipated result is as follows.  
An immediate shift in demand would require that cells be 
the most adaptive and respond to a change in demand as 
quickly as possible.  A gradual demand shift would 
require the cells to become adaptive, but would be 
slightly more forgiving if the population was slow to 
adapt to the new pattern.  Since the new demand pattern 
takes effect gradually, cells would have a generous 
amount of time to die off, divide or move to where 
demand was growing. 

If there were no shift in demand, thus a constant 
demand pattern throughout the test, the cells would not 
have to adapt their learned behavior at all.  It was 
assumed that this would be the easiest environment and 
would result in having the shortest user wait times. 

The results of these tests are surprising.  The 
anticipated comparison for gradual and immediate 
demand shift is correct.  However, the anticipated result 
for tests with a constant demand level is false.  The 
results for 50 trials are listed in Table 3.  

The populations existing in a network without a shift 
in demand perform worse than both types of shifting 
demand tests.  During the first 1,000 time-steps, the 
populations do perform better when there was a fixed 
demand pattern.  However, during the rest of the 
experiments, they perform worse. 

Table 3: Average % Complete – Different Methods for Shifting 
Demand 

(Average of 50 trials between t=5000 and t=7000) 

 IMMEDIATE 
SHIFT 

GRADUAL 
SHIFT 

NO SHIFT 
(CONSTANT 
DEMAND) 

AVERAGE % 
COMPLETE 

87.83% 93.74% 81.08% 

STANDARD 
DEVIATION 

0.11 0.07 0.11 

 
It seems that forcing cells to be adaptive help them to 

eventually have better performance.  Usually after a shift 



in demand, there is a high level of cell death. After a 
couple of hundred time-steps stability is again reached.  
However, after several episodes of demand shifts, cells do 
not have a performance drop during a demand shift 
because they have evolved to be adaptive.  It is possible 
that mediocre groups of cells that perform poorly are able 
to survive in an easier, constant environment whereas 
they may be made extinct otherwise.  
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Figure 7: Comparison of Types of Shift in Demand 

Figure 7 shows the average performance of the 
populations throughout different time-periods of the 
experiments.  Cells in an easier environment only evolve 
to have acceptable performance, whereas cells in a 
constantly changing environment have to compete and 
find a new energy source every 500 time-steps.  This 
competition may force them to evolve better solutions, 
which not only improve individual cell performance, but 
also the performance of the population. 

5 Conclusions and future work 

The goal of this research is to test the capabilities of a 
Cell Based Optimization algorithm at solving problems 
in an Information Ecosystem domain.  Motivation for this 
work is to better understand bottom-up systems design 
and emergent behaviors in complex decentralized 
systems.  The CBO algorithm uses cell-like functions and 
reactions to simulated chemicals in an artificial 
ecosystem.  Cartesian Genetic Programming is used for 
genetic representation.  The Cell Based Optimization 
algorithm is able to demonstrate successful group 
allocation across a network, maximizing the processing 
of simulated user requests. 

Populations of randomly generated cells, or agents, are 
able to collectively manage their population size and their 
distribution throughout a network.  This functionality is 
evolved without having to specify fitness functions or 
manage selection criteria.  By making the treatment of 
user requests a requirement for cell survival (i.e., their 
energy source), the cells evolve to allocate themselves 
according to changing patterns in user demand.  Each 

cell is autonomous and only has information about the 
chemicals in their local environment.  Although each cell 
acts only to serve itself (i.e., survive), group functionality 
emerges so that the populations of cells collectively 
allocate themselves across the network.  They also 
produce a stable and robust solution that is adaptive to 
changes in user demand patterns. 

The experiments result in a heterogeneous population 
with cells serving varied roles.  Some cells are greedy and 
always follow a signal for user demand.  Other cells stay 
in one place if there is enough requests for it to survive.  
The evolved heterogeneous populations prove to be more 
effective than populations created by hand.  On average, 
homogenous populations of human designed agents are 
not able to complete half of the user requests at each 
time-step.  Their evolved heterogeneous counterparts 
average completion percentages above 90 percent.  It was 
argued that it would be very difficult to design effective 
heterogeneous populations by hand. 

When testing the adaptability of the evolved solutions, 
it is found that more challenging environments help to 
evolve more effective populations of cells.  Cells that 
have to compete in an environment with changing user 
demand patterns are more successful in the long run then 
cells competing in static environments. 

There are many extensions to this project that would 
serve for interesting research.  The comparisons of 
evolved solutions to human designed cells could be 
furthered by attempting to create human designed 
heterogeneous populations for comparison.  To prevent 
‘manual evolution’ , some rules would need to be enforced 
to define how much interaction a designer could have 
with the system before designing the cells.  Also, the 
evolved populations could be studied in more depth to 
more precisely identify roles that the cells played and 
proportions of the populations in each group. 

The cell-based model could be adapted to other 
problems. It would be interesting to see how Cell Based 
Optimization performs compared with more traditional 
techniques and other nature-inspired techniques (e.g., 
Ant Colony Optimization). 

Currently the cells in the model consume energy at 
each time-step and when they divide.  Additional 
functionality could be added so that other activities cost 
the cells energy.  Examples include charging a cell for 
migration, signaling, retrieving local information, etc. 
This might make cells evolve to decrease the load on the 
system while at the same time evolve to treat user 
requests.  An ecosystem model may be an interesting test-
bed for this type of multi-objective problem. 

Acknowledgements 

This work was supported by the Future Technologies 
Group in BTexact and the DIET (Decentralised 
Information Ecosystems Technologies) project (IST-
1999-10088) within the Universal Information 
Ecosystems initiative of the Information Society 
Technology Programme of the European Union. DIET is 



also partly supported by the Enterprise Venturing 
Programme of BTexact Technologies. The authors are 
grateful to Paul Marrow, Cefn Hoile, Erwin Bonsma, and 
Mark Shackleton for their useful comments and helpful 
assistance throughout the work. 

Bibliography 

Agarwal, Pankaj (1995). The cell programming 
language. Artificial Life, 2 (1):3777. 

Bayardo, R. J., Bohrer, W., Bric, R. et al. Infosleuth: 
Agent-based semantic integration of information in open 
and dynamic environments. In: ACM SIGMOD, pages 
195—206, 1997. 

Chavez A., Moukas A., Maes P. (1997) Challenger: A 
Multi-Agent System for Distributed Resource Allocation, 
In: Proceedings of the First International Conference on 
Autonomous Agents, Marina Del Ray, CA. 

Dorigo M., Gambardella, L.M. (1997). Ant Colony 
System: A Cooperative Learning Approach to the 
Traveling Salesman Problem. IEEE Transactions on 
Evolutionary Computation. 1, 53—66. 

Dorigo, M. Di Caro, G. (1999). The Ant Colony 
Optimization MetaHeuristic, in: D. Corne, M. Dorigo 
and F. Glover, eds, New Ideas in Optimization, McGraw-
Hill. 

Fleischer, Kurt and Barr, Alan H. (1992) A simulation 
testbed for the study of multicellular development: The 
multiple mechanisms of morphogenesis. In C. Langton 
(ed), Artificial Life III, London: Addison-Wesley, pp. 
389-416. 

Hoile, C., Wang, F., Bonsma, E., and Marrow, P. 
(2002) Core specification and experiments in DIET: a 
decentralised ecosystem-inspired mobile agent system In: 
Proceedings of the 1st International Conference on 
Autonomous Agents and Multi-Agent Systems, 
AAMAS2002, Bologna, Italy. 

Keller, E. and Segel, L. (1970). Initiation of slime 
mold aggregation viewed as an instability, Journal of 
Theoretical Biology. 26, pp. 399-415. 

Kephart, J. O., Hogg, Tag, and Huberman, Bernardo 
A. (1989). Dynamics of computational ecosystems. 
Physical Review A, 40. 

Koza, John R. (1992).  Genetic Programming: On the 
Programming of Computers by Means of Natural 
Selection. Cambridge, MA: MIT Press. 

Marrow, P., Koubarakis, M., van Lengen, R.H., 
Valverde-Albacete, F., et al. (2001). Agents in 
Decentralised Information Ecosytems: the DIET 
Approach, Proceedings of the AISB’01 Symposium on 
Information Agents for Electronic Commerce. York, UK. 
pp. 109-117. 

Menczer, F. and Monge, A. E. (1999). Scalable web 
search by adaptive online agents: An infospiders case 
study. In Intelligent Information Agents. Springer.  

Miller, Julian and Thomson, Peter (2000). Cartesian 
Genetic Programming. In R. Poli, J.F. Miller, W. 
Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C. 
Fogarty (eds), Proceedings of the 3rd International 
Conference on Genetic Programming (EuroGP2000), 
Lecture Notes in Computer Science, Berlin: Springer-
Verlag, Vol. 1802, pp. 15-17. 

Moukas, A. (1996) Amalthaea: information discovery 
and filtering using a multiagent evolving ecosystem.  In: 
Proceedings of PAAM96. 

Nakagaki, T.; Yamada, H.; Tóth, Á. (2000). 
Intelligence: Maze-solving by an amoeboid organism, 
Nature 407, 470. 

Pulidas, S, Towsley D., and Stankovic, J.A. (1988). 
Imbedding gradient estimators in load balancing 
algorithms. In 8th International Conference on 
Distributed Computing Systems, pp. 482—490. 

Ray, Thomas S. (1994). An evolutionary approach to 
synthetic biology: Zen and the art of creating life. 
Artificial Life, 1(1/2), pp. 179-209. 

Resnick, Mitchel (1994). Turtles, Termites, and 
Traffic Jams: Explorations in Massively Parallel 
Microworlds. Cambridge, MA: MIT Press. 

Rothermich, J. (2002).  From Multicellularity to Cell 
Based Optimization: Studying the Cooperative 
Capabilities of Evolvable Cells.  MSc Thesis.  University 
of Birmingham, UK. 

Rothermich, J., Miller, J. (2002). Studying the 
Emergence of Multicellularity with Cartesian Genetic 
Programming in Artificial Life.  Proceedings of the UK 
Workshop on Computational Intelligence (UKCI-02), 
Birmingham, UK. 

Schaerf, A., Shoham, Y., and Tennenholtz, M. 
(1995). Adaptive load balancing: A study in multi-agent 
learning. Artificial Intelligence Research 2, 475—500. 

Vassilev, Vesselin K. and Miller, Julian F. (2000) The 
advantages of Landscape Neutrality in Digital Circuit 
Evolution. In J.F. Miller , A. Thompson, P. Thomson, 
and T. Fogarty (eds),  Proceedings of the 3rd 
International Conference on Evolvable Systems: From 
Biology to Hardware (ICES2000), Lecture Notes in 
Computer Science, Berlin: Springer-Verlag, Vol. 1801, 
pp. 252-263. 

Yu, Tina and Miller Julian F. (2001) Neutrality and 
Evolvability of a Boolean Function Landscape. In J.F. 
Miller, M. Tomassini, P. L. Lanzi, C. Ryan, W. Langdon 
(eds), Proceedings of the 4th  International Conference 
on Genetic Programming (EuroGP2001), Lecture Notes 
in Computer Science, Berlin: Springer-Verlag, Vol. 
2038, pp. 204-217.  

 
 


