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Abstract 

Repeated experiences with an event create the expectation that subsequent events 

will expose an analog structure. These spontaneous expectations rely on an internal 

model of the event that results from learning. But what happens when events change? Do 

experience-based internal models get adapted instantaneously, or is model adaptation a 

function of the solidity of, i.e. familiarity with, the corresponding internal model? The 

present fMRI study investigated the effects of model solidity on model adaptation in an 

action observation paradigm. Subjects were made acquainted with a set of action movies 

that displayed an altered script when encountered again in the scanning session. We 

found model adaptation to result in an attenuation of the premotor-parietal network for 

action observation. Model solidity was found to modulate activation in the 

parahippocampal gyrus and the anterior cerebellar lobules, where increased solidity 

correlated with activity increase. Finally, the comparison between early and late stages of 

learning indicated an effect of model solidity on adaptation rate. This contrast revealed 

the involvement of a fronto-mesial network of Brodmann area 10 and the ACC in those 

states of learning that were signified by high model solidity, no matter if the memorized 

original or to the altered action model was the more solid component. Findings suggest 

that the revision of an internal model is dependent on its familiarity. Unwarranted 

adaptations, but also perseverations may thus be prevented.  

1 Introduction 

We don’t inspect events without expecting their course. According to the predictive 

coding account of action observation, action perception triggers an “internal model” 

(Kilner, Friston, & Frith, 2007; Neal & Kilner, 2010) that is run in real time and consists 

of predictions on the course of action (Schutz-Bosbach & Prinz, 2007). Evidently, such 

predictions save resources (Zacks, Speer, Swallow, Braver, & Reynolds, 2007).  

However, it is not only of tremendous importance to establish internal models 

through experience, but also to attune them to persistent changes, and thus maintain valid 

predictions. Consider being forced to change your well-known way to work because of 

some indiscernible traffic condition at some point of the route. If this happens once, you 



 
 

 

may surely assume that something like a traffic accident has happened. In all probability 

you would not decide to take another way to work on the next day. This is an example of 

a well-established and therefore solid internal model being violated. Solidity means that a 

model has strong connection weights between encompassed events. Events that have 

through repeated exposure become very well associated with each other elicit implicit 

prediction of each other. Solidity, i.e. a large strength of association, determines that the 

deviation is treated as a one-time occurrence of no further importance for future 

predictions. 

Now consider being on holiday and the road to the beach being blocked on your 

second day in the unfamiliar countryside. You may start wondering whether you have 

chosen exactly the way you went the day before and try to reverse the mental map you 

have created of your surroundings. If you find a new way to the beach and follow it on all 

occasions thereafter, you may quite forget, or begin to doubt that another way has ever 

been possible. This form of adaptation seems likely in case of low familiarity, i.e. a weak 

internal model. The weak internal model is questioned and possibly revised after a one-

time breach of expectation. However, it remains to be experimentally established how an 

internal model’s solidity influences its revision and hence adaptation of predictions. To 

our knowledge only a few studies on reversal learning in stimulus-response paradigms 

(Ghahremani, Monterosso, Jentsch, Bilder, & Poldrack, 2009) have dealt with the 

influence of model solidity on adaptation; no study has addressed the question in an 

action observation paradigm. 

The present fMRI study was designed to investigate the influence of model 

solidity on its adaptation during iterations of a divergent script. Internal models of 

different solidity were established by presenting a number of scripts, i.e. movies showing 

everyday actions (as will be described below in more detail). The concept of solidity is 

similar to associative strength (McClelland, et al., 1995) between components of an 

internal representation. Thus, solidity pertains to an internal model whose constituent 

events are highly associated with each other. Hence, in a fixed temporal schedule, each 

constituent elicits prediction of the next. This prediction is a consequence of statistical 

learning (Turke-Brown, et al., 2010). Statistical learning results from repeated pairing of 

events, i.e. stimulus familiarity, that has been proposed to be critical in extending the 



 

 
 

 

persistence of memory (Eichenbaum, 2000). Concisely, repeated exposure leads to 

solidity. In a solid model, each event is highly associated with its neighbor. Solidity was 

expected to affect adaptation rate to subsequent script change. Within the Bayes’ theorem 

framework, the goal probabilistic learning can be described as the acquisition of 

appropriate models for inference based on past experience. Events that co-occur 

persistently shape a solid model. The estimated likelihood of an event is dependent on its 

base-rate and how reliably it occurred in the past given that an associated event had 

happened. This likelihood is adapted on each iteration of the predictive and the associated 

event. (Fiser, et al., 2010). The more often one event has followed another, the closer is 

the association between them and the more likely seems the succession. Hence, within 

solid models, the likelihood of the respective next event is very high. This tying of 

prediction to a conditional probability is proposed to result in slower adaptation of more 

solid models. It takes longer to rewrite, or rather rewire, strong associations. Lastly, we 

were interested in “biased” adaptation stages at early and advanced stages of learning. In 

biased stages, the number of iterations of divergent expositions differed considerably 

from the number of iterations of the respective original script. These states are of specific 

interest to the validation of predictions. To resurrect the picture outlined above, only a 

well-known path blocked/diverged instigates maintenance of the original idea, or 

‘shielding’ predictions from divergent influences. But previous experiences in a new 

environment should pale in insignificance to repeatedly coming across a divergence for 

the creation of an internal script and its predictions.  

 

Functional neuroanatomy 

As a main effect of the factor ADAPTATION, we expected adaptation of the internal 

model to the divergent script to lead to BOLD attenuation in a premotor-parietal network. 

The premotor-parietal network is associated with action observation and prediction of 

external events (cf. Schubotz, 2007). Its parietal constituent is associated with coding for 

object pragmatics and space (Fagg & Arbib, 1998). The frontal constituent, the lateral 

premotor cortex has been suggested to code for transformations underlying both our 

movements as well as observed events, for example changes in the position of objects (cf. 

Schubotz, 2007), and hence contributes to both action planning and action prediction. The 



 
 

 

concept of prediction refers to ‘filtering’ of anticipated perception as has been described 

in motor control theories (Wolpert & Flanagan, 2001; cf. Schubotz 2007). We therefore 

expected that repeated exposure of the same action would lead to a decrease of activity in 

the premotor-parietal network, signifying adaptation.  

As a main effect of the factor SOLIDITY, we hypothesized higher activity for more 

solid compared to weaker models in the hippocampal formation. The close proximity of 

the concept of solidity to associative strength (Eichenbaum, 2000; Kim & Baxter, 2001; 

McClelland, et al., 1995) and probabilistic learning (Kim & Baxter, 2001; Turke-Brown, 

et al., 2010) points towards an involvement of the hippocampal cortex, revealed in 

stronger activity for more solid compared to less solid models (Eichenbaum, 2000; Kim 

& Baxter, 2001; McClelland, et al., 1995; Turke-Brown, et al., 2010).  

Finally, we expected a significant interaction of the factors SOLIDITY and 

ADAPTATION. This common-sense assumption is supported by the fact that habits (also 

habits of thought), as an example for solid associations, are particularly difficult to 

unlearn (see Graybiel, 2008 for a review). Moreover it has been established that stable 

environments, which by inference allow shaping solid models, are signified by a slow 

learning rate (Rushworth & Behrens, 2008). However, as the neural correlates of an 

influence of solidity on adaptation have not been investigated so far, the study was 

explorative concerning the existence and location of the interaction’s neural correlates. 

 

Implementation 

To test our hypothesis, we familiarized participants previous to the fMRI session 

with a number of scripts containing everyday life actions, for example, a movie of 

making a salad. Each script encompassed a number of action steps for example, taking a 

bowl, grasping the lettuce, placing it in the bowl, sprinkling vinegar on top, taking salad 

tongues, tossing the salad. Original scripts were presented either 3, 6 or 9 times in a pre-

experimental exposition session. In the fMRI session, participants encountered some 

scripts in the same version as before. Some scripts, however, the sequence changed from 

a certain point on. For example, the salad script now contained the sub-events taking the 

bowl, grasping the lettuce, placing it in the bowl, reaching for the cheese, reaching for a 

knife, cutting pats of cheese into the bowl. Note that divergent scripts did not contain any 



 

 
 

 

action slips but were actions as valid as the original. Each script was shown nine times 

during the fMRI, either 9 times in the original or 9 times in the divergent version (no 

script appeared in two versions during the fMRI). Two main effects and their interaction 

were calculated:  

To investigate the SOLIDITY effect, we contrasted the perception of divergent 

scripts with a large number (i.e. nine) of pre-experimental expositions (factor level 

‘solid’) with the perception of divergent scripts with a low number (i.e. three) of pre-

experimental expositions (factor level ‘weak’). 

To test whether ADAPTATION would occur, we contrasted the first (i.e. first three - 

factor level ‘first’) with the last (i.e. seventh to ninth) repetitions (factor level ‘last’) of 

the divergent scripts pooled over all pre-experimental exposition frequencies. 

Finally, we aimed to establish a neuronal network that would reflect the 

dependence of ADAPTATION rates on model SOLIDITY. To this end, we calculated the 

interaction contrast between the two-level factors ADAPTATION and SOLIDITY. 

2 Methods 

2.1 Subjects:  

19 right-handed, healthy participants (seven women, age 22-30 years old. mean age 

25.3 years) took part in the study. The participants were right handed as assessed with the 

Edinburgh Handedness Inventory (Oldfield, 1971). All participants were health screened 

by a physician and gave written informed consent.  

 

2.2 Stimuli and Task:  

The stimulus material contained 37 different movies of eight to 12 seconds length. 

The movies were shot from the third-person perspective, not showing the actor’s face. 

They contained every-day actions, taking place at a table. Most movie scripts, e.g. 

making a sandwich, existed in two versions (a & b). These scripts had an identical 

beginning, but started to diverge at some individual point, where after no commonality 

existed (Figure 1). Each version of each script was filmed 18 times. Thus, even though 

the same script appeared repeatedly during the pre-experimental exposition and the 

experiment, the exact same shot of each script occurred only once. This method was 



 
 

 

employed to minimize surface-similarities between the scripts. A subset of 13 scripts was 

filmed in five different versions.  

The experiment consisted of a pre-experimental exposition of the movie material 

and an fMRI session starting exactly 15 minutes after the end of the pre-exposition. 

During the pre-experimental exposition session, participants were seated in a sound 

attenuated chamber facing a computer screen. Distance to the screen was adjusted to 

ensure that the video displayed on the screen did not extend 5° of visual angle. They 

watched 27 scripts, a third of which was displayed three times, another third six times and 

the last third nine times in a randomized fashion over the course of the 28 minutes lasting 

session. The participants saw one version of each script; but each repetition was another 

shot of the same script. Questions concerning whether some action or another was part of 

the script (e.g. “grasping an apple?”) were posed on average after every fifth script to 

ensure ongoing attention to the stimulus material. Participants received visual feedback 

for 400 ms on whether they had answered correctly, incorrectly, or too late. After the pre-

exposition, the participants were transferred directly to the fMRI chamber.  

 

2.3 FMRI session 

 The fMRI session encompassed display of 36 different scripts. Each script was 

repeated nine times over the experiment. Nine scripts that had previously been displayed 

during the pre-exposition returned in the fMRI session in the same version as before 

(‘originals’ hereafter). Another nine of the pre-experimentally shown scripts were 

presented in the fMRI session only in their complementary version (‘divergents’ 

hereafter) (Figure 1 & Figure 2). The last nine scripts appeared in five different versions 

during the fMRI, each being displayed only once (‘unpredictables’ hereafter). The first 

third of the originals, the divergents and the unpredictables had previously been displayed 

three times each, the second third of all three kinds six times each, and the last third nine 

times each. Additionally, the design encompassed nine scripts that were completely new 

to the participants (“new originals”) when they were displayed during the fMRI. The 

latter as well as the unpredictables will not be subject of the present paper but discussed 

in detail in a companion paper (Schiffer, Ahlheim, Wurm, & Schubotz, in prep). 

However, the likely psychological effect of the unpredictables should be taken into 



 

 
 

 

account. Their presence and the associated experience of constantly changing scripts 

should decrease the likelihood of a divergent to be accepted as persistent at first 

encounter. That means that having seen a divergent only once does not allow the 

prediction that it returns in the same fashion – it could still turn out unpredictable at the 

second encounter. Only the second encounter of the same divergent delivers evidence that 

this script, albeit changed, is ‘learnable’.  

The randomization distributed scripts of the same function, for instance the first 

presentation of the divergent version, evenly across the session. Thus, the temporal 

correlation between the function of a script and experiment duration, as well as the 

accumulation of identical functions during a specific period was minimized. 

During the fMRI session, participants lay supine on the scanner bed. Their head and 

arms were stabilized using form-fitting cushioning and their hands rested on a rubber 

foam tablet. On the right hand side, a response panel was mounted on the tablet and fixed 

with tape. With their right hand index and middle finger resting on two response buttons, 

participants could answer the 32 intermittent questions concerning the content within the 

same response-contingencies as in the pre-exposition (Figure 3). Participants had three 

seconds to answer the question. Feedback on whether a response had been registered or 

not was displayed on the screen for 400ms. The participants wore earplugs and 

headphones to attenuate scanner noise. Participants saw a reflection of the screen in a 

mirror, built into the head-coil and adjusted individually to allow for comfortable view of 

the entire screen. The movies did not extend further than 5° of visual angle in the mirror 

image of the computer screen. 16 null-events of 10 seconds length were displayed, 

consisting of display of the grey background on the screen. Participants were instructed to 

relax during null-events. 

 

2.4 Data Acquisition 

The functional imaging session took place in a 3T Siemens Magnetom Trio scanner 

(Siemens, Erlangen, Germany). In a separate session, prior to the functional MRI, high-

resolution 3D T-1 weighted whole-brain MDEFT sequences were recorded for every 

participant (128 slices, field of view 256mm, 256 by 256 pixel matrix, thickness 1mm, 

spacing 0.25 mm) 



 
 

 

The functional session engaged a single-shot gradient echo-planar imaging (EPI) 

sequence sensitive to blood oxygen level dependent contrast (28 slices, parallel to the 

bicommisural plane, echo time 30ms, flip angle 90°; repetition time 2000ms; serial 

recording). Following the functional session immediately, a set of T1-weighted 2D-

FLASH images was acquired for each participant (28 slices, field of view 200mm, 128 by 

128 pixel matrix, thickness 4mm, spacing 0.6mm, in-plane resolution 3 by 3 mm). 

 

2.5 FMRI Data Analysis 

Functional data were offline motion-corrected using the Siemens motion protocol 

PACE (Siemens, Erlangen, Germany). Further processing was conducted with the 

LIPSIA software package (Lohmann, et al., 2001). Cubic-spline interpolation was used to 

correct for the temporal offset between the slices acquired in one scan. To remove low-

frequency signal changes and baseline drifts, a 1/110Hz filter was applied. The matching 

parameters (6 degrees of freedom, 3 rotational, 3 translational) of the T1-weighted 2D-

FLASH data onto the individual 3D MDEFT reference set were used to calculate the 

transformation matrices for linear registration. These matrices were subsequently 

normalized to a standardized Talairach brain size (x=135 mm, y=175 mm, z=120 mm; 

Talairach and Tournoux, 1988) by linear scaling. The normalized transformation matrices 

were then applied to the functional slices, to transform them using trilinear interpolation 

and align them with the 3D reference set in the stereotactic coordinate system. The 

generated output had thus a spatial resolution of 3 by 3 by 3 mm.  

 The statistical evaluation was based on a least-square estimation using the general 

linear model (GLM) for serially auto-correlated observations (Worsley & Friston, 1995). 

Temporal Gaussian smoothing (4 seconds FWHM) was applied to deal with temporal 

autocorrelation and determine the degrees of freedom (Worsley & Friston, 1995). A 

spatial Gaussian filter of FWHM 5 mm was applied. The design matrix was generated by 

hemodynamic modeling using a γ-function and encompassed the first derivate. The onset 

vectors in the design matrix were modeled in a time-locked event-related fashion.  

 

All contrasts were drawn from one design matrix. The first contrast accounted for 

the effect of model SOLIDITY. The second contrast accounted for the overall ADAPTATION 



 

 
 

 

effect. The third contrast targeted the INTERACTION between model solidity and 

adaptation. To ensure that the activation from the interaction contrast was rooted in an 

orthogonal interaction, we also calculated the conjunction analysis that accounted for the 

same proposed interaction effect. The onset vectors were modeled to the point in time 

when the divergent was recognizable as divergent (hereupon ‘breach’, Figure 1). This 

breach had previously been visually timed to the moment when movement trajectories 

revealed that either the manipulation or the reached-for object was different from that in 

the originals. All divergents as well as the null-events were added as conditions of no-

interest into the design matrix. 

 

Main effect SOLIDITY 

This effect was calculated as  (solid / first ∩ solid / last) > (weak / last ∩ weak / 

first). Factor level ‘solid’ refers to models that had been pre-exposed nine times; factor 

level ‘weak’ refers to models that had been pre-exposed three times. Factor level ‘first’ 

refers to first three presentations of a divergent; factor level ‘last’ refers to its last three 

presentations (Figure 4). 

 

Main effect ADAPTATION 

This effect was calculated as (solid / first ∩ weak / first) > (solid / last ∩ weak / 

last). Please refer above for explanation of the factor levels  (Figure 5). 

 

Interaction SOLIDITY by ADAPTATION 

The interaction contrast signifies the interaction between the two two-level factors 

SOLIDITY and ADAPTATION, and is thus derived from the crossing of the respective levels. 

Hence, it was calculated as contrast (solid / first > weak / first) > (solid / last > weak / 

last). Please refer above for explanation of the factor levels  (Figure 6).  

In order to enable an interpretation of the significant effects derived from this 

interaction contrast, it was important to ensure that all significant voxels reflected the 

same direction of the effect (this rationale applies to all interaction contrasts in fMRI). 

Therefore, we additionally calculated the conjunction of the contrasts (weak / first > weak 

/ last) and (solid / first > solid / last). 



 
 

 

 

All contrast images were fed into a second-level random effects analysis. The 

group analysis consisted of one-sample t tests across all contrast images to analyze 

whether the observed differences between conditions were significantly deviant from 

zero. Acquired t-values were transformed to z-scores. A two-step correction for false 

positive results based on a Monte-Carlo simulation was performed. In a first step, an 

initial z-threshold of 2.33 (p < .05, one-tailed) was applied to the simulated voxels. 

Afterwards, based on the remaining clusters, statistically thresholds were calculated to 

correct for false positives at a significance level of p = .05. Cluster size as well as cluster 

value were taken into account at thresholding in a compensatory matter to prevent 

neglecting true positive activations in small anatomical structures (Lohmann et al., 2008). 

Hence, all reported activations were significantly activated at p <= .05, corrected for 

multiple comparisons at cluster level. 

 

 

2.6 Pilot study 

Previous behavioral results support the validity of the described contrasts. A 

preceding pilot study in another group of participants had provided behavioral evidence 

for the influence of solidity on adaptation. In the study, participants viewed each movie 

first three, six, or nine times in the original version, followed by three, six, or nine 

divergent displays and eventually one or two original presentations. Meanwhile they had 

to constantly indicate whether the version that was on display at the moment was 

identical to the last display, or represented a change in script. We measured reaction 

times (RT) for the responses and conducted a repeated measures ANOVA on the RTs of 

all correct responses to repetitions of divergents. The repeated measures ANOVA thus 

included 2 factors, the 2-level factor original presentations (levels: three original 

presentations, nine original presentations) and 8-level factor divergent iteration (levels: 

2nd ieration, 3rd iteration, …, 9th iteration). The first divergent was not included in the 

analysis, as it demanded a different response (indication of change) than the ensuing 

divergents (indication of repetition). The interaction effect between number of original 

presentations and iteration of the divergent approached significance at p = .07 



 

 
 

 

(Greenhouse-Geisser corrected). To disentangle what effect carried the interaction we 

correlated the RT for each iteration with the number of previous originals. The 

correlation between RT of the divergents that had been displayed 3 times as original and 

their iterations was not significant (r= .081, p = .3). In contrast, the correlation between 

RT of the divergents that had been displayed 9 times as original and their iterations 

approached significance (r= -.157, p = .06). This marginal correlation reveals a 

continuous decrease in reaction times that we take to reflect ongoing adaptation to the 

divergents that had previously been shown nine times in their original version. Taken 

together, these results reflect a difference in adaptation rate dependent on the number of 

pre-expositions.  

 

3 Results 

3.1 Behavioural results 

The participants answered on average 87% of the 32 questions correctly (< 27 

questions). Standard deviation was 7%. In the post-experimental questionnaire 

participants were asked whether all movies had returned as before and no participant 

indicated that all movies had. Six of the 19 participants reported spontaneously to the 

open question whether they wished to report anything whatsoever, that some movies were 

different than before. This behavioral measures furthers the argument that the participants 

were aware that some movies were altered versions of what they had seen pre-

experimentally, instead of believing that the different movies (divergents) were not 

related to the initial version.  

 

3.2 FMRI results 

  

The model SOLIDITY CONTRAST (solid / first ∩ solid / last) > (weak /  last ∩ weak 

/ first) yielded activity in the right parahippocampal cortex, and also in the right 

cerebellar lobule III (centralis) and bilaterally in the lobule IV (culmen) of the cerebellum 

(Table 1) (Figure 4). 

 



 
 

 

The model ADAPTATION contrast (solid / first ∩ weak / first) > (solid / last ∩ weak / 

last) yielded bilateral activity in the inferior frontal sulcus (IFS), the left premotor cortex 

(PM), the left superior parietal lobe (SPL) and intraparietal sulcus (IPS), extending into 

anterior IPS in the left hemisphere. The posterior middle temporal gyrus (MTG) was 

activated bilaterally (Table 2) (Figure 5). 

 

The SOLIDITY by ADAPTATION interaction contrast (solid / first  > weak / first) > 

(solid / last > weak / last) showed significant activation of the frontopolar cortex 

comprising mesial Brodmann Area (BA) 10 and right lateral BA10. Further activations 

were in the anterior cingulate cortex (ACC), right orbitofrontal cortex (OFC), the right 

striatum, right posterior superior temporal gyrus (pSTS), cuneus and the left fusiform 

gyrus (Table 3) (Figure 6). The second approach to this analysis, the conjunction analysis 

(iii-a), i.e. (weak / last  > weak / first) ∩ (solid / first  > solid / last), yielded activity in the 

mesial and the lateral BA10, ACC and cuneus, and in the right fusiform gyrus (Table 4).  

 

4 Discussion 

Internal models of an action encompass expectations on the development of this 

action (Bar, 2009; Jeannerod, 1995). Valid predictions make perception more efficient 

and are beneficial to fast reactions (Wolpert & Flanagan, 2001). The present fMRI study 

investigated the neural correlates of the influence of the solidity of the original internal 

model of an action on subsequent adaptation of the internal model to a divergent script. 

To that end, participants watched movies that familiarized them with the original scripts 

and thus to establish internal model of them. In the fMRI they were confronted with 

divergent versions of the previously learnt scripts.  

We found a persistent effect of pre-experimental exposition frequency (main effect 

of solidity) in the right parahippocampal cortex as implied by the concept’s proximity to 

associative strength. There was also an effect of solidity bilaterally in the anterior 

cerebellum. This result stresses the importance of previous experience to expectation, 

especially in the face of new information. As hypothesized, divergent experiences incited 

adaptation in fronto-parietal motor regions, i.e. left PMv, bilateral IFS and IPS. Moreover 



 

 
 

 

the adaptation effect was evident in the posterior MTG and in the left SPL. Finally, the 

exciting finding of a network dealing with a solidity bias, i.e. stages where solidity of one 

script surpasses that of another (solidity by adaptation interaction), supports the notion of 

a lasting influence of possible alternatives. The activity that was found for this 

interaction, located in the left frontomedian cortex (FMC), i.e. BA 10 and the ACC, as 

well as right striatum and right OFC, suggests a continuous processing of divergent 

information in these areas, be it current or past.  

 

4.1 Solidity exerts prolonged influence 

Activity in the solidity contrast reflects an ongoing response to divergent scripts 

that is more pronounced for solid than for weaker original internal models. The cerebellar 

activity was in a classical motor region (Marvel & Desmond, 2010), in lobules III and IV 

(Schmahman et al., 1999). Working memory function, proposed for cerebellar lobules 

VI/crus I (Marvel & Desmond, 2010) is rather an unlikely explanation for this anterior 

activity. Hence, we take it to reflect continuing mismatch between the internal motor 

model’s expectations and perception, which is increased if the original internal model 

was highly habituated. The parahippocampal cortex has been associated with 

topographical learning (Aguirre, Detre, Alsop, & D'Esposito, 1996), scene processing 

(Epstein & Kanwisher, 1998) and the association of scenes and locations with objects 

(Bar, Aminoff, & Schacter, 2008; Sommer, Rose, Gläscher, Wolbers, & Büchel, 2005). 

Here, we propose that parahippocampal activity signifies the revision of associations 

(Eichenbaum, 2000; McClelland, et al., 1995) between scenes and actions or action-

relevant objects. The present data allow no decision between these alternatives as the 

divergent script sometimes included the use of a different object than the original script 

did, but sometimes only entailed an altered manipulation of the same object.  

4.2 Adaptation in the cortical motor network  

The adaptation contrast (ii) yielded activity in the left PM(v), the bilateral IPS and 

the left posterior MTG, a network that is not only relevant for action execution, but also 

prominent in action observation (Jeannerod, 1995). The adaptation contrast tested 



 
 

 

whether the hypothesized fronto-parietal motor regions would be sensitive to violated 

expectations and show an adaptation to the new action script.  

During the first encounters of the divergent script, perception was assumed to 

deviate from the internal model. An increase of neuronal activity at this stage reflects a 

breach of expectation signal that incites learning (Summerfield, Trittschuh, Monti, 

Mesulam, & Egner, 2008). This signal can also be understood as a correlate of the 

processing of unexpected (salient) objects or manipulations (Keysers & Perret, 2004). 

These functions can be seen as two sides of the same coin: Accordingly, the original 

script acts like a filter that minimizes processing demands of all according perceptions. 

Divergent perceptions, however, are not filtered, rendering them more salient than pre-

filtered perceptions. The resulting increased activation is a ‘breach of expectation signal’ 

and incites learning. As soon as the divergent script has been learnt, it can serve as a filter 

for all according perceptions again.  

Adapting the internal model to account for the divergent script is a learning or re-

learning process, and in a stable environment, strong evidence should be required to 

motivate learning (Rushworth & Behrens, 2008). Otherwise, assembling and memorizing 

experiences would be pointless, as they would loose their capacity to guide successful 

behavior as soon as a one-time breach of expectation had occurred. Hence, the divergent 

perception should not cause instantaneous adaptation of the internal model; accordingly, 

a process of adaptation is revealed by diminution of the neural correlate of divergence 

over a large number of iterations (Friston, Kilner, & Harrison, 2006; Grill-Spector, 

Henson, & Martin, 2006; Majdanžić, Bekkering, van Schie, & Toni, 2009) as targeted in 

the adaptation contrast (ii). It has previously been established that the cortical motor 

network is capable of predicting the ongoing course of action (Jeannerod, 1995). The 

current study furthers our understanding thereof, suggesting that the network is sensitive 

to salient violations of its predictions and shows appropriately slow adaptation. A detailed 

account of the proposed functions of the constituents adapting in this process will be 

supplied below.  

The SPL has been discussed as a potential site of spatial priority maps, which 

designate relevant object locations and can be internally guided or externally cued 



 

 
 

 

(Molenberghs, Mesulam, Peeters, & Vandenberghe, 2007; Nobre, et al., 2004); one of the 

SPL’s functions seems to be constructing and changing these spatial priority maps (Chiu 

& Yantis, 2009; Molenberghs, et al., 2007). Activity in the adaptation contrast is 

evidence for the remapping of spatially guided attention in SPL; this remapping or 

changing of weights in the priority map (Molenberghs, et al., 2007) becomes important to 

action emulation as suddenly relevant objects demand attention, while previously used 

objects loose their significance for the action sequence. 

Activity in the posterior MTG is taken to reflect increased processing of the 

movements of the actor and the actions associated with suddenly relevant objects 

(Beauchamp, et al., 2002; Beauchamp & Martin, 2007). Divergent scripts encompassed 

use (and accordingly motion) of different objects or different use of the same object as 

the original scripts. Encounter of the first presentations of the divergent script entailed a 

mismatch between emulated associations and valid, but unpredicted perceived use. 

Activity in the posterior MTG has been discussed in association with the frontoparietal 

motor network (Beauchamp & Martin, 2007; Johnson-Frey, 2004). The role of this 

frontoparietal network of IPS and PM in goal-directed object manipulation and internal 

modeling thereof has been researched extensively (Grèzes & Decety, 2001; Jeannerod, 

1995; Johnson-Frey, 2004 for reviews). The anterior IPS has been proposed to provide 

the ventral premotor cortex with information on object pragmatics (Fagg & Arbib, 1998; 

Schubotz & von Cramon, 2008). Attenuation of its activity has previously been 

interpreted as a teaching signal that allows model adaptation (Tunik, Rice, Hamilton, & 

Grafton, 2007). Medial IPS has previously been reported to be crucial for the online 

control of goal-directed precision movement (Grefkes & Fink, 2005 for a review). Online 

correction relies on the detection of mismatch between internal emulation and 

sensorimotor information (Wolpert & Flanagan, 2001). We suggest that the activity along 

IPS reflects a decreasing mismatch between the internal model’s emulated action and the 

currently perceived action. The closely linked (Geyer, Matelli, Luppino, & Zilles, 2000) 

PMv, which is assumed to store action knowledge and object function, shows increased 

activity when new scripts have to be learnt (see Schubotz & von Cramon, 2003 for 

review). Activity in premotor cortex is increased when prediction (Schubotz & von 

Cramon, 2003), or simulation (Grèzes & Decety, 2001), and planning of movements 



 
 

 

(Johnson-Frey, 2004) is involved. Against this backdrop, PMv activation during the first 

encounters of unpredicted divergences can be regarded as further evidence of this area’s 

involvement in compiling complex actions. 

4.2.1 Initial bias towards the original script 

Activity in IFS has been suggested to modulate the bias between competing 

representations (Badre, Poldrack, Parè-Blagoev, Insler, & Wagner, 2005; Kuhl, 

Dudukovic, Kahn, & Wagner, 2007; Wurm & Schubotz, 2011). This fits well with an 

influential model of prefrontal cortex function that suggests that prefrontal cortex is 

involved in activating and supporting relevant but unfavored or weak associations (Miller 

& Cohen, 2001). The present study delivers new evidence for the assumption that the IFS 

supports weak models: attenuation of IFS activity points to its involvement in supporting 

the new divergent internal model and its associations during the first encounters of the 

divergent script. Each iteration of this divergent script should solidify its representation, 

diminishing IFS activity as a balanced state of competition between original and 

divergent internal model is approached and the bias runs eventually in favor of the new 

internal model (Schubotz & von Cramon, 2008).  

4.3 Bias vs. Balance – prefrontally mediated integration of incompatible models 

The activation of the FMC, occipital areas, as well as the pSTS in the SOLIDITY-

ADAPTATION-interaction contrast revealed these areas’ involvement in processing 

information when the solidity of one internal model surpasses that of another. Strikingly, 

this network was found to be involved not only when this bias run in favor of the original 

script (and hence, against the currently perceived one), but also when the bias was 

already towards the actually presented action (an hence, against the former original 

script). The underlying analysis was explorative concerning the areas that would be 

involved in the interaction of SOLIDITY and ADAPTATION. However, the interesting results 

help to explain previous puzzling findings (Frank et al., 2005) and enhance our 

understanding of a conundrum in the EEG-centered conflict-monitoring literature:  

FMC activity spread from the ACC into BA10. The ACC is understood to be 

responsive to bias, especially in decision and stimulus-response paradigms (Bunge, 

Burrows, & Wagner, 2004; Miller & Cohen, 2001). It is supposed to convey this bias to 



 

 
 

 

the dorsolateral prefrontal cortex (Miller & Cohen, 2001). Classic bias-related responses 

recorded in the ACC focus on conflict (see Botvinick, Cohen, & Carter, 2004; van Veen 

& Carter, 2002 for review). Conflict is often understood as bias running against the 

necessary association, demanding PFC to support or maintain activation of a ‘weaker’ 

association (Kuhl, et al., 2007; Miller & Cohen, 2001). This ‘conflict solving’, triggered 

by the ACC, could also mean suppression of an unlikely target (Kuhl, et al., 2007), apart 

from the classic conception as fostering a weaker alternative (Miller & Cohen, 2001). The 

current study, in contrast, revealed that the ACC is active for both biased states, even 

when perception is in accordance with the currently more solid internal representation. 

This latter form of bias, however, is not signified by what is often understood as conflict, 

i.e., the need to resolve competition in favor of the weaker alternative. Consequently, IFS 

activation is diminished at this stage, as apparent in the adaptation contrast and discussed 

above, while it is present when bias does run against the presented model at the beginning 

of adaptation. The proposed bias account is in line with an account of ACC function that 

integrates conflict monitoring and more general evaluative computation (Botvinick, et al., 

2004). Conflict would then mean the activation of the representations of two 

incompatible (action) models (Botvinick, et al., 2004). The present results seem to 

singularly underpin a point in the EEG literature of conflict monitoring with fMRI-

derived results. Yeung and colleagues (2004) argue that the N2 component in correct 

trials and ERN component following errors is elicited when evidence for one 

representation outweighs that for the other – with the N2 preceding correct responses and 

the ERN being a post-error correlate of surmounting evidence for the (discarded) correct 

response. This aspect of ‘outweighing’ the competing alternative, or bias, has however 

not always been taken into consideration in the conflict monitoring literature even though 

one study (Frank et al., 2005) found that in a forced choice task, a higher discrepancy 

between the respective reward values of two options resulted in a higher ERN than a 

more equal distribution of reward. Our study reveals that activity in the FMC is stronger 

if evidence is biased in favor of one of the incompatible representations, indicating in this 

case a higher predictive capacity for one model than the other. The study thus contributes 

to the clarification of the EEG centered conflict monitoring debate (Botvinick et al., 



 
 

 

2004), corroborating a bias-related definition of conflict, as opposed to the notion of 

equally strong competitors.  

  

The ACC is closely linked to BA10 (Allman, Hakeem, & Watson, 2002). A special 

kind of neuron, the spindle neurons in the ACC have been proposed to convey the 

motivation to adapt to changes to BA10 (Allman, et al., 2002). More generally, the 

frontopolar area is part of the hippocampal-cortical memory system (Vincent, Kahn, 

Snyder, Raichle, & Buckner, 2008). Moreover, BA10 is taken to be responsible for the 

integration of separate cognitive operations (see Ramnani & Owen, 2004 for review). 

One example is episodic retrieval and success monitoring, a process that can be 

understood in terms of comparing an internal representation to an outcome (Ramnani & 

Owen, 2004). We propose that only the biased states entailed suppression of either the 

original or the divergent internal model, respectively. The deterministic nature of the 

paradigm suggested solidifying the divergent internal model, thus the biased and 

balanced states both encompassed a need to register and to encode the divergent internal 

model. But the biased states also suggested suppression of either the original or the 

divergent. If there were no suppression of the divergent internal model in the beginning, 

learning would be instantaneous. This was not the case. If the diversion was not 

registered, accumulating evidence would not be tracked and learning would never set in. 

Once evidence for the validity of the divergent internal model outweighs that for the 

original, suppression of the neglected alternative is regarded as efficient (Kuhl, et al., 

2007) and guides expectations towards the most likely outcome. A coupling of the ACC 

and BA10 during suppression has previously been reported by Kuhl and colleagues 

(Kuhl, et al., 2007). In the balanced states, evidence for neither internal model outweighs 

evidence for the other and suppression could be regarded as too persistent (for the 

divergent internal model) or too premature (for the original internal model), respectively.  

Activity of the OFC in the interaction contrast complements the emerging picture 

(Ghahremani, et al., 2009). Biased states necessarily have one strong, or solid component, 

like a prepotent response or well practiced forward model. As discussed above, this 

strong component can trigger suppression of alternatives as it allows generation of 

hypotheses. Both, hypothesis generation and suppression have been discussed as potential 



 

 
 

 

OFC functions. (Elliott, Dolan, & Frith, 2000; Ghahremani, et al., 2009; Vartanian & 

Goel, 2005). Hypothesis generation and suppression can be reframed as evaluation or 

weight changes as a results of evaluation, which itself is a function ascribed to the OFC 

(Wallis, 2007). A steady environment, as signified by the existence of one solid internal 

model, makes it worthwhile to track contingencies and integrate outcome histories into 

learning (Rushworth & Behrens, 2008). Responses to contingency differences, another 

type of evaluation, have similarly been allocated in the OFC (Windmann, et al., 2006). 

We propose that the activity increase in the OFC during a state of bias is indicative of the 

evaluation of the current forward model (Schubotz & von Cramon, 2008) against the 

backdrop of one solid and one weak or paling internal model. Closely linked to the OFC 

in its evaluative function is the striatum that was similarly active in the interaction 

contrast (Grinband, Hirsch, & Ferrera, 2006; Oenguer, Ferry, & Price, 2003; 

Schoenbaum, Roesch, Stalnaker, & Takahashi, 2009). 

 

To sum up, the similarities the networks display during the beginning and during an 

advanced state of learning single model solidity bias out as the determinant factor, as 

opposed to conflict between equally strong representations. It is likely that there is only 

consolidation in the balanced state, but an integration of consolidation of one and 

suppression of the other internal model in the biased states. Thus, bias incites the same 

operation in different situations, i.e. suppression of the divergent internal model in the 

beginning and suppression of the original internal model in the end. In the beginning, the 

divergent script stands in stark contrast to a solid internal model with identical onset 

phases; hence, it demands attention (Summerfield, 2008), possibly against a backdrop of 

previous suppression. In the end, even though the old original internal model has not been 

valid for a large number of iterations, it still exerts an influence on predictions. The 

emergence of significant bias-related activations suggests that the opposite, i.e., a state of 

balance or ambiguity, is reached when the number of expositions of the divergent script 

matches the number of previous expositions of the original script. This finding is 

indicative of a slower adaptation rate for a solid, compared to a weak internal model and 

supported by the data from the pilot study (see Methods section 2.6). 



 
 

 

4.4 Concluding remarks 

In a dynamic environment, it is particularly important not only to set up internal 

models but also to keep them up to date. Hence, expectations must be revised if they do 

not accord to our last experiences. However, unwarranted revision should be prevented, 

to not loose the gain of experience. The current study provided evidence for the notion 

that familiarity with an event influences the adaptation rate of according expectations.  
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Tables: 

 

 
Table 1: Solidity contrast: Anatomical specification, Talairach coordinates (x,y,z) and 

maximal Z-scores of significantly activated voxels for model solidity: divergents with 

high (9 pre-expositions) or weak (3 pre-expositions) model solidity. 

Localisation Talairach coordinates 

 

z-values, 

local 

maxima 

x y z 

Parahippocampal Cortex 

 
32 

 
-32 -12 

 
3.43 

 
Cerebellum, lobule III, Centralis 4 

 
-38 -9 

 
5.16 

 
Cerebellum, lobule IV, Culmen -8  

 
-47 -18 4.8 

 
 
 

 
Table 2: Adaptation contrast: Anatomical specification, Talairach coordinates (x,y,z) 

and maximal Z-scores of significantly activated voxels for the model adaptation: first 

vs. last presentations of divergents. 

Localisation Talairach coordinates 

 

Z-values, 

local 

maxima 

x y z 

Superior parietal lobule 

 
-14 

 
-59 -57 

 
3.67 

 
Intraparietal sulcus 32 

 
-62 45 

 
4.18 

 

 -20 -65 39 3.74 

 -40 -41 54 3.6 



 

 
 

 

Intraparietal sulcus, anterior 

segment 

-58  -23 42 2.9 

Premotor cortex -46 10 24 3.69 

Inferior frontal gyrus 46 16 30 3.72 

 -44 22 24 3.16 

Posterior middle temporal gyrus 44 -56  15 3.72 

 40 -47 -3 3.81 

 -46 -65 12 3.25 

 -40 -50 -6 3.4 

 
 

 
Table 3: Interaction contrast: Anatomical specification, Talairach coordinates (x,y,z) 

and maximal Z-scores of significantly activated voxels for biased vs. balanced states: 

the first divergents of a solid internal model and the last divergents of a weak internal 

model vs. the first divergents of a weak internal model and the last divergents of a solid 

internal model. 

Localisation Talairach coordinates 

 

Z-values, 

local 

maxima 

x y z 

Frontal pole, BA10 -10  61 12 4.31 

 14 52 9 3.33 

Anterior cingulate gyrus, BA24 2 34 15 2.85 

     

     

 -4 31 15 2.79 

Orbitofrontal gyrus 22 31 -9 3.14 

Cuneus 8 -77 18 3.81 

Posterior superior temporal 

sulcus 

56 -32 9 3.8 

Fusiform gyrus -26 -56 -6 3.19 

Striatum  20 19 -3 4.1 

 
 



 
 

 

Table 4: Conjunction analysis: Anatomical specification, Talairach coordinates (x,y,z) 

and maximal Z-scores of significantly activated voxels for biased vs. balanced states: 

the first divergents of a solid internal model vs. the first divergents of a weak internal 

model and the last divergents of a weak internal model vs. and the last divergents a 

solid internal model. 

Localisation Talairach coordinates 

 

Z-values, 

local 

maxima 

x y z 

Frontal pole, BA10 6 43 3 2.40 

 -4 49 3 2.91 

Anterior cingulate gyrus, BA24 2 31 15 3.54 

 2 34 -3 2.16 

 -4 28 0 3.89 

Cuneus -2 -71 21 2.83 

Fusiform gyrus 16 -53 -6 2.46 

 
 

 



 

 
 

 

 
Figure 1: The initial version that was displayed previous to the fMRI and the divergent version that was displayed 

during the fMRI had a common beginning, i.e. they started with the same action step(s).  



 
 

 

 

 
Figure 2: Abstract representation of the script-structure. Letters refer to action steps. 1) Movies were pre-exposed 3, 6, 

or 9 times in one version. A third of the movies reappeared in the fMRI in the same version as before ‘original’. 

Another third appeared in a ‘divergent’ version. This version started exactly as the original version had, but developed 

differently thereafter. 2 a) Movies that were pre-exposed 3 times returned 9 times as divergents during the fMRI. 

Strength of the indicated link reflects solidity; Only the solidity of the transition of importance is indicated; each 



 

 
 

 

transition has the same assumed solidity in the beginning. 2 b) Movies that were pre-exposed 9 times similarly returned 

9 times as divergents during the fMRI. Again only the solidity of the relevant, i.e. later breached transition is 

graphically indicated. 



 
 

 

 

 
Figure 3: During the fMRI session, participants watched divergents and originals in a randomized fashion and had to 

answer content-related questions on average after every 5TH script.  



 

 
 

 

 
Figure 4: The effect of model solidity was calculated contrasting the 1st to 3rd and 7th to 9th iteration of scripts that had 

been pre-exposed nine times with the 1st to 3rd and 7th to 9th iteration of scripts that had been pre-exposed 3 times. PHC: 

Parahippocampal cortex. 



 
 

 

 
Figure 5: The effect of model adaptation effect was calculated contrasting the 1st to 3rd iteration of scripts that had been 

pre-exposed either 3 or 9 times with the 7th to 9th iteration of scripts that had been pre-exposed either 3 or 9 times. 

(a)IPS: (Anterior) intraparietal sulcus; IFS: Inferior frontal sulcus; pMTG: Posterior middle temporal gyrus; pSTS: 

Posterior superior temporal sulcus; PM: Premotor cortex. 



 

 
 

 

 
Figure 6: The biased vs. balanced effect was calculated contrasting the 1st to 3rd iteration of scripts that had been pre-

exposed nine times and the 7th to 9th iteration of scripts that had been pre-exposed 3 times with the 1st to 3rd iteration of 

scripts that had been pre-exposed 3 times and 7th to 9th iteration of scripts that had been pre-exposed 9 times. ACC: 

Anterior cingulate cortex; BA 10:  Brodmann Area 10; OFC: Orbitofrontal cortex. 

 
 


