
Spatial and Spatio-temporal Epidemiology 18 (2016) 63–73 

Contents lists available at ScienceDirect 

Spatial and Spatio-temporal Epidemiology 

journal homepage: www.elsevier.com/locate/sste 

Modelling collinear and spatially correlated data 

Silvia Liverani a , b , d , ∗, Aurore Lavigne 

c , Marta Blangiardo 

d 

a Department of Mathematics, Brunel University London, Uxbridge UB8 3PH, UK 
b Medical Research Centre Biostatistics Unit, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical 

Campus, Cambridge CB2 0SR, UK 
c Université Lille 3, UFR MIME, Domaine universitaire du Pont de Bois, BP 60149 59653 Villeneuve d’ascq Cedex, France 
d MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, 2 Norfolk Place, 

London W2 8PG, UK 

a r t i c l e i n f o 

Article history: 

Received 19 November 2015 

Revised 23 February 2016 

Accepted 5 April 2016 

Available online 27 April 2016 

Keywords: 

Profile regression 

Bayesian clustering 

Spatial modelling 

Collinearity 

Index of multiple deprivation 

Pollution 

a b s t r a c t 

In this work we present a statistical approach to distinguish and interpret the complex 

relationship between several predictors and a response variable at the small area level, in 

the presence of (i) high correlation between the predictors and (ii) spatial correlation for 

the response. 

Covariates which are highly correlated create collinearity problems when used in a 

standard multiple regression model. Many methods have been proposed in the literature 

to address this issue. A very common approach is to create an index which aggregates all 

the highly correlated variables of interest. For example, it is well known that there is a 

relationship between social deprivation measured through the Multiple Deprivation Index 

(IMD) and air pollution; this index is then used as a confounder in assessing the effect of 

air pollution on health outcomes (e.g. respiratory hospital admissions or mortality). How- 

ever it would be more informative to look specifically at each domain of the IMD and 

at its relationship with air pollution to better understand its role as a confounder in the 

epidemiological analyses. 

In this paper we illustrate how the complex relationships between the domains of IMD 

and air pollution can be deconstructed and analysed using profile regression, a Bayesian 

non-parametric model for clustering responses and covariates simultaneously. Moreover, 

we include an intrinsic spatial conditional autoregressive (ICAR) term to account for the 

spatial correlation of the response variable. 

© 2016 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ). 

 

 

 

 

 

 

 

 

1. Introduction 

In many statistical applications a common challenge

arises when trying to assess meaningful relationships

between explanatory variables and outcomes through re-
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gression models, due to the potential collinearity of the ex-

planatory variables. This issue is well known in epidemio-

logical or social studies, for instance where questionnaires

or surveys collect information on a large number of po-

tential risk factors for particular end points; in this con-

text a simplistic approach consists in examining each vari-

able in turn to avoid the instability in the estimates due

to the collinearity, making it impossible to judge the more

realistic complex relationship involving several risk factors

at the same time. A different approach combines all the
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relevant variables into summary scores or indexes and as- 

sesses the relationship of these with the outcome of in- 

terest, which is free from the collinearity issue, but loses 

information on the single variables included in the sum- 

mary. 

Recently, Dirichlet process mixture models have been 

used as an alternative to regression models ( Bigelow and 

Dunson, 2009; Dunson et al., 2008 ). In this paper we focus 

on the model known as profile regression and proposed by 

Molitor et al. (2010) . Profile regression is a Bayesian non–

parametric method which assesses the link between po- 

tentially collinear variables and a response through clus- 

ter membership. This allows to formally take into account 

the correlation between the variables without the need to 

create a summary score, giving more flexibility to the in- 

ferential process. Profile regression has been used on sev- 

eral applications in environmental and social epidemiol- 

ogy and the R package PReMiuM ( Liverani et al., 2015 ) 

makes it readily available to any applied researcher. For in- 

stance ( Molitor et al., 2010 ) considered the National Survey 

of Children’s Health and in particular investigated a large 

number of health and social related variables on mental 

health of children age 6–17, while ( Papathomas et al., 2011 ) 

focussed on profiles of exposure to environmental carcino- 

gens and lung cancer in the EPIC European cohort. Profile 

regression has also been used in environmental epidemi- 

ology ( Pirani et al., 2015 ), for studying risk functions as- 

sociated with multi-dimensional exposure profiles ( Hastie 

et al., 2013; Molitor et al., 2014 ) as well as for looking for 

gene–gene interactions ( Papathomas et al., 2012 ). 

In its present formulation, profile regression has only 

been used for studies based on cohorts or surveys where 

information on the predictors/outcomes is available on 

each individual; in this paper we extend the method to 

fit small area studies, commonly used in epidemiological 

surveillance (see for instance Elliott and Wartenberg, 2004 ) 

or in studies where the interest lies on the spatial variabil- 

ity of an outcome ( Barcelo et al., 2009 ) or on cluster de- 

tection ( Abellan et al., 2008; Li et al., 2012 ). In this types 

of studies information is available at the area level rather 

than at the individual level and space is used as a proxy for 

any unmeasured variable; the common assumption is that 

areas which are close to each other are more similar than 

those further apart, suggesting that an additional source of 

correlation, namely spatial correlation needs to be accom- 

modated in the models. We incorporate it in the model 

through a conditional autoregressive structure ( Besag et al., 

1991 ) based on a neighbourhood definition, thus assuming 

that conditional on the neighbourhood structure, two ar- 

eas are independent from each other if they do not share 

boundaries. We apply the spatial profile regression to the 

problem of environmental and social inequalities in Lon- 

don, jointly modelling social deprivation and air pollution 

to highlight the presence of environmental justice. 

The paper is structured as follows. In Section 2 we 

present the motivating example for our methodological de- 

velopment of the spatial profile regression, introducing the 

context of social and environmental inequalities and how 

they are related; we also describe the available data. In 

Section 3 we provide a brief summary of the profile regres- 

sion and present how to extend it to include spatial corre- 
lation. In Section 4 we illustrate how the model works on 

evaluating the relationship between social deprivation and 

air pollution. Section 5 presents some discussion points 

and ideas for future work. 

2. Example: social deprivation and air pollution in 

London 

The scientific literature reports mixed evidence on the 

link between socio-economic status and air pollution. Re- 

cent studies indicated that air pollution tends to influence 

most deprived groups, suggesting that people with lower 

socio-economic status are more likely to live in a more 

hazardous and polluted living environment, accidentally 

or deliberately ( Blowers and Leroy, 1994; Brown, 1995; 

Morello-Frosch et al., 2002; O’Neill et al., 2003 ). In particu- 

lar, ecological studies using small areas such as neighbour- 

hoods, census tracts and post codes, report this associa- 

tion, while studies carried out at a lower spatial resolution 

(e.g. region, country), thus characterised by more aggregate 

measurements of socio-economic characteristics, showed 

either non-existent or negative associations ( Davidson and 

Anderton, 20 0 0; Laurent et al., 2007 ), presumably due to 

the large within-area variability not taken into account, 

or even an inverse association, with higher exposures in 

less deprived groups ( Perlin et al., 1995 ). In the UK several

studies reported positive or non-linear correlation between 

environmental pollution and the deprivation index at both 

small area level and country level. However the results var- 

ied depending on the selection of environmental hazards 

and scale of analysis ( Briggs et al., 2008 ), calling for some 

more research on the topic. 

Understanding environmental and social inequalities is 

a key issue as growing health disparities appear between 

people with socially disadvantaged and privileged social 

classes, which can translate into increased mortality or 

morbidity for the low socio-economic groups across a wide 

range of diseases ( Benach et al., 2001; Brulle and Pellow, 

2006 ), including lung cancer ( Pope et al., 2011 ), cardiovas- 

cular events ( Peters et al., 2004; Tonne et al., 2007 ), and 

childhood respiratory diseases ( Morgenstern et al., 2007 ). 

In addition, the exposure of air pollution can lead 

to negative health outcomes acutely or chronically ( Chen 

et al., 2008 ). Previous studies reported possible mech- 

anisms to explain how environmental exposures result 

in greater health impact among socially disadvantaged 

groups, who may have increased susceptibility to the ef- 

fect of these exposures because of limited access to health 

care and psychosocial stress; underlying health conditions 

such as cardiovascular diseases and respiratory diseases 

that increase susceptibility to the effect of these expo- 

sure may also vary between deprived and privileged pop- 

ulations ( Morello-Frosch and Jesdale, 2006; O’Neill et al., 

2003 ). These environmental exposure inequalities are in- 

creasingly considered as a potential determinant of health 

disparities ( Morello-Frosch and Jesdale, 2006 ). In addition, 

it has been suggested that the disparities grow in more 

deprived areas as health improves faster in high socio- 

economic groups ( Higgs et al., 1998; Leyland et al., 2007 ). 

Although individual determinants (such as smoking) or 

individual risk responses (such as closing windows to avoid 
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(a) NOx concentration for 2003-2010 (b) IMD score, 2010

Fig. 1. Quintilesof the NO x concentration (average 2003–2010) and of IMD score (2010) at LSOA level in Greater London. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

exposure) may frequently contribute to these health in-

equities, only a fraction of the overall disparities are at-

tributed to individual factors ( Lantz et al., 2001 ). In fact,

human health is not only influenced by individual health

behaviours but also by contextual and ecological factors

( Marmot, 2007 ). Furthermore, socio-economic status plays

a potential role of confounding or effect modification in

epidemiological studies investigating the relationship be-

tween environmental variables and health outcomes, espe-

cially at aggregated level ( Blakely et al., 2004; Blakely and

Woodward, 20 0 0 ). The further effect of confounding and

effect modification will potentially lead to bias of the re-

sults, whose level depends on the relationship between en-

vironmental pollutions and socio-economic status. Hence it

is extremely important to study this association, which, at

the moment still remains uncertain and subjected to the

fundamental methodological issue of correlation between

variables. 

To study this relationship in the present work we con-

sider the following data: 

• Nitrogen oxides (NO x ), which is generated mainly

through combustion, thus is a good proxy for traffic

related air pollution. The data were obtained from

the environmental research group at Kings College as

annual mean for the period 2003–2010 at the Lower

Super Output Area geographical level in Greater London

(LSOA, 4,767 in Greater London) as part of the TRAFFIC

project ( http://www.kcl.ac.uk/lsm/research/divisions/

aes/research/ERG/research-projects/traffic/index.aspx ). 

• Index of Multiple Deprivation (IMD), publicly available

from the Department for Communities and Local Gov-

ernment ( data.gov.uk ). It is commonly used at the

small area level to synthesize multiple aspects of depri-

vation. It is originally built at LSOA level and is formed

by 38 indicators collapsed into seven domains: Income,

Employment, Health, Education, Crime, Access to Ser-

vices (Housing) and Living Environment. As we want

to evaluate the relationship between the domains of

the IMD and air pollution (NOx) we have not consid-

ered the living environment domain, which includes air

quality. IMD is available for 20 04, 20 07 and 2010 and

we have considered the most recent one in this work

(correlation between Index at different years ranges
from 0.94 and 0.97).  
Fig. 1 shows the map for NO x (left) and IMD score

(right) and a clear spatial pattern is visible in both: air pol-

lution concentration increases steadily going from outer to

inner London, while IMD shows the highest deprived areas

in the northeastern part of London and most of the cen-

tral southern part. However looking at the maps of each

of the six domains highlights a different picture ( Fig. 2 ):

Crime shows the absence of a clear pattern, with scat-

tered areas of high crime (dark grey) next to areas of low

crime (light grey); on the other hand income, employ-

ment and health/disability are in agreement with the to-

tal IMD score, while barriers to housing and services are

more pronounced in central London and education shows

more deprivation in East London. This suggests how sim-

plistic is the approach that considers the total IMD score

and highlights the importance of including all the do-

mains to disclose the relationship between social char-

acteristics and environmental pollution at a small area

level. 

If we want to investigate the relationship between each

domain and air pollution we cannot include all the do-

mains in a regression model due to their collinearity is-

sues: the pairwise Pearson correlation between domains

( Table 1 ) shows high values for income and employment

(0.91), income and health (0.77), income and education

(0.68), employment and health (0.81) and employment and

education (0.64). 

3. Modelling highly correlated covariates with profile 

regression 

To include all the domains into the same statistical

model we use the profile regression, a model that non-

parametrically links a response vector Y to covariate data

X through cluster membership. It was proposed by Molitor

et al. (2010) and it has been implemented in the R package

PReMiuM ( Liverani et al., 2015 ). 

Profile regression implements a Bayesian clustering

model through a Dirichlet process mixture model. The

data D = ( Y , X , W ) contain the response Y , covariate X and

fixed effects W if they are available. The fixed effects are

potentially confounding variables. In our running example

the response is the nitrogen oxides, the covariates are the

http://www.kcl.ac.uk/lsm/research/divisions/aes/research/ERG/research-projects/traffic/index.aspx
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(a) Income (b) Employment

(c) Crime (d) Barriers to Housing and Services

(e) Education (f) Health and Disability

Fig. 2. Maps of the six IMD domains considered: quintiles of the scores (note that higher positive values means higher deprivation. 

Table 1 

Correlation between IMD domains. In bold correlation higher than 0.6. 

Income Employ. Health Educ. Hous. Crime 

Income 1.0 0.91 0.77 0.68 0.48 0.52 

Employ. 0.91 1.0 0.81 0.64 0.42 0.53 

Health 0.77 0.81 1.0 0.55 0.41 0.59 

Educ. 0.68 0.64 0.55 1.0 0.16 0.36 

Hous. 0.48 0.42 0.41 0.16 1.0 0.29 

Crime 0.52 0.53 0.59 0.37 0.29 1.0 

 

selected six domains of IMD and we do not include fixed 

effects. 

For each individual i , for i = 1 , . . . , n, the response is 

given by y i , the covariate vector x i and the fixed effect vec- 

tor w i . The data are then jointly modelled as the product 

of a response model and a covariate model, leading to the 
following likelihood: 

f (x i , y i | �Z i , �, W i , ψ) 

= 

∑ 

c 

ψ c f (x i | z i = c, φc ) f (y i | z i = c, θc , �, w i ) 

where z i = c, the allocation variable, indicates that individ- 

ual i belongs to cluster c . The parameters � = ( θ, φ) are

cluster specific and represent the contribution of the re- 

sponse and the covariates to the mixture model. There is 

also the possibility to include additional fixed effects w i 

for each individual, which are constrained to only have a 

global (i.e., non-cluster specific) effect on the response y i . 

The parameters ψ are the mixture weights. 

Multicollinearity arises when regression models of the 

response with respect to highly correlated covariates are 

implemented, due to identifiability issues. However, as 

here the response is conditionally independent from the 
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covariates, we do not encounter such issues, but we can

explore in depth the potentially complex relationship be-

tween response and covariates. 

The prior model for the mixture weights is given by the

stick-breaking priors (constructive definition of the Dirich-

let process), that is, 

ψ c = V c 

∏ 

l<c 

(1 − V l ) for all c , 

ψ 1 = V 1 , 

V c ∼ Beta (1 , α) i.i.d. 

The parameter α can be fixed or can have a Gamma( s α , r α)

distribution with s α and r α as shape and rate parameters

respectively. Other prior models for the mixture weights

are possible, and, for example, the Pitman–Yor construction

is also available in the R package PReMiuM. 

The covariate model f (x i | z i = c, φc ) can be defined as

continuous or discrete. In the continuous case X assumes

a mixture of Gaussian distributions. In the discrete case

for each individual i , x i is a vector of J locally inde-

pendent discrete categorical random variables, where the

number of categories for covariate j = 1 , 2 , . . . , J is K j .

Then we can write �c = (�c, 1 , �c, 2 . . . , �c,J ) with �c, j =
(φc, j, 1 , φc, j, 2 , . . . , φc, j,K j 

) and 

f (x i | z i = c, φc ) = 

J ∏ 

j=1 

φZ i , j,X i, j 
. (1)

We let a = (a 1 , a 2 , . . . , a J ) , where for j = 1 , 2 , . . . , J, a j =
(a j, 1 , a j, 2 , . . . , a j,K j ) and �c, j ∼ Dirichlet( a j ). The covariate

model can also be defined as a mixture of continuous and

discrete covariates. 

The response model f (y i | z i = c, θc , �, w i ) can be de-

fined as binary, categorical, count (modelled as Binomial or

Poisson) or Gaussian. For example, for Gaussian response

the mixture model is extended to contain θ c for each c

and the global parameters � = ( β, σ 2 
Y 
) . These parameters

allow us to write the response model as: 

f (y i | z i = c, θc , �, W i ) = f (y i | z i = c, θc , β, σ 2 
Y , W i ) 

= 

1 √ 

2 πσ 2 
Y 

exp 

{
− 1 

2 σ 2 
Y 

(Y i − λi ) 
2 

}
, 

where λi = θZ i 
+ β

� 
W i and β represent the effect of the

counfounding variables, the fixed effects, on the response.

For each cluster c , we adopt a t location-scale distribution

on θ c , with hyperparameters μθ and σθ with 7 degrees of

freedom. Similarly, we adopt the same prior for the fixed

effect βk , but with hyperparameters μβ and σβ . We set

τY = 1 /σ 2 
Y 

to Gamma (s τY 
, r τY 

) , where s τY 
and r τY 

are the

shape and rate hyperparameters. 

More details on the Markov chain Monte Carlo (MCMC)

algorithm for this model are provided in Liverani et al.

(2015) . When the signal in the data is strong the MCMC

results for different runs, with different initial values and

chain lengths, give stable results. However, this is not the

case when the signal is not strong. Hastie et al. (2015) dis-

cuss strategies to identify convergence issues. They recom-

mend starting the MCMC with a large number of clusters

as the algorithm can struggle to explore the partition space
when starting with a small number of clusters if the signal

is not strong. When many clusters are identified it is more

challenging to characterise each cluster meaningfully and

interpretation of the results can be facilitated by the poste-

rior predictive distribution. Moreover, they suggest the use

of the posterior distribution of predictive profiles for the

assessment of convergence instead of the posterior distri-

bution of the parameters. This is because the posterior dis-

tribution of the parameters can appear to have converged

when the model as a whole has not (often the case for β),

or cannot be used for this scope because they are cluster-

specific and the number of clusters changes at each itera-

tion (such as θ c ). 

It is often useful to characterise the partition which is

most supported by the data. However, as at each iteration

of the sampler individual profiles are assigned to clusters,

the MCMC output is very rich. Molitor et al. (2010) devel-

oped methods to process this output to make useful and

interpretable inference. Several methods for this are avail-

able in the R package PReMiuM but we find the most ro-

bust method is to process the similarity matrix using par-

titioning around medoids (PAM), which is available in the

R package cluster. First of all, a score matrix is constructed,

where each element of the matrix is set equal to 1 if indi-

viduals i and j belong to the same cluster and 0 otherwise.

Then a similarity matrix S is computed by dividing each el-

ement of the score matrix by the number of iterations, so

that S ij denotes the probability that individuals i and j are

assigned to the same cluster. PAM then assigns individuals

to clusters in a way consistent with matrix S . 

3.1. The spatial conditional autoregressive model 

When clustering data from small area studies, we need

to modify the model to account for spatial correlation. In

this paper we propose to extend the response model de-

scribed above to include an intrinsic spatial conditional au-

toregressive (ICAR) term ( Besag et al., 1991 ) as follows. The

likelihood component for the Gaussian response becomes 

f (y i | z i = c, θc , �, W i ) = f (y i | z i = c, θc , β, σ 2 
Y , u i , W i ) 

= 

1 √ 

2 πσ 2 
Y 

exp (− 1 

2 σ 2 
Y 

(Y i − λi ) 
2 ) 

where λi = θZ i 
+ W i β + u i and u = (u 1 , . . . , u n ) ∼ N(0 , τP )

with P = { P i j } a precision matrix such that 

P i j = 

{
n i if i = j 

−I{ i ∼ j} if i � = j 

where n i is the number of neighbours of subject i, I is the

indicator function and i ∼ j indicates that regions i and j

are neighbours. The prior of τ is given by 

τ ∼ Gamma (a τ , b τ ) 

such that 

E(τ ) = 

a τ

b τ
and Var (τ ) = 

a τ

b 2 τ
. 

Details of the sampling strategy for the ICAR parameters

are given in Appendix Appendix A . We have implemented
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Fig. 3. Geographical representation of the eleven clusters of the areas in Greater London identified by profile regression. The colours reflect the mean of 

the observed pollution levels, with dark grey identifying the most polluted clusters and light grey the least polluted clusters. 

 

 

this model in the R package PReMiuM for Gaussian and 

Poisson responses. 

4. Results 

We have fit profile regression to the data using the R 

package PReMiuM ( Liverani et al., 2015 ). The pollution data 

are modelled with a Gaussian distribution including a spa- 

tial ICAR term. The covariate profiles, given by the selected 

IMD domains, are modelled with a discrete distribution, as 

we have transformed each IMD domain into quintiles. We 

have not included any additional fixed effects. The results 

were very robust on several MCMC runs using a range of 

initial values and different chain lengths. We present here 

the results obtained with 50 0 0 iterations after a burn in of 

50 0 0 with the following hyperparameter settings. 

s α = 2 , r α = 1 , 

a 1 = . . . = a 6 = 1 , 

μθ = 0 , σθ = 2 . 5 , 

μβ = 0 , σβ = 2 . 5 , 

s τ−Y = 2 . 5 , r τ−Y = 2 . 5 . 

In this section we aim to illustrate how profile regres- 

sion can help shed light on complex patterns between 

highly covariates covariates and response. We propose sev- 

eral ways to explore the results. 

The main output of profile regression are the clusters, 

given by regions with similar covariate and response char- 

acteristics. We have used different types of plots, which 

highlight specific features, at different level of details. In 

Fig. 3 we represent the clusters geographically. The eleven 

clusters identified are plotted using colours that reflect 

their observed pollution levels. As expected, the most cen- 

tral areas have higher pollution levels. In particular we see 

that areas that belong to clusters with higher observed 

pollution levels are mostly located in North-East London, 
where areas with higher levels of deprivation are found. In 

contrast, the less deprived areas in South-West London are 

clustered together and have lower mean for the observed 

pollution levels. 

The cluster data are high-dimensional and complex. 

Fig. 4 provides a visual representation of the parameters 

�c . Through the boxplots of the MCMC samples of the pa- 

rameters �c , this figure provides also a representation of 

the uncertainty around these parameters. Each column j 

in the figure represents �c, j, k , f or c = 1 , . . . , 11 and k =
0 , 1 , . . . , 4 (the five quintiles of each covariate). Within a

column j , each row k is a visualisation of the boxplots for 

φc, j, k for each cluster c . This visual representation provides 

a further insight into the eleven clusters. We can iden- 

tify patterns in the relationships between pollution and 

IMD domains at a glance. For example, Housing and Crime 

appear to generally increase as pollution levels increase, 

while the other domains show less linear patterns. We can 

also see here the details of the distributions of the lev- 

els of covariates that define the different clusters. Cluster 

2 has the lowest levels of deprivation, although not the 

lowest levels of mean pollution. In contrast, cluster 9 has 

the highest levels of deprivation, and high levels of pol- 

lution, although not the highest among all clusters. The 

mean IMD per cluster highlights the complex relationship 

between IMD, pollution and deprivation. For example, for 

cluster 6, which has a high mean IMD, there is strong de- 

privation for the first four domains. However, the domains 

of Crime and Housing are rather evenly spread among all 

levels of the covariates, suggesting that they do not con- 

tribute to the deprivation that characterises these areas. 

This is an example of a complex pattern that cannot be 

identified when the domains are simply collapsed into the 

IMD. 

In Fig. 5 we provide a summary of the posterior 

means for each cluster. Each row represents a cluster. 

The columns represents, respectively, the mean observed 
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Fig. 4. Summary plot of the posterior distribution of the parameters �c , for c = 1 , . . . 11 . Each column j in the figure represents �c, j, k , f or c = 1 , . . . , 11 and 

k = 0 , 1 , . . . , 4 . Within a column j , each row k is a visualisation of the boxplots for φc, j, k for each cluster c . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pollution and each domain of IMD. The colour of each col-

umn of the matrix corresponds to a quintile of the distri-

bution of that variable. As before, the clusters are ordered

by their observed pollution level. Note that the colours in

the matrix do not become darker (or lighter) in a smooth

manner. Together, Fig. 5 and Fig. 3 suggest that the areas of

low pollution and low deprivation are in outer London. As

we get closer to the centre, pollution increases and many
of the deprivation variables increase levels. However, there

are many notable exceptions to this. For example, cluster

11 has the highest levels of pollution, but among the low-

est levels of deprivation. On the contrary, cluster 1 has the

lowest level of pollution, but rather high levels of depriva-

tion on all domains except Housing. 

Fig. 6 shows the posterior mean of the spatial term

exp ( u i ) for each area, which accounts for the residual
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Fig. 5. Summary table of the clusters. The quintiles for pollution and each domain of the IMD are shown for each cluster. 

Fig. 6. Posterior mean of the spatial conditional autoregressive term. 

 

spatial variation in NOx after having adjusted for the clus- 

ter assignment. The map presents a clear pattern going 

from central London (darker) to outer London (lighter) 

with values ranging from −30 to 48 μg / m 

3 , thus sug- 

gesting that the model picks up the spatial dependence 

in air pollution concentration which is not explained by 

deprivation. 

We can explore the relationships between covariates 

and response further by looking at the posterior predic- 

tive distributions. The profile regression model allows us to 

predict the pollution level for specific combinations of the 

IMD domains. If we wish to understand the role of a par- 
ticular covariate or group of covariates, we can specify a 

number of predictive scenarios (pseudo-profiles), that cap- 

ture the range of possibilities for the covariates that we are 

interested in Hastie et al. (2013) . For each of these pseudo- 

profiles we can see how these would have been allocated 

in our mixture model to understand the level of pollution 

associated with them once we have accounted for the spa- 

tial residuals. 

In Fig. 7 we show beanplots of four pseudo-profiles: (0, 

0, 0, 0, 0, 0), (0, NA, NA, NA, NA, NA), (4, 4, 4, 4, 4, 4),

(4, 4, 4, 4, 4, 0). The elements of each vector represent the 

IMD domains in the following order: Income, Employment, 
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0, 0, 0, 0, 0, 0 0, NA, NA, NA, NA, NA 4, 4, 4, 4, 4, 4 4, 4, 4, 4, 4, 0

Fig. 7. Beanplots of the posterior predictive distributions for these four pseudo profiles: (0, 0, 0, 0, 0, 0), (0, NA, NA , NA , NA , NA), (4, 4, 4, 4, 4, 4), (4, 4, 4, 

4, 4, 0) where the elements of each vector represent respectively the IMD domains (Income, Employment, Health, Education, Housing, Crime). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Health, Education, Housing, Crime. Each of these beanplots

shows the pseudo-profile corresponding to particular val-

ues of the IMD domain of interest for an average area (ie.

including the mean spatial residual, which is 0). When ‘NA’

is set, this allows that domain to vary, de facto marginalis-

ing for it, i.e. capturing all possible values it can take. For

example, the beanplot for the first pseudo-profile on the

left presents the posterior predictive distribution of NOx

for areas with the lowest levels of deprivation and shows

values between 68 and 75 μg/m 

3 . Using this as benchmark

we can make some comparisons: areas characterised by

low Income and marginalising for the remaining domains

(second beanplot from the left) have a much wider poste-

rior predictive distribution, with values going from 67 to

78 μg/m 

3 while areas with in the highest quintile of depri-

vation for all the domains (third beanplot from the left)

present consistently highest level of pollution (ranging be-

tween 71 to 77 μg/m 

3 ). The last beanplot shows the poste-

rior predictive distribution of NOx in an area where crime

has decreased to the first quintile (for instance through

the implementation of a policy) while the other domains

remains in the last quintile. Comparing it with the previ-

ous one it can be seen as a similar distribution, but with

a lower tail which could be a consequence of the policy

implementation. 

All predictive profiles can be computed and we provide

here only these examples to show how these can be inter-

preted, if there was an interest in the posterior predictive

distribution of specific combinations of deprivation levels,

 

these could be explored in depth. Moreover, if there was

interest in a specific area, the pseudo-profiles could be ad-

justed by adding the spatial residual. 

5. Discussion 

In this paper we have considered a spatially-correlated

response variable and a set of highly correlated covariates.

We have extended the profile regression model, a Bayesian

clustering method used to deal with collinearity in the pre-

dictors, to account for spatial correlation adding a spatial

conditionally autoregressive term. 

We have applied our method to explain the relationship

between air pollution and social deprivation in Greater

London. The Index of Multiple Deprivation is commonly

used as a proxy for deprivation, as its domains usually

cannot be analysed individually due to the high correla-

tion between them. We have illustrated how profile regres-

sion can produce meaningful and useful results which shed

light on the complex non linear relationship between pol-

lution and the different domains. 

We want to stress that we are not framed in a standard

regression approach, where the interest is to estimate the

effect of each predictor on the outcome, as we do not at-

tempt to explain the level of air pollution through the IMD

domains. On the other hand through cluster assignment

the profile regression is able to disentangle the complex

relationship between IMD and air pollution; this method

has the added benefit of providing readily available
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prediction estimates which can be used to evaluate how 

the response could change for specific combinations of the 

predictors, and which could be used to evaluate the effect 

of policies. 

A limitation of our model is that in its present formu- 

lation the spatial structure is not included on the cluster 

allocation, thus it accounts for local spatial dependency in 

the response, but not in the covariates, which is an exten- 

sion we are going to work on in the future. 
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Appendix A. Sampling for the spatial ICAR parameters 

We include details of the sampling algorithm for the 

spatial ICAR parameters for Gaussian and Poisson dis- 

tributed response. We have implemented both in the R 

package PReMiuM. 

A1. Gaussian response 

The conditional distribution for u i is given by 

log (p(u i | u −i , β, θ, σ 2 
Y , Z i , τ, Y i , W i , T i )) 

∝ log p(Y i | u i , β, θ, Z i , σ
2 

Y , W i , T i ) + log p(u i | u −i , τ ) 

∝ − 1 

2 σ 2 
Y 

(Y i − (θZ i + W i β + u i )) 
2 − 1 

2 

τn i (u i − ū i ) 
2 

∝ − 1 

2 σ 2 
i 

(u i − m i ) 
2 

with ⎧ ⎪ ⎨ 

⎪ ⎩ 

m i = 

1 

σ2 
Y 

(Y i −θZ i 
−W i β) −τn i ̄u i 

1 

σ2 
Y 

+ τn i 

σ 2 
i 

= 

1 
1 

σ2 
Y 

+ τn i 

with, ū i = 

1 
n i 

∑ 

j∈ ρi 
u j ρ i is the set of neighbours of i . Thus, 

for Normal response the prior is conjugated, the conju- 

gated complete conditional distribution is Normal with 

mean m i and variance σ 2 
i 

. The conditional distribution for 

τ is given by 

log (p(τ | u )) = (a τ + 

n − 1 

2 

− 1) log ( τ ) − τ (b τ + 

1 

2 

u 

T P u ) 

Thus τ ∼ Gamma (a τ + 

n −1 
2 , b τ + 

1 
2 u 

T P u ) . 

A2. Poisson response 

For Poisson response, suitable for count data, the likeli- 

hood is given by 

f Y (y i | z i = c, θc , �, W i ) = p(Y i | z i = c, θc , β, u i , W i ) 

= 

μY i 
i 

Y ! 
exp {−μi } , 
i 
where each individual i is associated with an expected off- 

set E i , 

μi = E i exp { λi } , for λi = θZ i + β
� 

W i . 

As for the Gaussian response, the parameters u = 

(u 1 , . . . , u n ) ∼ N(0 , τP ) with P = { P i j } a precision matrix

such that 

P i j = 

{
n i if i = j 
−I{ i ∼ j} if i � = j 

where n i is the number of neighbours of subject i, I is the 

indicator function and i ∼ j indicates that regions i and j 

are neighbours. The prior of τ is given by 

τ ∼ Gamma (a τ , b τ ) 

such that 

E(τ ) = 

a τ

b τ
and Var (τ ) = 

a τ

b 2 τ
. 

The conditional distribution for u i is given by 

log (p(u i | u −i , β, θ, Z, τ, Y )) 

= Y i u i − E i exp (X i β + θZ i + u i ) −
1 

2 

τn i (u i − ū i ) 
2 

with ū i = 

1 
n i 

∑ 

j∈ ρi 
u j and ρ i is the set of neighbours of i . 

We implemented an adaptive rejection sampler for u i . The 

conditional distribution for τ is given by 

log (p(τ | u )) = (a τ + 

n − 1 

2 

− 1) log ( τ ) − τ (b τ + 

1 

2 

u 

T P u ) .

Thus τ ∼ Gamma (a τ + 

n −1 
2 , b τ + 

1 
2 u 

T P u ) . 
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