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a b s t r a c t

Tests for the joint null hypothesis of a unit root based on the components representation
of a time series are developed. The proposed testing procedure is designed to detect a unit
root as well as guide the practitioner regarding the specification of trend component of a
time series. The limiting null distributions of the newly developed F-statistics are derived.
Finite sample simulation evidence shows that the F-statistics maintain their size, and have
power against the trend-break stationary alternative. The use of our methodology is illus-
trated through an empirical examination of theUS–UK real exchange rate, theUK industrial
production, and the UK CPI series.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There is considerable literature regarding the statistical theory and application of unit root tests in time series, see
Patterson (2011, 2012). Unit root tests have been routinely used in the empirical analysis to evaluate the dynamics of var-
ious economic time series such as aggregate output, industrial production, interest rates, and consumption. Knowledge of
whether a time series contains a unit root or not provides guidance as to how the underlying trend in the series should
be modeled as well as determine the degree of persistence in the economic variable. Since the publication of the seminal
papers by Dickey and Fuller (1979, 1981), there has been a large literature devoted to devising unit root tests for different
specification of the trend. For instance, Perron (1989) argued that inference drawn from the Dickey-Fuller unit root tests
may be misleading if the underlying model ignores a break in the mean or trend of the time series that may result from
major events such as the oil price shock or the Great Depression.

While the tests by Perron (1989), as well as further extensions, do account for the presence of structural breaks, the
practitioner cannot ascertain whether inferences drawn by these tests are affected by the possible mis-specification of the
underlying model. Therefore, in this paper, we propose a methodology that allows the practitioner to test for the pres-
ence of a unit root and, at the same time, assess the validity of the underlying model. We focus on the class of unit root
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tests that allow for one structural break under both the null and the alternative hypothesis. As in Perron (1989, 1990b),
we consider three different characterizations of the break under the trend-stationary alternative hypothesis: (a) the level
shift model that allows for a one-time shift the mean; (b) the crash model that allows for a one-time shift in the in-
tercept of the underlying trend; and (c) the mixed model that allows for a simultaneous break in the intercept and the
slope.1

We follow the approach of Schmidt and Phillips (1992) used by Popp (2008) to develop a new class of Perron-type unit
root tests.2 We propose F-statistics for the joint null hypothesis of a unit root and model specification based on the reduced
form regressions implied by the conventional components representation of the underlying data generating process. Model
specification is tested using restrictions on the mean or trend function coefficients implied by the corresponding reduced
form regressions. Specifically, the F-statistics for the level shift model and the crash model are based on the joint null
hypothesis that there is a unit root and that the coefficients of the intercept and the intercept break dummy are both equal to
zero. The F-statistic for themixedmodel is based on the joint null hypothesis that there is a unit root and that the coefficients
of the time-trend and the lagged trend-break dummy are both equal to zero.

Tests for the joint null hypothesis of a unit root are also considered by Dickey and Fuller (1981), Hall (1992), Perron
(1990a), Carrion-i-Silvestre and Sanso (2006), Sen (2007), and Pitarakis (2014).3 While our approach is similar to that
of Carrion-i-Silvestre and Sanso (2006), we differ in two important respects. First, we use the conventional components
representation of the underlying data generating process as suggested by Schmidt and Phillips (1992). As argued by Schmidt
and Phillips (1992), the interpretation of the mean and the time trend coefficients is the same under both the unit root
null hypothesis as well as the trend stationarity alternative hypothesis. Second, we propose a testing procedure that
simultaneously tests for both unit root and model mis-specification. It is also worth noting that while our test is designed
to assess the validity of the underlying trend specification, the test of Pitarakis (2014) is designed to test for changes in the
level of persistence.

Our testing procedure for unit root and model mis-specification is based on using both Popp’s (2008) version of the
Perron-type statistics along with our newly developed F-statistics. We derive the asymptotic distribution of the new F-tests
under the corresponding joint null hypothesis, and tabulate their finite sample critical values. Under the null hypothesis of
unit root, if the model is correctly specified, we would expect that both the Perron-type statistics and the F-statistics will
be insignificant. Further, we would expect the Perron-type statistics to be insignificant and the F-tests to be significant if
the model is mis-specified in the presence of a unit root. So, the practitioner can distinguish the case when the underlying
model is mis-specified or not for a series that contains a unit root. On the other hand, under the trend-break stationary
alternative, we would expect both the Perron-type statistics and the F-statistics to be significant, irrespective of whether
themodel ismis-specified or not. However, in this case, the practitioner can use conventional testing procedures that assume
stationarity to ascertain the appropriate specification of the trend component before using the series for further modeling
and/or forecasting purposes. We argue, therefore, that our F-test is a useful supplement to the Perron-type unit root tests.
Simulation evidence presented in this paper shows that the F-statistics maintain their size in finite samples, and exhibit
power that increases with the sample size.

We illustrate the use of our statistics by examining the real exchange rate between the US Dollar and the UK Pound series
(1971Q1–2012Q4), the UK industrial production series (1957Q1–2012Q2), and the UK CPI series (1990Q1–2012Q4). We use
the level shift model for the real exchange rate series, the crash model for the industrial production series, and the mixed
model for the CPI series. The estimated break-date is 1987Q1 for the real exchange rate series, 1974Q1 for the UK industrial
production series, and 2008Q2 for the UK CPI series. For all three series, we reject the joint null of a unit root. However,
Popp’s (2008) statistic is only significant for the UK CPI series. Therefore, we conclude that the US/UK real exchange rate
series and the UK industrial production series contain a unit root, but the trend component of these series are mis-specified.
The UK CPI series, on the other hand, is trend-break stationary, and so the correct specification of its trend component can
be found using conventional testing procedures designed for stationary processes.

The rest of the paper is organized as follows. In Section 2, we discuss the data generating process, and define the statistics
for the joint unit root null hypotheses. In Section 3, we derive the asymptotic null distribution of the new test statistics,
and tabulate their finite sample critical values. We discuss the size and power properties of our tests using finite sample
simulations in Section 4. In Section 5, we illustrate the use of our statistics by examining three time series, namely, real
exchange rate between the US Dollar and the UK Pound, UK industrial production, and UK CPI, andwe offer some concluding
remarks in Section 6. All proofs are relegated to an Appendix.

1 While Perron (1989, 1990b) treats the break-date as known, several studies have extended the Perron unit root tests to endogenize the choice of the
break-date so as to avoid possible correlations between the choice of the break-date and the data, see Perron and Vogelsang (1992), Zivot and Andrews
(1992), Christiano (1992), Banerjee et al. (1992), Perron (1997), Vogelsang and Perron (1998), and Carrion-i-Silvestre et al. (2009).
2 These new Perron-type unit root tests of Popp (2008) have the desirable property that the implied break-date estimator accurately identifies a break

if it exists under either the null or alternative hypothesis.
3 It should be noted that we propose an F-test following Dickey and Fuller (1981), Perron (1990a), Carrion-i-Silvestre and Sanso (2006), and Sen (2007),

while a Wald test version is proposed by Hall (1992) and Pitarakis (2014). The difference between the F-test and the Wald test is a factor of normalization
by the appropriate degrees of freedom. So, both versions have a non-standard limiting null distribution, and their critical values have to be calculated using
simulations.
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2. New unit root tests based on the joint null hypothesis

In this section, we use the conventional components representation of a time series as discussed in Schmidt and Phillips
(1992) and Popp (2008). The data generating process of the time series {yt}Tt=1 is given by:

yt = dt + ut , (1)
ut = ρut−1 + εt , (2)

εt = Ψ ∗(L)et , (3)

where dt is the deterministic component, ut is the stochastic component, et ∼ i.i.d.(0, σ 2), the lag polynomial Ψ ∗(L) is
factorized as Ψ ∗(L) = A∗(L)−1 B(L), where A∗(L) and B(L) are lag polynomials of order p and q, respectively. It is assumed
that all the roots of A∗(L) and B(L) are outside the unit circle.

We consider three different specifications of the deterministic component:

M0 : dt = α + Ψ ∗(L) [θDU0
t ], (4)

M1 : dt = α + βt + Ψ ∗(L) [θDU0
t ], (5)

M2 : dt = α + βt + Ψ ∗(L) [θDU0
t + γDT 0

t ], (6)

where the parameters θ and γ measure the magnitude of the possible intercept and slope breaks, DU0
t is a dummy variable,

DU0
t = 1(t>T0B ),DT

0
t = 1(t>T0B ) (t−T 0

B ), 1(·) is the indicator function, and T 0
B is the true break-date. M0 is the level shift model

considered by Perron and Vogelsang (1992), M1 refers to the crash model that allows for a one-time break in the intercept
of the underlying trend function, and M2 indicates the mixed model that allows for a simultaneous break in the intercept
and slope of the underlying trend function. M1 and M2 were originally considered by Perron (1989). We should point out
that the data generating process does not allow for the dominant auto-regressive root to affect the dynamics of the break
under the alternative hypothesis. For instance, consider the mixed model. In Perron’s (1989) specification, the dynamics of
the break under the alternative evolve according to (1 − ρ L) Ψ ∗(L)[θ DU0

t + γ DT 0
t ]. However, here, the dynamics of the

break evolve according to Ψ ∗(L)[θ DU0
t + γ DT 0

t ], and so the Perron-type unit root test based on (1)–(6) will collapse into
the Additive Outlier unit root tests proposed by Perron (1989) in the eventuality that Ψ ∗(L) = 1. Therefore, the Perron-type
unit root tests based on (1)–(6) lie in between the Innovation Outlier tests and the Additive Outlier tests by Perron (1989).

The reduced form regressions implied by the structural model in (1)–(3) and the form of breaks in (4)–(6) are:

M0 : yt = α∗

0 + δDUt−1(TB) + θDt(TB) + ρyt−1 +

k
j=1

cj ∆yt−j + et , (7)

M1 : yt = α∗

1 + β∗

1 t + δDUt−1(TB) + θDt(TB) + ρyt−1 +

k
j=1

cj ∆yt−j + et , (8)

M2 : yt = α∗

2 + β∗

2 t + ξ Dt(TB) + κDUt−1(TB) + ζ DTt−1(TB) + ρyt−1 +

k
j=1

cj ∆yt−j + et , (9)

where Dt(TB) = 1(t=TB+1), φ = (ρ − 1) , δ = −φ θ, ξ = (γ + θ), κ = (γ + δ), ζ = −φ γ , β∗

1 = β∗

2 = Ψ ∗(1)−1 (1 −

ρ) β, α∗

0 = Ψ ∗(1)−1 (1 − ρ) α, α∗

1 = α∗

2 = Ψ ∗(1)−1 [(1 − ρ) α + ρ β]. We should note that the break parameter is the
coefficient of the impulse dummy variable Dt(TB) in the reduced form regressions (7)–(9). The first lag differences of the
dependent variable are included in regressions (7)–(9) in order to account for any additional correlation in the error term,
and the appropriate value of the lag-truncation parameter, k, is determined using a data-dependent method, see Zivot and
Andrews (1992) for further details. When the break-date is known to the practitioner, the unit root test is based on the
t-statistics for H0 : ρ = 1 in regressions (7)–(9). Under the unit root null hypothesis, δ = 0 in regressions (7) and (8), and
ζ = 0 in regression (9).

When the true location of the break-date is unknown, regressions (7)–(9) are estimated for all possible break-dates
TB = [λ T ] corresponding to λ ∈ [λ∗, 1 − λ∗

]. The break-date estimator is given by:

T̂B =


arg maxTB |tθ̂ (TB)| for M0 and M1
arg maxTB |tξ̂ (TB)| for M2

(10)

where tθ̂ (TB) is the t-statistic for θ in regressions (7) and (8) for model M0 and model M1 respectively, and tξ̂ (TB) is the
t-statistic for ξ in regression (9) for model M2. Harvey and Mills (2004) argue that the estimated break-fraction implied by
(10) is super-consistent for the true break-fraction.4

4 See also the simulation evidence provided in Popp (2008) regarding the break-date estimator defined in Eq. (10).
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We consider the following joint unit root null hypotheses:

HM0
0 : α∗

0 = 0, δ = 0, ρ = 1, (11)

HM1
0 : β∗

1 = 0, δ = 0, ρ = 1, (12)

HM2
0 : β∗

2 = 0, ζ = 0, ρ = 1. (13)

For a given break-date (TB), the F-statistic Fi(TB) for the null hypothesis HMi
0 (i = 0, 1, 2) is defined as follows:

Fi(TB) =


Ri µ̂i(TB) − ri

′


Ri


T

t=1
xit(TB) x

i
t(TB)

′

−1

R′

i

−1 
Ri µ̂i(TB) − ri


3 σ̂ 2

i (TB)
, (14)

where Ri and ri are the matrices corresponding to the null hypotheses HMi
0 (i = 0, 1, 2), that is:

R0 =

1 0 0 0 0′

k
0 1 0 0 0′

k
0 0 0 1 0′

k

 , R1 =

0 1 0 0 0 0′

k
0 0 1 0 0 0′

k
0 0 0 0 1 0′

k

 , R2 =

0 1 0 0 0 0 0′

k
0 0 0 0 1 0 0′

k
0 0 0 0 0 1 0′

k

 ,

and r0 = r1 = r2 = (0 0 1)′, xit(TB) (i = 0, 1, 2) are the explanatory variable vectors corresponding to regressions (7)–(9):

x0t (TB) = [1DUt−1(TB)Dt(TB) ∆yt−1 ∆yt−2 . . . ∆yt−k]
′,

x1t (TB) = [1 t DUt−1(TB)Dt(TB) ∆yt−1 ∆yt−2 . . . ∆yt−k]
′,

x2t (TB) = [1 t DUt−1(TB)Dt(TB)DTt−1(TB) ∆yt−1 ∆yt−2 . . . ∆yt−k]
′,

µ̂i(TB) (i = 0, 1, 2) are the estimated parameter vectors corresponding to regressions (7)–(9):

µ̂0(TB) = (α̂∗

0 δ̂ θ̂ ρ̂ ĉ ′)′,

µ̂1(TB) = (α̂∗

1 β̂∗

1 δ̂ θ̂ ρ̂ ĉ ′)′,

µ̂2(TB) = (α̂∗

2 β̂∗

2 κ̂ ξ̂ ζ̂ ρ̂ ĉ ′)′,

and σ̂ 2
i (TB) = (T − mi − k)−1 T

t=1


yt − xit(TB)

′ µ̂i(TB)
2 for i = 0, 1, 2 are the estimated mean squared errors from

regressions (7)–(9) respectively, with m0 = 4,m1 = 5, and m2 = 6. Let F0(T̂B), F1(T̂B), and F2(T̂B) respectively be the F-
statistics for HM0

0 ,HM1
0 , and HM2

0 evaluated at the estimated break-date T̂B defined in (10). The F-statistics F0(T̂B), F1(T̂B), and
F2(T̂B) are designed to have power against the alternative hypotheses HM0

A : α∗

0 ≠ 0 and/or δ ≠ 0 and/or ρ ≠ 1,HM1
A : β∗

1 ≠

0 and/or δ ≠ 0 and/or ρ ≠ 1, and HM2
A : β∗

2 ≠ 0 and/or ζ ≠ 0 and/or ρ ≠ 1, respectively.5

3. Limiting null distributions

In this section, we derive the limiting distribution of the F-statistics, F0(T̂B), F1(T̂B), and F2(T̂B) for models M0,M1, and
M2, respectively. The asymptotic results are derived under the assumption that the errors are i.i.d. (0, σ 2), so thatΨ ∗(L) = 1
and k = 0, see also Vogelsang and Perron (1998).6

First, we consider the unit root statistic for the level shift model, denoted by F0(T̂B),where T̂B is the estimated break-date
that maximizes the absolute value of the t-statistics for H0 : θ = 0 in regression (7). The data generating process under the
unit root null hypothesis is:

yt = θDt(T 0
B ) + yt−1 + et , (15)

where T 0
B is the true location of the break-date, et ∼ i.i.d.(0, σ 2), and y0 = 0.

Theorem 1. Consider a time series {yt} that evolves according to the data generating process given in (15)with the corresponding
true break-fraction denoted by λ0. The estimated break-date is defined by (10), that is T̂B = arg maxTB |tθ̂ (TB)|, where TB = [λ T ]

5 The joint null hypotheses given in (11)–(13) can be rejected even if the series contains a unit root (ρ = 1). Consider, for instance, the case when the
trend component is mis-specified as: dt = µ+αt +βt2 . It follows that yt = ρ(α −β)+[(1−ρ)α +2βρ]t + (1−ρ)βt2 +ρyt−1 + et , and under the unit
root null hypothesis yt = (α −β)+ 2βt + yt−1 + et . In this case, we would expect that the F-statistic will be significant owing to model mis-specification,
but the t-test will be insignificant owing to the presence of a unit root.
6 Vogelsang and Perron (1998, pp. 1084) argue that the results hold for more general errors as long as k = 0.
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is chosen for all λ ∈ Λ and Λ is a closed subset of the interval (0, 1). The following describes the limiting distribution of the unit
root statistic F0(T̂B) based on the level shift model regression (7):

F0(T̂B) ⇒
Ẽ0(λ0)

′ Ṽ0(λ0)
−1 Ẽ0(λ0)

3 σ 2
, (16)

where Ẽ0(λ0) =

σ W (1), σ [W (1) − W (λ0)],

1
2 σ 2

[W (1)2 − 1]
′
, and Ṽ0(λ0) is a 3x3 symmetric matrix with

Ṽ0(λ0)[1, 1] = 1, Ṽ0(λ0)[1, 2] = 1 − λ0, Ṽ0(λ0)[1, 3] = σ
 1
0 W (r) dr, Ṽ0(λ0)[2, 2] = 1 − λ0, Ṽ0(λ0)[2, 3] =

σ
 1
λ0

W (r) dr, Ṽ0(λ0)[3, 3] = σ 2
 1
0 W (r)2 dr, and W (r) is a standard Wiener process. The proof is outlined in the Appendix.

Next, we consider the unit root statistic for the crashmodel, denoted by F1(T̂B), where T̂B is the estimated break-date that
maximizes the absolute value of the t-statistics for H0 : θ = 0 in regression (8). The data generating process under the unit
root null hypothesis is:

yt = α∗

1 + θDt(T 0
B ) + yt−1 + et , (17)

where T 0
B is the location of the true break-date, et ∼ i.i.d.(0, σ 2), and y0 = 0.

Theorem 2. Consider a time series {yt} that evolves according to the data generating process given in (17)with the corresponding
true break-fraction denoted by λ0. The estimated break-date is defined by (10), that is T̂B = arg maxTB |tθ̂ (TB)|, where TB = [λ T ]

is chosen for all λ ∈ Λ and Λ is a closed subset of the interval (0, 1). The following describes the limiting distribution of the unit
root statistic F1(T̂B) based on the crash model regression (8):

F1(T̂B) ⇒


R̃1 Ṽ1(λ0)

−1 Ẽ1(λ0)
′ 

R̃1 Ṽ1(λ0)
−1 R̃′

1

−1 
R̃1 Ṽ1(λ0)

−1 Ẽ1(λ0)


3 σ 2
, (18)

where Ẽ1(λ0) =


σ W (1), σ [W (1) −

 1
0 W (r) dr], σ [W (1) − W (λ0)],

1
2 σ 2

[W (1)2 − 1]
′

, and Ṽ1(λ0) is a 4 ×

4 symmetric matrix with Ṽ1(λ0)[1, 1] = 1, Ṽ1(λ0)[1, 2] =
1
2 , Ṽ1(λ0)[1, 3] = 1 − λ0, Ṽ1(λ0)[1, 4] =

σ
 1
0 W (r) dr, Ṽ1(λ0)[2, 2] =

1
3 , Ṽ1(λ0)[2, 3] =

1
2 (1 − λ2

0), Ṽ1(λ0)[2, 4] = σ
 1
0 r W (r) dr, Ṽ1(λ0)[3, 3] = (1 −

λ0), Ṽ1(λ0)[3, 4] = σ
 1
λ0

W (r) dr, Ṽ1(λ0)[4, 4] = σ 2
 1
0 W (r)2 dr,W (r) is a standard Wiener process, and

R̃1 =

0 1 0 0
0 0 1 0
0 0 0 1


.

The proof is outlined in the Appendix.

Finally, we consider the unit root statistic for the mixed model, denoted by F 2
T (T̂B), where T̂B is the estimated break-date

that maximizes the absolute value of the t-statistics for H0 : ξ = 0 in regression (9). The data generating process under the
unit root null hypothesis is:

yt = α∗

2 + ξ Dt(T 0
B ) + γ DUt−1(T 0

B ) + yt−1 + et , (19)

where T 0
B is the true location of the break-date, DU0

t−1 is the dummy variable defined using the true break-date T 0
B , et ∼

i.i.d.(0, σ 2), and y0 = 0.

Theorem 3. Consider a time series {yt} that evolves according to the data generating process given in (19)with the corresponding
true break-fraction denoted by λ0. The estimated break-date is defined by (10), that is TB(ξ̂ ) = arg maxTB |tξ̂ (TB)|, where
TB = [λ T ] is chosen for all λ ∈ Λ and Λ is a closed subset of the interval (0,1). The following describes the limiting distribution
of the unit root statistic F2(T̂B) based on the mixed model regression (9):

F2(T̂B) ⇒


R̃2 Ṽ2(λ0)

−1 Ẽ2(λ0)
′ 

R̃2 Ṽ2(λ0)
−1 R̃′

2

−1 
R̃2 Ṽ2(λ0)

−1 Ẽ2(λ0)


3 σ 2
, (20)

where Ẽ2(λ0) is a 5x1 vector with Ẽ2(λ0)[1, 1] = σ W (1), Ẽ2(λ0)[2, 1] = σ [W (1) −
 1
0 W (r) dr], Ẽ2(λ0)[3, 1] =

σ [W (1)−W (λ0)], Ẽ2(λ0)[4, 1] = σ W (1)−σ λ0 [W (1)−W (λ0)]−σ
 1
0 W (r) dr, and Ẽ2(λ0)[5, 1] =

1
2 σ 2

[W (1)2−1],
and Ṽ2(λ0) is a 5x5 symmetric matrix with Ṽ2(λ0)[1, 1] = 1, Ṽ2(λ0)[1, 2] =

1
2 , Ṽ2(λ0)[1, 3] = 1 − λ0, Ṽ2(λ0)[1, 4] =

1
2 (1 − λ2

0) − λ0(1 − λ0), Ṽ2(λ0)[1, 5] = σ
 1
0 W (r) dr, Ṽ2(λ0)[2, 2] =

1
3 , Ṽ2(λ0)[2, 3] =

1
2 (1 − λ2

0), Ṽ2(λ0)[2, 4] =
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1
6λ

3
0−

1
2λ0+1, Ṽ2(λ0)[2, 5] = σ

 1
0 r W (r) dr, Ṽ2(λ0)[3, 3] = (1−λ0), Ṽ2(λ0)[3, 4] =

1
2 (1−λ2

0)−λ0(1−λ0), Ṽ2(λ0)[3, 5] =

σ
 1
λ0

W (r) dr, Ṽ2(λ0)[4, 4] =
1
3 (1− λ0)

3, Ṽ2(λ0)[4, 5] = σ
 1
λ0

(r − λ0)W (r) dr, Ṽ2(λ0)[5, 5] = σ 2
 1
0 W (r)2 dr,W (r) is a

standard Wiener process, and

R̃2 =

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


.

The proof is outlined in the Appendix.

The asymptotic distribution of our tests, Fi(T̂B) (i = 0, 1, 2), has been derived under the assumption that the errors
are independently and identically distributed. In the presence of additional correlation in the data generating process, the
asymptotic distribution of Fi(T̂B) (i = 0, 1, 2)will be the same as that derived in Theorems 1–3, if we include additional first
difference lags of the data as shown in the regression equations (7)–(9), see Perron (1989) for further details. The number of
lags to be included in the estimation regression will be determined using some data dependent algorithm as in Vogelsang
and Perron (1998).

We calculate the finite sample critical values of the unit root statistics Fi(T̂B) for i = 0, 1, 2 using the following data
generated process:

yt = yt−1 + et , y0 = 0. (21)

Without loss of generality, y0 is set equal to 0. We specify the sequence of innovations et to be i.i.d. N(0, 1), since the
asymptotic distributions are invariant to additional correlation structure of the data, see Perron and Vogelsang (1992). In
practice, a general-to-specific algorithm such as the k(t−sig) suggested by Perron andVogelsang (1992) is used to determine
the appropriate number of lagged first differences that should be included in the estimation regressions (7)–(9).We calculate
the finite sample critical values for kmax = 0, 5, and six different sample sizes, T = 50, 100, 150, 200, 250, 500, using 5000
replications. The critical values of Fi(T̂B) for i = 0, 1, 2 are reported in Tables 1–3.

4. Finite sample size and power

In this section, we present evidence regarding the finite sample performance of the new statistics for the joint null
hypothesis of a unit root, namely, F0(T̂B), F1(T̂B), and F2(T̂B). We generate {yt} according to the data generating process given
in (1)–(6) assuming that the correlation structure of the innovation process is given by Ψ ∗(L) = (1 − a1 L)−1 (1 + b1 L).
We consider all cases corresponding to the true break-fractions λ0 = 0.3, 0.5, and 0.7. For models M0 and M1, we use the
intercept-breakmagnitude θ = 0, 5, 10, and for model M2, we use combinations of the following values for intercept-break
magnitude and the slope-break magnitude: θ = 0, 5, 10 and γ = 0, 5, 10.7 We consider five different error specifications
corresponding to (a1, b1) equal to (0, 0), (0.6, 0), (−0.6, 0), (0, 0.5), and (0, −0.5). The first case implies that the errors
are independently and identically distributed. The second case allows for positively correlated errors within an AR(1)
framework, and the third case allows for negatively correlated errors within an AR(1) framework. The last two cases
correspond to MA(1) errors with a positive and a negative moving average component in order to determine how the
k(t − sig) procedure handles processes with moving average errors. The maximum number of the lag augmentation terms,
kmax, is set to 5 and is reduced when the coefficient of the last augmentation term is not significant at the 5% level. The
error process et follows a standard normal process, i.e. et ∼ N(0, 1). We consider two different sample sizes: T = 100
and T = 200. Furthermore, the trimming factor is λ∗

= 0.1, so that we search for the break-date implied by the interval
[λ∗, 1− λ∗

]. All simulations are based on 5000 replications of {yt} and were carried out in GAUSS. We evaluate the size and
power of all statistics using the corresponding 5% finite sample critical values.

The size and power of the level shift model statistic (F0(T̂B)), the crash model statistic (F1(T̂B)), and the mixed model
statistic (F2(T̂B)) are given in Tables 4–7.8 The size of F0(T̂B) is fairly close to the nominal size in all cases, except when
there is a negative moving average component in the error process. There are some size distortions when θ = 0, but these
distortions disappear as the sample size increases. For instance, with θ = 0, λ0 = 0.5, and (a1, b1) = (0, 0), the size of
F0(T̂B) is 0.065 with T = 100 and 0.058 with T = 200. However, with θ = 5, λ0 = 0.5, and (a1, b1) = (0, 0), the size of
F0(T̂B) is 0.055 with T = 100 and 0.050 with T = 200. The empirical size of F0(T̂B) is considerably higher with (a1, b1) equal
to (0, −0.5). In this case, for instance, with θ = 5 and λ0 = 0.5, the size of F0(T̂B) is 0.109 when T = 100 and 0.075 when
T = 200. A very similar pattern emerges for F2(T̂B). The only difference is that the size distortions when there is a negative
moving average component aremore pronounced. Previous studies such as Schwert (1989) andVogelsang and Perron (1998)

7 We should note that the mixed model (M2) is only appropriate when θ ≠ 0. We feel that practitioners will seldom expect θ = 0 in empirical
applications when a break in the slope of the trend-function is suspected. If a break in the slope is not expected, then we recommend that practitioners
use the crash model (M1) characterization of the break for trending data or the level shift model (M0) for non-trending data.
8 The size and power of our statistics corresponding to θ = 0 (no break) do not depend on the location of break (λ).
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Table 1
Critical values for F0(T̂B) with kmax = 0, 5.

T kmax λ0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0 1% 5.88 6.20 6.40 6.59 6.29 6.49 6.36 6.09 5.89
2.5% 4.90 5.24 5.35 5.49 5.39 5.37 5.34 5.13 4.93
5% 4.21 4.46 4.52 4.72 4.71 4.66 4.57 4.37 4.22
10% 3.47 3.72 3.78 3.91 3.98 3.86 3.84 3.65 3.41

100 0 1% 5.56 5.60 6.02 5.92 5.89 5.97 6.03 5.81 5.64
2.5% 4.70 4.92 5.01 5.09 5.09 5.17 5.08 4.97 4.76
5% 4.06 4.26 4.34 4.42 4.44 4.49 4.36 4.27 4.06
10% 3.37 3.60 3.66 3.79 3.75 3.82 3.67 3.60 3.37

150 0 1% 5.33 5.66 5.83 5.90 6.06 5.93 5.94 5.65 5.37
2.5% 4.55 4.89 4.97 5.17 5.10 5.10 5.02 4.81 4.57
5% 3.92 4.19 4.34 4.49 4.44 4.45 4.35 4.24 3.95
10% 3.29 3.54 3.68 3.75 3.78 3.77 3.67 3.54 3.31

200 0 1% 5.24 5.50 5.83 5.81 5.80 5.73 5.76 5.55 5.37
2.5% 4.46 4.74 4.97 5.05 5.00 4.93 4.90 4.86 4.59
5% 3.88 4.16 4.31 4.40 4.37 4.33 4.27 4.26 4.02
10% 3.25 3.51 3.67 3.75 3.72 3.74 3.65 3.57 3.32

250 0 1% 5.27 5.61 5.74 5.62 5.74 5.78 5.79 5.63 5.52
2.5% 4.55 4.82 4.87 4.93 5.07 4.94 5.01 4.88 4.65
5% 3.94 4.23 4.22 4.31 4.45 4.38 4.33 4.17 3.96
10% 3.31 3.54 3.61 3.66 3.79 3.73 3.67 3.55 3.34

500 0 1% 5.27 5.47 5.84 5.59 5.63 5.66 5.57 5.50 5.21
2.5% 4.59 4.76 5.03 4.92 4.88 4.91 4.83 4.76 4.50
5% 3.96 4.15 4.32 4.28 4.33 4.28 4.23 4.15 3.86
10% 3.35 3.52 3.68 3.69 3.68 3.64 3.58 3.51 3.29

50 5 1% 6.79 7.10 7.37 7.31 7.34 7.33 7.43 7.02 6.57
2.5% 5.68 5.99 6.13 6.26 6.28 6.27 6.02 5.78 5.49
5% 4.86 5.10 5.24 5.42 5.46 5.32 5.23 4.78 4.72
10% 3.94 4.19 4.35 4.49 4.49 4.43 4.34 4.00 3.93

100 5 1% 6.00 6.20 6.25 6.57 6.40 6.47 6.34 6.15 6.05
2.5% 5.15 5.31 5.46 5.54 5.38 5.54 5.35 5.23 5.02
5% 4.38 4.57 4.73 4.81 4.76 4.81 4.65 4.48 4.29
10% 3.63 3.81 3.98 4.06 4.04 4.06 3.92 3.75 3.56

150 5 1% 5.92 5.99 6.17 6.24 6.28 6.02 6.32 6.11 5.75
2.5% 4.95 5.06 5.29 5.33 5.35 5.25 5.33 5.16 4.83
5% 4.23 4.43 4.60 4.61 4.60 4.60 4.49 4.39 4.17
10% 3.53 3.70 3.90 3.93 3.92 3.91 3.83 3.70 3.49

200 5 1% 5.76 6.01 6.00 6.04 5.89 6.05 6.22 5.86 5.54
2.5% 4.83 5.16 5.12 5.19 5.16 5.13 5.20 4.97 4.70
5% 4.11 4.47 4.49 4.58 4.52 4.52 4.48 4.34 4.04
10% 3.41 3.73 3.78 3.88 3.83 3.80 3.80 3.66 3.38

250 5 1% 5.34 5.75 5.95 5.89 5.90 6.08 5.76 5.75 5.47
2.5% 4.65 4.97 5.06 5.14 5.06 5.20 5.00 4.91 4.77
5% 4.08 4.34 4.41 4.52 4.48 4.52 4.38 4.25 4.12
10% 3.38 3.62 3.73 3.87 3.84 3.87 3.73 3.56 3.43

500 5 1% 5.39 5.57 5.77 5.92 5.91 5.84 5.67 5.63 5.44
2.5% 4.58 4.90 4.93 5.04 5.05 5.16 4.94 4.86 4.62
5% 3.86 4.27 4.37 4.40 4.35 4.45 4.33 4.26 4.03
10% 3.30 3.57 3.75 3.73 3.70 3.76 3.65 3.60 3.38

have also found size distortions in unit root tests when there is a negative moving average component in the time series.
While the empirical size of F1(T̂B) follows a similar pattern as that of F0(T̂B), the size distortions with θ = 0 are more severe.

We should point out that some size distortions are expected in the absence of a break given that the limiting null
distributions of Fi(T̂B) (i = 0, 1, 2) given in Theorems 1–3 are derived under the assumption that there is a break under the
null hypothesis. If there were no break under the null hypothesis (θ = 0 and γ = 0), then the limiting null distributions of
Fi(T̂B) (i = 0, 1, 2)would be based on the expressions given in Theorems 1–3, evaluated at the break-date estimator derived
in Costantini and Sen (2012).9 A number of studies have noted this discontinuity in the limiting distribution depending on
whether there is a break under the null hypothesis or not, see for instance Carrion-i-Silvestre et al. (2009). The discontinuity

9 Critical values corresponding to the limiting null distribution in the absence of a break are available from the authors upon request.
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Table 2
Critical values for F1(T̂B) with kmax = 0, 5.

T kmax λ0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0 1% 7.53 7.52 7.68 7.74 7.67 7.53 7.71 7.63 7.55
2.5% 6.39 6.49 6.58 6.48 6.38 6.55 6.64 6.61 6.48
5% 5.61 5.62 5.75 5.61 5.61 5.68 5.81 5.74 5.56
10% 4.73 4.81 4.84 4.82 4.74 4.81 4.91 4.90 4.63

100 0 1% 7.10 7.21 7.26 7.18 6.82 7.02 7.27 7.11 7.07
2.5% 6.12 6.32 6.30 6.15 6.03 6.13 6.26 6.25 6.07
5% 5.35 5.58 5.56 5.36 5.35 5.48 5.47 5.47 5.37
10% 4.52 4.79 4.72 4.57 4.56 4.67 4.69 4.71 4.63

150 0 1% 6.92 7.08 7.05 6.99 6.76 6.87 7.12 6.85 7.07
2.5% 5.95 6.13 6.19 6.10 5.90 5.98 6.08 6.01 6.06
5% 5.26 5.42 5.41 5.35 5.24 5.31 5.40 5.39 5.29
10% 4.51 4.70 4.62 4.57 4.58 4.58 4.68 4.63 4.55

200 0 1% 6.71 7.23 6.99 6.80 7.01 6.85 6.98 6.87 6.96
2.5% 5.87 6.20 6.04 5.94 5.97 6.06 6.08 6.10 5.94
5% 5.17 5.44 5.31 5.24 5.22 5.35 5.40 5.42 5.24
10% 4.50 4.69 4.65 4.54 4.56 4.54 4.68 4.68 4.52

250 0 1% 6.89 6.92 6.79 6.85 6.91 6.98 6.92 7.02 6.75
2.5% 5.92 5.96 6.00 5.94 5.97 6.03 5.97 6.06 5.96
5% 5.28 5.31 5.39 5.31 5.33 5.33 5.34 5.39 5.21
10% 4.54 4.62 4.64 4.61 4.56 4.58 4.65 4.68 4.47

500 0 1% 6.74 6.80 6.79 6.86 6.90 6.90 6.83 6.80 6.56
2.5% 5.93 5.98 5.88 6.01 5.92 5.99 5.99 5.91 5.79
5% 5.24 5.30 5.25 5.29 5.23 5.27 5.29 5.20 5.15
10% 4.49 4.63 4.53 4.59 4.48 4.54 4.59 4.60 4.43

50 5 1% 8.65 8.89 8.91 8.61 8.83 8.87 8.88 8.93 8.63
2.5% 7.39 7.64 7.66 7.43 7.63 7.47 7.70 7.50 7.21
5% 6.45 6.58 6.64 6.42 6.54 6.46 6.71 6.46 6.23
10% 5.46 5.60 5.62 5.47 5.51 5.55 5.71 5.57 5.31

100 5 1% 7.54 7.73 7.73 7.53 7.75 7.95 7.64 7.63 7.52
2.5% 6.54 6.70 6.73 6.56 6.69 6.71 6.64 6.65 6.46
5% 5.75 5.89 5.85 5.80 5.94 5.84 5.88 5.85 5.60
10% 4.91 5.07 5.00 4.95 5.04 5.04 5.10 4.99 4.82

150 5 1% 7.27 7.41 7.35 7.37 7.27 7.21 7.41 7.51 7.45
2.5% 6.36 6.46 6.45 6.39 6.33 6.43 6.45 6.61 6.35
5% 5.61 5.71 5.72 5.63 5.53 5.62 5.68 5.79 5.55
10% 4.80 4.88 4.97 4.83 4.78 4.76 4.86 4.99 4.72

200 5 1% 7.19 7.36 7.36 7.18 7.12 7.33 7.19 7.08 6.95
2.5% 6.26 6.42 6.39 6.27 6.18 6.24 6.26 6.32 6.04
5% 5.45 5.66 5.62 5.46 5.45 5.50 5.55 5.61 5.34
10% 4.68 4.88 4.83 4.72 4.68 4.74 4.81 4.78 4.64

250 5 1% 6.99 7.14 7.02 7.09 7.03 7.16 7.24 7.17 7.09
2.5% 6.14 6.34 6.16 6.20 6.16 6.21 6.33 6.30 6.13
5% 5.36 5.62 5.46 5.46 5.47 5.48 5.52 5.60 5.32
10% 4.63 4.86 4.78 4.75 4.68 4.73 4.76 4.81 4.60

500 5 1% 6.71 6.98 7.08 6.95 6.85 6.67 6.87 7.09 6.98
2.5% 5.93 6.13 6.09 6.03 5.98 5.95 6.02 6.08 5.94
5% 5.25 5.41 5.45 5.32 5.30 5.32 5.37 5.41 5.21
10% 4.54 4.72 4.70 4.64 4.57 4.56 4.66 4.69 4.44

in the limiting null distribution can introduce size distortions when one uses the critical values based on the limiting null
distribution with break when there is, in fact, no break under the unit root null. We do not find evidence of significant size
distortions in models M0 and M2, but some size distortions in model M1. In this case, we suggest that, when using model
M1, practitioners may apply the pre-test methodology outlined by Carrion-i-Silvestre et al. (2009).

The power of all statistics increases with the sample size as well as the magnitude of departure from the unit root null
hypothesis, as measured by the distance of the parameter ρ from one. For instance, with (a1, b1) = (0.6, 0), λ0 = 0.5, and
θ = 5, the power of F0(T̂B) is 0.110 when ρ = 0.9 and T = 100, 0.293 when ρ = 0.8 and T = 100, 0.358 when ρ = 0.9
and T = 200, and 0.821 when ρ = 0.8 and T = 200. A similar pattern emerges with models M1 and M2. We should note
that there is usually a drop in power from θ = 0 to θ > 0, but the power of our statistics increases as the break magnitude
(θ) increases. The relatively high power when θ = 0, similar to the case of size, is a consequence of using critical values that
assume that there is a break. Therefore, our results indicate that the empirical size of all statistics is close to the nominal
size, except when there is a negative moving average root in the error process. The empirical size of our tests gets closer



M. Costantini, A. Sen / Computational Statistics and Data Analysis 102 (2016) 37–54 45

Table 3
Critical values for F2(T̂B) with kmax = 0, 5.

T kmax λ0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

50 0 1% 7.85 8.44 8.96 9.20 9.44 9.28 8.65 8.57 7.53
2.5% 6.54 7.29 7.83 7.94 8.19 7.95 7.43 7.21 6.36
5% 5.59 6.34 6.80 7.07 7.13 7.00 6.64 6.20 5.53
10% 4.70 5.34 5.81 6.05 6.09 5.96 5.66 5.21 4.68

100 0 1% 7.32 7.95 8.31 8.38 8.53 8.28 8.18 7.96 7.37
2.5% 6.26 6.92 7.23 7.42 7.59 7.30 7.23 6.83 6.20
5% 5.47 6.15 6.39 6.57 6.72 6.52 6.40 6.03 5.44
10% 4.65 5.28 5.51 5.74 5.79 5.74 5.50 5.17 4.59

150 0 1% 7.07 7.67 8.17 8.34 8.32 8.47 8.19 7.78 7.00
2.5% 6.08 6.77 7.21 7.31 7.34 7.44 7.22 6.69 6.00
5% 5.38 6.01 6.45 6.48 6.56 6.55 6.41 5.93 5.26
10% 4.66 5.18 5.59 5.71 5.76 5.70 5.52 5.12 4.53

200 0 1% 7.11 7.78 8.09 8.29 8.18 8.11 8.00 7.58 6.97
2.5% 6.14 6.74 7.04 7.30 7.27 7.18 7.05 6.65 6.13
5% 5.40 5.97 6.27 6.48 6.53 6.42 6.33 5.90 5.40
10% 4.66 5.14 5.47 5.71 5.72 5.64 5.48 5.13 4.65

250 0 1% 7.01 7.74 8.02 7.93 8.21 8.02 7.82 7.69 6.89
2.5% 6.09 6.67 7.08 7.15 7.26 7.00 6.95 6.61 6.06
5% 5.39 5.88 6.29 6.48 6.49 6.35 6.16 5.84 5.36
10% 4.66 5.15 5.48 5.64 5.69 5.59 5.44 5.02 4.58

500 0 1% 6.98 7.65 8.15 7.90 8.08 8.29 7.70 7.57 6.91
2.5% 5.97 6.61 6.96 7.00 7.14 7.17 6.81 6.58 6.06
5% 5.34 5.89 6.11 6.35 6.45 6.33 6.15 5.86 5.27
10% 4.63 5.05 5.42 5.62 5.73 5.54 5.43 5.01 4.52

50 5 1% 8.81 9.85 10.10 10.82 11.07 10.36 9.83 9.21 8.99
2.5% 7.70 8.45 8.80 9.29 9.47 9.18 8.64 7.96 7.31
5% 6.70 7.42 7.79 8.21 8.40 8.11 7.57 6.88 6.42
10% 5.61 6.25 6.64 7.05 7.23 6.96 6.49 5.82 5.41

100 5 1% 7.73 8.90 9.23 9.19 9.20 9.20 8.98 8.57 7.68
2.5% 6.84 7.55 7.89 7.99 8.08 8.03 7.83 7.34 6.69
5% 5.84 6.56 7.03 7.12 7.25 7.14 6.94 6.49 5.81
10% 5.00 5.64 6.03 6.25 6.32 6.27 6.02 5.55 4.89

150 5 1% 7.42 8.28 8.52 8.96 8.86 8.91 8.91 8.34 7.32
2.5% 6.41 7.15 7.57 7.82 7.75 7.83 7.63 7.24 6.25
5% 5.67 6.33 6.72 6.90 6.98 6.98 6.74 6.28 5.53
10% 4.82 5.47 5.84 5.99 6.10 6.00 5.86 5.35 4.76

200 5 1% 7.52 8.13 8.42 8.47 8.75 8.57 8.47 8.21 7.38
2.5% 6.45 7.09 7.32 7.47 7.78 7.66 7.45 7.12 6.24
5% 5.64 6.23 6.53 6.73 6.87 6.82 6.58 6.22 5.49
10% 4.81 5.41 5.69 5.90 6.01 5.95 5.69 5.34 4.66

250 5 1% 7.32 8.03 8.47 8.38 8.72 8.42 8.44 7.92 7.28
2.5% 6.36 6.91 7.36 7.43 7.75 7.30 7.30 6.84 6.38
5% 5.58 6.16 6.58 6.61 6.87 6.64 6.44 6.03 5.49
10% 4.74 5.28 5.74 5.75 5.99 5.80 5.67 5.22 4.62

500 5 1% 7.16 7.65 8.26 8.18 8.24 8.18 8.04 7.89 7.03
2.5% 6.04 6.75 7.33 7.20 7.30 7.23 7.19 6.69 6.07
5% 5.38 5.91 6.47 6.53 6.53 6.61 6.27 5.91 5.41
10% 4.66 5.11 5.60 5.78 5.79 5.71 5.50 5.16 4.64

to the nominal size as the break magnitude increases and the sample size becomes larger. Further, our tests maintain their
size quite well in the absence of a break under the unit root null hypothesis. Finally, the power of our tests increases as the
sample size increases and the distance from the unit root null hypothesis widens.

5. Empirical application

In this section,we illustrate the application of our newly developed tests for the joint null hypothesis of a unit root. In par-
ticular, we use the level shift model for the real exchange rate between the US Dollar and the UK Pound (1971Q1–2012Q4),
the crashmodel for the UK industrial production (1957Q1–2012Q2), and themixedmodel for the UK CPI (1990Q1–2012Q4).
The data was obtained from the Main Economic Indicators, Organization of Economic Development and Cooperation. A plot
of each series is shown in Figs. 1–3. Based on the plots of these series, we choose model M0 for the US/UK real exchange rate
series, M1 for the UK industrial production series, and M2 for the UK CPI series. The results are summarized in Table 8.
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Table 4
5% Rejection frequency for F0(T̂B).

T a1 b1 θ λ0

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

ρ = 1 ρ = 0.9 ρ = 0.8
100 0 0 0 0.077 0.065 0.063 0.199 0.204 0.209 0.538 0.540 0.557

5 0.053 0.055 0.052 0.133 0.144 0.151 0.457 0.452 0.474
10 0.049 0.052 0.048 0.135 0.134 0.135 0.471 0.461 0.482

100 0.6 0 0 0.071 0.069 0.075 0.154 0.164 0.162 0.321 0.318 0.340
5 0.053 0.055 0.063 0.116 0.110 0.128 0.302 0.293 0.313

10 0.056 0.054 0.052 0.125 0.122 0.127 0.382 0.368 0.394
100 −0.6 0 0 0.063 0.060 0.068 0.191 0.187 0.191 0.524 0.528 0.540

5 0.044 0.048 0.054 0.131 0.131 0.136 0.451 0.443 0.473
10 0.046 0.048 0.045 0.121 0.126 0.132 0.449 0.440 0.466

100 0 0.5 0 0.066 0.071 0.073 0.193 0.179 0.199 0.446 0.441 0.459
5 0.057 0.060 0.059 0.147 0.136 0.155 0.378 0.384 0.392

10 0.053 0.058 0.053 0.135 0.137 0.140 0.413 0.410 0.429
100 0 −0.5 0 0.131 0.122 0.142 0.447 0.446 0.455 0.767 0.762 0.761

5 0.102 0.109 0.117 0.381 0.397 0.396 0.722 0.723 0.744
10 0.108 0.113 0.113 0.361 0.374 0.387 0.709 0.708 0.722

ρ = 1 ρ = 0.9 ρ = 0.8
200 0 0 0 0.056 0.058 0.054 0.527 0.510 0.525 0.933 0.930 0.935

5 0.049 0.050 0.046 0.477 0.475 0.474 0.931 0.918 0.922
10 0.053 0.053 0.051 0.486 0.483 0.491 0.966 0.963 0.966

200 0.6 0 0 0.060 0.057 0.064 0.391 0.385 0.390 0.800 0.809 0.800
5 0.055 0.053 0.055 0.366 0.358 0.355 0.824 0.821 0.813

10 0.051 0.054 0.047 0.405 0.407 0.402 0.913 0.911 0.922
200 −0.6 0 0 0.055 0.053 0.060 0.518 0.502 0.525 0.946 0.941 0.945

5 0.045 0.046 0.048 0.463 0.461 0.470 0.931 0.938 0.930
10 0.049 0.049 0.049 0.472 0.482 0.475 0.970 0.965 0.966

200 0 0.5 0 0.064 0.058 0.061 0.426 0.410 0.427 0.859 0.852 0.852
5 0.055 0.055 0.049 0.378 0.376 0.384 0.846 0.851 0.849

10 0.055 0.057 0.051 0.407 0.416 0.418 0.925 0.922 0.920
200 0 −0.5 0 0.094 0.084 0.088 0.699 0.684 0.709 0.967 0.964 0.966

5 0.077 0.075 0.077 0.675 0.647 0.667 0.949 0.959 0.959
10 0.078 0.082 0.071 0.642 0.648 0.671 0.982 0.982 0.980

Fig. 1. US–UK Real Exchange Rate, 1971Q1–2012Q4.

For the US/UK real exchange rate series, we reject the joint null hypothesis of a unit root based on F0(T̂B) at the 1% level,
but fail to reject the unit root null hypothesis based on Popp’s (2008) statistic t0(T̂B), and the estimated break-date is 1987Q1.
For the UK industrial production series, we reject the joint null hypothesis of a unit root based on F1(T̂B) at the 1% level, but
fail to reject the unit root null based on Popp’s (2008) statistic t1(T̂B). The estimated break-date for UK industrial production
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Table 5
5% Rejection frequency for F1(T̂B).

T a1 b1 θ λ0

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

ρ = 1 ρ = 0.9 ρ = 0.8
100 0 0 0 0.102 0.116 0.107 0.211 0.228 0.224 0.498 0.536 0.521

5 0.068 0.075 0.074 0.153 0.163 0.164 0.421 0.449 0.434
10 0.064 0.066 0.072 0.140 0.158 0.150 0.407 0.457 0.425

100 0.6 0 0 0.071 0.069 0.075 0.154 0.164 0.162 0.321 0.318 0.340
5 0.053 0.055 0.063 0.116 0.110 0.128 0.302 0.293 0.313

10 0.056 0.054 0.052 0.125 0.122 0.127 0.382 0.368 0.394
100 −0.6 0 0 0.063 0.060 0.068 0.191 0.187 0.191 0.524 0.528 0.540

5 0.044 0.048 0.054 0.131 0.131 0.136 0.451 0.443 0.473
10 0.046 0.048 0.045 0.121 0.126 0.132 0.449 0.440 0.466

100 0 0.5 0 0.066 0.071 0.073 0.193 0.179 0.199 0.446 0.441 0.459
5 0.057 0.060 0.059 0.147 0.136 0.155 0.378 0.384 0.392

10 0.053 0.058 0.053 0.135 0.137 0.140 0.413 0.410 0.429
100 0 −0.5 0 0.131 0.122 0.142 0.447 0.446 0.455 0.767 0.762 0.761

5 0.102 0.109 0.117 0.381 0.397 0.396 0.722 0.723 0.744
10 0.108 0.113 0.113 0.361 0.374 0.387 0.709 0.708 0.722

ρ = 1 ρ = 0.9 ρ = 0.8
200 0 0 0 0.085 0.089 0.085 0.478 0.495 0.462 0.911 0.921 0.908

5 0.058 0.067 0.058 0.423 0.440 0.407 0.909 0.913 0.896
10 0.066 0.060 0.059 0.424 0.422 0.406 0.946 0.942 0.939

200 0.6 0 0 0.060 0.057 0.064 0.391 0.385 0.390 0.800 0.809 0.800
5 0.054 0.053 0.055 0.366 0.358 0.355 0.824 0.821 0.813

10 0.051 0.054 0.047 0.405 0.407 0.402 0.913 0.911 0.922
200 −0.6 0 0 0.055 0.053 0.060 0.518 0.502 0.525 0.946 0.941 0.945

5 0.045 0.046 0.048 0.463 0.461 0.470 0.931 0.938 0.930
10 0.049 0.049 0.049 0.472 0.482 0.475 0.970 0.965 0.966

200 0 0.5 0 0.064 0.058 0.061 0.426 0.410 0.427 0.859 0.853 0.852
5 0.055 0.055 0.049 0.378 0.376 0.384 0.846 0.851 0.849

10 0.055 0.057 0.051 0.407 0.416 0.418 0.925 0.922 0.920
200 0 −0.5 0 0.094 0.084 0.088 0.699 0.684 0.709 0.967 0.964 0.966

5 0.077 0.075 0.077 0.675 0.647 0.667 0.949 0.959 0.959
10 0.078 0.082 0.071 0.642 0.648 0.671 0.982 0.982 0.980

Fig. 2. ln(UK Industrial Production), 1957Q1–2012Q2.

occurs at 1974Q1.10 Based on our results for the US/UK real exchange rate series and the UK industrial production series, the
failure of t0(T̂B) and of t1(T̂B) to reject the null hypothesis confirms that there is a unit root in each series. The significance of
F0(T̂B) and F1(T̂B) alerts the practitioner that the specification of the trend component is not valid for either of these series.
However, we cannot ascertain the source of model mis-specification based on the significance of the F-statistics. The source

10 It has been suggested in the literature that practitioners use the mixed model specification in empirical analysis to guard against mis-specification in
the form of break, see Sen (2003). When we used model M2 for the UK industrial production series, the results did not change significantly.



48 M. Costantini, A. Sen / Computational Statistics and Data Analysis 102 (2016) 37–54

Table 6
5% Rejection frequency for F2(T̂B) with T = 100.

a1 b1 θ γ λ0

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

ρ = 1 ρ = 0.9 ρ = 0.8
0 0 0 0 0.070 0.064 0.081 0.147 0.131 0.147 0.351 0.307 0.346

5 0.048 0.048 0.044 0.088 0.077 0.091 0.248 0.206 0.221
10 0.050 0.054 0.055 0.087 0.085 0.094 0.267 0.244 0.264

5 0 0.053 0.054 0.052 0.098 0.095 0.114 0.268 0.256 0.277
5 0.051 0.052 0.055 0.107 0.095 0.106 0.279 0.262 0.296

10 0.056 0.059 0.050 0.092 0.084 0.103 0.269 0.241 0.282
10 0 0.052 0.053 0.056 0.094 0.084 0.098 0.276 0.249 0.281

5 0.052 0.048 0.054 0.100 0.099 0.110 0.286 0.266 0.291
10 0.049 0.057 0.053 0.100 0.095 0.099 0.274 0.252 0.284

0.6 0 0 0 0.071 0.061 0.072 0.123 0.103 0.127 0.208 0.189 0.223
5 0.059 0.054 0.055 0.094 0.079 0.079 0.184 0.162 0.162

10 0.063 0.057 0.050 0.095 0.089 0.096 0.255 0.225 0.234
5 0 0.056 0.058 0.062 0.088 0.092 0.096 0.177 0.168 0.189

5 0.059 0.055 0.050 0.087 0.080 0.081 0.183 0.159 0.157
10 0.045 0.037 0.028 0.072 0.056 0.060 0.175 0.149 0.145

10 0 0.056 0.055 0.051 0.097 0.083 0.089 0.215 0.194 0.226
5 0.053 0.060 0.049 0.075 0.064 0.079 0.151 0.142 0.148

10 0.053 0.059 0.046 0.094 0.092 0.086 0.248 0.222 0.254

−0.6 0 0 0 0.067 0.061 0.077 0.133 0.115 0.138 0.339 0.305 0.346
5 0.053 0.051 0.045 0.088 0.082 0.088 0.226 0.211 0.217

10 0.048 0.047 0.049 0.088 0.075 0.092 0.246 0.242 0.262
5 0 0.047 0.050 0.048 0.085 0.085 0.095 0.251 0.245 0.274

5 0.052 0.050 0.043 0.095 0.085 0.087 0.241 0.210 0.221
10 0.041 0.033 0.035 0.072 0.067 0.068 0.194 0.173 0.174

10 0 0.050 0.043 0.041 0.087 0.077 0.088 0.260 0.242 0.259
5 0.046 0.052 0.048 0.092 0.092 0.097 0.267 0.250 0.270

10 0.046 0.044 0.046 0.086 0.077 0.093 0.239 0.217 0.258

0 0.5 0 0 0.084 0.074 0.092 0.151 0.140 0.163 0.308 0.292 0.328
5 0.065 0.066 0.050 0.102 0.102 0.105 0.224 0.198 0.218

10 0.062 0.062 0.054 0.088 0.082 0.091 0.219 0.195 0.219
5 0 0.066 0.075 0.061 0.125 0.112 0.124 0.260 0.250 0.269

5 0.061 0.061 0.054 0.110 0.102 0.101 0.224 0.202 0.225
10 0.052 0.043 0.048 0.084 0.070 0.068 0.197 0.158 0.182

10 0 0.062 0.061 0.062 0.108 0.105 0.116 0.257 0.247 0.275
5 0.060 0.065 0.059 0.108 0.101 0.110 0.244 0.225 0.255

10 0.053 0.062 0.053 0.096 0.081 0.090 0.201 0.189 0.218

0 −0.5 0 0 0.268 0.253 0.268 0.459 0.432 0.454 0.692 0.686 0.712
5 0.236 0.263 0.226 0.422 0.418 0.402 0.655 0.643 0.649

10 0.267 0.304 0.257 0.461 0.473 0.449 0.711 0.701 0.704
5 0 0.218 0.241 0.221 0.389 0.407 0.399 0.674 0.659 0.681

5 0.232 0.273 0.227 0.398 0.431 0.414 0.659 0.652 0.649
10 0.247 0.290 0.231 0.426 0.433 0.409 0.662 0.642 0.639

10 0 0.205 0.245 0.204 0.371 0.396 0.390 0.651 0.652 0.669
5 0.216 0.238 0.216 0.399 0.407 0.412 0.680 0.694 0.695

10 0.272 0.319 0.260 0.464 0.483 0.461 0.709 0.705 0.698

of the model mis-specification, for instance, may result from time varying parameters in the deterministic component of
the time series.

Finally, for the UK CPI series, the mixedmodel statistic rejects both the joint null hypothesis based on F2(T̂B) and the unit
root null based on Popp’s (2008) statistic, t2(T̂B), at the 5% level, with an estimated break-date at 2008Q2. Here, we can infer
that the UK CPI series is stationary, and the practitioner can determine the correct specification of the trend component
using conventional testing methodologies developed for stationary processes.

6. Conclusions

Weuse the conventional components representation of a time series to devise unit root tests for the joint null hypothesis.
This representation allows us to preserve the interpretation of themean and time trend parameters under both the unit root
null hypothesis and the trend-break stationary alternative hypothesis. A one-time break is allowed under the unit root null
hypothesis, and so our tests guard against spurious rejection where there is in fact a break under the null hypothesis. We
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Table 7
5% Rejection frequency for F2(T̂B) with T = 200.

a1 b1 θ γ λ0

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

ρ = 1 ρ = 0.9 ρ = 0.8
0 0 0 0 0.068 0.050 0.061 0.337 0.288 0.334 0.843 0.823 0.842

5 0.049 0.042 0.044 0.260 0.210 0.212 0.731 0.652 0.684
10 0.052 0.051 0.048 0.297 0.236 0.279 0.843 0.793 0.817

5 0 0.050 0.052 0.058 0.304 0.273 0.303 0.829 0.802 0.831
5 0.052 0.049 0.051 0.299 0.266 0.290 0.843 0.817 0.838

10 0.052 0.053 0.052 0.291 0.248 0.275 0.853 0.819 0.844
10 0 0.054 0.052 0.048 0.292 0.256 0.285 0.867 0.817 0.860

5 0.051 0.051 0.048 0.320 0.278 0.301 0.861 0.821 0.855
10 0.049 0.055 0.053 0.297 0.271 0.289 0.849 0.816 0.842

0.6 0 0 0 0.069 0.045 0.067 0.255 0.212 0.243 0.617 0.544 0.606
5 0.062 0.051 0.046 0.213 0.171 0.188 0.582 0.477 0.520

10 0.058 0.049 0.049 0.257 0.214 0.243 0.770 0.693 0.740
5 0 0.058 0.053 0.054 0.236 0.203 0.224 0.607 0.569 0.605

5 0.062 0.054 0.050 0.213 0.165 0.191 0.580 0.476 0.520
10 0.046 0.042 0.036 0.211 0.157 0.178 0.679 0.578 0.625

10 0 0.056 0.054 0.051 0.241 0.200 0.244 0.726 0.672 0.705
5 0.052 0.049 0.050 0.192 0.166 0.197 0.594 0.536 0.587

10 0.052 0.055 0.047 0.274 0.217 0.239 0.773 0.700 0.738

−0.6 0 0 0 0.065 0.043 0.059 0.345 0.279 0.320 0.856 0.816 0.853
5 0.050 0.040 0.040 0.254 0.199 0.224 0.739 0.637 0.658

10 0.052 0.047 0.045 0.282 0.239 0.257 0.843 0.797 0.828
5 0 0.052 0.051 0.048 0.302 0.254 0.293 0.835 0.801 0.832

5 0.045 0.043 0.047 0.249 0.199 0.215 0.726 0.647 0.665
10 0.048 0.038 0.035 0.237 0.190 0.221 0.766 0.683 0.721

10 0 0.053 0.049 0.049 0.285 0.243 0.278 0.863 0.822 0.860
5 0.051 0.047 0.049 0.298 0.257 0.280 0.862 0.811 0.861

10 0.047 0.045 0.047 0.286 0.236 0.273 0.844 0.793 0.807

0 0.5 0 0 0.070 0.053 0.070 0.283 0.250 0.290 0.671 0.619 0.675
5 0.065 0.045 0.049 0.241 0.190 0.214 0.602 0.528 0.546

10 0.059 0.046 0.053 0.237 0.193 0.234 0.738 0.675 0.707
5 0 0.054 0.054 0.059 0.250 0.217 0.247 0.662 0.612 0.644

5 0.057 0.046 0.051 0.227 0.190 0.203 0.593 0.524 0.553
10 0.048 0.036 0.046 0.215 0.167 0.185 0.650 0.551 0.584

10 0 0.051 0.052 0.046 0.260 0.219 0.255 0.739 0.682 0.733
5 0.053 0.057 0.050 0.242 0.203 0.221 0.636 0.600 0.633

10 0.051 0.052 0.047 0.245 0.210 0.228 0.733 0.680 0.693

0 −0.5 0 0 0.164 0.135 0.158 0.603 0.564 0.598 0.907 0.894 0.914
5 0.141 0.130 0.124 0.542 0.494 0.514 0.865 0.835 0.837

10 0.148 0.162 0.143 0.545 0.525 0.537 0.903 0.882 0.889
5 0 0.135 0.142 0.137 0.563 0.541 0.555 0.906 0.895 0.904

5 0.135 0.138 0.122 0.532 0.488 0.519 0.865 0.828 0.833
10 0.140 0.143 0.119 0.540 0.522 0.506 0.867 0.826 0.840

10 0 0.126 0.130 0.121 0.534 0.508 0.543 0.926 0.905 0.927
5 0.134 0.152 0.138 0.588 0.560 0.568 0.920 0.907 0.914

10 0.143 0.154 0.141 0.563 0.524 0.556 0.902 0.874 0.890

propose a simple testing procedure for unit root and model mis-specification based on Popp’s (2008) t-statistics and our
newly proposed F-statistics. When both statistics are insignificant, we can conclude that the model is correctly specified
and that the series has a unit root. When the t-statistic is insignificant and the F-statistic is significant, we can infer that the
time series has a unit root, but the trend component of the series is mis-specified. On the other hand, if both the t-statistic
and the F-statistic are significant, the practitioner can infer that the series is stationary. In this case, the practitioner would
have to use additional conventional testing methodologies designed for stationary processes to determine the correct
specification of the trend component of the series. Therefore, our testing methodology is a ‘diagnostic test’ designed to help
detect possible mis-specification in the trend component of time series, which does not lead the practitioner to the correct
specification, but it provides valuable information regarding the suitability of the specification for subsequentmodeling and
forecasting purposes.

For each model specification and the corresponding joint null hypothesis of a unit root, we derived the limiting null
distribution of the proposed statistics, and tabulated their finite sample critical values. We evaluated the performance of
the new statistics using simulations. Our simulations indicate that the new tests maintain the size fairly well, though the
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Fig. 3. ln(UK CPI), 1990Q1–2012Q4.

Table 8
Empirical results.

Series T T̂B λ̂ k* ρ̂ ti(T̂B) Fi(T̂B) σ̂

Model M0
RER 168 1987Q1 0.39 1 0.943 −2.82 10.32*** 0.074

Model M1
ln(IP) 222 1974Q1 0.31 4 0.977 −1.49 12.13*** 0.016

Model M2
ln(CPI) 92 2008Q2 0.80 4 0.814 −4.43** 9.27** 0.004

Note: For the US/UK real exchange rate (RER), we use the finite sample critical values corresponding to T = 150 and kmax = 5 given in Table 1. For the
industrial production series, we use the finite sample critical values corresponding to T = 200 and kmax = 5 given in Table 2. For the CPI series, we use
the finite sample critical values corresponding to T = 100 and kmax = 5 given in Table 3. σ̂ is the estimated mean square error from the corresponding
regression. The critical values for Popp’s statistics (ti(T̂B), i = 0, 1, 2) are taken from Sen (2015).
*** Denote significance at the 1% level.
** Denote significance at the 5% level.
* Denote significance at the 10% level.

tests are under-sized when the intercept break magnitude is relatively large. The power of the tests increases with the
magnitude of the departure from the unit root null hypothesis as well as the sample size. We illustrated the use of our
statistics by examining the real exchange rate between the US Dollar and the UK Pound, the UK industrial production, and
the UK CPI series. Our findings indicate that the UK CPI series should be modeled as a trend stationary process with a break
in 2008Q2. In addition, while we fail to reject the unit root null hypothesis for both the real exchange rate between the
US Dollar and the UK Pound and the UK industrial production based on Popp’s (2008) statistics, we find evidence of model
mis-specification in each of these series.

In future research, we will focus on extending our testing procedure to the case of multiple structural breaks. The ability
for practitioners to assess the validity of the model will provide invaluable guidance in the empirical analysis of time series
data.
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Appendix. Mathematical proofs

All results are based on the functional weak convergence result σ−1 T−1/2 
[τ T ]

t=1 et ⇒ W (τ ) ∀ τ ∈ [0, 1] whereW (r) is
the Wiener process defined on the unit interval, and ‘‘⇒’’ denotes weak convergence. Let Y denote the vector of observed
time series, Y−1 denote the first lag vector of the time series, 1 denote a vector of ones, t denote the vector of time trend,
DUt−1 denote the vector implied by the variable DUt−1(TB),DTt−1 denote the vector implied by the variable DTt−1(TB),Dt
denote the vector implied by the variable Dt(TB), and e denote the vector of residuals. The true break-date is denoted by T 0

B ,
and the true break-fraction is denoted by λ0 where T 0

B = [λ0 T ].
We will use the property that a regression of the form Y = X1 µ̂1

+ X2 µ̂2
+ ê yields a numerically identical estimate of

µ2 as obtained from a regression of Ỹ = X̃2 µ̂2
+ êwhere Ỹ and X̃2 are projections respectively of Y and the columns of X2

on the space spanned by the columns of X1.
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Proof of Theorem 1. Consider the data generating process given by Eq. (15). For a given break-date, TB, the regressionmodel
(7) can be written as:

Y = X0(TB) µ0 + e = X1
0 (TB) µ1

0 + X2
0 (TB) µ2

0 + e, (A.1)

where X0(TB) = [1 DUt−1 Dt Y−1], X1
0 (TB) = [Dt ], X2

0 (TB) = [1 DUt−1 Y−1], µ0 = (α∗

0 δ θ ρ)′, µ1
0 = θ , and µ2

0 = (α∗

0 δ ρ)′.
Let Ỹ and X̃2

0 (TB) denote the projections of Y and X2
0 (TB) on the spanned by the vector X1

0 (TB), and consider the regression:

Ỹ = X̃2
0 (TB) µ2

0 + e. (A.2)

The F-statistic F0(TB) defined in Eq. (14) for the null hypothesis HM0
0 : α∗

0 = 0, δ = 0, ρ = 1 in regression (7) is identical
to the F-statistic for this joint null hypothesis based on regression (A.2). The null hypothesis HM0

0 based on regression (A.2)
can be expressed as R̃0 µ2

0(TB) = r̃0 where r̃0 = (0 0 1)′ and R̃0 is a 3x3 identity matrix. Therefore, the F-statistic for HM0
0

based on regression (A.2) is given by:

F0(TB) =


R̃0 µ̂2

0(TB) − r̃0
′


R̃0


X̃2
0 (TB)′X̃2

0 (TB)
−1

R̃′

0

−1 
R̃0 µ̂2

0(TB) − r̃0


3σ̃ 2
0 (TB)

, (A.3)

where µ̂2
0(TB) is the OLS estimator of µ2

0 based on regression (A.2), and σ̃ 2
0 (TB) is the mean square error from regression

(A.2). Define Ñ0 = diag[T−1/2, T−1/2, T−1
]. It follows that:

Ñ−1
0 (µ̂2

0(TB) − µ2
0) =


Ñ0 X̃2

0 (TB)′ X̃2
0 (TB) Ñ0

−1 
Ñ0X̃2

0 (TB)′e


.

Using the results: T−3/2 T
t=1 yt−1 − yTB ⇒ σ

 1
0 W (r) dr, T−3/2 T

t=TB+1 yt−1 ⇒ σ
 1
λ
W (r) dr, T−2 T

t=1 y
2
t−1 − y2TB ⇒

σ 2
 1
0 W (r)2 dr, T−1/2 T

t=1 et−eTB+1 ⇒ σW (1), T−1/2 T
t=TB+1 et ⇒ σ [W (1)−W (λ)], and T−1 T

t=1 yt−1et−yTBeTB+1 ⇒

1
2σ

2

W (1)2 − 1


, it can be easily shown that:

Ñ−1
0 (µ̂2

0(TB) − µ2
0) ⇒ Ṽ0(λ)−1 Ẽ0(λ), (A.4)

where Ṽ0(λ) and Ẽ0(λ) are defined in Theorem 1. Since R̃0 µ̂2
0(TB) − r̃0 = µ̂2

0(TB) − µ2
0, and using (A.3) and (A.4), it follows

that:

F0(TB) ⇒
Ẽ0(λ)′ Ṽ0(λ)−1 Ẽ0(λ)

3 σ 2
. (A.5)

Therefore, the distribution of F0(T̂B) follows from the limiting distribution of F0(TB) given in (A.5) and from the property that
the break-fraction estimator, T̂B/T , is a T-consistent estimator of the true break-fraction, λ0, see Harvey and Mills (2004,
page 869 and 876). �

Proof of Theorem 2. Consider the data generating process given by Eq. (17). Without loss of generality, we assume that β
is equal to zero given that, under the unit root null hypothesis, F1(TB) is invariant to the value of β . For a given break-date,
TB, the regression model (8) can be written as:

Y = X1(TB) µ1 + e = X1
1 (TB) µ1

1 + X2
1 (TB) µ2

1 + e, (A.6)

where X1(TB) = [1 t DUt−1 Dt Y−1], X1
1 (TB) = [Dt ], X2

1 (TB) = [1 t DUt−1 Y−1], µ1 = (α∗

1 β∗

1 δ θ ρ)′, µ1
1 = θ , and

µ2
1 = (α∗

1 β∗

1 δ ρ)′. Let Ỹ and X̃2
1 (TB) denote the projections of Y and X2

1 (TB) on the spanned by the vector X1
1 (TB), and

consider the regression:

Ỹ = X̃2
1 (TB) µ2

1 + e. (A.7)

The F-statistic F1(TB) defined in Eq. (14) for the null hypothesis HM1
0 : β∗

1 = 0, δ = 0, ρ = 1 in regression (8) is identical
to the F-statistic for this joint null hypothesis based on regression (A.7). The null hypothesis HM1

0 based on regression (A.7)
can be expressed as R̃1 µ2

1(TB) = r̃1 where r̃1 = (0 0 1)′ and R̃1 is a 3 × 4 matrix given by:

R̃1 =

0 1 0 0
0 0 1 0
0 0 0 1


.
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Therefore, the F-statistic for HM1
0 based on regression (A.7) is given by:

F1(TB) =


R̃1 µ̂2

1(TB) − r̃1
′


R̃1


X̃2
1 (TB)′X̃2

1 (TB)
−1

R̃′

1

−1 
R̃1 µ̂2

1(TB) − r̃1


3σ̃ 2
1 (TB)

, (A.8)

where µ̂2
1(TB) is the OLS estimator of µ2

1 based on regression (A.7), and σ̃ 2
1 (TB) is the mean square error from regression

(A.7). Define Ñ1 = diag[T−1/2, T−3/2, T−1/2, T−1
]. It follows that:

Ñ−1
1 (µ̂2

1(TB) − µ2
1) =


Ñ1 X̃2

1 (TB)′ X̃2
1 (TB) Ñ1

−1 
Ñ1X̃2

1 (TB)′e


.

Using the results: T−3/2 T
t=1 yt−1 − yTB ⇒ σ

 1
0 W (r) dr, T−5/2 T

t=1 tyt−1 − (TB + 1)yTB ⇒ σ
 1
0 rW (r) dr, T−3/2T

t=TB+1 yt−1 ⇒ σ
 1
λ
W (r) dr, T−2 T

t=1 y
2
t−1−y2TB ⇒ σ 2

 1
0 W (r)2 dr, T−1/2 T

t=1 et −eTB+1 ⇒ σW (1), T−3/2 T
t=1 tet −

(TB + 1)eTB+1 ⇒ σ

W (1) −

 1
0 W (r) dr


, T−1/2 T

t=TB+1 et ⇒ σ [W (1) − W (λ)], T−1 T
t=1 yt−1et − yTBeTB+1 ⇒

1
2σ

2

W (1)2 − 1


, T−2 T

1 t − (TB + 1) →
1
2 , T

−3 T
1 t

2
− (TB + 1)2 →

1
3 , and T−2 T

TB+2 t →
1
2 (1 − λ2), it can be

easily shown that:

Ñ−1
1 (µ̂2

1(TB) − µ2
1) ⇒ Ṽ1(λ)−1 Ẽ1(λ), (A.9)

where Ṽ1(λ) and Ẽ1(λ) are defined in Theorem 2. Since R̃1 Ñ−1
1


µ̂2

1(TB) − µ2
1


= Ñ∗−1

1


R̃1µ̂

2
1 − r̃1


, where Ñ∗

1 =

diag[T−3/2, T−1/2, T−1
], it follows that:

Ñ∗−1
1


R̃1µ̂

2
1 − r̃1


= R̃1


Ñ1 X̃2

1 (TB)′ X̃2
1 (TB) Ñ1

−1 
Ñ1X̃2

1 (TB)′e


(A.10)

⇒ R̃1 Ṽ1(λ)−1 Ẽ1(λ).

Therefore,

F1(TB) =


R̃1 µ̂2

1 − r̃1
′

Ñ∗−1
1 Ñ∗

1


R̃1


X̃2′

1 X̃2
1

−1
R̃′

1

−1

Ñ∗

1 Ñ∗−1
1


R̃1 µ̂2

1 − r̃1


3 σ̃ 2
1 (TB)

,

implies that:

F1(TB) =


R̃1Ñ−1

1


µ̂2

1(TB) − µ2
1

′

R̃1


Ñ1X̃2′

1 X̃2
1 Ñ1

−1
R̃′

1

−1 
R̃1Ñ−1

1


µ̂2

1(TB) − µ2
1


3 σ̃ 2

1 (TB)
.

Using the results in (A.9) and (A.10), we have:

F1(TB) ⇒


R̃1Ṽ1(λ)−1Ẽ1(λ)

′ 
R̃1Ṽ1(λ)−1R̃′

1

−1 
R̃1Ṽ1(λ)−1Ẽ1(λ)


3 σ 2

. (A.11)

Therefore, the distribution of F1(T̂B) follows from the limiting distribution of F1(TB) given in (A.11) and from the property
that the break-fraction estimator, T̂B/T , is a T-consistent estimator of the true break-fraction, λ0, see Harvey andMills (2004,
page 869 and 876). �

Proof of Theorem 3. Consider the data generating process given by Eq. (19). Without loss of generality, we assume that β
and γ are each equal to zero given that, under the unit root null hypothesis, F2(TB) is invariant to the value of β and γ . For
a given break-date, TB, the regression model (9) can be written as:

Y = X2(TB) µ2 + e = X1
2 (TB) µ1

2 + X2
2 (TB) µ2

2 + e, (A.12)

where X2(TB) = [1 t DUt−1 Dt DTt−1 Y−1], X1
2 (TB) = [Dt ], X2

2 (TB) = [1 t DUt−1 DTt−1 Y−1], µ2 = (α∗

2 β∗

2 κ ξ ζ ρ)′, µ1
2 =

ξ , and µ2
2 = (α∗

2 β∗

2 κ ζ ρ)′. Let Ỹ and X̃2
2 (TB) denote the projections of Y and X2

2 (TB) on the spanned by the vector X1
2 (TB),

and consider the regression:

Ỹ = X̃2
2 (TB) µ2

2 + e. (A.13)
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The F-statistic F2(TB) defined in Eq. (14) for the null hypothesis HM2
0 : β∗

2 = 0, ζ = 0, ρ = 1 in regression (9) is identical to
the F-statistic for this joint null hypothesis based on regression (A.13). The null hypothesis HM2

0 based on regression (A.13)
can be expressed as R̃2 µ2

2(TB) = r̃2 where r̃2 = (0 0 1)′ and R̃2 is a 3x5 matrix given by:

R̃2 =

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


.

Therefore, the F-statistic for HM2
0 based on regression (A.13) is given by:

F2(TB) =


R̃2 µ̂2

2(TB) − r̃2
′


R̃2


X̃2
2 (TB)′X̃2

2 (TB)
−1

R̃′

2

−1 
R̃2 µ̂2

2(TB) − r̃2


3σ̃ 2
2 (TB)

, (A.14)

where µ̂2
2(TB) is the OLS estimator of µ2

2 based on regression (A.13), and σ̃ 2
2 (TB) is the mean square error from regression

(A.13). Define Ñ2 = diag[T−1/2, T−3/2, T−1/2, T−3/2, T−1
]. It follows that:

Ñ−1
2 (µ̂2

2(TB) − µ2
2) =


Ñ2 X̃2

2 (TB)′ X̃2
2 (TB) Ñ2

−1 
Ñ2X̃2

2 (TB)′e


.

Using the results: T−3/2 T
t=1 yt−1 − yTB ⇒ σ

 1
0 W (r) dr, T−5/2 T

t=1 tyt−1 − (TB + 1)yTB ⇒ σ
 1
0 rW (r) dr, T−3/2T

t=TB+2 yt−1 ⇒ σ
 1
λ
W (r) dr, T−5/2 T

t=TB+2(t − 1 − TB)yt−1 ⇒ σ
 1
λ
(r − λ)W (r) dr, T−2 T

t=1 y
2
t−1 − y2TB ⇒

σ 2
 1
0 W (r)2 dr, T−1/2 T

t=1 et − eTB+1 ⇒ σW (1), T−3/2 T
t=1 tet − (TB + 1)eTB+1 ⇒ σ


W (1) −

 1
0 W (r) dr


, T−1/2T

t=TB+2 et ⇒ σ [W (1) − W (λ)], T−3/2 T
t=TB+2(t − 1 − TB)et ⇒ σW (1) − σλ [W (1) − W (λ)] − σ

 1
0 W (r) dr, T−1T

t=1 yt−1et − yTBeTB+1 ⇒
1
2σ

2

W (1)2 − 1


, T−2 T

1 t − (TB + 1) →
1
2 , T

−3 T
1 t

2
− (TB + 1)2 →

1
3 , T

−2 T
TB+2 t →

1
2 (1 − λ2), T−2 T

TB+2(t − 1 − TB) →
1
2 (1 − λ2) − λ(1 − λ), T−3 T

TB+2 t(t − 1 − TB) →
1
6λ

3
−

1
2λ + 1, and

T−3 T
TB+2(t − 1 − TB)2 →

1
3 (1 − λ)3, it can be easily shown that:

Ñ−1
2 (µ̂2

2(TB) − µ2
2) ⇒ Ṽ2(λ)−1 Ẽ2(λ), (A.15)

where Ṽ2 and Ẽ2 are defined in Theorem 3. Since R̃2 Ñ−1
2


µ̂2

2(TB) − µ2
2


= Ñ∗−1

2


R̃2µ̂

2
2 − r̃2


, where Ñ∗

2 =

diag[T−3/2, T−3/2, T−1
], it follows that:

Ñ∗−1
2


R̃2µ̂

2
2 − r̃2


= R̃2


Ñ2 X̃2

2 (TB)′ X̃2
2 (TB) Ñ2

−1 
Ñ2X̃2

2 (TB)′e


(A.16)

⇒ R̃2 Ṽ2(λ)−1 Ẽ2(λ).

Therefore,

F2(TB) =


R̃2 µ̂2

2 − r̃2
′

Ñ∗−1
2 Ñ∗

2


R̃2


X̃2′

2 X̃2
2

−1
R̃′

2

−1

Ñ∗

2 Ñ∗−1
2


R̃2 µ̂2

2 − r̃2


3 σ̃ 2
2 (TB)

,

implies that:

F2(TB) =


R̃2Ñ−1

2


µ̂2

2(TB) − µ2
2

′

R̃2


Ñ2X̃2′

2 X̃2
2 Ñ2

−1
R̃′

2

−1 
R̃2Ñ−1

2


µ̂2

2(TB) − µ2
2


3 σ̃ 2

2 (TB)
.

Using the results in (A.15) and (A.16), we have:

F2(TB) ⇒


R̃2Ṽ2(λ)−1Ẽ2(λ)

′ 
R̃2Ṽ2(λ)−1R̃′

2

−1 
R̃2Ṽ2(λ)−1Ẽ2(λ)


3 σ 2

. (A.17)

Therefore, the distribution of F2(T̂B) follows from the limiting distribution of F2(TB) given in (A.17) and from the property
that the break-fraction estimator, T̂B/T , is a T-consistent estimator of the true break-fraction, λ0, see Harvey andMills (2004,
page 869 and 876). �
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