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Abstract - This work introduces the concept of genetic folding/programming combination to 

develop a standalone optimisation tool and the developed algorithm is tested with four 

different benchmark functions. Most GP used in circuit evolution interface two software 

packages but this work only Matlab is used which reduces the time used for transferring the 

simulation between the two platforms. To enhance testing of the algorithm and automatic 

Netlist creation, the expression is extracted with the aid of genetic folding. The 

automatically simulated Netlist is fed to modified symbolic circuit analysis in Matlab that 

translate it to matrices to enhance frequency response. The frequency response is then 

compared to the set frequency response and the RMS difference gives the error which 

controls the programme towards the desired solution. One circuit is tested and the 

algorithm successfully evolved the set frequency response. 
 

Keywords - Combined Genetic Folding and Genetic Programming algorithm, Automatic Netlist 
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1 Introduction 

In artificial intelligence, genetic programming (GP) is an evolutionary algorithm (EA) - 

based methodology motivated by biological evolution to search computer programmes that 

execute a user-defined task. Fundamentally, GP is a set of algorithms and a fitness function 

to compute how well a computer has implemented a task. GP is a domain-independent, 

systematic method for getting computers to resolve problems automatically, beginning from 

what is required to be done as a high-level statement. Using inspirations from biological 

evolution, GP begins from a randomly generated computer programmes, and gradually 

refines them through procedures of sexual recombination and mutation, until solutions are 

obtained. All these processes are carried out without the user having to specify the form or 
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know or structure of the solutions in advance. 

A basic introduction to GP that specify how you can create: an individual using terminals 

and functions, random population using full, grow and ramped-half-and-half is in [1]. The 

paper also described GP operators and how to evaluate fitness. GP Matlab toolbox that 

illustrates how it can be represented using Matlab is in [2, 3]. GP algorithms have been 

applied in different areas: Balasubramaniam and Kumar have used GP as a novel approach 

to finding a solution to matrix Riccati differential equation for a non-linear singular system. 

The goal is to reduce calculation effort and results presented show that GP approach is 

better regarding accuracy as compared to the traditional Runge-Kutta method [4]. Other 

applications include: GP application in the area of software repairs are in [5, 6], while a 

fully automated technique to locate and repair bugs in software is illustrated [5]. Also 

solving iterated functions using GP is in [7]. GP- based feature optimiser integration with 

patter recognition and fisher criterion methods to non-intrusive load supervising for load 

identification is illustrated [8]. 

GP has been applied to automatically synthesise similar human designs in some fields. 

These include: analogue electrical circuit, antennas, mechanical systems, controllers, 

quantum computing circuits, optical lens system, bioinformatics, robotics, sorting networks, 

assembly code generation, scheduling and software repair. Others are: communication 

protocols, empirical model discovery, reverse engineering and symbolic regression. 

According to the authors, despite differences in the techniques and representations, results 

presented shared common features [9, 10]. Hou et al. [11] presented GP based on the tree 

representation for a passive filter synthesis and the results presented show that their method 

can generate both economical and compliant passive filter circuits. The paper also specifies 

how the authors intended to add more design objectives such as component value 

sensitivity and group delay variation to be considered in their future work.  Chang et al. 

applied the same technique as that of Hou et al. and claimed that their technique is better 

with regard to its efficiency compared to traditional technique and faster than previous 

work [12]. 

Evolvable Hardware (EH) is a research field in EA used in electronic circuit simulation 

with no manual engineering design. It is a combination of autonomous system, fault 

tolerance, artificial intelligence and reconfigurable hardware. Some of EH’s applications in 

electronic circuit simulations are discussed by different researchers [13-20]. Doboli et al. 

[21] used very high speed integrated circuit hardware description language-analogue mixed 
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signal (VHDL-AMS) for creating high-level analogue and mixed signal. In the work, many 

constraints are introduced to the VHDL-AMS instructions and case studies are illustrated. 

An evolvable hardware simulation which automatically designs analogue circuits using 

parallel GA was developed by Lohn et al. [22]. The algorithm evolves component values, 

circuit topology and circuit size. Vural et al. [23] propose three EAs: harmony search (HS), 

DE and ABCA to optimise CMOS amplifier area. Results presented to demonstrate that the 

techniques meet specifications, accommodates required functionalities and the design 

objective.  

Other applications of GP as EH in addition to those discussed in Section 2.4.2 include:  The 

use of current – flow analysis and GP for the invention of CMOS amplifier is presented in 

[24]; the work illustrates how current-flow evaluation corrects and screens circuits utilising 

topology-independent design rules. The approach is aimed to show how connections are 

linked between transistors. Also, a tree representation method in circuit design is illustrated 

by Senn et al. [25]. The authors combined GP and two-port theory for analogue circuit 

design. The presentation of the circuit as the two-port network enhanced the encoding and 

evaluating of the circuit’s structure. The approach is also applied to active (transistor) and 

passive linear circuits. Moreover, GP use for the automatic design of analogue electronic 

circuits by Koza et al. [26] that has transistor as the active filter is presented as part of 

examples. It uses single technique by applying GP for modelling both circuit topology and 

sizing. Also, Peng et al. [27] used GP and bond graph (GPBG) in electronic circuit analysis 

with active components that is an extension of their previous research on passive 

component design. The analysis covers three models of a transistor, and one model of an op 

amp are implemented and analysed as two-port BG components. It also uses GP to create 

BG defining parameters and component topology in the design of the active filter.  

2 Methodology 

This work demonstrates how concept of genetic folding (GF) algorithms and GP are 

combined and used to develop a standalone optimisation tool and how the developed 

algorithm is tested with four different benchmark functions. The flowchart shown in Figure 

1 summarises the GF and GP combined algorithm for circuit evolution and benchmark 

testing procedure used in this work. A randomly generated number is used in the start 

generation to generate population which is calculated to ascertain how well each 

individually evolving expression is performing with regard to its individual objective 

function. If the evolving expression satisfies the objective with zero error, the iteration with 
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zero error is taken as solution else a generation continues. The evolving expression from the 

generation is extracted with the aid of GF and substituted with specified range of values of 

X and Y. The same values are being substituted into an original expressions and a RMS 

difference is used as an error. The procedure continues until a zero error is obtained or the 

objective function is satisfied. Detailed processes involved are explained in the flowchart 

shown in Figure 1. 

 

Figure 1: The GF and GP algorithm for (a) Benchmark testing. (b) Circuit evolution. 

2.1 Genetic Programming 

GP is the newest concept in the research area of evolutionary computation (EC). It was 

(b) (a) 
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created by John Koza and originated from the GA. GP differ from the genetic algorithm 

(GA) in that, GP is represented by variable length structures containing whatever elements 

are needed to solve the problem, whereas GA is represented by a fixed length of numerical 

strings. The tree structure (TS) in GP population is used to create neural networks, 

determine designs for analogue electric circuits and parallelise computer programmes. The 

TS is great because it can produce solutions of complexity and arbitrary size, as opposed to 

GA with fixed-length. GP has been used successfully in a different number of applications: 

arts and entertainment, biology and bio-information, medicine, time series prediction, 

control, modelling and regression image and signal processing. In GP, a population is 

randomly created and each individual in the population is evaluated to ascertain its fitness 

that serves as selection criteria. The best individual is selected and reproduced, mutated or 

crossover with other individuals to produce new individuals for the next generation [9, 10, 

28-30].  

In preparation for implementing GP according to Kennedy and Eberhart [31], five steps are 

involved: 

1. State the function set  

2. State the terminal set. 

3. State the fitness measure. 

4. Select the system control parameters. 

5. State the terminal conditions. 

The function set is limited by programming language used to run the GP. The 

function set includes mathematical functions (cos, sin, tan, exp, etc.), arithmetic operators 

(+, -, x, #, /, etc.), Boolean operators (AND, OR, NOT, NOR, etc.). The terminal sets 

composed of variables and constants; for example, in circuit evolution, it comprises of 

resistors, capacitor, inductors, transistor, diode, op-amps, etc. A fitness measure is often 

chosen to be inversely proportional to an error produced by programme output or it may be 

the score of programme achieves in as regard objective function. The two major control 

parameters are the maximum number of generations and population size. Others parameters 

used are crossover probability, reproduction probability and mutation. The termination 

conditions may be the maximum number of generation or if the objective function is 

achieved. 
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GP analysis is centred on how the combined GF and GP algorithm is developed and 

represented for the benchmark testing. The same approach is applied for all benchmark 

testing; the same parameters are used except variation in Length of parameters and length 

of the chromosome that is being determined by the length of a TS or a function to be tested. 

For this case study, benchmark testing expression 1 (i.e. equation 2) in Section 4.1 is used 

for an illustration. The illustration is based on the following subheadings presented after 

summarising the GP algorithm: 

The GP algorithm, according to Koza [28], is based on the three steps: 

1. Generate a random population composed of the original function and termination criteria 

for the problem. 

2. Perform the following sub-steps iteratively until the termination criteria are reached: 

3. Each programme in the population is executed such that a fitness measure that specifies 

how well the problem is solved is clearly formulated. 

4. New population is created by selecting individual(s) with probability based on fitness 

and then these operations are applied: 

(i) Reproduction: Copy existing individual to the new population. 

              (ii) Crossover: Two individuals are created for the new population by randomly 

recombining chosen parts of two existing individuals. 

5. The single best individual in the population produced while the run is taken as the result.  

2.1.1 Initialisation of Parameters 

The following elements are initialised: Length of parameters = 63, population size = 100, 

maximum number of generation = 500, length of chromosome = Length of parameters 

multiply by bit group (63 × 3 = 189), mutation = 0.10 and crossover = 0.90. These are the 

settings that give the best result after several trials. The programme finds the required 

solution to a given problem whenever it has zero error. The population is randomly 

generated after parameters initialisation of a size equal to length of the chromosome 

multiply by the population size. 
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2.1.2 Decoding 

 The string is coded into +, ×, -, 3, 4, Y, X and 7. In this case, a chromosome is divided into 

a bit group of three, and each is converted to its decimal equivalent. The decimal equivalent 

is interpreted as: 

• ‘0’ represents plus 

• ‘1’ represents multiplication 

• ‘2’ represents minus 

• ‘3’ represents 3 

• ‘4’ represents 4 

• ‘5’ represents Y 

• ‘6’ represents X 

• ‘7’ represents 7 

2.1.3 Creation 

A tree is randomly generated using an operands or terminals (the terminals in this case 3, 4, 

Y, X and 7) and operators (+, × and -) defined in Section 2.1.2 above. Beginning with many 

trees of different sizes and shapes is good. A tree is generated applying a Grow or a Full 

method: 

• Grow – path lengths in TS vary up to a maximum length. 

• Full – all branches in TS must reach its maximum depth. 

• Ramp half – and - half method – trees of varying depths from a minimum to a 

maximum depth. Half of the tree is initialised with full and the other with grow. The 

ramp half - and – half is used. 

2.1.4 Mutation 

Pick a mutation reference point in one parent and swap its subtree with another randomly 

generated tree. In this research, the mutation rate of 0.1 is used. 

2.1.5 Crossover 

 Pick crossover reference points in both parents and then exchange the subtrees. An 
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offspring will be varying even if the parents are the same. The crossover rate of 0.9 is used. 

A roulette wheel method is used to select two individuals from the present population, and 

the ten randomly selected subtrees of the parents are swapped to create two offspring. 

2.2 Genetic Folding 

The GF is a class of EA based on numbers of genes structurally organised in order of linear 

numbers separated by dots [32]. GF is one of the classes of EA based on a generic meta-

heuristic optimization technique. The main aspect of the GF algorithm is a population-

based methodology motivated by biological evolution. GF imitates the Ribo Nucleic Acid 

(RNA) secondary structure folding procedure of the complementary bases on itself.   In this 

research, the GF is used to show how elements are structurally linked from beginning to 

end, so that the expression can be extracted and substituted with respective values of X and 

Y for benchmark testing or extracted to create an automatic Netlist for circuit evolution.  

The GF representation of the GP TS of Figure 11 (Figure 11 is used because it is a desired 

tree structure for equation 2) is shown in Table 1  

Table 1: The GF representation for benchmark testing. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

+ + + × × × - X × X × Y Y 7 × 

2.3 4.5 6.7 8.9 10.11 12.13 14.15 0.8 18.19 0.10 22.23 0.12 0.13 0.14 0.15 

 

18 19 22 23 30 31 36 37 38 39 46 47 

× × 3 × X 4 X Y X Y X Y 

36.37 38.39 0.22 46.47 0.30 0.31 0.36 0.37 0.38 0.39 0.46 0.47 

GF is best understood with the following points: 

1. The arrangement of the chromosome comprises of float string in the gene and the 

location of the gene.  

2. The gene structure is left child (LC) side separated by dot and right child (RC) side. 
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3. The dot stands for and. 

4. The operator that has two operands is with LC and RC. 

5. The operator that has one operand is with LC and 0 in the RC. 

6. The terminal has 0 in LC and value in the RC. 

2.3 Specifications of the Objective Function and Hardware Requirements 

Detail of software environment is as: Matlab version: 8.0.0.783 (R2012b), operating 

system: Microsoft Windows 7. Others are: RAM: 12 GB, system rating: 64-bit operating 

system and processor: Intel (R) core (TM) I7-2600 CPU @ 3.40 GHz. X is given a range of 

value from -10 to 10 with an increment of 1 whereas Y is given a range value from -2 to 2 

with an increment of 0.2. This information is used to generate matrices of size 21 by 21 for 

both an original and an evolving expression. The matrices are reshaped to size 1 by 441 and 

the RMS difference between the two matrices (the original and the evolving expression 

matrices) give the error. Mathematically: 

• U is the reshaped matrix of size 1 by 441 

• V  is the reshaped matrix of size 1 by 441 

)( VURMSW −=         (1) 

where W is the error, U is the original expression, and V is the GP evolving expression, the 

error controls the algorithm toward the required solution. The algorithm produces optimal 

solution when the error is zero. 

4 Algorithm Benchmark Testing on Mathematical Functions 

To test for efficiency, validation and reliability of optimisation algorithm are often 

performed using a test function or benchmark. Test function is vital to compare, validate 

and compare the functioning of optimisation algorithms, specifically newly developed ones 

[33].  For a new GP algorithm developed, it is important to validate its performance by 

using existing set of benchmarks. The basic requirements on a benchmark according to 

Feldt et al. [34] are: 

• Validity:  mistakes that invalidate the expected output should be avoided, 

• Comparability: findings should be compared to others researchers findings. 
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• Reproducibility: experiments and problems should be well documented so that other 

researchers can reproduce the same solutions to a given problem.  

4.1 Benchmark Testing Expression 1 

Z = X
3
Y

2
+ 3X

2
Y +Y

2
− 4X + 7    (2)  

Both X and Y is given a range of values from -50 to 50 with an interval of 1and a three-

dimensional plot is represented after each iteration TS representation. The objective 

function specification is described in Section 4. The GP algorithm evolved an expression 

with 593.28 error in 1
st
 iteration and the GP TS is shown in Figure 2, its three-dimensional 

plot is represented in Figure 3. 

 

Figure 2: 1st iteration GP evolved TS for expression in equation 2 with 593.28 errors. 

 

Simplification of the above TS gives; 

Z = 7(4 × Y) × (X × Y) + (4 +Y) × (Y × X)3+ 3(4 − 4) +Y − 4(X × X)) 

Z = 28XY
2

+12XY + 3XY
2

+Y − 4X
2
 

Z = 31XY
2

+12XY +Y − 4X
2
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Figure 3: Three-dimensional plots for expression in equation 2 for 1st iteration with 593.28 

error. 

The GP algorithm also evolved another expression with 83.72 errors in the 20
th

 iteration 

and the GP TS is in Figure 4, its three-dimensional plot is represented in Figure 5. 

 

Figure 4: 20th iteration GP evolved TS for expression in equation 2 with 83.72 errors. 
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Evaluation of the above TS gives; 

23 6714))(2()()( YYYXXXYYXYXXZ −+++−+×××=  

7614 223234
+−+++−= YYXYYXXYZ  

 

Figure 5: Three-dimensional plots for expression in equation 2 for the 20th iteration with 83.72 

errors. 

The GP algorithm also evolved different expression in the 41
st
 iteration with 3.63 errors and 

the GP TS is in Figure 6, its three-dimensional plot is represented in Figure 7. 

 

Figure 6: 41st iteration GP evolved TS for expression in equation 2 with 3.63 errors. 
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Its mathematical expressions are of form. 

Z = X(X × Y ) × (X × Y ) +YX(3X) + Y (Y + 7) + 7 − 4(X + Y )  

Z = X
3
Y

2
+ 3X

2
Y +Y

2
+ 3Y − 4X + 7 
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Figure 7: Three-dimensional plots for expression in equation 2 for the 41st iteration with 3.63 

errors. 

The GP algorithm finally evolved the desired expression with optimal solution in the 52
nd

 

iteration with zero errors and the GP TS is in Figure 8, its three-dimensional plot that is the 

same as that of original expression is represented in Figure 9 and the plot of errors against 

generations is shown in Figure 10. 
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Figure 8: 52nd iteration GP evolved TS for expression in equation 2 with zero error. 

Critical analysis of the evolved TS of Figure 8 gives the expression simplified bellow: 

Z = X(X × Y) × (X × Y) + X(3) × (X × Y ) + (Y × Y ) + 7 − (X × 4))  

Z = X(X
2
Y

2) + 3X(XY) +Y
2

+ 7 − 4X  = Z = X
3
Y

2
+ 3X

2
Y +Y

2
− 4X + 7 

From the investigation of the TS or transforming the TS into equation, we can deduce that 

the algorithm is efficient because it has successfully evolved the original equation. 
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Figure 9: Three-dimensional plots for expression in equation 2 for the 52nd iteration with zero 

error and the same as original circuit. 
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Figure 10: Plot of errors against generations for expression in equation 2. 

4.2 Benchmark Testing Expression 2 

Y = X
4

+ 3X
3

+ 4X
2

+ 5X + 6      

 (3) 

The objective function specification is similar to that formed in Section 4.0 The GP 

algorithm evolved the desired expression with optimal solution in the 65
th

 iteration with 

zero errors and the GP TS of Figure 11. X is given a range of values from -10 to 10 with an 

interval of 1 and the plot is represented in Figure 12, and the plot of errors against 

generations is shown in Figure 13. 

 

Figure 11: 65th iteration GP evolved TS for expression in equation 3 with zero error. 

Careful analysis of the evolved TS of Figure 11 produces the expression simplified bellow: 
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Y = ((X × X) × (X × X)) + ((X × X) × (X × 3)) + ((X × X) × (5 −1)) + ((X × 5) + (7 −1))
 

Y = (X
2

× X
2) + (X

2
× (3X))+ (X

2
× 4) +5X +6 

 Y = X
4

+ 3X
3

+ 4X
2

+ 5X + 6 

From the above examination of the TS or transforming the TS into the equation, we can 

conclude that the algorithm is efficient because it has successfully evolved the original 

equation. 
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Figure 12: Plot of Y against X for expression in equation 3 with zero error. 

 

 

Figure 13: Plot of errors against generations for expression in equation 3. 
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4.3 Benchmark Testing Expression 3 

Y = X
4

− 2X
2

+1        (4) 

The objective function specification is similar to that formed in Section 4.0 The GP 

algorithm evolved the desired expression with optimal solution in the 30
th

 iteration with 

zero errors and the GP TS of Figure 14. X is given a range of values from -10 to 10 with an 

interval of 1. The plot is represented in Figure 15 and the plot of errors against generations 

is shown in Figure 16. 

 

Figure 14: 30th iteration GP evolved TS for expression in equation 4 with zero error. 

Critical analysis of the evolved TS of Figure 14 gives the expression simplified bellow: 

Y =1+ (X
2

× X
2) +1− X

2
− (X

2
+1)  = Y = X

4
− 2X

2
+1 

From the investigation of the TS or transforming the TS into equation, we can deduce that 

the algorithm is efficient because it has successfully evolved the original equation. 
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Figure 15: Plot of Y against X for expression in equation 5.4 with zero error. 
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Figure 16: Plot of errors against generations for expression in equation 5.4. 

4.4 Benchmark Testing Expression 4 

422937 234
+++−= XXXXY        (5) 

The objective function specification is similar to that formed in Section 4.0 The GP 

algorithm evolved the desired expression with optimal solution in the 86
th

 iteration with 

zero errors and the GP TS of Figure 17. X is given a range of values from -10 to 10 with the 

interval of 1. The plot is represented in Figure 18 and the plot of errors against generations 

is shown in Figure 19.  

 

Figure 17: 86th iteration GP evolved TS for expression in equation 5 with zero error. 
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Careful analysis of the evolved TS of Figure 17 gives the expression simplified bellow: 

))7()6(())()8(()7()( 222
+×+++×++×−×= XXXXXXXXXY  

)4267()88(7 22234
++++++++−= XXXXXXXXXY  

422937 234
+++−= XXXXY  

From the examination of the TS or transforming the TS into the equation, we can deduce 

that the algorithm is efficient because it has successfully evolved the original equation. 
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x 10
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X-Axis

Y-
Ax
is
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Figure 18: Plot of Y against X for expression in equation 5 with zero error. 

 

Figure 19: Plot of errors against generations for expression in equation 5. 

 



Ogri J. Ushie et al.: Genetic Folding/Programming Toolbox: Analogue Circuit Design Case Study  

 

 59 

5 Case Study: Active filter evolution 

To evaluation how well evolving circuit has performed in the population with regard to the 

desired circuit, evolving circuits are extracted with the aid of GF and converted into a 

symbolic Netlist. Variable are represented in Matlab programme as single variable as 

described in Section 2.1.2 and later encoded again to individual element types. The same 

component type is encoded with unique subscripts to distinguish them if there are more 

than one element type in the same circuit. The encoding is made symbolically. Using 

resistor as one component type for illustration, all resistors are labelled Y. Supposing there 

are four resistors (4Y), there are being substituted by [‘a-d’] so that if an element is chosen 

and it is ‘a’, it is labelled R1, if another element is chosen and it is ‘b’, it is labelled R2, and 

so on. The evolving circuits in the form of TS are described thus: an operand terminates a 

branch (op-amp, inductor, capacitor and resistor) whereas an operator (parallel or series 

part) continues the TS. The TS is interpreted from top to bottom and from left to right. The 

branches that proceed after the operand are swapped with ‘0’. Likewise, the branches that 

proceed after the ‘0’ are swapped with ‘0’, so that all the branches that proceed after the 

operands are swapped with ‘0’ up to the maximum length of TS. All the ‘0’ elements are 

then removed to leave the remainder evolving circuit. 

The stack separation evaluation technique is used to rearrange the GP evolved elements as 

it is connected. The series sets are numbered from 0 to the highest number, whereas the 

parallel sets are all numbered 0 since all are grounded apart from the special cases 

connected between nodes. The components labels are distinguished by subscript from 1 to 

the last element, for example, 4 resistors in a circuit are labelled as R1 R2 R3 R4. The Netlist 

formation is thus: if an element is picked; it is between a 1
st
 node number and a 2

nd
 node 

number. It is vital to note that, the series components are always connected to the next node 

number (in this case) that is not zero. For instance, the extract from the evolving circuit of 

Figure 24 is as follow: 

+V+R|C+Z+R|C+R|C+Z+R|C+R|C+Z     (6) 

In equation (6), Z stands for op-amp and replacing the values of parallel and series part into 

equation (6) form equation (7) as: 

0V1R0C2Z3R|C4R0C5Z6R|C7R0C8Z     (7) 

The second and the fourth capacitors are assigned with different letters and programmed in 

a special way because they are repeated in a regular pattern which makes it easy. The 
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symbolic Netlist is formed thus: It starts with the element name, followed by node1, node2 

and followed by its component value. If a circuit has op-amp as component(s), Netlist starts 

with it and number it from first to the last before other components follow. The formation 

continues thus: op-amp name, followed by its output node number, inverting node number 

and non-inverting node number 

• OAmp1 3 2 3 

• OAmp2 6 5 6 

• OAmp3 9 8 9 

• V 0 1 component value 

• R1 1 2 component value 

• R2 3 4 component value 

• R3 4 5 component value 

• R4 6 7 component value 

• R5 7 8 component value 

• C1 0 2 component value 

• C2 4 6 component value 

• C3 0 5 component value 

• C4 7 9 component value 

• C5 0 8 component value 

Gielen and Sansen [35] demonstrated how symbolic simulation is very useful when 

creating a large part of analytical prototype automatically. In this section, the modified 

symbolic circuit analysis in Matlab (MSCAM) discussed in detail in [36]. It uses Netlist 

automatically generated from simulation described in Section 5 to transform it to symbolic 

matrices. The symbolic matrices are then substituted with their real values (using the eval 

command in Matlab) to acquire frequency response.  It is then compared with the specified 

frequency response set in the objective function. The process continues till the set 

frequency is acquired.  

6 Circuit Simulation  

The GP evolved desired circuit TS is shown in Figure 20, whereas its equivalent circuit is 

shown in Figure 21. It takes twenty minutes to evolve the circuit and ten iterations. The 

MSCAM frequency response of the evolved circuit is shown in red and PSpice simulation 

of the original circuit is indicated with black colour as indicated in Figure 22. The GP 
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algorithm successfully evolved the circuit with feedback loop (that is repeated in regular 

pattern) just with little modifications in the code. It is easy to modify algorithm of existing 

circuit for another compared to human method that the whole process has to start over. The 

MSCAM original circuit specifications with error of 5.1093E-7 and a gain of 1.  

 

Figure 20: (a) GP evolved TS for the active low-pass filter with feedback and (b) U 

representation. 
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Figure 21: GP evolved circuit for the active low-pass filter with feedback [37]. 
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Figure 22: Frequency response for GP evolved circuit (Red), PSpice simulation of GP evolved 

circuit (black), PSpice simulation of reduced GP evolved circuit (blue) and reduced GP evolved 

circuit with PSO (Green) for the active low-pass filter with feedback. 

8 Conclusions 

This paper introduces GF concept to GP algorithm and used it developed a Matlab toolbox 

that is tested with four different benchmark functions. The algorithm is efficient because it 

successfully evolved the original benchmark equations. Also the algorithm was tested on 

one circuit and it successfully evolved the circuit. 
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