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A quality-based nonlinear fault diagnosis framework
focusing on industrial multimode batch processes

Abstract—This paper proposes a framework for quality-based
fault detection and diagnosis for nonlinear batch processes
with multimode operating environment. The framework seeks
to address (1) the mode partition problem using a kernel
fuzzy C-clustering method, and the optimal cluster number
will be guaranteed by a between-within proportion index; (2)
the diagnosis problem using a contribution rate method based
on an improved kernel partial least squares model, by which
better detection and diagnosis performances are provided; (3)
the classification of online measurements using a hybrid kernel
partial least squares regression and the Bayes inference theory,
where the new coming measurement can be correctly assigned
to its constituent mode. The whole framework is developed for
batch processes, and applied to the hot strip mill rolling process.
It is shown using the real industrial data that for faults affecting
the thickness and flatness of the strip steel in this process, the
detection and diagnosis abilities of the present methods are better
compared with the existing methods.

Index Terms—Multimode, fault diagnosis, kernel PLS, contri-
bution rate, batch hot strip mill

NOMENCLATURE

n Total number of data.
Ni Number of data within theith mode.
c Number of cluster.

z, Z Process measurement vector, matrix.
y, Y Quality data vector, matrix.

ŷ Prediction of the quality variable.
¯̄X Multibatch process and quality data.

x, X Combined process and quality vector, matrix.
φ(.) Nonlinear projection function.
φ, Φ high-dimensional projected vector, matrix.
Kg Gaussian kernel function.
k Kernel vector.

Kraw Raw kernel matrix.
K Normalized kernel matrix.
w Weight vector in KPLS.
t Score vector ofz.
T Score matrix ofZ.
u Score vector ofy.
U Score matrix ofY.
U Weight matrix in clustering methods.
q Loading vector ofy.
Q Loading matrix ofY.
Im m-dimensional identity matrix.
1m m-dimensional unity matrix.
p(.) Probability of a stochastic event.
ψy Regression matrix.

I. I NTRODUCTION

W ITH the rapid development of the scale, degree of
automation and integration of industrial processes,

challenges have emerged for practitioners with problems
of frequently switched operating points, different operating
batches and strong nonlinearities [1]. The complexity also
makes it even harder to guarantee the product quality, the most
core profitable indicator for an industrial process. For example
in the hot strip mill rolling (HSMR) process, the increasing
demands on product quality subject to the requirement on
different grades of products and lower energy consumption
have made it so complicated that it is involving different kinds
of challenges in optimal control and process monitoring areas.
Table I shows an overview of products in an HSMR plant,
where it can be found the most concerned quality indices by
the plant engineers: the final thickness and width. Different
from the qualitative modelling of product quality [2], [3],this
work use the quantitative one, which is famously quantified as
quality variables. According to different uses, grades of strip
steels are different and the annual output of them are also
different. It is known that different grades of steel underly that
the rolling system works in different operating modes, and also
well-known that the strip steel are produced coil by coil with
each coil representing a batch. Noted that the multimode and
multibatch properties in HSMR process are slightly different
from those in chemical processes [4]. Another handicap for
ensuring the product quality is the strong nonlinearity in
HSMR, in this case the traditional linear theory will not be
sensible. In recent years, to solve such kinds of problem,
quality-related fault detection and diagnosis (QFDD) methods
have been raised and proved to be useful for quality control
[1], [5], [6], [7], [8].

In general, QFDD methods can be divided into model-based
ones and data-driven ones. Of them, the later developed using
the process measurements has drawn more attentions over
past decades [9], [10]. Its advantage is evident when dealing
with some large-scale processes, as the first-principles models
can not accurately identifiable for this kind of process. The
commonly used data-driven methods are multivariate statistics
methods [11], [12], subspace aided data-driven methods [10],
machine-learning and signal process-based methods [7],etc.
However, for the nonlinear processes with multiple operating
modes, the traditional approaches, e.g. principal component
analysis (PCA) and partial least squares (PLS) that are for
linear steady state processes cannot be usable. For these
processes, Zhaoet al.used multiway PCA and PLS approaches
[13], [14]. In [14], the multiway PLS was developed using the
angles between different operating models, where the angle
measures the similarities of two PLS models. In [15], Hwang
and Han proposed a hierarchical clustering-based super PCA
model for realtime use. Doan and Srinivasan [16] resolved this
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TABLE I
DIFFERENT TYPES OF STRIP STEEL PRODUCTS

Steel grade Usage description Thickness (mm) Width (mm) Annual Output (×106 kg) Coil (Batch)
SS330–SS540 General carbon steel 1.21–12.7 900-1550 700 800
SPHC–SPHE High-quality carbon steel 1.21–12.7 900–1550 700 600
SAPH310–SAPH400 Alloy steel 1.51–12.7 1050–1550 700 1000
SPA–H Corrosion resistant steel 1.51–12.7 900–1550 350 500
X42–X60 Oil pipeline steel 5.1–12.7 1050–1550 700 300
Others — 1.21–15.9 900–1550 350 200

problem by dividing the continuous multimode processes into
different stages, and built models for each stage. Since then,
a large number of stage division approaches have emerged
to promote the development of multimode QFDD. Yuet al.
combined the finite Gaussian mixture models (FGMM) and
Bayesian inference (BI) technique in [4], [17] to identify
the constituent modes. By FGMM method, different process
modes can be represented using different Gaussian distribution
with unique means and covariances. The method was intro-
duced to dynamic processes by Haghaniet al. [18]. The above
mentioned methods are all linear, thus, cannot well addressthe
nonlinear multimode problem. To divide the nonlinear data,
this paper would like to introduce a kernel fuzzy C-clustering
method (KFCM) [19]. Furthermore, traditional approaches
have not well understood how to obtain the optimal mode
number. This is still an open topic, but can significantly
affect the QFDD results. Thus, in this paper, a validity index
called Between-Within Proportion (BWP) which considers the
geometric property of the dataset will be introduced to solve
this problem [20].

The QFDD methods based on kernel PCA (KPCA) [21] and
kernel PLS (KPLS) [22] models were widely applied, in which
original process data are transformed into a feature space via
a nonlinear mapping, and then a linear model is built in the
feature space. With the aid of the kernel trick, the explicit
nonlinear mapping function can be avoided. Recently, such
kind of models have been extended to batch processes for
QFDD [23], [24], [25]. However, KPLS has drawbacks such
as low fault detection rate (FDR) and high false alarm rate
(FAR) [5]. Thus, some improvements should be derived based
on KPLS model to let it more efficient.

Once a quality-related fault is successfully detected, the
root cause should be identified as soon as possible [7]. Many
fault diagnosis approaches were developed, e.g. discriminant
analysis [26], pattern matching using dissimilarity factors [27],
contribution plot [28]etc. Of them, contribution plot method
was broadly used, as it is free ofa prior process knowledge
[29]. Considering KPLS model with the kernel function in-
volved, a contribution rate plot approach was proposed by
Penget al. [5] It was also proved that this approach can be
promoted to any kernel methods [5].

Therefore, objectives of this paper are:

• to cluster the nonlinear multimode data using KFCM-
based method, and optimize the mode number using a
new BWP index,

• to develop an improved KPLS model and contribution
rate-based diagnosis for nonlinear QFDD,

• to realize the online classification based on KPLS regres-

sion and Bayes inference, and
• to apply the proposed approaches to a real HSMR process

and compare the performance between the present and the
existing ones.

Two probability distributions are used in this work. Let
χ2(l) be theχ2-distribution withl degrees of freedom;F (a, b)
be theF -distribution with a and b degrees of freedom. Let
prob

(
χ2 > χ2

1−α (l)
)

= α represent the probability that
χ2 > χ2

1−α (l) equalsα and prob (F > F1−α (a, b)) = α
represent the probability thatF > F1−α (a, b) equalsα.

II. M ETHODOLOGY

In modern industry, emerging techniques have made the
processes more integrated, for example, in HSMR process,
the same set of equipment can batch-wise produce different
grades of strip steels. In this case, the fault diagnosis that
designed for guaranteeing qualities of products becomes more
and more challenging. Given the multibatch and multimode
process and quality data, this part resolve the problems using
three methods: (1) KFCM clusters the different modes, (2)
the improved KPLS model fulfils the QFDD, and (3) the
combination of KPLS regression and Bayes inference makes
the whole framework efficiently online applicable.

A. KFCM-based mode partition and BWP index

This section gives a detailed view on KFCM algorithm. Let
¯̄X be the three-dimensional multibatch data. After unfolding
it to be two-dimensional [17], the data turn to be the form of
X = [x1,x2, . . .xn] ∈ R

κ×n that contain the mixed process
data collected from different operating modes. It includesthe
process measurementsZ ∈ R

m×n and quality measurements

Y ∈ R
l×n in a way of X =

[
Z

Y

]

. It is assumed in

this part that noa prior process knowledge is available to
partition them, hence, an unsupervised clustering method is
needed. Among the exiting methods, the fuzzy C-clustering
method (FCM) has been intensively used, as it is a soft
fuzzy clustering which uses the membership matrixU to
reduce the false clustering rate (FCR). In sense of FCR, the
method is better than K-means clustering (KMC) method, a
hard clustering method. LetU ∈ R

c×n and it is constrained

by
c∑

i=1

uij = 1, ∀j = 1, ..., n, where c is the pre-specified

clustering number. For nonlinear clustering problem, it has
been frequently encountered that the process nonlinearitycan
be linearly approximated after transferringx with a function
φ (·). φ (·) may not have an explicit form or even projectx
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onto a infinite-dimensional space byφ (x). Then, the KFCM
seeks to minimize the objective function:

Jui,j
=

c∑

i=1

n∑

j=1

uδi,jd
2
i,j

s.t.
c∑

i=1

ui,j = 1, (j = 1, · · · , n)
(1)

with di,j = ‖φ(xj)− Ci‖E denoting the Euclid distance
betweenφ(xj) and theith clustering center, namelyCi, in
the m̂-dimensional linear space andδ a parameter for tuning
the soft degree. Using the Lagrange multiplier method, and
taking the derivative with respect toU andC gives

Ci =

n∑

j=1

uδijφ(xj)

n∑

j=1

uδij

(2)

uij =
1

c∑

k=1

(
dij
dkj

)2/(δ−1)
(3)

By iterating (2) and (3), the optimalU can be resolved until
it is converged. In (3),d2i,j is calculated in the form of

d2i,j = ‖φ (xj)− Ci‖
2
E =

(
φT (xj)− CTi

)
(φ (xj)− Ci)

= 1− 2

n
∑

k=1

uδ
i,kφ

T (xj)φ(xk)

n
∑

j=1

uδ
i,j

+

n
∑

j=1

n
∑

k=1

u2δ
i,kφ

T (xj)φ(xk)

(

n
∑

j=1

uδ
i,j

)

2

(4)

By introducing the kernel trick:K (xj ,xk) = φT (xj)φ (xk).
All the equations are arithmetically solvable. Generally,K(.)
is called a kernel function [21], and the Gaussian version of
it, namelyKg (x, y) = exp(−

‖x−y‖2

E

σ2 ) is widely used [21],
whereσ is a tunable parameter. After obtainingU , the data
can be partitioned intoc clusters based on entries of it, that is,
the ith data belongs to thejth cluster with the degree ofui,j .

The clustering numberc shall be accurately determined be-
forehand, an optimalc will make the following fault diagnosis
more reliable. In this paper a new between-within proportion
(BWP) index will be introduced [20]. First defining two kinds
of distances, the first one is

b (j, i) = min
1≤k≤c,k 6=j

(

1

Nk

Nk∑

p=1

∥
∥φ(x(k)p)− φ(x(j)i)

∥
∥
2

E

)

(5)

which measures the minimum distance betweenjth element
in the ith cluster (φ(x(j)i)) and the data in other clusters. The
other one is

w (j, i) =
1

Nj − 1

Nj∑

q=1,q 6=i

∥
∥φ(x(j)q)− φ(x(j)i)

∥
∥
2

E
(6)

which measures the average distance betweenφ(x(j)i) and
other data in thejth cluster. LetBWP (j, i) = b(j,i)−w(j,i)

b(j,i)+w(j,i) . It
can be seen whenw(j, i) ≪ b(j, i), namely the clustering
result is correct, the BWP index approximates +1. On the
contrary, the BWP index approximates -1. Thus, the BWP

index can reflect the clustering validity of the examined
method, that is, the better clustering methods have the larger
the BMP (approximate +1). Inductively, letBWP (c) =

1
n

c∑

j=1

Nj∑

i=1

BWP (j, i) be the average value of BWP, the op-

timal copt should be the one with the maximumBWP (c).
Noted that2 < c < cmax , cmax can be defined depending on
different processes. Givencopt andU , X can be successfully
classified intoX(i) for i = 1, ..., copt.

B. Improved kernel PLS-based QFDD

For nonlinear QFDD purpose, KPLS-based approaches have
many advantages. Compared with the nonlinear methods in
[30], where nonlinear optimizations such as gradient descent,
and nonlinear curve fitting-based approaches are used, the
modelling of KPLS is free of this design and more straightfor-
ward to address the nonlinearity. Given the process and quality
data within a single operating mode, which are expressed by
Φ ∈ R

N×m̂ andY ∈ R
N×l, respectively. Let a single process

measurement beφ ∈ R
m̂, which is an abbreviation ofφ(z),

by the convenience of kernel trick,K = ΦΦT ∈ R
N×N and

k = Φφ ∈ R
N are satisfied. Actually, they are the normalized

value based on the raw mapped data in a way [5]:

K =
(
IN − (1/N)1N1TN

)
Kraw

(
IN − (1/N)1N1TN

)

k =
(
IN − (1/N)1N1TN

)
(k− (1/N)Kraw1N )

(7)

whereKraw is directly calculated from the kernel function.
Like the PLS model, the nonlinear iterative KPLS model is
shown in Table II.

TABLE II
KPLS ALGORITHM

(1) Seti = 1, initialize ui as the first column ofYi.
(2) ti = Φiwi = Kiui, wherewi = ΦT

i ui

/

uT
i Kui.

(3) ui = Yiqi, whereqi = Yi
T ti

/

tTi ti .
Repeat (2)-(3) untilti convergence.
(4) Deflate matricesK, Y andΦ:


















Φi+1 =
(

IN − ti
(

tTi ti
)

−1
tTi

)

Φi

Yi+1 =
(

IN − ti
(

tTi ti
)

−1
tTi

)

Yi

Ki+1 =
(

IN − ti
(

tTi ti
)

−1
tTi

)

Ki

(

IN − ti
(

tTi ti
)

−1
tTi

)

(5) Seti = i+ 1, loop to step (1), untili > A.
(6) Let T = [t1, . . . tA] ∈ R

N×A, U = [u1, . . .uA] ∈ R
N×A,

Q = [q1, . . .qA] ∈ R
l×A

After the KPLS model,Φ andY can be modeled as

Φ = Φ̂+ Φ̃ = ΠTΦ+ Φ̃

Y = Ŷ + Ỹ = ΠTY + Ỹ
(8)

with ΠT = T
(
TTT

)−1
TT . T can be directly de-

rived from Φ by T = ΦΦTU
((

TTT
)−1

TTKU
)−1

=

KU
((

TTT
)−1

TTKU
)−1

. The prediction model of KLS
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can be shown using the formation:

ŷnew = Qtnew = Q
(

UTKT
(
TTT

)−1
)−1

UTΦ
︸ ︷︷ ︸

ψT
y

φ (znew)

(9)

Let the projectorΠy equalψy
(
ψTy ψy

)−1
ψTy , by projectingφ

ontoΠy: φy = ψy
(
ψTy ψy

)−1
ψTy φ. Then theŷ-related part of

Φ can be written using

Φŷ = Φψy
(
ψTy ψy

)−1
ψTy (10)

Instead, projectingφ onto the complementary space ofψy
givesφ⊥

ŷ =
(

Im̂ − ψy
(
ψTy ψy

)−1
ψTy

)

φ. Correspondingly,

Φ⊥
ŷ = Φ

(

Im̂ − ψy
(
ψTy ψy

)−1
ψTy

)

(11)

Since, this part may include thẽy related part [5], a further
PCA decomposition on it is needed. To this end, the PCA
model is developed below:

(1) Do an SVD on
K

⊥

ŷ

N−1 =
Φ

⊥

ŷ Φ
⊥

ŷ

T

N−1 ;
(2) StoreAŷ⊥ eigenvectors asω, and scale them with the

eigenvalues [21].
(3) Let Φ⊥

y = K⊥
ŷ ωω

TΦ⊥
ŷ , Φỹ = Φ⊥

ŷ −K⊥
ŷ ωω

TΦ⊥
ŷ .

In order to thoroughly detect the quality-related faults, both
Φŷ andΦỹ should be both taken into account. For monitoring
the first part, it can be observed thatΦŷψy = Φψy = Ŷ , thus
this part can be monitored using aT 2 statistic [10]:

T 2
ŷ = φTŷ ψy

(

ψTy Φ
T
ŷΦŷψy

N − 1

)−1

ψTy φŷ (12)

whereψTy Φ
T
ŷΦŷψy = ŶT Ŷ, and

φTŷ ψy = φTψy = kU
((

TTT
)−1

TTKU
)−1

(13)

The threshold is normally derived based on theJth,T 2 =
l(N2−l)
N(N−l)F1−α (l, N − l) [10].

For the second part, since it only consists of very few
variations, the SPE statistic could be given:

SPE =
∥
∥φỹ

∥
∥
2
= φTỹ φỹ (14)

with φỹ =
(

Im̂ −Φ⊥
ŷ

T
ωωTΦ⊥

ŷ

)(

Im̂ − ψy
(
ψTy ψy

)−1
ψTy

)

φ.

The threshold is calculated usingJth,SPE = gχ2
1−α (h),

whereg = S/2µ, h = 2µ/S. S and µ are trained with the
off-line training data.

For the seek of simplification, a combined statistic shall be
developed based on the following approach [5]:

ϕy =
T 2
ŷ

Jth,T 2

+
SPE

Jth,SPE
=
K̄g (znew, znew)

Jth,SPE
+ kTnewΞknew

(15)

where K̄g (znew, znew) = 1 −
2
N

∑N
i=1Kg (znew, zi)+

∑N
i=1

∑N
j=1Kg (zi, zj) and

Ξ ∈ R
N×N , details of it can be derived by integrating

(9-13). The new index can be bounded by kernel density

estimation (KDE)-based method withJth,ϕ, and then the
final detection decision logic is

{
ϕy ≤ Jth,ϕ ⇒ Quality is fault− free
ϕy > Jth,ϕ ⇒ Quality is faulty

(16)

Regarding the method, it is worth noting: (1) it can deliver
higher fault detection performances, as it avoids the quality-
orthogonal part inΦ̂, which is the completely quality-related
part in KPLS; (2) it further includes the possible quality-
related parts iñΦ, while this part was left by KPLS modelling;
(3) it involves a simplified computation process compared with
the method in [5]. The method involves an extra PCA model on
anN ×N (O(N3))matrix than KPLS model, however, in [5],
the method includes one extra PCA on anl× l matrix and two
additional PCA models onN ×N matrices. It is evident that
the new method can save many calculation efforts. Besides, the
efficient implementation performance will be shown in Section
III.

After a quality-related fault has been detected, it is urgent
to find out the root-cause for further corrective activities. The
methods developed for KPLS-based diagnosis can be found in
[5], [24]. The contribution rate-based approach in [5] has been
recently concerned, as it has more clear physical interpretation.
the contribution rate of variablei to the increment ofϕy when
a fault occurs can be shown as

Contiznew
=
∣
∣
∣
∂ϕy(znew⊙v)

∂vi
|v=1m

∣
∣
∣

=

∣
∣
∣
∣

1
Jth,SPE

∂K̄g(znew⊙1m,znew⊙1m)
∂vi

+
∂(kT

newΞknew)
∂vi

∣
∣
∣
∣

(17)

where znew ⊙ v = [v1znew,1, . . . , vmznew,m]
T ,

ϕy (znew ⊙ v) |v=1m
= ϕy (znew). vi is a scaling factor that

can signify the change of theith variable in the form ofvizi.
The first part of (17) could be calculated as

∂K̄g(znew⊙1m,znew⊙1m)
∂vi

= − 2
N

N∑

j=1

∂Kg(znew⊙v,zj)
∂vi

|v=1m

= − 2
N

N∑

j=1

znew,i (znew,i − zj,i)Kg (znew, zj)

(18)

Then the second part is given using

∂
(
kTnewΞknew

)

∂vi
=

(
∂knew
∂vi

)T
(
Ξ + ΞT

)
knew (19)

where theith element of∂knew

∂vi
|v=1m

is shown in the follow-
ing

∂knew(j)
∂vi

|v=1m

= − 2
σ2







znew,i (znew,i − zj,i)Kg (znew, zj)

−
N∑

k=1

znew,i (znew,i − zk,i) K̄g (znew, zk)







(20)

In the end, the variables that have larger contribution rates are
thought as faulty potentials.
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C. A hybrid KPLS regression and Bayes inference for online
classification

The proposed QFDD framework will be used for the online
measurementznew. The first step should identify its hidden
mode. This section proposes a Bayes inference-based one. By
employing the KPLS-based prediction model:

ŷ(i)
new =

(

ψ(i)
y

)T

φ(i)new (21)

The priori probability ofznew belonging to theith class can
be defined as

prob (znew |i ) =

prob
(∥
∥
∥ŷ

(i)
new − y

(i)
j

∥
∥
∥
E
≤
∥
∥
∥ŷ

(i)
j − y

(i)
j

∥
∥
∥
E
|∀j=1,...,Ni

) (22)

wherey(i)
j is the jth actual measurement inith class, alterna-

tively ŷ
(i)
j stands for the predicted value.Ni is the training

data number ofith mode with
c∑

i=1

Ni = n. By bayes’ theorem,

the posterior probability thatznew is within the ith mode is

prob (i |znew ) =
prob (znew |i ) prob (i)
c∑

i=1

prob (znew |i ) prob (i)
(23)

where the priori probability of theith cluster could be given by
its proportion in the training data, or by the scheduled output
volumes of this class. In the end,znew can be determined by

iopt = argmax (prob (i |znew )) (24)

D. Summary of the proposed methods

Offline use of the framework consists of:
(I) Unfold the data ¯̄X to X, and identify thec modes using
KFCM-based method and BWP index,
(II) Build the improved KPLS model usingX, and train the
regression model (9), detection model (15), and diagnosis
model (17).

Online use consists of:
(I) Collect znew online,
(II) Classify it into its mode using (24),
(III) Fault detection using (15), judge logic (16), if a fault
occurs, turn to step (IV), else turn to step (I),
(IV) Root-cause diagnosis using (17), and loop to step (I).

III. V ERIFICATION STUDY: APPLICATION TO HSMR
PROCESS

This part first presents an overview of HSMR process,
and then shows the application and comparison results of the
proposed framework.

A. Introduction to HSMR process

The HSMR process is a complex system encountered in
iron and steel industries. It can decrease the thickness of
hot strip steel to the desired thickness, and keep the high-
quality requirements for the flatness and width of the steel.
In general, the HSMR process consists of six subsections:

reheating furnace, rough mill, transfer table and crop shear,
finishing mill, run-out table cooling, and coiler. A generic
streamline of HSMR can be found in [5]. The incoming strip
steel is first reheated in the reheating furnace to reach the
required temperature, and, then, in the rough mill section,it
is roughly shaped to the desired thickness and width. After
transported by the transfer table, the strip steel will arrive at
the finishing mill section, where it will be accurately milled
towards the preset width and thickness and fulfill the expected
flatness. Then, the run-out table cooling section allows the
strip to cool to the desired temperature, which allows the steel
being of good mechanical property. The detailed descriptions
of this process can be found in Penget al. [5] and Ding et
al. [1]. It can be observed that for the HSMR process, the
four key quality variables are thickness, width, flatness and
temperature, of which the first three are primarily determined
by the finishing mill rolling process (FMRP). Therefore, the
focus of this example will be on analysing and understanding
the fault diagnosis issue in the finishing mill, as well, the
thickness and flatness are selected as the basis of the work.

There are seven groups of stands in the FMRP. As shown in
Fig. 1, each group of stand has four rolls: two rolls located in
the middle work directly on the strip steel, while the other two
rolls support the working ones. Normally, before a strip arrives
at the stand, the rolling force directly imposed on the upper
supporting roll is computed based on the desired thickness
reduction rate and the weight of the upper supporting roll. As
well, the bending force that mainly affects the flatness and
can also affect the thickness is set beforehand using some
empirical equations [5]. It is noted that the deformation of
the thickness is affected not only by the rolling and bending
force but also by the temperature, rolling speed, and also some
other physical properties that depend on the specific strip steel.
Physically speaking, besides the bending force, factors affect-
ing flatness will be more complicated than thickness. Thus, it
is hard to build precise, first principles models between the
forces and output thickness and flatness for a single stand. In
the overall FMRP system, the stands do not work individually,
but are coupled with each other by different control methods.
For example, in the 7th stand, the thickness is compared with
the desired value and the difference can be fed back to adjust
the rolling force in that or previous stands. It is noted thatthe
thickness cannot be measured between two stands, instead the
gap measurements between two working rolls can be measured
by the height of the upper working roll. Due to the rebounding
phenomenon, the thickness is approximately equal to the gap
subtract the impact of the roll’s stiffness. However, sincethe
stiffness is hard to precisely calculate, it is impossible to adjust
the downstream stands based on the upstream thickness. The
thickness can only be measured using an X-ray device located
at a distance from the stands, thus, it will cause time delay in
the feedback control system. To be worse, the flatness cannot
be online measured, instead, it has to be offline analyzed based
on the signals from the CCD camera. The measurable variables
and quality variables concerned in this example are shown in
Table III. Note that the flatness has the unit of I, which is only
a symbolic without any physical meaning. This study uses
z = [zfor,1 ∼ zfor,7, zben,2 ∼ zben,7, zgap,1 ∼ zgap,7] ∈ R

20



6

andy = yfla or ythi.
Remark 1:Corresponding to the chemical process, the mul-

timode and multibatch properties in hot rolling processes
are slightly different. It is clear in chemical process that
the process may work in different modes which are always
referred to the production rates to fulfil the market demands
e.g. Tennessee Eastman process [10]. However, the rolling
process, multimode typically refers to different specifications
of steel. It is a profitable reason to produce different steels
in the same streamline. In chemistry, polymerization sector in
special, batch process is very appealing to save economic costs
and decrease the control complexity. While in hot rolling, a
batch represents a coil. The strip steel is produced coil by coil
for convenient shipment.

Rolling force 

Bending force 

Average gap 

Fig. 1. The structure of a finishing mill stand

B. Off-line training phase of the framework

FMRP is a typical batch process, where the strip steels are
produced coil by coil with the length varying from 1000 m
to 1500 m. As well mentioned in Table I, different grades
of products underly that there are different operating modes
for the system. Based on the two features, Fig. 2 shows a
schematic of the FMRP data. It can be observed that the
data set is three-dimensioned with time axis, batch axis and
variable axis. The different batches also contain different
operating modes which are distinguished by distinct colors.
To conveniently analyze the data, it should be unfolded to
be two-dimensional in a variable-wise way. The method is
shown in Fig. 2. After that, the resulting data matrixX can be
modeled. First of all, the KFCM-based mode partition method
is examined. Consider the flatness as the quality variable, four
modes of data are collected from the plant historian with each
mode having eight batches. Each run of batch contains 500
samples, thus,X ∈ R

21×16000 is developed. Fig. 3 shows the

result of BMP index obtained from KFCM method. It can be
seen that the proposed method gives a consistent clustering
number withouta priori mode information. By contrast, the
method using KMC and BMP index cannot show the correct
optimal clustering number. It is worth noting that the proposed
method assumes the case that parameters:δ, σ2, cmax have
been appropriately selected beforehand. Since the major focus
of this paper is not here, thus, this process is omitted and one
can refer to [5] for details. Finally,X(j), for j = 1, ..., 4 that
corresponds to different modes can be formed by comparing
the entries inU ∈ R

4×16000.

    

Sampling time instant  

Variable 

Multimode 

Multibatch 

 X     

Fig. 2. The property of the HSMR process data
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Fig. 3. Classification signal for the fault scenario 1 data

Since both quality variables cannot be immediately mea-
sured, the timely fault detection and diagnosis for them have
to use the process measurementz. In this case, the improved
KPLS model should be developed. Regarding eachX(i),
the detection model (15) and diagnosis model (17) can be
established.

For the thickness-related example, the same procedures are
repeated. Two modes with thickness equaling 2.7 mm and 3.95
mm are used. 10 batch runs of them are attained from historian
such thatX ∈ R

21×10000. After the clustering phase, two
models are obtained. Then, the fault detection and diagnosis
models (15) and (17) are available for online use.

C. Online application to FMRP

Two different faulty scenarios will be considered:
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TABLE III
OUTLINE OF VARIABLES MEASURED IN FMRP

Variable Description Unit Notes
Process variable
zgap,1 ∼ zgap,7 Average gap measurement in theith stand,i = 1, ..., 7 mm Sampling interval: 0.01s (changeable)
zfor,1 ∼ zfor,7 The total force imposed on theith stand,i = 1, ..., 7 MN Sampling interval: 0.01s (changeable)
zben,2 ∼ zben,7 The bending force in the working roll of theith stand,i = 2, ..., 7 MN Sampling interval: 0.01s (changeable)
Quality variable
yfla The flatness of the strip in the exit of FMRP I Sampling interval: 0.01s (changeable) with delay (fixed)
ythi The thickness of strip steels in exit of FMRP mm Online unavailable

• Fault Scenario 1: For1 ≤ i ≤ 1400, the process operates
in mode 2 without fault; for1401 <i ≤ 2100, the process
runs within mode 1 with fault occurred from the 1601st

to the 1800th sample; for2101 <i ≤ 3500, the process
runs within mode 3 without fault.

• Fault Scenario 2: For1 ≤ i ≤ 3000, the process operates
under mode 1 with fault from the 20th s.

Scenario 1 is a flatness-related fault, it occurred when the
gap sensor in the 4th stand malfunctioned. This fault will
directly affect the gap and bending force measurements in
the downstream stands, then, until the flatness value. Using
the developed model, first of all, Fig. 4 shows the online
classification results. It can be observed from which that the
proposed method has successfully classified all the data to
their constituent modes.
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Fig. 4. Classification signal for the fault scenario 1 data

Fig. 5 shows the detection results of Scenario 1. It can be
seen thatϕy detected this fault at around the 1600th sample.
During the fault, the method kept a high detection rate until
the fault vanished. The results can also be verified by the real
flatness measurements, which is shown in the subfigure of Fig.
5. This can prove that the method can correctly reflect the
status of the quality variable even there is no accurate quality
measurement. As well-known that PLS, KPLS can also resolve
this problem, these three methods were compared in terms of
the FDR using Scenario 1. Table IV shows the results. It can be
seen that improved KPLS behaves better than PLS and KPLS.
Fig. 6 shows the contribution rate-based diagnosis resultsfrom
the 1500th to the 1700th samples. It can be observed from
around the 1600th sample that the contribution rate values
of some variables started to increase. The 18th variable was
particular, as it had the largest contribution rate. The result is
consistent with the description of this fault. It is noted that the
other variables also had large contribution rates, e.g. the7th

(total force in 7th stand), the 17th (gap in 4th stand). This can
be understood by the fault smearing effect.
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Fig. 5. Detection signal for flatness-related fault with improved KPLS-based
method

TABLE IV
COMPARISONS OF THE PROPOSED METHOD, PLSAND KPLS

Scenario Performance type PLS KPLS Improved KPLS
1 FDR1 0.8021 0.7564 0.9085
2 FDR 0.8852 0.9081 0.9952
1 Refer to [8] for the calculation formula of FDR.
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Fig. 6. Contribution rate-based diagnosis signal for flatness-related fault

The fault in Scenario 2 was defined as the malfunction of
the gap control loop in the 4th stand. It directly affected the
gap measurement in this stand. Typically, measurements in
the downstream stand will echo this change. Fig. 7 shows
the detection results for Scenario 2. It can be seen thatϕy
detected this fault at around the 2000th sample, which behaves
efficiently, as the fault occurred at this time instant. In addition,
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the results are consistent with the real thickness measurements
as displayed in the subfigure of Fig. 7. It is also worth
noting that the thickness data become changed at around
the 2350th sample, which also points out that the proposed
method can identify faults largely before they are even noticed.
Table IV provides the detection rates delivered by PLS, KPLS
and improved KPLS, where it verifies the excellence of the
proposed method. Fig. 8 demonstrates the diagnosis resultsof
this fault. It was shown that variable 5 (total force in the 5th

stand) and 17 (gap in the 4th stand) had the largest contribution
rates. The results are correct consistently with the definition
of this fault.

Thus, it can be seen that the proposed nonlinear framework
can effectively detect and diagnose faults before they are
even noticed in the quality variables. This allows for efficient
and prompting resolution of any potential problems. Finally,
regarding the realtime implementation of the framework, it
should be noted:

Remark 2:Most plant engineers concern very much about
the calculation efficiency of the proposed method due to
the limited computing resources. The present approach is
computation-intensive, and it is largely attributed to thecon-
tribution rate-based fault diagnosis step. As shown in Section
2-B, for each new coming process sample, the diagnosis
step involvesm repeated calculations of the contribution rate
for each sample. The realtime operation of the model is
time-consuming when using the laboratory-sized computer.
According the test using the computer configured with Intel
Core i7-3770 CPU, 8 GB memory, the overall operating time
is larger than the real operating time (3 min). However, for
the plant-sized computer, the processor is significantly high-
efficiency, which make it possible for realtime implementation
of the method.
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Fig. 7. Detection signal for thickness-related fault with improved KPLS-
based method

IV. CONCLUSIONS

This paper proposed the framework for QFDD with appli-
cation to batch multimode processes. The framework consists
three relevant methods: multimode clustering, a nonlinearfault
diagnosis method, and online classification of the new mea-
surement. The training data from different operating modes
were clustered using the nonlinear KFCM-based method, and
a BWP index was developed for determining the optimal mode
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Fig. 8. Contribution rate-based diagnosis signal for thickness-related fault

number. The KPLS method was improved by considering a
higher FDR, and based on it, the contribution rate method
was used for fault diagnosis. The online data was classified
using the abilities of KPLS regression and Bayes inference.

The proposed methods were applied to a batch HSMR
process to diagnose faults that affect the product’s thickness
and flatness. It was seen that the framework can show accu-
rate clustering results, higher detection and precise diagnosis
performance.

Future work considers topics with dynamics and non-
Gaussian dataset in batch multimode processes to achieve
optimal operating performance.
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