A quality-based nonlinear fault diagnosis frameworl
focusing on industrial multimode batch processes

Abstract—This paper proposes a framework for quality-based
fault detection and diagnosis for nonlinear batch processes

with multimode operating environment. The framework seeks e ;
to address (1) the mode partition problem using a kemnel challenges have emerged for practitioners with problems

fuzzy C-clustering method, and the optimal cluster number of frequently switched operating points, different opergt

will be guaranteed by a between-within proportion index; (2) batches and strong nonlinearities [1]. The complexity also
the diagnosis problem using a contribution rate method based makes it even harder to guarantee the product quality, thet mo

on an improved kernel partial least squares model, by which core profitable indicator for an industrial process. Fomepke
better detection and diagnosis performances are provided; (3) in the hot strip mill rolling (HSMR) process, the increasing

the classification of online measurements using a hybrid kernel d d duct lit biect to th . t
partial least squares regression and the Bayes inference thegry e€mands on product quality subject to the requirement on

where the new coming measurement can be correctly assigneddifferent grades of products and lower energy consumption
to its constituent mode. The whole framework is developed for have made it so complicated that it is involving differermds

batch processes, and applied to the hot strip mill rolling process. of challenges in optimal control and process monitoringgre
Itis shown using the real industrial da_lta that f_or fa_ults affecting Table | shows an overview of products in an HSMR plant,
the thickness and flatness of the strip steel in this process, the . o
detection and diagnosis abilities of the present methods are better where it can t?e found the. most F:oncerned quaﬁty |nd!ces by
compared with the existing methods. the plant engineers: the final thickness and width. Differen
from the qualitative modelling of product quality [2], [3his
work use the quantitative one, which is famously quantified a
quality variables. According to different uses, gradestaps
steels are different and the annual output of them are also
different. It is known that different grades of steel unglehat

ITH the rapid development of the scale, degree of
automation and integration of industrial processes,

Index Terms—Multimode, fault diagnosis, kernel PLS, contri-
bution rate, batch hot strip mill

NOMENCLATURE

n Total number of data. the rolling system works in different operating modes, asd a
N; Number of data within theé™ mode. well-known that the strip steel are produced coil by coilhwit
c Number of cluster. each coil representing a batch. Noted that the multimode and
z, Z Process measurement vector, matrix. multibatch properties in HSMR process are slightly diffare
v, Y Quality data vector, matrix. from those in chemical processes [4]. Another handicap for
y Prediction of the quality variable. ensuring the product quality is the strong nonlinearity in
X Multibatch process and quality data. HSMR, in this case the traditional linear theory will not be
x, X Combined process and quality vector, matrixsensible. In recent years, to solve such kinds of problem,
() Nonlinear projection function. guality-related fault detection and diagnosis (QFDD) mdth
o, P high-dimensional projected vector, matrix. have been raised and proved to be useful for quality control
K, Gaussian kernel function. [1], [5], [6], [7], [8].
k Kernel vector. In general, QFDD methods can be divided into model-based
K, aw Raw kernel matrix. ones and data-driven ones. Of them, the later developed usin
K Normalized kernel matrix. the process measurements has drawn more attentions over
w Weight vector in KPLS. past decades [9], [10]. Its advantage is evident when dgalin
t Score vector of. with some large-scale processes, as the first-principletelso
T Score matrix ofZ. can not accurately identifiable for this kind of process. The
u Score vector ofy. commonly used data-driven methods are multivariate &tatis
U Score matrix ofY. methods [11], [12], subspace aided data-driven methods [10
U Weight matrix in clustering methods. machine-learning and signal process-based method={@],
q Loading vector ofy. However, for the nonlinear processes with multiple oparati
Q Loading matrix ofY. modes, the traditional approaches, e.g. principal comuone
L, m-dimensional identity matrix. analysis (PCA) and partial least squares (PLS) that are for
1, m-dimensional unity matrix. linear steady state processes cannot be usable. For these
p(.) Probability of a stochastic event. processes, Zhaet al. used multiway PCA and PLS approaches
Py Regression matrix. [13], [14]. In [14], the multiway PLS was developed using the

I. INTRODUCTION

angles between different operating models, where the angle
measures the similarities of two PLS models. In [15], Hwang
and Han proposed a hierarchical clustering-based super PCA
model for realtime use. Doan and Srinivasan [16] resolved th



TABLE |
DIFFERENT TYPES OF STRIP STEEL PRODUCTS

Steel grade Usage description Thickness (mm)  Width (mm)  Annu#@® (x 10% kg)  Coil (Batch)
SS330-SS540 General carbon steel 1.21-12.7 900-1550 700 0 80
SPHC-SPHE High-quality carbon steel  1.21-12.7 900-1550 0 70 600
SAPH310-SAPH400 Alloy steel 1.51-12.7 1050-1550 700 1000
SPA-H Corrosion resistant steel 1.51-12.7 900-1550 350 500
X42-X60 Oil pipeline steel 5.1-12.7 1050-1550 700 300
Others — 1.21-15.9 900-1550 350 200

problem by dividing the continuous multimode processes int  sion and Bayes inference, and

different stages, and built models for each stage. Since, the « to apply the proposed approaches to a real HSMR process
a large number of stage division approaches have emerged and compare the performance between the present and the
to promote the development of multimode QFDD. ¥t al. existing ones.

combined the finite Gaussian mixture models (FGMM) and Tyo probability distributions are used in this work. Let

Bayesian inference (Bl) technique in [4], [17] to identifyxz(l) be thex2-distribution with! degrees of freedont; (a, b)

the constituent modes. By FGMM method, different proceg the F-distribution with « and b degrees of freedom. Let
modes can be represented using different Gaussian dignibu ., (x> >x2_,()) = o represent the probability that

with unique means and covariances. The method was introx Y2, (1) equalsa and prob(F > Fi_, (a,b)) = o
duced to dynamic processes by Haghetral. [18]. The above represent the probability thd > Fy_,, (a,b) equalsa.
mentioned methods are all linear, thus, cannot well addhess

nonlinear multimode problem. To divide the nonlinear data,

this paper would like to introduce a kernel fuzzy C-clustgri Il. METHODOLOGY

method (KFCM) [19]. Furthermore, traditional approaches |n modern industry, emerging techniques have made the
have not well understood how to obtain the optimal modsocesses more integrated, for example, in HSMR process,
number. This is still an open topic, but can significantlyhe same set of equipment can batch-wise produce different
affect the QFDD results. Thus, in this paper, a validity ndegrades of strip steels. In this case, the fault diagnosis tha
called Between-Within Proportion (BWP) which considers thgesigned for guaranteeing qualities of products becomes mo
geometric property of the dataset will be introduced to 8ohang more challenging. Given the multibatch and multimode
this problem [20]. process and quality data, this part resolve the problentgjusi
The QFDD methods based on kernel PCA (KPCA) [21] anghree methods: (1) KFCM clusters the different modes, (2)
kernel PLS (KPLS) [22] models were widely applied, in whichhe improved KPLS model fulfils the QFDD, and (3) the
original process data are transformed into a feature space gombination of KPLS regression and Bayes inference makes
a nonlinear mapping, and then a linear model is built in the whole framework efficiently online applicable.
feature space. With the aid of the kernel trick, the explicit
nonlinear mapping function can be avoided. Recently, such N )
kind of models have been extended to batch processes AorKFCM-based mode partition and BWP index

QFDD [23], [24], [25]. However, KPLS has drawbacks such This section gives a detailed view on KFCM algorithm. Let
as low fault detection rate (FDR) and high false alarm rat& pe the three-dimensional multibatch data. After unfolding
(FAR) [5]. Thus, some improvements should be derived basgdo be two-dimensional [17], the data turn to be the form of
on KPLS model to let it more efficient. X = [x1,X2,...Xa] € R*¥? that contain the mixed process
Once a quality-related fault is successfully detected, thiata collected from different operating modes. It incluthes
root cause should be identified as soon as possible [7]. Mampcess measuremerifsc R™*" and quality measurements
fault diagnosis approaches were developed, e.g. disairhin Ixn | Z . :
analysis [26], pattern matching using dissimilarity fastf27], YR n-a way of X = Y | It is assumed in
contribution plot [28]etc. Of them, contribution plot method this part that noa prior process knowledge is available to
was broad|y used, as it is free afprior process know|edge partition them, hence, an UnSUperVised CIUStering metkod i
[29]. Considering KPLS model with the kernel function inheeded. Among the exiting methods, the fuzzy C-clustering
volved, a contribution rate plot approach was proposed Bjethod (FCM) has been intensively used, as it is a soft

Penget al. [5] It was also proved that this approach can b®izzy clustering which uses the membership mattixto
promoted to any kernel methods [5]. reduce the false clustering rate (FCR). In sense of FCR, the

Therefore, objectives of this paper are: method is better than K-means clustering (KMC) method, a

) i ) hard clustering method. Léf € R“*™ and it is constrained
o to cluster the nonlinear multimode data using KFCM- ¢ . -
..,n, wherec is the pre-specified

based method, and optimize the mode number usingf)% ;1 uj = 1,vj =1,

new BWP index, clustering number. For nonlinear clustering problem, is ha
« to develop an improved KPLS model and contributiobeen frequently encountered that the process nonlinezaity
rate-based diagnosis for nonlinear QFDD, be linearly approximated after transferrisgwith a function

« to realize the online classification based on KPLS regreg{-). ¢ (-) may not have an explicit form or even project



onto a infinite-dimensional space by(x). Then, the KFCM index can reflect the clustering validity of the examined

seeks to minimize the objective function: method, that is, the better clustering methods have thenarg
c n the BMP (approximate +1). Inductively, 1eBW P (¢) =
Ju”:ZZ“fgd?y 1 c N ..
ToiZj= 1 = > > BWP(j,i) be the average value of BWP, the op-
c ) j=1li=1
s.. ;Ui,j =1,0U=1-.n) timal ¢,,; should be the one with the maximuBIV P (c).
. = . . . Noted that2 < ¢ < ¢naz » Cmaz €an be defined depending on
with d; ; = [|¢(x;) —Cil|p denoting the Euclid distance gifferent processes. Given,,; andU, X can be successfully

betweeng(x;) and thei™ clustering center, namelg;, in  ¢jassified intaX® for i — 1, eoe) Copt-
the m-dimensional linear space amdda parameter for tuning
the soft degree. Using the Lagrange multiplier method, and

taking the derivative with respect 1@ andC gives B. Improved kernel PLS-based QFDD
> ud;o(x;) For nonlinear QFDD purpose, KPLS-based approaches have
C; = ]=1n7 (2) many advantages. Compared with the nonlinear methods in
> ugj [30], where nonlinear optimizations such as gradient d#sce
j=1 and nonlinear curve fitting-based approaches are used, the
1 modelling of KPLS is free of this design and more straightfor

c /g \2/(6=1) 3) ward to address the nonlinearity. Given the process andtyual
2:: (E) data within a single operating mode, which are expressed by
& c RV*™ andY € RV*!, respectively. Let a single process
measurement beb € R™, which is an abbreviation of(z),
by the convenience of kernel trickk = ®®7 ¢ RV*N and

2 N2 — (AT () T N _ k = ®¢ ¢ RY are satisfied. Actually, they are the normalized
By = lloxi) = Cill = (67 (x5) = CF) (6 (x;) = Ci) value based on the raw mapped data in a way [5]:

By iterating (2) and (3), the optimdl can be resolved until
it is converged. In (3)d§7j is calculated in the form of

SN 8 >3 u?® T (x;)p(x
L 2k§Iui‘ka(xj)¢<xk> Z Z et ]2>¢< ©) )
> u?,j 3 ud .
Jj=1 (121 7”'7> (IN—(l/N) 1N1TN) Kraw (IN—(l/N) ].NlTN)

By introducing the kernel trickK (x;,xx) = ¢7 (x;) ¢ (xx). k= (IN - (1/N) 1N1TN) (k= (1/N) Kyqwln)

All the equations are arithmetically solvable. Generafty.) ()

is called a kernel function [21], and the Gaussian version ghere i is directly calculated from the kernel function.

i lz=vl% Y s wi . . . . ;
it, namely K, (z,y) = exp(— 2 is widely used [21], | jke the PLS model, the nonlinear iterative KPLS model is
whereo is a tunable parameter. After obtainiig the data gpown in Table I1.

can be partitioned into clusters based on entries of it, that is,
the " data belongs to thg™ cluster with the degree af; ;. TABLE I

The clustering number shall be accurately determined be- KPLS ALGORITHM
forehand_, an optimz_ﬂ will make the following fa_ult_diagnosis_ (1) Seti = 1, mitialize u, as the first column ;.
more reliable. In this paper a new between-within propartio (2) t; = ®;,w; = K,u,, wherew; = 7w, /u? Ku;.
(BWP) index will be introduced [20]. First defining two kinds  (3) wi = Y;q,, whereq; = Y,;7't; /t7t; .

; : ; Repeat (2)-(3) untit; convergence.
of distances, the first one is (4) Deflate matriced<. Y and -

-1
S = (Iny —t;(tTt;) " t7) @,

b(j,i) = min L gkj H¢(X ) — (x )||2 (5) Yip1=(In— ti(t;ti)*ltf Y;
P cegehi \ Ny = e Welle Kot = (In =t (676) '¢7) Ko (Iy — t:(67:) '¢7)

(5) Seti =i+ 1, loop to step (1), untik > A.
which measures the minimum distance betwg&nelement (6) Let T = [t1,...t4] € RNXA U =[uy,...uy] € RN*4,
in the i cluster ¢(x(;);)) and the data in other clusters. The _ Q=lau,...qa] e R4

other one is
N After the KPLS model® andY can be modeled as
J
Wi =1 3 letxog — ool © *=3+d=1172+3 @)
T Tg=lg#i Y=Y+Y=IIrY+Y
which measures the average distance betwgfeq;);) and . .
other data in thg'™ cluster. LetBW P (j,i) = p9—2d: it with IIp = T(T'T) T'. T can be directly de-

can be seen whew(j,i) < b(j,i), namely the clustering rived from ® by T = @@Tu<(TTT)‘1TTKU)71 =
result is correct, the BWP index approximates +1. On the R ~1 o
contrary, the BWP index approximates -1. Thus, the BWKU((T T) T KU) . The prediction model of KLS



can be shown using the formation: estimation (KDE)-based method withi;; ,, and then the
-1 final detection decision logic is
ynew = Qtnew = Q(UTKT (TTT) ) UT@ ¢ (Znew)

vy

{ oy < Jin,p = Quality is fault — free (16)

Yy > Jin,, = Quality is faulty

9)
. o Regarding the method, it is worth noting: (1) it can deliver
Let the projectoril, equalwy (g ty) 1/) by projectinge  higher fault detection performances, as it avoids the tuali
ontoI1,: ¢, = vy (V1) quS Then they-related part of orthogonal part in®, which is the completely quality-related

® can be written using part in KPLS; (2) it further includes the possible quality-
N related parts i, while this part was left by KPLS modelling;
¢, = Py, (% %) Yy (10) (3) itinvolves a simplified computation process comparetth wi

the method in [5]. The method involves an extra PCA model on
. L (y T T . an N x N (O(N?3))matrix than KPLS model, however, in [5],
gives gy = (I — ¥y (% ¥y) Wy ) @- Correspondingly, the method includes one extra PCA onlanl matrix and two
N - additional PCA models oV x N matrices. It is evident that
&y =@ (Iﬁz — Uy (U ¥y) ) (11)  the new method can save many calculation efforts. Besitles, t
efficient implementation performance will be shown in Sarti

Instead, projecting> onto the complementary space ©f

Since, this part may include thg related part [5], a further
PCA decomposition on it is needed. To this end, the PCIA

model is developed below: After a quality-related fault has been detected, it is urgen

Kt alal” to find out the root-cause for further corrective activiti€se

(1) Do an SVD ongy = —{=1—; methods developed for KPLS-based diagnosis can be found in
(2) Store A, elgenvectors as, and scale them with the [5], [24]. The contribution rate-based approach in [5] hastb
eigenvalues [21] recently concerned, as it has more clear physical inteafogt
(3) Let & = KLW‘UT‘I’l ;= ‘I’l Kiwa‘I’j the contribution rate of variableto the increment ofp,, when

In order to thoroughly detect the quallty related faulstib 5 fault occurs can be shown as
®,; and®; should be both taken into account. ForAmomtormg
the first part, it can be observed thBfy, = v, =Y ,thus  Cont’, = )WNZM’@"

. . : — _ Do lv=1,,
this part can be monitored usingl& statistic [10]: B | Ky (e Ol s OL) (K7, Eknew) a7
-1 Jih,sPE vy 0v;
THT P ) ’
2 T wu yry T
where Znew © V = [Ulznew,h o »ijZnew,m] ’
Wheretpg@g@gwy _¥7Y, and Oy (Znew O V) |v=1,, = @y (Znew)- v; IS @ scaling factor that

can signify the change of th&' variable in the form ofv;z;.

_ -1 The first part of (17 Id b Iculated
qﬁgwy:ngz/zy:kU((TTT) 1TTKU) (13) e first part of (17) could be calculated as

N
The threshold is normally derived based on thg 2 = — 2Ke(ZucwOlnmucnOln) _ _ 2 $~ OKy@ncnOvz) |
(N ' j=1 ' '
) Py (1N — 1) 201

N
or the second part, since it only consists of very few = —=& > Znew,i (Znew,i — 2j.) Ky (Znew, 2))
variations, the SPE statistic could be given: i=1

(18)
2 T
SPE = N = o b 14
I9sll" = ¢5 65 (14) Then the second part is given using
. T —1

with ¢, = (Im - ol wwﬂp;) (Im — 4y (0T 0,) wg) o, 0T Zlon)  (Oku\”

The threshold is calculated using, spr = gxi_. (h), "Pg“ new :< 8”““) (E+ET) Kyew (19)

whereg = S/2u, h = 2u/S. S and . are trained with the Vi Vi

oft-line training data. where thei'" element of&z=x |,_; is shown in the follow-

For the seek of simplification, a combined statistic shall t}(ne
developed based on the following approach [5]:

z Oknew(j
_ T’f? SPE o K (Znewvznew) T T ‘V 1n
Py = + - + knew‘—‘knew 7. VK .
Jth,T2 Jth,SPE Jin ,SPE ) Znejl\t;,z (Znew,t Z],z) g (Znewa Z])
(15) G - Z Znew,i (Znew,i - zk,i) Rg (zneun Zk)
_ k=1
Where Kg (Znewa Znew) = 1 - (20)
N Zz lK (Znewa )+Z7, 123 IK (Z“Z]) and

—_

E ¢ RVXN| details of it can be derived by integratingin the end, the variables that have larger contributionsrate
(9-13). The new index can be bounded by kernel densittyought as faulty potentials.



C. A hybrid KPLS regression and Bayes inference for onlimeheating furnace, rough mill, transfer table and crop shea
classification finishing mill, run-out table cooling, and coiler. A generic
The proposed QFDD framework will be used for the onlingréa@mline of HSMR can be found in [5]. The incoming strip
measurement,,..,. The first step should identify its hiddensteel is first reheated in the reheating furnace to reach the
mode. This section proposes a Bayes inference-based onegfjpired temperature, and, then, in the rough mill seciion,

employing the KPLS-based prediction model: is roughly shaped to the desired thickness and width. After
transported by the transfer table, the strip steel willvarmt
o) — (@) 5 the finishing mill section, where it will be accurately mdle
0 = (057) oL, (21) 9 : y

towards the preset width and thickness and fulfill the exgubct
The priori probability ofz,.,, belonging to thei class can flatness. Then, the run-out table cooling section allows the
be defined as strip to cool to the desired temperature, which allows teelst
being of good mechanical property. The detailed descriptio
(i) (i) (22) of this process can be found in Peagal. [S] and Ding et
i =Y HE |W:1’~"N'ﬁ) al. [1]. It can be observed that for the HSMR process, the
four key quality variables are thickness, width, flatnesd an
) temperature, of which the first three are primarily deteedin
tively S’jl) stands for the predicted valué\; is the training py the finishing mill rolling process (FMRP). Therefore, the
data number of" mode withzc: N; = n. By bayes’ theorem, focus of thi.s examplg will pe on aqallys?ng an.d understanding
i=1 the fault diagnosis issue in the finishing mill, as well, the
the posterior probability that,.., is within thei"™ mode is  thickness and flatness are selected as the basis of the work.
There are seven groups of stands in the FMRP. As shown in
(23) Fig. 1, each group of stand has four rolls: two rolls located i
c ] ] the middle work directly on the strip steel, while the othgot
i; prob (znew [1) prob (i) rolls support the working ones. Normally, before a strifves
o B ) at the stand, the rolling force directly imposed on the upper
where the priori probability of thé" cluster could be given by supporting roll is computed based on the desired thickness
its proportion 'in the training data, or by the schedul'ed oUtPeduction rate and the weight of the upper supporting radl. A
volumes of this class. In the end,.,, can be determined by \ye|| the bending force that mainly affects the flatness and
i°Pt = arg max (prob (i |Zpew )) (24) can also affect the thickness is set beforehand using some
empirical equations [5]. It is noted that the deformation of
the thickness is affected not only by the rolling and bending
force but also by the temperature, rolling speed, and alswso

prob (Zpew 1) =

prob (’ qu(fgw — y§i)

<
B

wherey@ is the ;1 actual measurement iif' class, alterna-

prob (Znpey |i) prod (i)

prob (i |Zpew ) =

D. Summary of the proposed methods

Offline use of the framework consists of: other physical properties that depend on the specific degd.s
(I) Unfold the dataX to X, and identify thec modes using Physically speaking, besides the bending force, factdestaf
KFCM-based method and BWP index, ing flatness will be more complicated than thickness. Thus, i

(1) Build the improved KPLS model usin, and train the is hard to build precise, first principles models between the
regression model (9), detection model (15), and diagnosisices and output thickness and flatness for a single stand. |

model (17). the overall FMRP system, the stands do not work individyally
Online use consists of: but are coupled with each other by different control methods
(I) Collect zyew Online, For example, in the 7 stand, the thickness is compared with
(I Classify it into its mode using (24), the desired value and the difference can be fed back to adjust
(lll) Fault detection using (15), judge logic (16), if a faul the rolling force in that or previous stands. It is noted tinat
occurs, turn to step (IV), else turn to step (1), thickness cannot be measured between two stands, insead th

(IV) Root-cause diagnosis using (17), and loop to step (I). gap measurements between two working rolls can be measured
by the height of the upper working roll. Due to the rebounding
I1l. V ERIFICATION STUDY: APPLICATION TOHSMR phenomenon, the thickness is approximately equal to the gap
PROCESS subtract the impact of the roll's stiffness. However, sitice

This part first presents an overview of HSMR proces§:‘iﬁness is hard to precisely calculate, it is impossibladjust

and then shows the application and comparison results of fﬁ& Iijownstream Istetl)nds based é)n the upstream(jth|gknelss. Tr(;e
oroposed framework. thickness can only be measured using an X-ray device locate

at a distance from the stands, thus, it will cause time delay i
the feedback control system. To be worse, the flathess cannot
be online measured, instead, it has to be offline analyzestibas

The HSMR process is a complex system encountered an the signals from the CCD camera. The measurable variables
iron and steel industries. It can decrease the thicknessaofd quality variables concerned in this example are shown in
hot strip steel to the desired thickness, and keep the higfable Ill. Note that the flatness has the unit of |, which isyonl
quality requirements for the flatness and width of the stea.symbolic without any physical meaning. This study uses
In general, the HSMR process consists of six SUbSeCtions:= [z o,1 ~ Zfor.7, Zben,2 ~ Zben,7s Zgap1 ~ Zgap,7) € RO

A. Introduction to HSMR process



andy = yfiq OF Yini. result of BMP index obtained from KFCM method. It can be
Remark 1: Corresponding to the chemical process, the museen that the proposed method gives a consistent clustering
timode and multibatch properties in hot rolling processemimber withouta priori mode information. By contrast, the
are slightly different. It is clear in chemical process thanethod using KMC and BMP index cannot show the correct
the process may work in different modes which are alwaygtimal clustering number. It is worth noting that the prepd
referred to the production rates to fulfil the market demandsethod assumes the case that parameters?, c,,,. have
e.g. Tennessee Eastman process [10]. However, the rollimeen appropriately selected beforehand. Since the majasfo
process, multimode typically refers to different specifimas of this paper is not here, thus, this process is omitted ard on
of steel. It is a profitable reason to produce different steatan refer to [5] for details. FinallyX(?), for j = 1, ...,4 that
in the same streamline. In chemistry, polymerization geicto corresponds to different modes can be formed by comparing
special, batch process is very appealing to save econorsiis cehe entries inJ € R*>x16000,
and decrease the control complexity. While in hot rolling, a
batch represents a coil. The strip steel is produced coiloily ¢
for convenient shipment.

Sampling time instant

}

Ve

i \

Rolling force @

ﬂ Bending force
Average gap — ~

-— Fig. 2. The property of the HSMR process data
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+BMPKMC
(® HGC Cylinder
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Fig. 1. The structure of a finishing mill stand

4
Cluster number

B. Off-line training phase of the framework

FMRP is a typical batch process, where the strip steels @ig 3. classification signal for the fault scenario 1 data
produced coil by coil with the length varying from 1000 m
to 1500 m. As well mentioned in Table I, different grades Since both quality variables cannot be immediately mea-
of products underly that there are different operating rsodsured, the timely fault detection and diagnosis for themehav
for the system. Based on the two features, Fig. 2 showsiause the process measurementn this case, the improved
schematic of the FMRP data. It can be observed that tk¢LS model should be developed. Regarding e,
data set is three-dimensioned with time axis, batch axis amg detection model (15) and diagnosis model (17) can be
variable axis. The different batches also contain differeastablished.
operating modes which are distinguished by distinct colors For the thickness-related example, the same procedures are
To conveniently analyze the data, it should be unfolded tepeated. Two modes with thickness equaling 2.7 mm and 3.95
be two-dimensional in a variable-wise way. The method iam are used. 10 batch runs of them are attained from historian
shown in Fig. 2. After that, the resulting data matkixcan be such thatX e R2!*10000  After the clustering phase, two
modeled. First of all, the KFCM-based mode partition methatiodels are obtained. Then, the fault detection and diagnosi
is examined. Consider the flatness as the quality variable, f models (15) and (17) are available for online use.
modes of data are collected from the plant historian wittheac
mode having eight batches. Each run of batch contains 580 Online application to FMRP
samples, thusX € R21x16000 js developed. Fig. 3 shows the Two different faulty scenarios will be considered:



TABLE Il
OUTLINE OF VARIABLES MEASURED IN FMRP

Variable Description Unit  Notes

Process variable

Zgap,1 ~ Zgap,7  Average gap measurement in tie stand,i = 1, ..., 7 mm Sampling interval: 0.01s (changeable)
Zfor,1 ~ Zfor,y  The total force imposed on thd stand,i =1, ...,7 MN  Sampling interval: 0.01s (changeable)

Zpen,2 ™~ Zbhen,7  The bending force in the working roll of thé stand,i = 2,...,7 MN Sampling interval: 0.01s (changeable)

Quality variable

Yfla The flatness of the strip in the exit of FMRP | Sampling inter@a01s (changeable) with delay (fixed)
Ythi The thickness of strip steels in exit of FMRP mm Online unaaé

« Fault Scenario 1: For < i < 1400, the process operates(total force in ' stand), the 1% (gap in 4" stand). This can
in mode 2 without fault; forn401 <i < 2100, the process be understood by the fault smearing effect.
runs within mode 1 with fault occurred from the 1601

to the 1808 sample; for2101 <i < 3500, the process , ‘ R
runs within mode 3 without fault. Lo e
« Fault Scenario 2: For < i < 3000, the process operates ‘ﬂ”' ]

under mode 1 with fault from the 30s. t sy

Scenario 1 is a flatness-related fault, it occurred when t
gap sensor in the ™ stand malfunctioned. This fault will
directly affect the gap and bending force measurements = | _____________
the downstream stands, then, until the flatness value. Us
the developed model, first of all, Fig. 4 shows the onlin
classification results. It can be observed from which thet tl ‘
proposed method has successfully classified all the data - " a7
their constituent modes.

The combined index

L
2500 3000

Fig. 5. Detection signal for flatness-related fault with ioy@d KPLS-based

method
it Classg
09
—o—pCl,,)

o8 A —e—rar,,) TABLE IV
07 O PO COMPARISONS OF THE PROPOSED METHQIPLSAND KPLS
0.6
0s ! e — Scenario  Performance type PLS KPLS Improved KPLS
o 1 FDR! 0.8021 0.7564 0.9085

2 FDR 0.8852 0.9081 0.9952

1 Refer to [8] for the calculation formula of FDR.

O—E  ClassE—
500 1000 15 5 500 500 1000 1500 2000 2500 3000 3500

samples Ssamples x 10

Fig. 4. Classification signal for the fault scenario 1 data

Fig. 5 shows the detection results of Scenario 1. It can be
seen thatp, detected this fault at around the 1808ample.
During the fault, the method kept a high detection rate until
the fault vanished. The results can also be verified by thie rea
flatness measurements, which is shown in the subfigure of Fig
5. This can prove that the method can correctly reflect the
status of the quality variable even there is no accurateitgual
measurement. As well-known that PLS, KPLS can also resolve T e, [0 10 e e
this problem, these three methods were compared in terms ot
the FDR using Scenario 1. Table IV shows the results. It can big. 6. Contribution rate-based diagnosis signal for flssaelated fault
seen that improved KPLS behaves better than PLS and KPLS.

Fig. 6 shows the contribution rate-based diagnosis refoits The fault in Scenario 2 was defined as the malfunction of
the 1500 to the 1708 samples. It can be observed fronthe gap control loop in the™stand. It directly affected the
around the 1600 sample that the contribution rate valuegap measurement in this stand. Typically, measurements in
of some variables started to increase. Th& 1@riable was the downstream stand will echo this change. Fig. 7 shows
particular, as it had the largest contribution rate. Thelltds the detection results for Scenario 2. It can be seen ¢hat
consistent with the description of this fault. It is notedttthe detected this fault at around the 2608ample, which behaves
other variables also had large contribution rates, e.g.7the efficiently, as the fault occurred at this time instant. laligidn,

Variable index



the results are consistent with the real thickness measumsm
as displayed in the subfigure of Fig. 7. It is also wort
noting that the thickness data become changed at arot
the 2350" sample, which also points out that the propose
method can identify faults largely before they are evenaeati
Table IV provides the detection rates delivered by PLS, KPL
and improved KPLS, where it verifies the excellence of tr
proposed method. Fig. 8 demonstrates the diagnosis result:
this fault. It was shown that variable 5 (total force in tH& 5
stand) and 17 (gap in thd"4tand) had the largest contribution
rates. The results are correct consistently with the definit varaile index
of this fault.

cal—hzf?l‘;agti(\:/aerrybgestzlca:tn ;hnac: tggglzgzce)s?guﬂgn:Dlre]?;gr?hrgswir%k- 8. Contribution rate-based diagnosis signal for théss-related fault
even noticed in the quality variables. This allows for eéfiti

and prompting resolution of any potential problems. Finallnumber. The KPLS method was improved by considering a
regarding the realtime implementation of the framework, Higher FDR, and based on it, the contribution rate method
should be noted: was used for fault diagnosis. The online data was classified
Remark 2:Most plant engineers concern very much aboyjsing the abilities of KPLS regression and Bayes inference.
the calculation efficiency of the proposed method due toThe proposed methods were applied to a batch HSMR
the limited computing resources. The present approachpigcess to diagnose faults that affect the product’s thes&n
computation-intensive, and it is largely attributed to - and flatness. It was seen that the framework can show accu-

tribution rate-based fault diagnosis step. As shown iniBect rate clustering results, higher detection and precisendisig
2-B, for each new coming process sample, the diagnogisrformance.

step involvesm repeated calculations of the contribution rate Future work considers topics with dynamics and non-
for each sample. The realtime operation of the model Gaussian dataset in batch multimode processes to achieve
time-consuming when using the laboratory-sized comput@ftimal operating performance.

According the test using the computer configured with Intel

The gap in # stand

The rolling force in B stand

Contribution rate
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