
A note on the Bahadur representation

of sample quantiles for mixing random

variables∗
Shanchao Yang, Keming Yu†

Address of the authors
Department of Mathematical Sciences, Brunel University, UK
e-mail: scyang@mailbox.gxnu.edu.cn keming.yu@brunel.ac.uk
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1. Introduction

The sample quantiles, often used as the estimator of distribution quantiles, are
very important statistics. The applications of sample quantiles are beyond the
area of statistics. For example, Dowd (2001) used sample quantile to derive a
simple and accurate estimates of parametric Value-at-Risk (VaR) for financial
risk analysis.

Let X be a random variable with a continuous distribution function F (x)
and a density function f(x). For 0 < p < 1, we call qp the p-quantile of F (x) if
F (qp) = p. Let {Xt}n

t=1 be a sample drawn from the population X. We define
the sample p-quantile as

Zn,p = X[np]+1, (1.1)

where [s] denotes the largest integer m such that m ≤ s. The corresponding
empirical distribution function is

Fn(x) = n−1
n∑

i=1

I(Xi ≤ x) (1.2)
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where I(·) is an indicator function.
Bahadur (1966) first established an almost sure representation of sample

quantile for independent random variables and its convergent rate is O(n−3/4 log1/2 n log1/4
2 n),

where log2 n = log log n. Later, Kiefer (1967) proved the exact rate is O(n−3/4 log3/4
2 n).

The Bahadur representation allows one to express asymptotically a sample quan-
tile as a sample mean of certain (bounded) random variables, from which many
important properties of the sample quantile, e.g., the central limit theorem, the
law of iterated logarithm, may be easily proved.

Bahadur representation and its applications have attracted a large number of
publications and presentations on a wide variety of problems. Hall (1991) devel-
oped it under bootstrap resampling. Xiang (1995), among others, derived it for
kernel quantile estimator. He and Shao (1996) discussed Bahadur representa-
tion of M-estimation. Several researchers (Jureckova and Sen, 1984; Koenker and
Portnoy,1987) derived it for parametric quantile regression. Further, Chaudhuri
(1991), and references therein, extended it for conditional kernel quantile re-
gression. Wu (2005) dealt with it for stochastic processes. Chen and Qin (1993)
explored it for empirical likelihood sample quantiles. Besides its well-known ap-
plications in asymptotic theory, Bahadur representation has been applied in
parameter estimation of complex models (Humphreys and Titterington, 2000),
longitudinal analysis (Fitzmaurice, Laird and Rotnitzky, 1993, among others)
and spatial data analysis (Koltchinskii, 1994).

Mixing dependent structure of random variables has been proved to be suit-
able to describe most of time series models, in particular, financial time series
models. For example, Chanda (1974) first presented that linear stochastic pro-
cess is strong mixing. Gorodeskii (1977) showed that linear process is strong
mixing under certain conditions and also provided the convergent rate for the
strong mixing coefficient. Withers (1981) further gave an alternative set of con-
ditions for linear processes to be strong mixing, and proved the strong mixing
coefficient is polynomial decay under some conditions. Pham and Tran (1985)
studied some sufficient conditions for strong mixing linear process. In recent
years, Genon-Catalot, Jeantheau and Laredo (2000) proved that continuous time
diffusion models and stochastic volatility models are strong mixing under certain
conditions. These models are the most popular models in pricing theory of fi-
nancial assets, such as Black-Scholes pricing theory of option. The geometrically
ergodic properties of various time series processes (including ARCH processes
and Markov processes), which imply β-mixing and hence strong mixing, have
been widely investigated by Lu (1996), Carrasco and Chen (2002), Lee and
Shin (2004), Hwang and Kim (2004), Francq and Zakoian (2006), and refer-
ences therein. Therefore, the mixing dependent structures of stochastic process
have widely been concerned.

In view of Bahadur representation for mixing processes, the early work in
the area includes the study of φ-mixing stationary processes by Sen (1972) and
Bahu and Singh (1978). Later work included Yoshihara (1995) which derived the
Bahadur representation by assuming that the random variables are uniformly
bounded and the strong mixing coefficient α(n) = O(n−β) where β > 5/2, that
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is
Zn,p − qp = (p− Fn(qp))/f(qp) + O

(
n−3/4 log n

)
, a.s. (1.3)

Unfortunately, we think this proof contains an error, i.e. the crucial inequality
(20) of Yoshihara (1995) is untrue. For the sake of convenience, the inequality
can be stated follows: let θn = n−1 and mn = [n1/2 log n] + 1, then for any
` (`θn < 1),

E

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣

4

≤ C(n`θn)1+γ (1.4)

for some γ (0 < γ < 1), where

Wi,` = I(qp < Xi ≤ qp + `θn)− P (qp < Xi ≤ qp + `θn). (1.5)

As a counter example of (1.4), we suppose that {Xi : i ≥ 1} are strictly
stationary and independent random variables. Since EWi,` = 0, we have

E

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣

4

= nEW 4
1,` + n(n− 1)(EW 2

1,`)
2.

It is easy to obtain that EW 2
1,` = p`(1−p`) and EW 4

1,` = p`(1−4p` +6p2
`−3p3

`),
where p` = Pr(qp < Xj ≤ qp + `θn). Hence

E

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣

4

= np`(1− 4p` + 6p2
` − 3p3

`) + n(n− 1)[p`(1− p`)]2

= (np`)2(1− p`)2 + np`(1− 5p` + 8p2
` − 4p3

`)

= (np`)2(1− p`)2 − np` + np`(2− 5p` + 8p2
` − 4p3

`)

≥ (np`)2(1− p`)2 − np`

by the fact: 2− 5p` + 8p2
` − 4p3

` ≥ 0 for any p` (0 ≤ p` ≤ 1).
Under the conditions of Theorem 1 of Yoshihara (1995), there exist positive

constants c1 and c2 such that c1`θn ≤ p` ≤ c2`θn. Note that `θn < 1 for
1 ≤ ` ≤ mn. Let us consider the case ` = mn. Then p` ≤ c2`θn = c2mnθn → 0
and np` ≥ c1n`θn ≥ c1n`θn = c1mn → ∞. Thus, for n sufficiently large, we
have that

E

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣

4

≥ (np`)2(1− p`)2 − np` ≥ (np`)2/2 > (np`)1+γ , (1.6)

which implies that (1.4) doesn’t hold. Therefore, the inequality (20) of Yoshi-
hara (1995) is not true. In fact, for generally independent random variables, by
Rosenthal type moment inequality one can only prove that

E

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣

r

≤ C(n`θn)r/2. (1.7)

imsart-generic ver. 2007/04/13 file: Bahadur-yy-3.tex date: September 11, 2007



F. Author et al./Bahadur representation 4

Of course, Appendix B of this note show that (1.7) holds also for ρ-mixing
and φ-mixing random variables, see (4.4) in Appendix B for details. Up to
now, however, it is still unclear if (1.7) is true for α-mixing random variables.
Therefore, the proof of Theorem 1 in Yoshihara (1995) can’t be corrected for
α-mixing random variables although it can for φ-mixing random variables.

Without noticing the error of Yoshihara’s proof Sun (2006) tried to improve
the result (Yoshihara, 1995) by removing the bound restriction. Sun (2006)
stated his result as, for any δ ∈ ( 11

4(β+1) ,
1
4 ) and β > 10

Zn,p − qp = (p− Fn(qp))/f(qp) + O
(
n−3/4+δ log n

)
, a.s. (1.8)

However, this result requires the order of strong mixing coefficient to be β > 10
and reduces the rate of convergence by δ > 11

4(β+1) .
This note proves the Bahadur representation under weaker condition and

provides a better convergent rate than (1.8). Our results don’t need to assume
that the random variables are uniformly bounded either.

2. Main results

We first give the definitions of mixing sequences. Let

α(n) = sup
k≥1

sup
A∈Fk

1 ,B∈F∞
k+n

|P (AB)− P (A)P (B)|,

φ(n) = sup
k≥1

sup
A∈Fk

1 ,B∈F∞
k+n

,P (A)>0

|P (B)− P (B|A)|,

ρ(n) = sup
k≥1

sup
X∈L2(Fk

1 ),Y ∈L2(F∞
k+n

)

|corr(X, Y )|,

where Fk
1 = σ(Xj , 1 ≤ j ≤ k) and F∞k+n = σ(Xj , j > k + n).

The sequence {Xi}i≥1 is called α-mixing (or strong mixing), φ-mixing and
ρ-mixing if limn→∞ α(n) = 0, limn→∞ φ(n) = 0 and limn→∞ ρ(n) = 0 respec-
tively.

Assumption (A) Let {Xi : i ≥ 1} be a strictly stationary sequence of ran-
dom variables with a common distribution function F (x), where F (x) is abso-
lutely continuous in some neighborhood of its p-quantile qp and has a continuous
density function f(x) such that 0 < f(qp) < ∞.

This paper will derive the following results.
Theorem 2.1 Suppose that Assumption (A) holds, 0 < τ ≤ 1 and one of the

following conditions holds:
(i) {Xi : i ≥ 1} is α-mixing and α(n) = O(n−β) for some β > 1/τ ;
(ii) {Xi : i ≥ 1} is ρ-mixing and

∑∞
j=1 ρ2/r(2j) < ∞ where r > 2/τ ;

(iii) {Xi : i ≥ 1} is φ-mixing and
∑∞

j=1 φ1/r(2j) < ∞ where r > 2/τ .
Then, as n →∞,

Zn,p − qp = o
(
n−1/2 logτ n

)
a.s., (2.1)
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Remark 2.1 When τ = 1, we only need β > 1 for strong mixing se-
quence. On the other hand, α(n) = O(n−β) for some β > 1 is equivalent
to

∑∞
j=1 αδ/(2+δ)(j) < ∞ for some δ > 0, which, as far as we know, is the

weakest condition for asymptotic properties of strong mixing sequences. In ad-
dition, the condition

∑∞
j=1 φ1/r(2j) < ∞, where r > 2/τ , is much weaker than

φ(n) = O(n−2) in Yoshihara (1995).
Theorem 2.2 Suppose the conditions in Theorem 2.1 are satisfied. For α-

mixing random variables, assume further that (1.7) holds for r > 2/τ, 1 ≤ ` ≤
λn, θn = n−3/4 logτ n and λn = [n1/4]. Then, as n →∞,

sup
x∈Jn

|(Fn(x)− F (x))− (Fn(qp)− p)| = O
(
n−3/4 logτ n

)
a.s., (2.2)

where Jn = {x : |x− qp| ≤ n−1/2 logτ n}.
Theorem 2.3 Suppose the conditions in Theorem 2.2 are satisfied and f ′(x)

is bounded in some neighborhood of qp. Then, as n →∞,

Zn,p − qp = (p− Fn(qp))/f(qp) + O
(
n−3/4 logτ n

)
a.s.. (2.3)

Although it is unclear if (1.7) is till true for α-mixing, we are able to derive
some further results for α-mixing.

Theorem 2.4 Suppose that Assumption (A) holds and {Xi : i ≥ 1} is α-
mixing with geometric mixing coefficients. Then as n →∞,

sup
x∈Jn

|(Fn(x)− F (x))− (Fn(qp)− p)| = O
(
n−3/4 log1+τ n

)
a.s., (2.4)

for any τ > 0. Further, assume that f ′(x) is bounded in some neighborhood of
qp, then as n →∞,

Zn,p − qp = (p− Fn(qp))/f(qp) + O
(
n−3/4 log1+τ n

)
a.s., (2.5)

for any τ > 0.
Theorem 2.5 Suppose that Assumption (A) holds and {Xi : i ≥ 1} is α-

mixing with mixing coefficient α(n) = O(n−β) for β > 3. Then as n →∞,

sup
x∈Jn

|(Fn(x)− F (x))− (Fn(qp)− p)| = O
(
n−

3
4+ 7

4(2β+1) log n
)

a.s., (2.6)

for any τ (1/β < τ < 1). Further, assume that f ′(x) is bounded in some neigh-
borhood of qp, then as n →∞,

Zn,p − qp = (p− Fn(qp))/f(qp) + O
(
n−

3
4+ 7

4(2β+1) log n
)

a.s.. (2.7)
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Remark 2.2 Note that − 3
4 + 7

4(2β+1) < 0 for β > 3. The result (2.7) improves
greatly the (1.8) of Sun (2006).

Now, we discuss the asymptotic normality of sample quantiles for strong
mixing sequence by the Bahadur representations. From strictly stationary,

σ2
p,n =: E{√n(p− Fn(qp))}2

= Var(I(X1 ≤ qp)) + 2
n−1∑

j=1

(1− j/n)Cov(I(X1 ≤ qp), I(Xj+1 ≤ qp))

= p(1− p) + 2
n−1∑

j=1

(1− j/n)Cov(I(X1 ≤ qp), I(Xj+1 ≤ qp)). (2.8)

and by Lemma 3.7 in Appendix A,
∣∣∣∣∣∣

n−1∑

j=1

(1− j/n)Cov(I(X1 ≤ qp), I(Xj+1 ≤ qp))

∣∣∣∣∣∣

≤
n−1∑

j=1

(1− j/n) |Cov(I(X1 ≤ qp), I(Xj+1 ≤ qp))|

≤ C

n−1∑

j=1

α(j) ≤ C

n−1∑

j=1

j−β . (2.9)

It implies that σ2
p,n converges absolutely as n → ∞ under the conditions of

Theorem 2.1 and say σ2
p = limn→∞ σ2

p,n. Let

Un =
√

nf(qp)(Zn,p − qp)/σp. (2.10)

From (2.7),

Un =
√

n(p− Fn(qp))/σp + O
(
n−1/4+ 7

4(2β+1) log n
)

a.s., (2.11)

then we can establish the uniformly asymptotic normality of sample quantiles.
Theorem 2.6 Suppose the conditions in Theorem 2.5 are satisfied and σ2

p >
0. Assume further that 0 < b < 1 and

β ≥ max
{

1 +
1− b

6b
,

7(1− b)
6b

}
. (2.12)

Then for any ε > 0,

sup
u
|FUn(u)− Φ(u)| = O

(
n−(1−b)/6 + n−1/4+ 7

4(2β+1)+ε
)

(2.13)

where Φ is the standardize normal distribution function and FX(x) denotes the
distribution function of any random variable X.

imsart-generic ver. 2007/04/13 file: Bahadur-yy-3.tex date: September 11, 2007



F. Author et al./Bahadur representation 7

Remark 2.3 We know that 1+ 1−b
6b ≤ 7(1−b)

6b for 0 < b ≤ 1/2, while 1+ 1−b
6b >

7(1−b)
6b for 1/2 < b < 1. Therefore, the low bound in (2.12) tends to 1 as b → 1−.

Thus, we have
sup

u
|FUn(u)− Φ(u)| = o(1) (2.14)

provided with β > 3. Also, under geometric coefficient of strong mixing, the
convergence rate of uniformly asymptotic normality is near to n−1/6 by choosing
b → 0 and β →∞ in (2.13), that is

sup
u
|FUn

(u)− Φ(u)| = O(n−1/6+ε), (2.15)

for any ε > 0.

Appendix A
Auxiliary lemmas

There are some known lemmas that will be used in the next section.
Lemma 3.1 (Roussas and Ioannides, 1987 ) Let {Xj : j ≥ 1} be a sequence of

α-mixing random variables. Suppose that ξ and η are Fk
1 - measurable and F∞k+n -

measurable random variables, respectively. (i) If |ξ| ≤ C1 a.s. and |η| ≤ C2 a.s.,
then

|E(ξη)− (Eξ)(Eη)| ≤ 4C1C2α(n) ;

(ii) If E|ξ|p < ∞ a.s. and |η| ≤ C a.s. with 1/p + 1/q = 1 , then

|E(ξη)− (Eξ)(Eη)| ≤ 6Cα1/q(n)(E|ξ|p)1/p ;

(iii) If E|ξ|p < ∞ a.s. and E|η|q < ∞ a.s. with 1/p + 1/q + 1/t = 1 , then

|E(ξη)− (Eξ)(Eη)| ≤ 10α1/t(n)(E|ξ|p)1/p(E|η|q)1/q .

Lemma 3.2 Let {Xi : i ≥ 1} be a sequence of α-mixing random variables with zero
mean. If E|Xi|2+δ < ∞ for some δ > 0 and

∑∞
j=1

αδ/(2+δ)(j) < ∞, then there exists
a positive constant C, which does’t depend on n, such that

E

(
n∑

i=1

Xi

)2

≤ C

n∑
i=1

||Xi||22+δ .

It is easy to prove Lemma 3.2 by Lemma 3.1 (iii). In fact, it also be found in Yang
(2006, Lemma 2.1; 2000, Theorem 2.1).

Lemma 3.3 (Yang, 2006, Theorem 2.2) Let {Xi : i ≥ 1} be a sequence of α-mixing
random variables with zero mean and E|Xi|r+δ < ∞ for some r > 2 and δ > 0. If

β > r(r + δ)/(2δ) (3.1)

and α(n) ≤ Cn−β for some C > 0, then for any ε > 0, there exists a positive constant
K = K(ε, r, δ, β, C) < ∞ such that

E max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣

r

≤ K



nε

n∑
i=1

E|Xi|r +

(
n∑

i=1

(
E|Xi|r+δ

)2/(r+δ)

)r/2


 .
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Lemma 3.4(Shao, 1995, Corollary 1.1) Let {Xi : i ≥ 1} be a sequence of ρ-mixing
random variables with zero mean, E|Xi|r < ∞ for some r ≥ 2 and

∑∞
j=1

ρ2/r(2j) < ∞.

Then there exists a positive constant K = K(r, ρ(·)) < ∞ such that

E max
1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣

r

≤ K

{
n max

1≤i≤n
E|Xi|r +

(
n max

1≤i≤n
E|Xi|2

)r/2
}

.

Remark 3.1 Since ρ(n) ≤ 2ϕ1/2(n), Lemma 3.2 also holds for the sequence
of ϕ-mixing random variables with zero mean, E|Xi|r < ∞ for some r ≥ 2 and∑∞

j=1
ϕ1/r(2j) < ∞. Its direct proof can be found in Shao (1988).

Lemma 3.5 Let {Xi : i ≥ 1} be an α-mixing sequence of mean-zero real-valued
random variables with |Xi| ≤ b < ∞ a.s.. Suppose furthermore that kn are positive
integers such that 1 ≤ kn ≤ n/2. Then for any ε > 0,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > nε

)
≤ 4 exp

(
− nε2

12(3σ2
n + bknε)

)
+ 36bε−1α(kn)

where σ2
n = n−1

∑2mn+1

j=1
E|Uj |2, mn = [ n

2kn
], Uj =

∑
(j−1)kn<i≤jkn

Xi (j = 1, 2, · · · , 2mn)

and U2mn+1 =
∑n

i=2mn+1
Xi.

Proof Rio (1995) used the coupling method to prove a Bennett type exponen-
tial inequality (Theorem 5) for strong mixing random variables. Here we will use his
method to show our Bernstein type exponential inequality. Obviously, 2knmn ≤ n and
n− 2knmn ≤ n− 2kn( n

2kn
− 1) = 2kn. Also,

n∑
i=1

Xi =

2mn+1∑
j=1

Uj =

mn∑
j=0

U2j+1 +

mn∑
j=1

U2j . (3.2)

Note that |Uj | ≤ 2knb, a.s. for any j. From the proof of Theorem 5 in Rio (1995), there
exist the random variables {U∗j }1≤j≤2mn+1 which have the following properties:

1. For any positive j, the random variable U∗j has the same distribution as Uj .
2. The random variables {U∗2j}1≤j≤mn are independent and the random variables

{U∗2j+1}0≤j≤mn are also independent.
3. Moreover,

2mn+1∑
j=1

E|Uj − U∗j | ≤ 12bnα(kn). (3.3)

Now, from (3.2), we get that

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > nε

)
≤ P

(∣∣∣∣∣
mn∑
j=1

U∗2j

∣∣∣∣∣ > nε/3

)
+ P

(∣∣∣∣∣
mn∑
j=0

U∗2j+1

∣∣∣∣∣ > nε/3

)

+ P

(∣∣∣∣∣
2mn∑
j=1

(Uj − U∗j )

∣∣∣∣∣ > nε/3

)

=: I1 + I2 + I3. (3.4)
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By (3.3) and Markov’s inequality,

I3 ≤ 36bε−1α(kn). (3.5)

By Bernstein exponential inequality for independent random variables, we have

I1 ≤ 2 exp


− (nε/3)2

2
(
2
∑mn

j=1
EU2

2j + 2knbnε/3
)


 ≤ 2 exp

(
− nε2

12 (3σ2
n + bknε)

)
. (3.6)

In the same way,

I2 ≤ 2 exp

(
− nε2

12 (3σ2
n + bknε)

)
. (3.7)

Combining (3.4)-(3.7) yields the desired result. ]
Lemma 3.6 Let θ be a positive real number and λ be a positive integer. If f(x) is

continuous and bounded (say b) in [s− λθ, s + λθ], then

sup
s≤t≤s+λθ

|Yn(t)− Yn(s)| ≤ 2 max
1≤j≤λ

|Yn(s + jθ)− Yn(s)|+ 2b
√

nθ (3.8)

and
sup

s−λθ≤t≤s

|Yn(t)− Yn(s)| ≤ 2 max
1≤j≤λ

|Yn(s− jθ)− Yn(s)|+ 2b
√

nθ (3.9)

where Yn(t) =
√

n(Fn(t)− F (t)).
Proof It is similar to Lemma 3 of Yoshihara (1995), but it is not exactly the same.

Denote U(t) =: F (t)−F (s) and Un(t) =: Fn(t)−Fn(s). Note that U(t) and Un(t) are
non-decreasing for t ∈ [s,∞), and Yn(t)− Yn(s) =

√
n[Un(t)− U(t)], we have

sup
s≤t≤s+λθ

|Yn(t)− Yn(s)| = max
1≤j≤λ

sup
s+(j−1)θ<t≤s+jθ

√
n|Un(t)− U(t)|

≤ max
1≤j≤λ

sup
s+(j−1)θ<t≤s+jθ

√
n|Un(s + jθ)− U(s + (j − 1)θ)|

+ max
1≤j≤λ

sup
s+(j−1)θ<t≤s+jθ

√
n|Un(s + (j − 1)θ)− U(s + jθ)|

≤ max
1≤j≤λ

√
n|Un(s + jθ)− U(s + jθ) + an,j |

+ max
1≤j≤λ

√
n|Un(s + (j − 1)θ)− U(s + (j − 1)θ)− an,j |

≤ 2 max
1≤j≤λ

√
n|Un(s + jθ)− U(s + jθ)|+ 2

√
nan,j

≤ 2 max
1≤j≤λ

|Yn(s + jθ)− Yn(s)|+ 2
√

nan,j

where an,j = F (s + jθ)− F (s + (j − 1)θ). Furthermore, an,j ≤ bθ. So we’ve got (3.8).
Similarly, (3.9) follows. ]

Lemma 3.7(Moricz, 1976, Theorem 1) Let {ξi} be a sequence of random variables
(It is not assumed that they are independent or stationary) and g(Fb,n) denote a non-
negative function depending on the joint distribution function of (ξb+1, · · · , ξb+n) and
satisfying

g(Fb,k) + g(Fb+k,l) ≤ g(Fb,k+l), for all b ≥ 0 and 1 ≤ k ≤ k + l.
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If

E

∣∣∣∣∣
b+n∑

i=b+1

ξi

∣∣∣∣∣

r

≤ gυ(Fb,n), for all b ≥ 0, n ≥ 1,

where r > 0 and υ > 1. Then exists a positive constant Cr,υ, which depends only on r
and υ, such that

E max
1≤k≤n

∣∣∣∣∣
b+k∑

i=b+1

ξi

∣∣∣∣∣

r

≤ Cr,υgυ(Fb,n), for all b ≥ 0, n ≥ 1.

Lemma 3.8(Yang, 2003, Lemma 3.7) Suppose that {ζn : n ≥ 1} and {ηn : n ≥ 1}
are two random variable sequences, {γn : n ≥ 1} is a positive constant sequence, and
γn → 0. If

sup
u

|Fζn(u)− Φ(u)| ≤ Cγn,

then for any ε > 0,

sup
u

|Fζn+ηn(u)− Φ(u)| ≤ C{γn + ε + P (|ηn| ≥ ε)}.

Lemma 3.9(Yang and Li, 2006, Lemma 3.2) Let {Xj : j ≥ 1} be a sequence of α-

mixing random variables, p, q be two positive integers. Denote ηl :=
∑(l−1)(p+q)+p

j=(l−1)(p+q)+1
Xj

for 1 ≤ l ≤ k. If r > 0, s > 0 and 1
r

+ 1
s

= 1, then
∣∣∣∣∣E exp

(
it

k∑
l=1

ηl

)
−

k∏
l=1

E exp (itηl)

∣∣∣∣∣ ≤ C|t|α1/s(q)

k∑
l=1

||ηl||r.

Proof It is Lemma 3.2 of Yang and Li (2006). For the sake of convenience, we give
the proof. Obviously

∣∣∣∣∣E exp

(
it

k∑
l=1

ηl

)
−

k∏
l=1

E exp (itηl)

∣∣∣∣∣

≤
∣∣∣∣∣E exp

(
it

k∑
l=1

ηl

)
− E exp

(
it

k−1∑
l=1

ηl

)
E exp (itηk)

∣∣∣∣∣

+

∣∣∣∣∣E exp

(
it

k−1∑
l=1

ηl

)
−

k−1∏
l=1

E exp (itηl)

∣∣∣∣∣
=: I1 + I2.

Note that eix = cos(x)+i sin(x), sin(x+y) = sin(x) cos(y)+cos(x) sin(y), cos(x+y) =
cos(x) cos(y)− sin(x) sin(y). We have

I1 ≤
∣∣∣∣∣cov

(
cos

(
t

k−1∑
l=1

ηl

)
, cos(tηk)

)∣∣∣∣∣ +

∣∣∣∣∣cov
(

sin

(
t

k−1∑
l=1

ηl

)
, sin(tηk)

)∣∣∣∣∣

+

∣∣∣∣∣cov
(

sin

(
t

k−1∑
l=1

ηl

)
, cos(tηk)

)∣∣∣∣∣ +

∣∣∣∣∣cov
(

cos

(
t

k−1∑
l=1

ηl

)
, sin(tηk)

)∣∣∣∣∣
=: I11 + I12 + I13 + I14.
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Using Lemma 3.1 and note that | sin(x)| ≤ |x|, have

I12 ≤ Cα1/s(q)|| sin(tηk)||r ≤ C|t|α1/s(q)||ηk||r, I14 ≤ C|t|α1/s(q)||ηk||r
Using cos(2x) = 1− 2 sin2(x), we obtain

I11 =

∣∣∣∣∣cov
(

cos

(
t

k−1∑
l=1

ηl

)
, 1− 2 sin2(tηk/2)

)∣∣∣∣∣ = 2

∣∣∣∣∣cov
(

cos

(
t

k−1∑
l=1

ηl

)
, sin2(tηk/2)

)∣∣∣∣∣
≤ Cα1/s(q)E1/r| sin(tηk/2)|2r ≤ Cα1/s(q)E1/r| sin(tηk/2)|r ≤ C|t|α1/s(q)||ηk||r.

Similarly,
I13 ≤ C|t|α1/s(q)||ηk||r.

Combining the equations above yields

∣∣∣∣∣E exp

(
it

k∑
l=1

ηl

)
−

k∏
l=1

E exp (itηl)

∣∣∣∣∣ ≤ C|t|α1/s(q)||ηk||r + I2.

From that, and repeating the procedure above, we obtain the result.

Appendix B
Proofs of Theorems

We will first prove the Bahadur representation (i.e. Theorem 2.1-2.5) and then show
the uniformly asymptotic normality (i.e. Theorem 2.6).

4.1 Proof of Bahadur representation

Proof of Theorem 2.1 Clearly,

An =: {ω : |Zn,p − qp| ≥ εn−1/2 logτ n}
= {ω : Zn,p ≤ qp − εn−1/2 logτ n}+ {ω : Zn,p ≥ qp + εn−1/2 logτ n}
=: A1n + A2n.

Also,

⋃

2k≤n<2k+1

A1n =
⋃

2k≤n<2k+1

{
n∑

i=1

I(Xi ≤ qp − εn−1/2 logτ n) ≥ [np] + 1

}

⊆
⋃

2k≤n<2k+1

{
n∑

i=1

I(Xi ≤ qp − c12
−k/2kτ ) ≥ [np] + 1

}

⊆
⋃

2k≤n<2k+1

{
n∑

i=1

ξk,i ≥ [np] + 1− nF (qp − c12
−k/2kτ )

}

where ξk,i = I(Xi ≤ qp−c12
−k/2kτ )−F (qp−c12

−k/2kτ ). Note that F (qp−c12
−k/2kτ ) =

p− c1f(qp)2−k/2kτ + O(2−kk2τ ), we have

[np] + 1− nF (qp − c12
−k/2kτ ) = c22

−k/2kτn + O(2−kk2τn) ≥ c32
k/2kτ
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for 2k ≤ n < 2k+1. Hence

⋃

2k≤n<2k+1

A1n ⊆
⋃

2k≤n<2k+1

{
n∑

i=1

ξk,i ≥ c32
k/2kτ

}
⊆

{
max

1≤n<2k+1

∣∣∣∣∣
n∑

i=1

ξk,i

∣∣∣∣∣ ≥ c32
k/2kτ

}
.

For α-mixing, we can first choose a r > 2 such that β > r/2 > 1/τ since β > 1/τ ≥ 1,
and then choose a δ > 0 sufficiently large such that β > r2/(2δ) + r/2. These imply
that β > r(r+ δ)/(2δ) and rτ/2 > 1. By Lemma 3.3 and choosing an ε > 0 sufficiently
small, we have

P


 ⋃

2k≤n<2k+1

A1n


 ≤ C2−rk/2k−rτE

(
max

1≤n<2k+1

∣∣∣∣∣
n∑

i=1

ξk,i

∣∣∣∣∣

r)

≤ C2−rk/2k−rτ





2ε(k+1)

2k+1∑
i=1

E|ξk,i|r +




2k+1∑
i=1

(E|ξk,i|r+δ)2/(r+δ)




r/2




≤ C2−rk/2k−rτ2r(k+1)/2 ≤ Ck−rτ . (4.1)

Similarly, P
(⋃

2k≤n<2k+1 A2n

)
≤ Ck−rτ . So

∑∞
k=1

P
(⋃

2k≤n<2k+1 An

)
< ∞. From

the Borel-Cantelli lemma, we have that P
(⋃

2k≤n<2k+1 An, i.o.
)

= 0, hence P (An, i.o.) =

0, i.e.
|Zn,p − qp| < εn−1/2 logτ n, a.s.

for any ε > 0. It implies the desired result. For ρ-mixing and ϕ-mixing, (4.1) is still
true and followed by Lemma 3.4 and Remark 3.1 instead of Lemma 3.3. Thus we finish
the proof. ]

Proof of Theorem 2.2 Let λn = [n1/4] which is the integer part of n1/4 and
θn = n−3/4 logτ n. By Lemma 3.3, we have

sup
x∈Jn

|(Fn(x)− F (x))− (Fn(qp)− p)|

= n−1/2 sup
x∈Jn

|Yn(x)− Yn(qp)|

≤ n−1/2 sup
qp−λnθn<x<qp+λnθn

|Yn(x)− Yn(qp)|

≤ 2n−1/2 max
1≤`≤λn

|Yn(qp + `θn)− Yn(qp)|

+ 2n−1/2 max
1≤`≤λn

|Yn(qp − `θn)− Yn(qp)|+ Cθn

≤ 2n−1/2 max
1≤`≤λn

|Yn(qp + `θn)− Yn(qp)|

+ 2n−1/2 max
1≤`≤λn

|Yn(qp − `θn)− Yn(qp)|+ O
(
n−3/4 logτ n

)
.

Hence, it suffices to show that

max
1≤`≤λn

|Yn(qp + η`θn)− Yn(qp)| = O
(
n−1/4 logτ n

)
. (4.2)
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where η = 1 or −1. We will only discuss the case of η = 1 because of its similarity for
the case of η = −1. Clearly,

Yn(qp + `θn)− Yn(qp)

=
√

n(Fn(qp + `θn)− F (qp + `θn))−√n(Fn(qp)− F (qp))

=
√

n {(Fn(qp + `θn)− Fn(qp))− (F (qp + `θn)− F (qp))}

=
1√
n

n∑
i=1

{I(qp < Xi ≤ qp + `θn)− P (qp < Xi ≤ qp + `θn)}

= n−1/2

n∑
i=1

Wi,`.

where Wi,` are defined in (1.5). Therefore, it remains to prove that

max
1≤`≤λn

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ = O
(
n1/4 logτ n

)
. (4.3)

Denote Zi,j = I (qp + (j − 1)θn ≤ Xi < qp + jθn)−P (qp + (j − 1)θn ≤ Xi < qp + jθn).
Clearly, for any given `, {Wi,` : i ≥ 1} is still a strong mixing (ρ-mixing or φ-mixing)

sequence with zero-mean and bounded, and Wi,` =
∑`

j=1
Zi,j .

Now for the cases of ρ-mixing and ϕ-mixing, by Lemma 3.4 and Remark 3.1 it is
easy to get

E

∣∣∣∣∣
n∑

i=1

∑̀
j=1

Zi,j

∣∣∣∣∣

r

= E

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣

r

≤ C
(
nEW 2

1,`

)r/2 ≤ C(n`θn)r/2. (4.4)

For α-mixing, (4.4) just is (1.7). Furthermore, using Lemma 3.7 (If necessary, we can
change the double sum into single sum by re-arrange the random variables Zi,j), we
have

E max
1≤k≤n

max
1≤`≤λn

∣∣∣∣∣
k∑

i=1

∑̀
j=1

Zi,j

∣∣∣∣∣

r

≤ C(nλnθn)r/2.

Therefore,

P


 ⋃

2k≤n<2k+1

{
max

1≤`≤λn

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ ≥ n1/4 logτ n

}


≤ P

(
max

2k≤n<2k+1
max

1≤`≤λn

∣∣∣∣∣
n∑

i=1

∑̀
j=1

Zi,j

∣∣∣∣∣ ≥ c2k/4kτ

)

≤ C(2k/4kτ )−r(2kλ2kθ2k )r/2 ≤ Ck−rτ/2

which, together with rτ/2 > 1, yields (4.3). The proof is completed. ]
Proof of Theorem 2.3 Note that

Fn(Zn,p) = n−1

n∑
i=1

I(Xi ≤ Zn,p) =
[np] + 1

n
= p + O(n−1).
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Expand F (Zn,p) at qp, we get that

F (Zn,p) = p + f(qp)(Zn,p − qp) +
1

2
f ′(qp + θ(Zn,p − qp))(Zn,p − qp)2.

Thus

(Fn(Zn,p)− F (Zn,p)) + f(qp)(Zn,p − qp)

= O(n−1)− 1

2
f ′(qp + θ(Zn,p − qp))(Zn,p − qp)2.

Since f ′(x) is bounded in some neighborhood of qp, by Theorem 2.1

|(Fn(Zn,p)− F (Zn,p)) + f(qp)(Zn,p − qp)| = o(n−1 log2τ n), a.s.,

which, together with Theorem 2.2, leads to

|f(qp)(Zn,p − qp) + (Fn(qp)− p)|
≤ |(Fn(Zn,p)− F (Zn,p)) + f(qp)(Zn,p − qp)|+ |(Fn(Zn,p)− F (Zn,p))− (Fn(qp)− p)|
≤ |(Fn(Zn,p)− F (Zn,p)) + f(qp)(Zn,p − qp)|+ sup

x∈Jn

|(Fn(x)− F (x))− (Fn(qp)− p)|

= O
(
n−3/4 logτ n

)
, a.s..

So the proof is completed. ]
Proof of Theorem 2.4 Because of geometric mixing coefficient, (2.1) holds for

any τ > 0. To get (2.4), it is sufficient to prove that

max
1≤`≤λn

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ = O
(
n1/4 log1+τ n

)
. (4.5)

instead of (4.3). We will show it by using the similar method to that in the proof of
Theorem 1 of Sun (2006). Now recall that the definition of σ2

n in Lemma 3.5, we have
that

σ2
n = n−1

mn∑
j=1

E|Uj |2 ≤ CknEW 2
1,` ≤ kn`θn ≤ Cknn−1/2 logτ n. (4.6)

Hence, applying Lemma 3.5 and choosing kn = [B log n] for some positive constant B
sufficiently large,

P

(∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ > n1/4 log1+τ n

)
= P

(∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ > nn−3/4 log1+τ n

)

≤ 4 exp

(
− n−1/2 log2+2τ n

Cknn−1/2 logτ n + 12knn−3/4 log1+τ n

)
+ 36α(kn)n3/4 log−1−τ n

≤ 4 exp

(
− log2+τ n

Ckn + 12knn−1/4 log n

)
+ 36n3/4ρkn log−τ n ≤ Cn−2,

where 0 < ρ < 1. Thus,

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ ≤ Cn1/4 log1+τ n, a.s.
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for any `(1 ≤ ` ≤ λn). It follows (4.5). Finally, we get (2.5) by the same way in the
proof of Theorem 2.3. So the proof is completed. ]

Proof of Theorem 2.5 Since β > 1/τ and 0 < τ < 1, (2.1) holds. To get (2.6),
hence, we only need to show that

max
1≤`≤λn

∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ = O
(
n1/4+ε log n

)
, a.s. (4.7)

instead of (4.3), where ε = 7
4(2β+1)

. Recall (4.6) and choose kn = [n2ε log(1−τ)/2 n], by
Lemma 3.5 we have

P

(∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ > n1/4+ε log n

)
= P

(∣∣∣∣∣
n∑

i=1

Wi,`

∣∣∣∣∣ > n · n−3/4+ε log n

)

≤ 4 exp

(
− n−1/2+2ε log2 n

Cknn−1/2 logτ n + 12knn−3/4+ε log n

)
+ 36α(kn)n3/4−ε log−1 n

≤ 4 exp
(
−C log1+(1−τ)/2 n

)
+ 36n3/4−ε−2εβ log−1−β(1−τ)/2 n

≤ 4 exp
(
−C log1+(1−τ)/2 n

)
+ 36n−1 log−1−β(1−τ)/2 n.

Yields (4.7). On the other hand, it follows (2.7) by the same way in the proof of
Theorem 2.3. So the proof is completed. ]

4.2 Proof of uniformly asymptotic normality (Theorem 2.6)

Let Sn =
√

n(p− Fn(qp))/σp. By (2.11),

Un = Sn + O
(
n
−1/4+ 7

4(2β+1) log n
)

, a.s. (4.8)

Hence, by the equation (4.8) and Lemma 3.8, in order to prove Theorem 2.4 it is
sufficient to show that

sup
u

|FSn(u)− Φ(u)| ≤ Cn−(1−b)/6. (4.9)

To prove (4.9), we need some lemmas.
Let Yni = (P (Xi ≤ qp) − I(Xi ≤ qp))/(

√
nσp), then Sn =

∑n

i=1
Yni. Let qn =

[nb], pn = [n(1+b)/2] + 1 and kn = [n(1−b)/2] + 1 be integers, where [x] denotes the
integer part of x. Then kn(pn + qn) ≥ n. Therefore, Sn may be split as

Sn = S′n + S′′n , (4.10)

where S′n =
∑kn

m=1
ynm, S′′n =

∑kn

m=1
y′nm, and

ynm =

(m−1)(pn+qn)+pn∑
i=(m−1)(pn+qn)+1

Yni, y′nm =

m(pn+qn)∑
i=(m−1)(pn+qn)+pn+1

Yni

for m = 1, 2, . . . , kn, where Yni = 0 if i > n.
Lemma 4.1 Under condition of Theorem 2.6,

E(S′′n)2 ≤ Cn−(1−b)/2, (4.11)
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and
P (|S′′n | ≥ n−(1−b)/6) ≤ Cn−(1−b)/6. (4.12)

Proof Since β > 1, we can choose a δ > 0 such that βδ/(2+ δ) > 1. It implies that∑∞
j=1

αδ/(2+δ)(j) < ∞ . By Lemma 3.2, we have

E(S′′n)2 ≤ C

kn∑
m=1

m(pn+qn)∑
i=(m−1)(pn+qn)+pn+1

||Yni||22+δ ≤ Cknqnn−1 ≤ Cn−(1−b)/2,

yields (4.11). Moreover, we get immediately (4.12) by the Markov’s inequality and
(4.11). ]

Set s2
n :=

∑k

m=1
Var(ynm). We have the following lemma.

Lemma 4.2 Under condition of Theorem 2.6,

|s2
n − 1| = O(n−(1−b)/6). (4.13)

Proof Let Γn =
∑

1≤i<j≤k
Cov(yni, ynj). We know that E(Sn)2 = σ2

p,n/σ2
p from

(2.8) and σ2
p,n = σ2

p + O(n−β+1) from (2.9). Hence, E(Sn)2 = 1 + O(n−β+1) = 1 +

O(n−(1−b)/6) due to β ≥ 1 + (1− b)/(6b) from (2.12). Clearly

s2
n = E(S′n)2 − 2Γn. (4.14)

Moreover, E(S′n)2 = E[Sn − S′′n ]2 = 1 + E(S′′n)2 − 2E(SnS′′n) + O(n−(1−b)/6). Hence
by Lemma 4.1,

|E(S′n)2 − 1| = |E(S′′n)2 − 2E(SnS′′n) + O(n−(1−b)/6)| ≤ Cn−(1−b)/6. (4.15)

On the other hand, by Lemma 3.1,

|Γn| ≤
∑

1≤i<j≤kn

(i−1)(pn+qn)+pn∑
s=(i−1)(pn+qn)+1

(j−1)(pn+qn)+pn∑
t=(j−1)(pn+qn)+1

|Cov(Yns, Ynt)|

≤ Cn−1
∑

1≤i<j≤kn

(i−1)(pn+qn)+pn∑
s=(i−1)(pn+qn)+1

(j−1)(pn+qn)+pn∑
t=(j−1)(pn+qn)+1

α(t− s)

≤ Cn−1
∑

1≤i<j≤kn

(i−1)(pn+qn)+pn∑
s=(i−1)(pn+qn)+1

(j−1)(pn+qn)+pn∑
t=(j−1)(pn+qn)+1

(t− s)−β

≤ Cn−1

kn−1∑
i=1

(i−1)(pn+qn)+pn∑
s=(i−1)(pn+qn)+1

kn(pn+qn)∑
t=qn

t−β

≤ C

∞∑
t=qn

t−β ≤ Cq−β+1
n ≤ Cn−(β−1)b ≤ Cn−(1−b)/6. (4.16)

Combining (4.14)–(4.16) implies the desired result. ]
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Assume that {ηnm : m = 1, . . . , kn} are independent random variables, and the

distribution of ηnm is the same as that of ynm for m = 1, . . . , kn. Let Tn =
∑kn

m=1
ηnm

and Bn =
∑kn

m=1
V ar(ηnm). Clearly

Bn = s2
n, FTn(u) = FTn/

√
Bn

(u/sn). (4.17)

Lemma 4.3 Under conditions of Theorem 2.6,

sup
u

|FTn/
√

Bn
(u)− Φ(u)| = O

(
n−(1−b)/6

)
(4.18)

and
sup

u

|FS′n(u)− FTn(u)| = O
(
n−(1−b)/6

)
. (4.19)

Proof Let r = 2 + 2/3. Since β > 1 + 1/3 = r/2, we can choose a sufficiently large
δ > 0 such that β > r2/δ + r/2 = r(r + δ)/(2δ). Using Lemma 3.3, we have that for
ε > 0 sufficiently small,

E|ynm|r ≤ C





nε

(m−1)(pn+qn)+pn∑
i=(m−1)(pn+qn)+1

E|Yni|r +




(m−1)(pn+qn)+pn∑
i=(m−1)(pn+qn)+1

||Yni||2r+δ




r/2




≤ C
{

nεpnn−r/2 +
(
pnn−1

)r/2
}
≤ C

(
pnn−1

)r/2

≤ Cn−(1−b)r/4 = Cn−2(1−b)/3

Thus
kn∑

m=1

E|ynm|3 ≤ Cknn−2(1−b)/3 = Cn−(1−b)/6,

and Lemma 4.2 implies Bn = s2
n → 1, so B

−3/2
n

∑kn

m=1
E|ηnm|3 ≤ Cn−(1−b)/6. Apply-

ing Berry-Esseen theorem, we get (4.18).
Assume that ϕ(t) and ψ(t) are the characteristic functions of S′n and Tn respectively.

Note that ψ(t) = E(exp{itTn}) =
∏kn

m=1
E exp{itηnm} =

∏kn

m=1
E exp{itynm}. Using

Lemma 3.9 and Lemma 3.2,

|ϕ(t)− ψ(t)| = |E exp(it

kn∑
m=1

ynm)−
kn∏

m=1

E exp(itynm)|

≤ C|t|α1/2(qn)

kn∑
m=1

||ynm||2 ≤ C|t|α1/2(qn)kn(pnn−1)1/2

≤ C|t|q−β/2
n kn(pnn−1)1/2 ≤ C|t|n−bβ/2+(1−b)/4 ≤ C|t|n−(1−b)/3

by β ≥ 7(1− b)/(6b) from (2.12). Therefore

I1 =:

∫ T

−T

∣∣∣∣
ϕ(t)− ψ(t)

t

∣∣∣∣ dt ≤ CTn−(1−b)/3. (4.20)
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On the other hand, note that FTn(u) = FTn/
√

Bn
(u/sn) and (4.20), we have

sup
u

|FTn(u + y)− FTn(u)| ≤ sup
u

∣∣FTn/
√

Bn
((u + y)/sn)− FTn/

√
Bn

(u/sn)
∣∣

≤ sup
u

∣∣FTn/
√

Bn
((u + y)/sn)− Φ((u + y)/sn)

∣∣ + sup
u

|Φ((u + y)/sn)− Φ(u/sn)|

+ sup
u

∣∣FTn/
√

Bn
(u/sn)− Φ(u/sn)

∣∣

≤ 2 sup
u

∣∣FTn/
√

Bn
(u)− Φ(u)

∣∣ + sup
u

|Φ((u + y)/sn)− Φ(u/sn)|

≤ C
(
n−(1−b)/6 + |y|/sn

)
≤ C

(
n−(1−b)/6 + |y|

)
.

Hence,

I2 =: T sup
u

∫

|y|≤c/T

|FTn(u + y)− FTn(u)| dy

≤ CT

∫

|y|≤c/T

{n−(1−b)/6 + |y|}dy ≤ C{n−(1−b)/6 + 1/T}. (4.21)

By the Esseen inequality (Pollard, 1984) and taking T = n(1−b)/6, one has that

sup
u

|FS′n(u)− FTn(u)| ≤ I1 + I2

≤ C
{
Tn−(1−b)/3 + n−(1−b)/6 + 1/T

}
≤ Cn−(1−b)/6.

That is (4.19). We have finished the proof. ]
Proof of (4.9) By Lemma 4.2 and 4.3,

sup
u

|FS′n(u)− Φ(u)|

≤ sup
u

|FS′n(u)− FTn(u)|+ sup
u

|FTn(u)− Φ(u/
√

Bn)|+ sup
u

|Φ(u/
√

Bn)− Φ(u)|

≤ sup
u

|FS′n(u)− FTn(u)|+ sup
u

|FTn/
√

Bn
(u/

√
Bn)− Φ(u/

√
Bn)|+ C|s2

n − 1|

= sup
u

|FS′n(u)− FTn(u)|+ sup
u

|FTn/
√

Bn
(u)− Φ(u)|+ C|s2

n − 1|

≤ Cn−(1−b)/6

Note that (4.10) and (4.12) in Lemma 4.1, and using Lemma 3.8, we obtain the desired
result of (4.9). ]
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