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We define a new class of coloured graphical models, called regulatory graphs. These 
graphs have their own distinctive formal semantics and can directly represent typical 
qualitative hypotheses about regulatory processes like those described by various biological 
mechanisms. They admit an embellishment into classes of probabilistic statistical models 
and so standard Bayesian methods of model selection can be used to choose promising 
candidate explanations of regulation. Regulation is modelled by the existence of a 
deterministic relationship between the longitudinal series of observations labelled by the 
receiving vertex and the donating one. This class contains longitudinal cluster models as a 
degenerate graph. Edge colours directly distinguish important features of the mechanism 
like inhibition and excitation and graphs are often cyclic. With appropriate distributional 
assumptions, because the regulatory relationships map onto each other through a group 
structure, it is possible to define a conditional conjugate analysis. This means that even 
when the model space is huge it is nevertheless feasible, using a Bayesian MAP search, 
to a discover regulatory network with a high Bayes Factor score. We also show that, 
like the class of Bayesian Networks, regulatory graphs also admit a formal but distinctive 
causal algebra. The topology of the graph then represents collections of hypotheses about 
the predicted effect of controlling the process by tearing out message passers or forcing 
them to transmit certain signals. We illustrate our methods on a microarray experiment 
measuring the expression of thousands of genes as a longitudinal series where the 
scientific interest lies in the circadian regulation of these plants.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There has been a recent explosion in the development of new techniques in exploratory data analysis for huge data 
sets fuelled, for example, by intense activities in the study of genome sequences and DNA microarray analyses. Examples of 
such exploratory tools are the fast Bayesian methods [7,21,8], designed to cluster tens of thousands of longitudinal series 
of measurements. The outputs from these methods, especially the displays of the cluster means (see e.g. Fig. 1) of a MAP 
estimated model, have proved to be particularly helpful to biologists when they explore hypotheses about which sets of 
genes might be passing a message to another.

However these Bayesian cluster methods begin with the assumption that clusters express independently of one another. 
This is clearly not usually a credible hypothesis for regulation. For under a hypothesis that one cluster regulates another it 
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is typically believed that the shape of the profile of the receiving cluster will be related to the profile of the sending cluster 
in a relatively predictable way.

Various authors have therefore modelled the likely dependences between the time courses of gene expression profiles 
using a variety of standard graphical models: often variants of the Bayesian Network (BN) [9]. Thus [12], acknowledging the 
consequent computational and methodological limitations of their techniques, used dynamic BNs to model subsets of series 
like those we model here. Albeit in a non-exploratory context [19] analysed variations of a baseline model representing 
known dependence structures. Other graphical studies of regulatory models include [4].

Although these graphical models are clearly very useful, particularly at later stages of the analysis of a given process, they 
are hardly ever integrated into an early exploratory data analysis [2,13,20]. Furthermore we argue below that the semantics 
of the BN is not well matched to modelling dependences induced by regulation. Rather than representing conditional inde-
pendence relationships, ideally we would like our graph to be explicitly regulatory: i.e. that a directed edge from a parent 
node v1 is connected to a child v2 if and only if the model embodies the hypothesis that the object v1 regulates v2. Clearly 
this is not in general true of a BN. In particular there is no way its acyclic graph could embody any cyclical regulation, the 
most important type of relationship in our running example.

In this paper we develop a new graphical model for depicting regulatory relationships within a Gaussian family, building 
on a class of Bayesian cluster models that have been widely and successfully implemented [3,7]. The model class embeds 
the class of Bayesian longitudinal cluster models as a special case. We are aware of no similar work in the literature, in 
scope nor design. We demonstrate how the method provides:

1. a feasible exploratory technique for regulatory networks of longitudinal high-dimensional data;
2. a formal semantics that embodies most of the useful properties of the BN;
3. a framework for a conditional conjugate analysis;
4. a formal graphical representation of a MAP model which can represent the types of dependences the scientist might 

hypothesise; this graphical representation will be in a form which closely corresponds to the less formal graphs she 
might currently use to depict that model’s regulatory mechanism;

5. an associated causal algebra enabling the scientist, under certain assumptions, to generate predictions of the effect of 
certain types of control on the system.

This work is motivated by our collaboration with biologists so our running example concerns the study of the statistical 
models of the regulation mechanism of the circadian clock in plants. However, the applicability of this new class of models 
extends beyond genetics and bioinformatics.

In Section 1.1 we introduce the data used in the paper and in Section 2 we briefly review the form of Bayesian cluster 
analysis which we plan to generalise. Then in Section 3 we use a group action which is hypothesised to embody the 
relationship of the profile shape of a receiving cluster and the profile of its regulating cluster. This group defines equivalence 
classes of clusters called supraclusters. These supraclusters will define the disconnected components of the graph of our 
process. In Section 4 we discuss graphical representations for supraclusters. We complete our methodological development 
in Section 5 where we provide a causal interpretation for our graphs of supraclusters. We then demonstrate our method 
using two examples in Section 6: a simulated scenario and a real system. In this way we illustrate not only that our methods 
are feasible and evocative but also how the output graphs provide a helpful and familiar framework through which results 
can be fed back to the scientist.

1.1. Data

We demonstrate that our method successfully identifies dependence between clusters of genes in two examples: a sim-
ulated running example and a more detailed analysis of a genuine microarray experiment on the plant Arabidopsis thaliana. 
These experiments were designed to detect genes whose expression levels, and hence functionality, might be connected 
with circadian rhythms. The aim was to investigate the possible identity and role of those genes involved in the regulation 
of the circadian clock of a plant. For our running example we simulated 5 clusters of 30 genes each, of the type discussed 
in [5]. Here the gene expression was measured at T = 13 time points over two days. Constant white light was shone on the 
plants for 26 hours before the first microarray was taken, with samples every four hours. Thus, there are two cycles of data 
for each of the Arabidopsis microarray chip. The data yzi was simulated from

yi = λzi B(θz1)Rzi β + εi

where the subscript zi = j if individual i belongs to cluster j with j = 1, . . . , 5 and εi ∼ Normal(0, 4). The matrix B(θzi ) is a 
Fourier basis function (see Equation (2) for more details) and Rzi is a rotation matrix, that is, a block diagonal matrix where 
each block is a matrix M(k, θzi ) as

M(k, θzi ) =
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)
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with k corresponding to the index of the Fourier coefficients. The generating values of λzi , θzi and β are given in Section 6. 
For the second example we analysed this dataset in full (22,810 genes whose expressions are each observed over 13 time 
point) as well as other datasets, as we discuss in Section 6.

2. Cluster models for longitudinal data

The study of the family of regulatory graphs proposed in this paper began with our work on Bayesian cluster models. In 
the applications of the proposed methodology there are N – usually tens of thousands – longitudinal sets of measurements 
of the activity of units taken at particular discrete points over time. To understand the underlying processes it is therefore 
important to learn which of these processes are copies of each other, as evidenced by the fact that their profiles appear to 
be replicates. In this way we can reduce the tens of thousands of time series into a much smaller number of K clusters.

Typically in our applications K depends on how we set the hyperparameters of our models. However for our real dataset 
there are usually about one hundred longitudinal clusters: a still large but more manageable number. Each of these longitu-
dinal clusters is then treated as a candidate regulator. The underlying dependence structure can be represented graphically 
and it can be further elaborated to describe hypotheses about the effects of the types of controls eluded to above.

We first need to set up some notation. Let C � {C1, C2, . . . C K } denote a partition of indices {1,2, . . . , N}, N ≥ K , where 
Nk denotes the cardinality of cluster Ck . Let Y i , i = 1, 2, . . . , N , denote a set of N T -vectors of real valued observations 
of the continuous time development of a unit at T given time points – henceforth called a profile. Let DC , the T × N j
matrix of values be defined by DC = {Y i : i ∈ C} for some subset C of {1,2, . . . , N}. Let the distribution of {Y 1, Y 2, . . . , Y N }
be parametrised by θ ∈ �, and fixed hyperparameters ϕ ∈ � . Let θ = (θ1, θ2, . . . θ K ) where θk , for k = 1, 2, . . . , K is the 
parameter vector specific to the k-th cluster with Nk elements. Note that then 

∑K
k=1 Nk = N . The first Bayesian model we 

review is one which admits no dependence or causal structure between any of the objects of interest – the cluster profiles.

Definition 1. A Bayes cluster model C of a set of profiles {Y 1, Y 2, . . . , Y N} assumes that:

1. profiles in different clusters and their associated parameters are independent given the hyperparameters i.e.

�K
k=1

(
DCk , θk

) |ϕ
2. within each cluster the profiles Y i |θk, ϕ are identically distributed, i = 1, 2, . . . , Nk , k = 1, 2, . . . , K and conditionally on 

each cluster’s parameter vector θk and the hyperparameters ϕ these observations are taken independently: i.e.

�Nk
i=1Y i|θk,ϕ

There now are several such Bayesian cluster models which have been successfully and usefully implemented [7,16,5,17]. 
Many take the form that for cluster Ck the time series of observations is modelled by a linear regression

Y (k)
i = X (k)β(k) + ε

(k)
i (1)

for k = 1, . . . , K and i = 1, . . . , Nk where β(k) ∈ Rp is the vector of parameters with p ≤ T , where ε(k)
i are independent 

identically distributed measurement errors with variance σ 2
k and the design matrix, or basis function, X (k) , a matrix of size 

Nk T × p, is customised to the hypothesised underlying process. In our running example where interest lies in regulators 
acting over a twenty four hour cycle, an appropriate basis function is Fourier. So then, for example when p is even,

y(k)
it = β

(k)
1 +

p/2∑
i=1

β
(k)
2i cos (2πt(2i)/T ) +

p/2∑
i=1

β
(k)
2i+1 sin (2πt(2i)/T ) + ε

(k)
it . (2)

Here the parameters θk associated with cluster Ck are the corresponding regression parameters βk and an error variance 
parameter linked to the within cluster diversity.

Within these classes it is often possible, using an appropriate conjugate analysis, to construct a score function based on 
the corresponding Bayes Factor – a MAP score which can be derived in closed form conditional on the hyperparameters for 
each partition of the profiles. Thus if errors and prior parameter distributions are assumed Gaussian, and the noise variance 
a priori inverse Gamma distributed then conditional on a fixed noise-to-signal ratio matrix, the marginal likelihood of each 
possible cluster partition is a product of multivariate t densities. For the details of how these methods work see e.g. [3,7,
17] and [10]. It has now been established that these and related methodologies can successfully and feasibly identify well 
supported models within these typically huge search spaces.

The methods discussed in this section are widely used in the literature on clustering of microarray experiments. Fig. 1
depicts the expression profiles within a few typical clusters together with graphs of the clusters’ mean Fourier coefficients 
in the analysis given in [5], one of the many analyses performed using this methodology.

Our experience using these methods have demonstrated that with the careful setting of hyperparameters the outputs 
of such models are remarkably robust, both formally and practically, when it comes to the estimation of parameters that 
might be linked to regulation [5,17,10,11].
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Fig. 1. Four of the clusters obtained clustering the data in [5], our real data application. The blue line represents the posterior mean, the thicker coloured 
lines are well known genes and the barplot on the left are the posterior estimates of the Fourier coefficients. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

3. Supraclustering and regulatory models

This type of cluster analysis can be extended to model directly the dependences between clusters if a regulatory rela-
tionship between them can be specified as follows. A transmission function is defined which maps the parameters of one 
unit’s profile on to the parameters of the profile it regulates. These functions are then coded as a group of transmission 
matrices, customised to mirror the types of dependences induced by a particular hypothesised regulating mechanism.

In this section we fix the value of the cluster hyperparameter ϕ ∈ � and for clarity suppress this parameter in the 
indexing. Then for the transition hyperparameters φ ∈ 
, there are two groups used to map the shape of one profile onto 
another (L∗) and one cluster’s parameters onto another (L).

For some integer m let L∗ �
{

L∗(φ) : φ ∈ 
 ⊆Rm
}

be a family of T × T transition matrices used to define a regulatory 
relationship from a profile Y i1 of a given unit i1 to a second unit with the profile Y i2 , where the transition hyperparameter 
φ indexes each matrix in this family. Associated with L∗ is a set L �

{
L(φ) : φ ∈ 
 ⊆Rm

}
of (p + 1) × (p + 1) matrices 

mapping the parameters θ j1 , i ∈ C j1 to the parameters of the regulated unit θ j2 , i2 ∈ C j2 , such that

θ j2 � L(φ j1→ j2
)θ j1

The family of transition functions L parametrised by φ j1→ j2 must first be elicited from the domain expert since this must 
be determined from those features in the data she believes will be indicative of a regulatory relationship. In our running 
example such relationships were communicated to us: “The time profile of expression of a regulated gene usually appears 
to be a short translation of the profile of the regulating cluster of genes, usually rescaled and sometimes, if inhibited rather 
than excited, reversed”. This determined a 3 parameter transition function with a parameter capturing the phase change, 
another expressing a positive rescaling and a third representing inhibition, which corresponded to a simple sign change. 
In this paper, both for simplicity and because the subclass seemed to fit well, we confined ourselves to search over this 
parameter class, although other of our more complex models could also model damping effects. Of course in other settings 
and with different interpretations of basis functions the group of transformations could be very different.

For the purposes of this paper we will assume, as in our running example, that both L∗ and L form a group under 
matrix multiplication. Write i2 � i1 where i2 ∈ C j2 , i1 ∈ C j1 and C j1 , C j2 ∈ C iff ∃φ j → j ∈ 
 such that
1 2
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Table 1
Summary table of the notation.

Profile name (i1) and its cluster membership ( j1) i1 ∈ C j1

Profile for observation i1 Y i1

Parameter vector for cluster j1 θ j1

Transmission matrix on the profile space from cluster j1 to cluster j2 L∗(φ j1→ j2
)

Transmission matrix on the parameter space from cluster j1 to cluster j2 L(φ j1→ j2
)

Z i2 |θ j2 ,φ j1→ j2
≡ L∗(φ j1→ j2

)Y i1 |θ j2 ,φ j1→ j2

has the same distribution as Y i1 |θ j1 , where θ j2 is defined above. See Table 1 for a summary of the notation above.
Note that for known values of transmission parameters, these linearly transformed profiles remain in the same conjugate 

families used in the conjugate analyses discussed in the last section. It is this property which enables us to exploit the 
technology originally designed for fast model selection over clusters with exchangeable elements generalising this to models 
reflecting more structured and nuanced mutual dependences.

Both the shapes and the maps L will be chosen to reflect the types of relationships that the scientist is interested in 
and expects to see, if they exist in the dataset at hand. For example in our running example the shapes of clusters the 
scientist is particularly interested in will have profiles which exhibit a 24 hour cycle. The types of dependences of interest 
will be ones where associated genes might regulate each other. This will be reflected, for example, by small phase changes 
– modelling a short delay due to the time it takes to pass on a message – together with a change in amplitude perhaps 
combined with a low frequency filter. Although in principle these relationships can be expressed at the unit level it is 
usually more convenient to think of relationships between clusters.

Clearly when L is a group � defines an equivalence relation. It is therefore possible to coarsen the partition C so 
that certain sets of its clusters are placed within the same equivalence class under the group action above. So let B =
{B1, B2, . . . , B S } denote the partition of the K clusters into these S ≤ K equivalence classes. Call B the set of supraclusters
and let Ks denote to cardinality of the supracluster Bs . Now to simplify the notation we will pick an arbitrary cluster C (s)

0
– called the seed cluster – from each supracluster Bs , s = 1, 2, . . . , S . In practice in our examples for explanatory purposes 
it is usually helpful to choose a C (s)

0 containing an established regulatory gene, or failing that one with a high amplitude in 
its associated profile. We will suppress the s index below if no confusion arises.

We can now let L(φ j) � L(φ j0→ j) denote the transformation of the profile of the seed cluster C0 into the profile of a 
different cluster C j in the same supracluster. Note that since the transform L defines a group, under this notation

L(φ j1→ j2
) = L(φ j0→ j1

)−1L(φ j0→ j2
) = L(φ j1

)−1L(φ j2
).

Let θ � (θ s : s = 1,2, . . . , S) where θ s are the parameters of the seed cluster in supracluster Bs of partition B. Let

φ �
(
φs : s = 1,2, . . . , S

)
where φs ∈RKs−1 is a concatenation of the vectors of all the m transmission hyperparameters associated with every cluster 
in the supracluster Bs which is not a seed cluster.

In a cluster model two units in the same cluster of C are exchangeable. In contrast the parameters θ ∈ � of two units in 
the same supracluster Bs are deterministically and linearly related via a matrix L(φ j) where φ j is typically a short vector 
of hyperparameters. The parameters θ j ∈ � themselves define the distribution of the profile vector Y i such that the linearly 
transformed profiles

Z i � L∗(φ j)Y i

all share the same shape parameter vector θ s of the relevant seed cluster C (s)
0 . Note that under this construction, since L∗

forms a group of different choices of seed, clusters have different but equivalent associated parametrisations within their 
supracluster.

We now have the formal definition of the supracluster below.

Definition 2. A Bayes supracluster partition B of a set of profiles {Y 1, Y 2, . . . , Y N } is a family of joint distributions on these 
observations parametrised by θ ∈ � with global hyperparameters ϕ ∈ � and transition hyperparameters φ ∈ 
. It has the 
property that under the transformations of parameters and profiles defined above,

S∐
s=1

(
Z Bs , θ s

) |φ,ϕ,C,B

where θ = (θ1, θ2, . . . θ S ) and
Ks∐

i=1

Z i |θ s,φs,ϕ,C,B

where Z i |θ s, φs, ϕ, C, B are identically distributed for i = 1, 2, . . . , Ks and s = 1, 2, . . . , S .
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Remark 3. The Bayes supracluster model is fully and uniquely specified by

C,B, θ ,φ,ϕ

where B is a coarsening of the partition C . Here θ denotes a concatenation of the parameters defining the distribution of the 
profile of the seed cluster and φ denotes a concatenation of all the transition parameters of each non-seed cluster in each 
supracluster again concatenated over all supraclusters, as defined above, and ϕ are the cluster hyperparameters containing 
for example hypothesised fixed noise-to-signal ratios of observational noise and parameter variability within cluster.

Note from our definition that only the parameters of units in different supraclusters are independent. Under typical 
regulatory hypotheses about the conservation of shape under regulation, each supracluster Bs would then represent an in-
dependent regulatory mechanism. The clusters within each supracluster represent collections of different units co-expressing 
different roles within that mechanism, relative to the role of the reference cluster. This is described by the values of the 
hyperparameters of the different components of φs . This will be illustrated below.

Note that the original Bayes cluster model simply sets B = C . The supracluster coarsening is then the trivial one. There-
fore the class of Bayes cluster models is contained in a much larger class of models which embodies certain types of 
dependence that is often hypothesised to occur in a regulatory environment. In this sense the class of supracluster models 
generalises the class of cluster models. In the search method we use below we find the MAP model assuming the trivial 
supracluster. We then progressively refine that model searching for a model with regulatory dependences having a higher 
Bayes Factor score.

4. Transmission matrices and regulatory graphs

Regulatory hypotheses can give rise to relationships of two types. The first is when two clusters with different shapes 
are hypothesised to perform the same function. For example two clusters in the same supracluster might have identical 
shapes over time but somewhat different amplitudes. Then it may well be appropriate to believe that these have potentially 
the same regulatory functions even though their component genes have different trajectories. When this happens we say 
that they lie in the same hypercluster H ∈ H where the partition H is a coarsening of C but a refinement of B. If H = B
so that all clusters in a supracluster perform the same function then the supraclustering partition B is sufficient to describe 
the system.

However, more usually, because of their shape, certain hyperclusters within a supracluster have a different role: for 
example, from the relationship of the shapes of two profiles one might be naturally assumed to excite the other. This can 
be conjectured when the profile of the receiving cluster has a short forward shift in phase accompanied by a possible 
reduction in amplitude and a low pass filtering effect. Usually it is these types of asymmetric relationship which are the 
most interesting ones for the scientist to discover.

In this paper we assume that the scientist specifies a priori how plausible she believes a regulatory relationship from 
cluster C j1 → C j2 might be, as reflected through a real positive function t(φ j1−→ j2

) – called the transmission separation – 
of the transmission parameters φ j1−→ j2

. Smaller values of t(φ j1−→ j2
) correspond to stronger evidence for direct message 

passing from C j1 → C j2 . So for example in our running example of circadian regulation, t(φ j1−→ j2
) might measure the 

difference in the phase of the profile of C j2 from the phase of C j1 . For example a common hypothesis is that the shorter 
the time period to lapse in this transition the more likely it is that a message has passed directly from C j1 → C j2 . We shall 
let δ(φ j1, j2

) = min
{

t(φ j1−→ j2
), t(φ j2−→ j1

)
}

denote the transmission length between clusters C j1 and C j2 .

Definition 4. For each supracluster B ∈ B, let (B) – called the transmission matrix – denote the matrix of transmission 
separations from C j1 → C j2 , with C j1 , C j2 ∈ B , whose ( j1, j2) entry is δ(φ j1, j2

). Define δ(φ j, j) = 0.

Definition 5. Say (B) is zeroed if for any three clusters C j1 , C j2 , C j3

δ(φ j1, j2
) = 0 and δ(φ j2, j3

) = 0 ⇒ δ(φ j1, j3
) = 0.

Note that if (B) is zeroed then the clusters whose separations are zero form an equivalence class. When (B)

is zeroed the interpretation of δ given above means in particular that the hyperclusters H ∈ H are of the form H ={
C j1 , C j2 ∈ C : δ(φ j1, j2

) = 0
}

. For the development below it is useful to identify one cluster C j0 within H j called the desig-
nated cluster of H j .

Definition 6. Say (B) is graphical if it is zeroed and has the property that if any pairs of clusters C j1 , C j2 ∈ H j and 
Ck1 , Ck2 ∈ Hk then for any j, k

δ(φ j1,k1
) = δ(φ j2,k2

)

where H j, Hk ∈ B and B ∈ B.
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The condition that (B) is graphical is a substantive one. However, it holds for all examples in this paper. If (B) is 
graphical we can define a new hyperseparation matrix H (B) where the rows are labelled by the hyperclusters and the 
distances between hyperclusters are inherited from the transmission separations between any two clusters, one in each 
of the hyperclusters. Note that for a graphical (B), (B) is a function of H (B). So no information is lost through this 
transformation.

Clusters in the same hyperclusters can be interpreted as co-expressing in an appropriately coarse sense, in the context 
of our running example. Suppose two clusters have a large amplitude. Then they will lie in the same hypercluster if they 
have the same phase and shape profile, differing only in their amplitudes. This reflects a belief that two highly expressed 
genes are indistinguishable from each other in terms of their likely regulatory function if their amplitudes are different. If 
this is not so of course we can modify our inferences by adopting a more appropriate transmission matrix.

When (B) is graphical, the transmission matrix allows us to define graphs which provide particularly useful summaries 
of putative regulatory relationships between hyperclusters.

Definition 7. For each B ∈ B a regulatory graph over B , GB is any directed connected graph with no directed two cycles whose 
vertex set V (GB) �HB and which has the property that whenever the directed edge e( j1, j2) ∈ E(GB) then δ(φ j1−→ j2

) ≥
δ(φ j2−→ j1

).

Note in particular that the direction of an edge in a regulatory graph is determined by the direction of the shorter 
transmission separation. The edges we include will be used to represent different causal hypotheses: see Section 5. A useful 
property of regulatory graphs is that we can annotate its vertices and edges to highlight important features of the regulatory 
process being described. Thus the hypercluster vertices can be annotated by the posterior estimate of its designated cluster. 
By the interpretations above all units within the hypercluster have a regulatory function potentially equivalent to a unit 
with this profile. In a similar way edges can be annotated by the directional distance δ between the clusters.

We next collate together the graphs {GB : B ∈ B} by making these the disconnected components of a new graph GB .

Definition 8. Given a supracluster partition B, let a regulatory graph (RG) GB = (V (GB), E(GB)) be defined by setting

V (GB) = ∪B∈BV (GB)

E(GB) = ∪B∈BE(GB).

4.1. Annotating an extended regulation graph

By definition, given ϕ ∈ � , the distribution of all observations is then fully specified by the clusters and the supraclusters 
(C, B) together with the associated parameters θ and φ defined above. Recall that a BN has the property that its graph can 
be annotated by conditional probability tables. This means that – conditional on these parameters/conditional probabilities 
– the joint distribution can be unambiguously and fully described by the values assigned to these conditional probability 
tables. This is a useful property because the graph can be seen as expressing some important features of the distribution 
which, if necessary, can always be more fully expanded into a complete model. We next show that any RG which faithfully 
describes the beliefs of the scientist admits an analogous embellishment. The only difference is that the parameters anno-
tating the vertices and edges of an RG are rather different to the conditional probability tables of a BN and customise to 
the different families of hypotheses associated with regulation rather than conditional independence. This embellishment is 
particularly elegant when it is possible for the regulatory group to admit an orthogonal decomposition of its transmission 
matrices. Then the group action can be separated into two distinct types of actions measured by two different components 
of φ.

Write φ = (
φV ,φE

)
. The first components φV parametrise the first group action and determine the responsiveness of the 

receiving cluster relative to the donating cluster. The second components φE determine the strength of transmission from 
the donating cluster. So, for example, φE

j1→ j2
quantifies the nature of the putative regulatory role of one or more units in 

C j1 on one or more units in C j2 whilst φ0
j is determined by the responsiveness of cluster C j relative to its seed.

Definition 9. Say L is R-separable if

L(φ j1→ j2
) = L(φV

j1→ j2
,φE

j1→ j2
) = L1(φ

V
j1→ j2

)L2(φ
E
j1→ j2

)

where L1 is a function only of φV
j1→ j2

, L2 is a function only of φE
j1→ j2

and L1 and L2 commute.

A simple example of an R-separable transmission matrix is given in the running example below, where φV
j determines 

the amplitude of cluster C j relative to its seed whilst φE is the phase transition from C j1 to C j2 .
j1→ j2
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Definition 10. Say the transmission matrix {(B) : B ∈ B} admits an orthogonal decomposition if it is possible to choose a 
parametrisation φ = (

φV ,φE
)

of the transmission vector where

δ(C j1 , C j2) = 0 ⇔ φE(C j1) = φE(C j2).

When {(B) : B ∈ B} admits such an orthogonal decomposition φV parametrises – together with parameters θ used to 
describe the profile of a typical cluster in the hypercluster – the variety of shapes allowed within that hypercluster vertex. 
On the other hand φE parametrises the relational parts of the model and so they can be directly linked to the edges of the 
RG. Because all our examples admit an orthogonal decomposition we will only consider such RG’s in this paper.

Explicitly, the topology of an RG admitting an orthogonal decomposition can be unambiguously expanded into a full 
probability model by annotating its graph in the following way. First note that the supraclusters in B can be identified 
as the sets of clusters contained in each connected component of an RG G . Now fix the hyperparameters ϕ ∈ � . Then 
by definition the joint marginal distribution of units of any hypercluster H0 ∈ Hk containing the seed of the supracluster 
Bk ∈ B that it belongs to, is fully and unambiguously specified by:

1. the profile parameters θk of the designated cluster (which is also a seed of the supracluster); and
2. the parameter vectors φV

0 of the non-seed clusters in H0 which determine the distribution of each cluster in the seed 
hypercluster.

On the other hand the margins of the clusters in any Hh ∈Hk not containing the seed of the supracluster Bk ∈ B that it 
belongs to, is fully and unambiguously specified by:

1. the transmission parameter vectors φE
h which together with θk fully determine the profile parameter vector of Hh; and

2. the parameter vectors φV
h of the non-designated clusters in Hh which determine the distribution of the remaining 

profile parameter vectors.

The sets of parameters above can therefore be used to annotate the vertices of G – i.e. to fully describe the signature of 
the components in the regulatory mechanism which contain a message that might be transmitted.

We now use the edge parameters to represent the joint distribution of the whole regulation network. By definition, since 
– conditional on their parameters – all observations lying in different supraclusters of the RG are independent of each other 
we need only show how the joint distribution of the clusters in each supraclusters can be fully and unambiguously defined 
from annotating edge parameters. Then the joint distribution of the whole data set can be obtained by multiplying the 
corresponding densities together. Suppose that for each Bk ∈ B we annotate an edge from hypercluster Hk1 to Hk2 ∈ Bk by 
φE

k1→k2
where φk1→k2

=
(
φV

k1→k2
,φE

k1→k2

)
are the corresponding transmission parameters from the designated cluster in H j

to the designated cluster in Hk2 . Since L is a group, and all hyperclusters within a supracluster are deterministically related 
and connected in G

φ(GBk )�
{
φk1→k2

: (k1,k2) ∈ E(G), Hk1 , Hk2 ∈ Bk
}

are sufficient to specify the dependence relationship between all pairs of designated clusters Hk1 , Hk2 ∈ Bk . Furthermore the 
fact that these are invertible deterministic relationships means that the joint distribution of all clusters in any given pair of 
hyperclusters is fully and unambiguously defined by the corresponding two vertex parameters of the hyperparameters and 
φ(GBk ). Again because all these pairs of relationships are deterministic the full joint distribution of the unit profiles in all 
clusters are fully specified by the vertex parameters above and φ(GBk ).

In our worked examples we illustrate how functions of such an annotation can highlight further useful information about 
the process whose broad qualitative framework is given in the RG. In particular these graphs can be presented to biologists 
as they are more familiar with these graphs and the express critical information they contain. These allow us to explicitly 
embellish an RG to differentiate explicitly important features of dependence in this domain, namely, clusters potentially 
coregulating with a seed cluster (red), being excited by a seed (black) or being inhibited by a seed (green). This motivates 
the following definition.

Definition 11. Given a supracluster partition B, an extended regulatory graph (ERG) GB for a supracluster B is a coloured 
mixed graph whose vertex set V (GB) � C . There is a directed edge e( j0, k0) ∈ E(GB) from C j0 → Ck0 whenever t(φ j0−→k0

) ≥
t(φk0−→ j0

) and δ(φ j0,k0
) �= 0 where C j0 and Ck0 are the respective designated clusters of H j and Hk . An edge between two 

seed clusters is coloured black if it is associated with a positive scale change, green if it has a negative change. All other 
(non-designated) clusters are connected by a directed red edge from its respective seed cluster.

In Section 6 we give some illustrations of ERG’s where the vertices are further labelled by their profile signatures. 
Note that all ERG can be transformed into an RG. Furthermore note the all annotated RG’s which are R-separable with its 
parameter vector φV containing a scale parameter can be represented as an ERG. In the next section for simplicity and more 
generality all causal analysis is defined in terms of the RG and its annotation. However from the comment above we could 
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obviously also represent the graphical causal models within our running examples by defining the hypotheses in terms of 
an ERG. We illustrate this later in Section 6 where we also present graphs explicitly expressing phase changes.

4.2. Regulatory graphs and Bayesian networks

Conditioning on the hyperparameter vector ψ throughout in an RG allows us to make a strong link between the condi-
tional independences implicit in a BN and those in an RG.

Theorem 12. An acyclic regulatory graph G is a valid BN on component vectors {θ(C,B), C ∈ C}.

Proof. If two designated clusters C j1 to C j2 are in unconnected components of G then they are in different supraclusters 
and so their associated profile parameters are independent of each other by definition. So without loss assume C j1 and C j2

are in the same supracluster. Then for G to be valid we must be able to assert that

θ(C j1 ,B) � {
θ(C,B) : C ∈ R j2(B)

} |{θ(C,B) : C ∈ Q j2(B)
}

where Q j2 (B), R j2 (B) are respectively the set of all parent and non-parents of C j2 in B. But since by definition Q j2 (B) is 
non-empty this is immediate since again by definition of a supracluster, given (φ(C,B),ϕ), θ(C j1 , B) is a function of each 
of its individual parents. �

Thus if a regulatory graph is acyclic it is in particular a valid, if degenerate, BN on the profile parameters of the des-
ignated clusters in its hyperclusters. Of course, because by definition it also contains many functional relationships, the 
corresponding BN just expresses some of the distributional relationships implicit in the RG. Furthermore RG’s are often 
cyclic so then the theorem above will not apply. However in this case note that if we take a spanning tree whose pattern 
is its skeleton and add directions to the edges of that tree so that the resultant BN is acyclic, then again that tree is a valid 
BN. So even in the cyclic case there is a corresponding logical link between the topology of the RG and a valid BN whose 
skeleton is a subgraph of the skeleton of the RG.

5. Tearing, causality and regulation graphs

The consequence of the results in the last section is that the class of statistically equivalent graphs is very large and it is 
not possible to differentiate them just on the basis of the data observed in one experiment. However the causal extension 
of BNs enables the modeller to distinguish BNs that are statistically equivalent by allowing the topology of the graph 
to express additional hypotheses about what might happen to the system were it subjected to certain types of control. 
We now show how an analogous collection of hypotheses allows us to discriminate the different topologies of otherwise 
statistically equivalent RG’s.

There are two complementary types of control to which a typical regulatory process might be subjected and will form 
the basis of our semantics. These are analogous but not the same as those developed for BN’s and their extensions to CBN’s. 
The first is a manipulation called tearing which is specific to regulatory relationships and closely relates to their robustness 
to the destruction of a particular potential message passing hypercluster. The second control called doing is more closely 
analogous to an intervention as defined in a causal BNs. We describe both these types of control below. Henceforth we 
follow [15] and call the regulatory system as idle when no controls are applied.

5.1. Tearing

Definition 13. A set of hyperclusters H is said to be torn from a regulatory network represented by an RG G if the set of 
hyperclusters is forcibly removed so that it no longer can have a message passing function within the represented network.

Controlling a system by tearing clearly has a very close relationship with choosing to omit a cluster in the description of 
an idle system. Because of the deterministic nature of the embedded hypotheses, it is easily checked that, unlike for many 
other graphical models, the probability model represented by an RG omitting a subset of the vertices (here hyperclusters) 
often retains the integrity of the probability model. This is so provided that the associated RG remains connected: the an-
notating parameters of its edges and vertices simply being inherited from the larger system. Tearing performs an analogous 
change, but instead of simply ignoring a hypercluster, that cluster is actively knocked out.

Definition 14. Let GH � (V (GH), E(GH)) denote the subgraph of a regulatory graph G � (V (G), E(G)) where V (GH) =
V (G)\H and e ∈ E(GH) iff e ∈ E(G) and e does not have an H ∈ H as an end point. Let 

(
CH,BH, θH,φH,ϕ

)
denote the 

clusters in the hyperclusters V (GH), their supraclusters and their associated vertex and edge parameters. We say that GH

inherits the distribution of G when CH consists of all clusters in the hyperclusters V (G)\H, BH are the sets of clusters 
inherited by inclusion from B, the profile parameters of the remaining clusters θ (CH, BH) and their associated marginal 
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distributions are equal to those labelling the same cluster within the larger vector θ (C, B) and the values of parameters 
annotating edges and vertices in E(GH) are copied from φ(C, B).

Definition 15. Say an RG G � (V (G), E(G)) is collapsible if tearing any set of hyperclusters H from the regulatory network 
gives rise to a new valid RG whose topology and distribution is defined by GH � (V (GH), E(GH)) above which inherits its 
distribution from G .

Note from our previous comments that whenever GH has the same number of disconnected components as G a collapsi-
ble RG model will assign the same distribution as if we simply ignored these clusters in the supraclustering. However if the 
tearing splits a component of the graph (and hence its associated supracluster) into two or more disconnected subgraphs 
then the profile parameters of clusters in different fragments become (functionally and statistically) independent of each 
other, whilst still inheriting their marginal distributions from the original model.

On the other hand the effect of tearing is assumed to be entirely local. In particular the relationships and distributions 
of all hyperclusters not immediately linked to elements in H are unaffected by such an action. So tearing cuts communi-
cations between hyperclusters by knocking out their links but the remaining dependence structure and parameters remain 
unaffected.

The assumption of collapsibility of an RG allows us to discriminate the meaning of many RG’s with different topologies 
which in the idle system are statistically equivalent. Furthermore the type of control expressed through tearing often has a 
clear physical meaning, and sometimes controls that are actually possible to enact in some future experiment. Recall that 
the skeleton of a mixed graph is the undirected graph obtained by replacing any directed edge by an undirected one.

Theorem 16. Two collapsible RG’s G1 and G2 are probabilistically equivalent under all controls only if they have the same skeleton.

Proof. Let H(H, G) denote the set of hyperclusters connected to H by in-going or out-going edges, i.e. the neighbours 
of H in the skeleton of G . Then unless G1 and G2 have the same skeleton there must exist an H for which H(H, G1) �=
H(H, G2). Without loss assume that H(H, G1) �H(H, G2). Then tearing H(H, G2) in G2 will make H independent of all 
other hyperclusters, whilst in G1 this is not so. Therefore, the tearing control of the two graphs predict different collections 
of effects. �
5.2. Doing for regulatory graphs

To capture the directionality of a graph we need to imagine being able to perform another type of control inspired by 
the development of Causal Bayesian Networks (CBN) from BN’s, where instead of imagining tearing away the clusters in a 
hypercluster, the scientist forces them all to transmit an artificial signal. In a rather different context [15] refers to this sort 
of control as doing. A plausible effect of imposing such a control in an RG is to give the message to the receiving children 
who then pass the message on as if it were naturally occurring. Notice that such a hypothesis is about a direction effect 
since parents G of a controlled hypercluster will only receive the artificial message if a directed path exists to it from the 
manipulated vertex via its children, and so allows us to differentiate unique sets of hypothesised about the functionality of 
the regulatory system through the chosen regulatory graph G .

Each hypercluster has a set of identically located uncertain profiles of the same shape, or equivalently the vector of 
parameters {θC : C ∈ H} corresponds to a vector amenable to atomic manipulation. The dependence relationships from one 
hypercluster to another are represented by a directed edge along which a message is passed. Therefore a potential definition 
of an atomic manipulation in the context of regulatory hypotheses might be one which inhibited all but the regulation of 
the manipulated hypercluster and then set the value of the profile to a particular value.

Without loss assume that we have transformed to a parametrisation of the problem where the manipulated hypercluster 
contains the seed cluster of the corresponding supracluster. This provokes the following definition. Let H be a hypercluster 
and H R be one of its children or parents. Let (H, H R) denote the set of children and parents of H which are not H R .

Definition 17. Say that the hypercluster H R in the RG G is controlled by doing H if we tear H(H, H R) and then intervene 
to set the profiles {θC : C ∈ H} = {̂

θC : C ∈ H
}

in a way that is consistent with the definition of that hypercluster.

Definition 18. Call a RG G causal (CRG) if it is collapsible and has the additional property that for all H and each of its 
neighbours H R , GH(H,H R ) . When H R is a parent of H then doing H to any 

{̂
θC : C ∈ H

}
that retains the definition of H

as a hypercluster, produces the joint distribution of parameters as in GH(H,H R )∪{H} where H(H, H R) ∪ {H} is torn from the 
idle system. On the other hand when H R is a child of H then the distributions of {θC : C ∈ H R} are different from those of 
GH(H,H R )∪{H} for at least one of the possible values of 

{̂
θC : C ∈ H

}
consistent with H being a hypercluster.

So essentially if G is weakly causal then doing will not affect the distribution of any of its parents if we isolate the 
relationship by tearing away the other vertices. On the other hand it is possible to affect the distribution of its children by 
changing the designated hypercluster to take a particular profile. Now we have the following result.
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Theorem 19. The topologies of two distinct CRG’s are associated with different hypotheses about the underlying idle system and the 
associated hypotheses about the effect of the controls of tearing and doing.

Each CRG is hypothesised to behave differently under the controls of tearing and doing.

Proof. Since each CRG is collapsible if two CRG’s perform the same under control they must in particular perform the same 
under tearing which implies by the previous theorem that they must have the same skeleton. So different CRG’s G1 and G2
must be only distinguished by the directions of their edges. But if they are topologically different then they must have at 
least two hyperclusters H and H R where H R is a child of H in G1 and a parent of H in G2. So by the definition above we 
can distinguish the two models by doing H over all possible values of the profiles of a designated cluster to 

{̂
θC : C ∈ H

}
– 

and all other clusters within the hypercluster consistently with this. In G1, for some value of 
{̂
θC : C ∈ H

}
this manipulation 

is believed to change the distribution of the profile of the designated cluster in H R whilst in G2 it will not. �
Therefore by performing a set of subsequent experiments it is possible to determine whether the hypotheses within a 

given CRG are indeed true and to discriminate between different ones. Of course the hypothesis that a regulatory system is 
a CRG is even stronger than collapsibility. On the other hand the ideas it embodies are close to those a scientist might hold 
and certainly have a scientific meaning. It should be noted that microarray cluster experiments are often conducted so as 
to identify which genes can be turned off to prevent certain activities in an organism (for example growth).

5.3. From observational studies to causal hypotheses

The final question is what guidance should be given as to the MAP estimate for the CRG associated with different 
statistically equivalent RG’s. Commonly, especially in biological application, there is a scientific hypothesis that the CRG 
might be a prior expected to have a higher probability if it is sufficiently sparse, given that certain clusters have a role and 
that certain functions must be fulfilled. This corresponds to the hypothesis that

1. there are only a few units that are actually controlling the system and that by knocking these out the regulation will 
be destroyed; and

2. that if one hypercluster regulates another then the transmission times will be short.

However in our chosen scientific context it is important to impose certain caveats about known features of the problem. 
To make this possible we partition hyperclusters into three categories: those intrinsic (H ∈ I) – i.e. those containing a unit 
known to have a regulatory function, so having at least one parent and one child in G(B); the juxtaposed – hyperclusters 
(H ∈ J ) hypothesised not to contain a unit passing on other information, i.e. have no child in G(B); and the rest (H ∈ K). 
Note that by setting B =K no such conditioning caveats are imposed. Under such hypotheses – all other things being equal 
– the following class of CRGs are particularly attractive.

Definition 20. For each B ∈ B a minimal regulatory graph (MRG) GR(B, I, J ) is a regulatory graph with the property that 
there is an edge into all hyperclusters and into and out of all intrinsic hyperclusters H ∈ B and where

δ(GB) =
∑

(H j1 ,H j2 )∈E

δ(φ j1, j2
)

is minimised over all G(B, I, J ), G(B, I) where E denotes the edge set of G(B, I, J ).

We note that all cluster containing genes with a known regulatory function should be labelled as intrinsic. However 
with no such prior knowledge, and for exploratory purposes, we suggest that the statistician begins by assuming no clusters 
are intrinsic, as we do in our worked example. In this case it is easily checked that the MRG defined below becomes a 
minimum length spanning graph. In other circumstances it is appropriate to label all clusters as intrinsic. Notice that unlike 
BN’s MRG’s can be cyclic. Indeed they are always cyclic if all their vertices are intrinsic. However they are also constrained 
to be sparse, for example they can contain no acyclic complete subgraphs on 3 vertices.

�
↗

� → � → � → �
↗ ↘

� ←− � ←− � ←− � → �
An MRG with � nodes intrinsic

6. The circadian model selection graph in action

We now describe our model search algorithm and demonstrate how our method can be applied to a simulated and a 
real dataset and it can provide us with an unprecedented overview into complex data.
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6.1. The implementation of a search for regulatory graphs

For a given cluster C let the hyperparameters φ for all possible coarsenings B of C be appended to the original hy-
perparameters ϕ to define a new (huge) class of models. Then at least in principle, just as for Bayes cluster models, we 
can search the space algebraically and find the MAP model over the traversed candidate models. From a technical point of 
view this search is much harder than the corresponding search over the cluster space because the associated model space 
is orders of magnitude larger. The conclusions drawn from such a search must therefore be more tentative than in the 
analogous partition search, the evaluated models being an extremely sparse subset of the full class. On the other hand, at 
least for the types of regulatory models we have examined so far, it appears that the broad conclusions associated with 
the regulatory mechanisms from even naive extensions of standard cluster search algorithms can be remarkably robust. Our 
proposed initial fast procedure is as follows:

1. Initialise by using a standard search method – such as AHC – over a Bayesian cluster model maximising over a coarse 
grid of hyperparameters, as suggested by [7] to discover putative clusters of shapes C .

2. Use statistics associated with the profiles annotating the clusters of C to provide a coarse putative matrix of estimates 
of the transition hyperparameters φ j1→ j2

between two clusters were one supracluster to exist. Assume that these 
estimates are appropriate for any coarsening B.

3. Treating these estimates as known search over the space (C,B,φ) using a standard search method such as AHC (Ag-
glomerative Hierarchical Clustering, see [10]) but on the supraclusters rather than on the clusters. Note that the score 
of any candidate supracluster can be evaluated in closed form using the score function given above.

4. Retain the highest scoring model of this class which is the MAP model within those models traversed in the search.

It is of course possible to subsequently embellish the search in a number of ways where necessary. See [10] for details 
of the implementation of such methods in an analogous context.

6.2. An illustration using data simulated from a circadian model

To first illustrate our methods when we know the truth we simulated the longitudinal series of the 30 genes in each of 
5 clusters, as in the [5] experiment, as shown in Fig. 2. These data yzi were simulated from

yi = λzi B(θz1)Rzi β + εi

where the subscript zi = j if individual i belongs to cluster j with j = 1, . . . , 5 and εi ∼ Normal(0, 4). The matrix B(θzi ) is a 
Fourier basis function as by Equation (2) and Rzi is a rotation matrix, that is, a block diagonal matrix where each block is a 
matrix M(k, θzi ) as

M(k, θzi ) =
(

cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)

)
with k corresponding to the index of the Fourier coefficients. The generating values for the rest of the parameters are given 
by

λ = (1,1.1,1,1,−1,0.5)

θ = (6π/25,9π/25,14π/25,18π/25,23π/25)

β = (1,1,0,0.5,0.5,0.3,3,7.6,0,0.2,2.3,0.2,0).

We specify a joint prior distribution for (β(k), σ 2
k ). We adopt the convenient conjugate prior specification where

f (β(k)|σ 2
k ) ≡ N(m,σ 2

k V ), f (σ 2
k ) ≡ IGamma(

a

2
,

b

2
)

m is p × 1, V = v I is p × p positive definite and symmetric, I is a p × p identity matrix and all other parameters are scalar. 
The parameters a, b and v are fixed, while the rest are random.

In fact, our method goes a step further and identifies relationships between these clusters too. For this dataset we are 
interested in three types of dependence between clusters:

1. Phase transition: clusters have similar shapes but there is a delay in the gene expression of one of the clusters. We take 
a Fourier transform of the data in the two clusters and we estimate the shift with Bayes factors over a grid of possible 
values of the rotation angle.

2. Inhibition: clusters have similar shapes but upside-down and slightly shifted. This corresponds to multiplying by −1
and also have a phase transition.

3. Amplitude change: clusters have similar shapes but different magnitude. This corresponds to a cluster being multiplied 
by a factor λ such that λ > 0.
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Fig. 2. The five simulated clusters identified by our method as described in Section 6.2.

Fig. 3. The posterior means of the 5 simulated clusters and the relationships between them. The black arrow represents a phase transition, a green 
arrow represents inhibition and a red arrow represents amplitude change. Two hyperclusters are identified by the dashed lines. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)

The ERG of the MRG between the 5 clusters of the MAP estimate of this model is given in Fig. 3. Note that this depicts 
the two most important features of the data relative to this type of regulation: the expression patterns of different clus-
ters as vertices and the most likely message passing links (their colours distinguishing excitation, inhibition and equivalent 
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Table 2
Standard deviations of the mean of the posterior 
distribution of all elements of β for 50 runs with 
values of v between 1 and 1,000.

Standard deviation

β1 0.0182
β2 0.0235
β3 0.0355
β4 0.0047
β5 0.0415
β6 0.0813
β7 0.0536
β8 0.2563
β9 0.1323
β10 0.0463
β11 0.0966
β12 0.0078
β13 0.0202

expression). The method successfully reconstructs the generating process which places all the clusters in one supraclus-
ter, something that is really difficult to do by eye even for this small number of units. Plots like this are easy to draw 
automatically in R.

We also studied the sensitivity of the partition and the posterior distribution of the parameters to different choices of 
the hyperparameters. We found our results to be very robust. We show here the results of 50 runs with values of v between 
1 and 1,000. The resulting clustering was robust and the standard deviations of the mean of the posterior distribution of all 
elements of β were small, as shown in Table 2.

6.3. An application to an experiment on circadian gene regulation

We apply our method on the original experiment by [5], using the 175 high amplitude clusters discovered in the Bayes 
cluster analysis reported in [10]. In [5] the gene expression of 22,810 genes of the plant Arabidopsis thaliana was measured 
by Affymetrix microarrays at T = 13 time points over two days. Constant white light was shone on the plants for 26 hours 
before the first microarray was taken and the light remained on for the rest of experiment. Samples were taken every 
four hours. Thus, there are two cycles of data (13 time points) for each of the 22,810 genes available on the Arabidopsis
microarraychip. The aim was to identify the genes which may be connected with the circadian clock of the plant. [10]
analysed this dataset by proposing a search algorithm which is guided by the scientific interest of each cluster. We apply 
our method to the 175 high amplitude clusters discovered in the Bayes cluster analysis reported in [10].

To demonstrate our method without the use of existing contextual information, in this study, we chose the default 
options and labelled no cluster as intrinsic. Our AHC method enabled us to discover a MAP model with many supraclusters, 
the majority of which were singletons and therefore less likely to be communicating with each other. However several of 
the supraclusters were not trivial. The most pertinent nature of the most likely dependence relationships are evocatively 
expressed through these embellishments of the associated RG.

However this is not just a useful depiction of an apposite well-supported statistical model. If we are prepared to allow 
that the process is driven by a CRG and that the MAP model that we have discovered is indeed generating the idle process, 
then identifying the disconnected components of the system allows us to immediately make assertions about the impact 
of various controls we might apply to this regulatory process – just as we can were we to believe the model was a causal 
extension of a BN. In the context of microarrays, the objective of clustering is to identify patterns among the data and 
decide which genes to focus on in further, more gene-specific, experiments. It is therefore necessary for the scientist to 
make such causal conjectures about the effect of controls available to her on the expressions reflecting the underlying 
regulatory process she studies. These conjectures can be universal or nuanced by evoking ideas of parsimony.

First there are deductions that will apply to any CRG whose RG is in the same equivalence class as the discovered MAP 
MRG. These deductions are analogous to those provided by colliders in a BN search [15,18]. For example if we were to plan 
an experiment which was to tear out all the genes in a trivial cluster – i.e. one that was not connected by an edge to any 
other cluster – then under the causal extension of the model this would not change the relationships between the genes in 
the other clusters.

The second type of conjectures are those that need to evoke ideas of simplicity as reflected in sparser RCGs. In Fig. 4 we 
illustrate this on supracluster B which is the MRG of the MAP estimate and compare this with two alternative models (Figs. 5
and 6) equivalent in the uncontrolled system. Thus for example, let us consider the three representations of supracluster B 
as B1, B2 and B3. If the scientist sets up an experiment to test B1, she could tear hypercluster H(3) and control hypercluster 
H(4), as in Fig. 7(a). In this case she could test the hypothesis that hypercluster H(4) is independent of the remaining ones. 
If the scientist had a different set of beliefs, as in B2 or B3, tearing H(3) and controlling H(4) would allow her to confirm 
whether there really is a causal relationship between H(4) and H(10).
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Fig. 4. The posterior means of the 13 clusters which belong to supracluster B and the relationships between them. The black arrow represents a phase 
transition, a green arrow represents inhibition and a red arrow represents amplitude change. Three hyperclusters are identified by the dashed lines. Hy-
percluster H(3) includes clusters 3 and 5; hypercluster H(4) includes clusters 4, 6, 7, 8, 9; hypercluster H(11) includes clusters 11, 12 and 13. The arrows 
identify the B1 representation of supracluster B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

The MRG makes additional assertions about the process which cannot be deduced from statistical considerations at all. 
The idea is that manipulating the far right hypercluster to take a given value would have no effect on the underlying 
mechanism. If this were not thought plausible an equivalent graph with the mechanism depicted in Figs. 5 and 6 could be 
conjectured.

Of course such causal analyses are highly conjectural. In particular any deductions like the ones above depend heavily 
on the scientists’ beliefs about how regulation is evidenced through the cluster profiles. In this example the hypothesis 
that the evidenced relationship can be expressed simply through amplitude and phase changes is a heroic one and could 
usefully be nuanced by allowing a low pass filter to relate the donating cluster profile to the receiving one. This would allow 
some of the supraclusters to merge. However these sorts of adjustments are possible: we simply use a different richer class 
of transmission matrices to describe the relationships, and conditional conjugacy is still preserved albeit with some extra 
hyperparameters to estimate. In the context of the models we are currently analysing, the output arising from these rather 
naive classes appears to provide considerable new insights about the nature of the regulatory relationships between these 
genes.
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Fig. 5. The posterior means of the 13 clusters which belong to supracluster B and the relationships between them. The black arrow represents a phase 
transition, a green arrow represents inhibition and a red arrow represents amplitude change. Three hyperclusters are identified by the dashed lines. Hy-
percluster H(3) includes clusters 3 and 5; hypercluster H(4) includes clusters 4, 6, 7, 8, 9; hypercluster H(11) includes clusters 11, 12 and 13. The arrows 
identify the B2 representation of supracluster B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

7. Discussion

We conclude the paper with three brief remarks. First, because we intend the methods below to be exploratory, they 
needed to be simple. At the moment we are using an agglomerative hierarchical clustering algorithm together with a 
grid search over hyperparameters, similar to the one that [7] used in their cluster search method. This can obviously be 
improved [1]. Furthermore once a small class of candidate models has been found it is then sensible to invest time in 
refining the parameter distributions of the candidate models. We note that because our models are all formal Bayesian 
models and exhibit certain conditional conjugacy properties numerical methods are feasible to refine our analyses using 
slower but more accurate numerical methods. In particular we are currently developing methods to stochastically estimate 
transmission hyperparameters using ideas from [6,14].

However, even with these developments, of course the analysis we describe in this paper would still be exploratory in 
nature. In particular like many analyses of this type it ignores the existence of many sources of uncertainty – here associated 
with the inferred graph and the partition of clusters it finally adopts – which from a formal point of view need to be folded 
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Fig. 6. The posterior means of the 13 clusters which belong to supracluster B and the relationships between them. The black arrow represents a phase 
transition, a green arrow represents inhibition and a red arrow represents amplitude change. Three hyperclusters are identified by the dashed lines. Hy-
percluster H(3) includes clusters 3 and 5; hypercluster H(4) includes clusters 4, 6, 7, 8, 9; hypercluster H(11) includes clusters 11, 12 and 13. The arrows 
identify the B3 representation of supracluster B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 7. Examples of manipulations of supracluster B.

into the analysis. The omission of these sources should always be born in mind and the depicted relationships therefore 
seen simply as indicative of possible regulatory or causal relationships for future closer scrutiny and investigation and not 
as firmly and formally based inferences. Our analyses are nevertheless proving useful as providing an evocative depiction to 
domain experts of some of the features appearing in the data.
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Second, here we have focused on just one type of regulatory process: circadian regulation. There are many other types of 
regulation. Many of these appear to have an associated group action albeit one different from the scale rotations illustrated 
above. When this is so obviously our methods can be adjusted to define supraclusters and transmission matrices exactly 
analogous to those defined above but customised to these different hypothesised mechanisms expressed in this new group. 
We plan to explore such examples in future papers.

Finally with reference to the circadian experiments above, we are currently comparing experiments from different labo-
ratories performing replicate experiments in order to reconcile their results. Previous analyses have tended to demonstrate 
that cluster containment across genes is rather disappointingly inconsistent. However in our preliminary analyses it ap-
pears that the qualitative structure of their associated regulations graphs are much more comparable. This suggests that 
the mechanism itself is more resilient than the actual identities of genes contained in sets of message passers and their 
co-expressing genes. We are working with biologists and using these graphical methods to compare the regulatory processes 
behind different species of plant. We will report these developments in a later paper.

The analysis of the properties of this new class of graphical models is still in its infancy. However we hope that we have 
demonstrated in this paper how graphical models which embody in their topology the probabilistic structure implied by a 
specific scientific domain and natural hypotheses therein can be built. Furthermore it is feasible to do this for the data-rich 
problems currently faced by scientists and these models provide the basis of useful and formally justifiable summary graphs 
of the processes under study.
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