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Abstract 

I 

 

Abstract 

Concerns about energy supply and climate change have been driving companies 

towards more sustainable manufacturing while they are looking on the economic side as 

well. One practicable task to achieve sustainability in manufacturing is choosing more 

sustainable technologies among available technologies.  

Combination of two functions of ‘Technology Selection’ and ‘Capacity Planning’ is not 

usually addressed in the research literature.  The importance of integrated decisions on 

technology selection and capacity planning at such strategic level is therefore essentially 

important. This is supported by justifications in some selected manufacturing areas 

particularly concerning economies of the scale and accumulated knowledge.  

Furthermore, manufacturing firms are working in a global competitive environment that 

is changing in a continuous way. Strategic design of systems under such circumstances 

requires a carefully modelled approach to deal with the complexity of uncertainties. 

The overall project aims are to develop an integrated methodological approach to 

solving the combined ‘technology selection’ and ‘capacity planning’ problems in 

manufacturing sector. The approach will also incorporate the multi-perspective concept 

of sustainability, while taking uncertainties into account.  

A framework consisting of four modules is proposed. Problem structuring module 

adopts an Ontology method to map the technology mix combinations and to capture 

input data. ‘Optimisation for Sustainable Manufacturing’ module addresses the 

optimisation of technology selection and capacity planning decisions in an integrated 

way using Goal, Mixed Integer Programming method. The model developed takes the 

multi-criteria aspect of sustainability development into account. Three criteria, namely 

a) Environmental (e.g. Energy consumption and Emissions), b) Economics, and c) 

Technical (e.g. Quality) are involved. ‘Normalisation algorithm by comparison with the 

best value’ method is adopted in this research in order to facilitate a systematic 

comparison among various criteria. The economic evaluation is based on ‘Life-Cycle 

Analysis’ approach. The ‘Present Value (PV)’ method is adopted to address ‘Time 

Value of Money’, while taking both ‘Inflation’ and ‘Market Return’ into account in 

order to make the proposed model more realistic. A mathematical model to represent the 
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total PV of each technology investment, including both capital and running costs, is 

developed.  

‘Sensitivity Analysis’ module addresses the uncertainty element of the problem. A 

controlled set of re-optimisation runs, which is guided by a tool coded in Visual Basic 

for Applications (VBA), is developed to perform intensive sensitivity analyses. It is 

aimed to deal with the uncertainty element of the problem. 

Within ‘Solution Structuring’ module, two knowledge structuring schemes, namely 

Decision Tree and Interactive Slider Diagram, are proposed to deal with the large size 

of solution sets generated by the “Sensitivity Analysis” module. An innovative, hybrid, 

Supervised and Unsupervised Machine Learning algorithm is developed to generate a 

decision tree that aims to structure the solution set. The unsupervised learning stage is 

implemented using DBSCAN algorithm, while the supervised learning element adopts 

C4.5 algorithm.  

The methodological approach is tested and validated using an exemplar case study on 

coating processes in an automotive company. The case is characterised by three 

operations, twelve possible technology mix states, both capital budget and 

environmental limits, and 243 different sensitivity analysis experiments. The painting 

systems are evaluated and compared based on their quality, technology life-cycle costs, 

and their potential VOC (Volatile Organic Compounds) emissions into the air.  
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  Introduction Chapter 1  

This chapter provides a short description of the effects of sustainability on 

manufacturing industries, and how it could motivate to development of a 

comprehensive methodological approach to achieving scientific understanding of 

sustainable manufacturing particularly linked to manufacturing technology selection and 

capacity planning. This approach is concerned with selecting the best available 

techniques while taking account of three aspects; environmental, technical and 

economic. This chapter, followed by aims, objectives and scope of the research, sets the 

scene and scope of the dissertation.  

 Sustainability in manufacturing systems 1.1

Sustainable development is defined in a report of the United Nations World 

Commission 1987 as “a development that meets the needs of the present without 

compromising the ability of future generation to meet their own needs” (Brundtland, 

1987). An important sector to sustainability is manufacturing, because of its high 

volume of resource consumption, introduction of new products every year, increasing 

volume of emissions and energy through product life cycles (Ocampo & Clark, 2015).  

Manufacturing industries are now responsible for the impact of their products and 

processes. All these issues lead to manufacturing companies to have the growing 

interests in sustainability.  

Sustainable manufacturing is normally investigated in three dimensions; environmental, 

economic growth and social well-being, known as the triple-bottom line (Gimenez, et 

al., 2012), however, these dimensions can be more focused or even just investigated 

based on one dimension.  On the other hand sustainability is achieved when the interest 

of the government, customers, suppliers, competitors, employees and consumers, are 

satisfied (Theyel & Hofmann, 2012). Figure 1-1 shows three dimensions of 

sustainability (Jovane, et al., 2008). Jovane, et al (2008) believes sustainability at the 

macro level is based on the environment as a fundamental need economy to be a tool to 

meet social requirements. 
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The challenge and responsibilities rise among designers and engineers in how to make a 

balance among multiple conflicting goals to remain competitive. The integration of 

environmental aspects into the process needs a technical approach as well as economic 

selection and decision making framework, which reflect the company or government 

environmental policy (Devanathan, et al., 2010).  

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1-1 Fundamental of sustainable development (Jovane, et al., 2008) 

 

 Research background and motivation 1.2

Concerns about energy supply and climate change have been pushing companies 

towards choosing more sustainable technologies while they are looking on the economic 

sides as well. Primarily, production processes are the main concern of the legislation. 

The solutions to environmental damage can be in pursuit of investment in machinery 

and equipment to remove pollution or contaminants based on the principle of ‘polluter 

pays’.  
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The other motivation point is competition among industries to make progress on 

environmental issues to improve environmental performance, since inability to move 

forward on environmental initiatives can result in a loss of competitiveness in the 

market.  

Based on the above background there are two approaches to achieve sustainability while 

there are conflicting issues that should be dealt with in order to have a best available 

technique and also have an optimum level of production capacity for each technology: 

1. Technology selection 

2. Capacity planning 

1.2.1  Technology selection 

By changing attitudes, manufacturing companies toward environmental sustainability 

are moving from reactive approach to proactive approach. As well as product related 

issues, there is focus on the process or system issues too. Because sustainable 

manufacturing process and system design have become important, decisions on the 

process and systems have very important influence on the environment. As a result, a 

proactive way to minimise environmental effects is integrating the environmental 

aspects, as well as economic aspects in the existing process. The integration of all these 

aspects into the process development requires decision-making framework.  

A buyer of manufacturing technology is now encountered with a large number of 

options. The decision of which technology to select, makes decision more complex 

since technology performance is specified by a large number of parameters. 

“Technology selection and justification involve decision-makings that are critical to the 

profitability and growth of a company in the increasing competitive global scenario” 

(Chan, et al., 2000). 

Technology selection is one of the most challenging subset of decision making ground 

that manufacturing industries are faced with. A company should select and invest in a 

technology field from different technology alternatives with comparative advantage and 

conflicting criteria in a complicated environment.  Technology selection is based on the 

renewal of existing technology resources to remain competitive. Selection of key 

technologies helps industries to get new opportunities to achieve their advantages in a 
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competitive environment. Although technology selection is a multi-criteria decision 

making challenge, but it is necessary to be considered different aspects of criteria for 

example potential benefit, risk and costs, to find the most suitable one. In addition 

decision maker should be aware of facing with other challenges like the rising cost of 

technological development, and a variety of technical options, which makes the task of 

accessing suitable technologies more difficult.  

1.2.2  Capacity planning 

The design and operation of a production facility need numerous decisions; including 

capacity planning for determining maximum production levels for each product type. 

Capacity planning is the calculation of the number of tools needed to manufacture 

predicted by product demands. Difference between customer demands and capacity 

results in inefficiency, therefore the aim of capacity planning is to minimize the 

discrepancy. Capacity planning can be managed by introducing or utilizing new 

technologies, equipment or number of workers or machines.  

Capacity planning has been subject to the uncertainties, especially when more than one 

technology is available. This type of model should be more capable when encounter 

with the conflicting criteria of comprehensibility.  Therefore capacity planning is a 

major strategic decision in manufacturing. These strategic decisions should be made 

when confronted with uncertainty, which arise with realisations of demand, price and 

technology information. 

 Aims and objectives of the research 1.3

This PhD research aims to investigate the sustainable manufacturing approach to the 

technology selection and capacity planning with the focus on underlying both 

qualitative and quantitative issues. 

The distinct objectives of the research are to: 

 Develop a research framework for technology selection and capacity planning 

 Develop a Mixed Integer-Linear Goal programing model for technology 

selection and capacity planning 

 Conduct sensitivity analysis to  deal with uncertainty 

  Validate the developed methodology in an appropriate manufacturing setting 
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 Scope of the research 1.4
 

The scope of the research and challenges problem addressed in this research is 

characterised as follows: 

a. It is defined in the context of manufacturing systems. 

b. The system is composed of a number of operations. 

c. The research involves ‘Technology Selection’ for each operation as the main 

function to be addressed, while a mixture of different technologies is also 

acceptable. Technology selection in this research means selecting the right 

technology to the critical goals of the company.  

d. ‘Capacity Planning’ for each selected technology does also need to be 

addressed in order to meet the demands. 

e. There exist uncertainties in some of the data associated with the problem. 

f. ‘Sustainability’ of the system should drive the research methodology.  

 Dissertation structure 1.5

 

Chapter 2 presents a cited literature review of technology selection and its application 

for in sustainable manufacturing. Existing literature on sustainable manufacturing and 

decision making, as well as mathematical programming and ontology and knowledge 

representation schemes are reviewed.  

 

Chapter 3 focused on development of the general research architecture for technology 

selection and capacity planning toward sustainable manufacturing. In this chapter 

manufacturing challenges corresponding integrated decision, such as technology 

selection and capacity planning are addressed, whereas sustainability criteria is 

considered as well.  

  

Chapter 4 presents mixed integer linear goal programming model for technology 

selection to solve the integrated technology selection and capacity planning towards 

sustainable manufacturing. Sensitivity analysis is also developed in order to encounter 

with uncertainty.  
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Chapter 5 highlights two knowledge structuring schemes: 1) decision tree, and 2) 

interactive slider diagram based on the sensitivity analysis in order to manage massive 

data generated by sensitivity analysis. The detail of these algorithms is described in this 

chapter.  

 

Chapter 6 uses the car painting system as a case study to further evaluated and 

validated the developed methodology and framework.  

 

Chapter 7 concludes the methodological approach as well as a contribution to 

knowledge which is resulted from this research. This chapter also presents 

recommendations for future works. 

 

Figure 1.1 provides an overview of the thesis structures and scope with chapters listed 

above. 
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  Literature Review Chapter 2  

 Introduction  2.1

In today's world, industries are faced with internal and external force regarding 

sustainable development. New technologies try to reduce time and increase quality 

regardless of the fact that they have to be considered about emission limits and energy 

consumption. Therefore, achieving sustainability requires a holistic view on products 

and also manufacturing processes to have a balanced consideration to the 

multidimensional and complexity of the nature of the sustainable development targets.  

Having established a baseline for environmental performance or limitation as well as 

economic restriction for an industry has direct effects on technology selection and 

capacity planning.  It is important to consider all technical aspects of technology such as 

price, environmental burden as well as capacity which is expected and actual capacity of 

each technology.  

In addition to the above aspects of sustainability, the research scope of sustainable 

development requires comprehensiveness; therefore there is a need to construct a 

knowledge platform to “enable us to replace the current piecemeal approach with one 

that can develop and apply comprehensive solutions to these problems’’ (Komiyama & 

Takeuchi, 2006). Consequently structuring knowledge is an important task of 

sustainability science, which deals with complex and evolving problems. As the 

problems of sustainable development, by their nature, relate to a different supplier or 

technologies, the problem-solving process needs the collaboration between them. One 

of the key technologies for knowledge structuring and organizing a conceptual platform 

is ontology engineering, because “ontology is characterized as a tool for supporting 

thinking” (Kumazawa & Saito, 2009). 

This chapter presents a review of the previous research done on the technology selection 

movement toward sustainable manufacturing based on mathematical programming 

supported by knowledge representation.  
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The literature is related to the mathematical programming and its relevant subclasses 

such as linear programming, integer programming goal programming, stochastic 

programming and sensitivity analysis. 

 Technology selection  2.2

 

In 1990 manufacturing companies were facing with more and more competitive market 

characterized by demand uncertainty, increased customization, and quick response 

(Chen, et al., 2002). As a result, in recent years there is a need to formulate demands 

and model technology selection in order to have flexible technology.  

Basically, there are two types of factors which contribute to the demand uncertainty by 

considering capacity and technology choices. The first is a random component that is 

modelled as an additive or multiplicative to complement a predictable demand pattern 

help to incorporate dynamic factors such as seasonality, trends, etc. The second factor of 

uncertainty is related to the demand pattern, which is used to define the evolution of 

demand over the product life or the planning perspective. The distinguisher character 

which can of these two factors is the behavior of uncertainty over the time. There are 

two ways to model uncertainty demand; first approach is defined to let the components 

to be varied with time and being also independent, therefore demand history does not 

provide any information regarding future demand; these types of models when 

combined with a suitable predictable component can describe a variety of stochastic 

dynamic demands. The second approach is based on the dependency of the demand on 

time; these types of dependencies are inspired by success of product, since demand for 

successful products is consistent and high in successive periods. It is obvious that 

understanding the sources of uncertainty is useful to develop appropriate strategies to 

manage demand uncertainty (Chen, et al., 2002).    

Most of the research done is dealing with the first approach, and results are based on the 

independence assumption.  For instance Fine and Freund (1990) develop a model which 

is considered the optimal mix in flexible and nonflexible technology for static and 

uncertain demands. They formulate technology-capacity problem in two stages; First 

stage is dealing with investment decision in flexible and non-flexible technologies. 

Second stage focuses on the capacity allocation after understanding the demand. 
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(Chakravarty, 1989) Also used two-product problem in a different way, which prices 

and shortage costs are not specified, but role of rationing is considered.  

Most of the researches based on technology selection indicate the uncertainty of the 

demand is stochastic demand and is not dependent on the time; in addition, these 

models ignore the economic sides which are one of the most important sides of 

sustainability (Chen, et al., 2002).  

Technology and supplier selection have received considerable attention for its important 

influence on sustainable development. Environmental, social and economic dimensions 

aspects of sustainability must be considered to select a well-rounded sustainable 

supplier or technology, which include the process of supplier evaluation and selection 

(Govindan, et al., 2015). Technological alternatives are assessed according to their 

economic and environmental performance. Shen, et al.,(2011) Believe technology 

selection is multi-criteria-decision making, their model for technology selection is 

composed of two parts; (1) making a technology model based on critical economic or 

industrial factors, and (2) identification of important technology fields. Therefore, 

several decision making support tools have been developed for structuring and 

supporting supplier selection. The decision models become more complex since several 

new dimensions brought in sustainable supplier selection. The decisions include more 

intangible dimensions such as reputation and social impact (Govindan, et al., 2015).  

 Capacity planning  2.3
 

When the demand changes capacity planning is needed. Capacity planning is defined as 

a process to determine the capacity required for a manufacturing industry. Effective 

capacity planning happens when a company is capable to handle constraints such as 

quality problems, delay and demand in a limited period of time. However an 

inconsistency between capacity and demand cause inefficiency for both under-utilizes 

resources or unfulfilled customers, generally the aim of capacity planning is minimizing 

this type of discrepancy. Basically, the demand for a company’s capacity is varied based 

on the changes in decreasing or increasing of the quantity products. 

In typical inventory decision problems, capacity is assumed to be unconstrained in order 

to meet the demand. However capacity planning is considered as a tool to face with 
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uncertain demand. Hence, capacity planning models are an extension of inventory 

planning models (Shin, et al., 2015). A flexible capacity decision model is proposed by 

(Netessine & Rudi, 2002) in this model interaction of each different class of demands 

are an influential factor for determining the optimal capacity allocation decision. 

Another model is developed for flexible capacity planning for two substitutable 

products by (Bish, et al., 2009), moreover the dynamic between the level of 

substitutability and capacity decision is investigated by (Bish & Suwandechochaib, 

2010). A two-stage model, which uses hybrid capacity planning which combine 

analytical modelling and allocation heuristics together, is developed by (Roy, et al., 

2011). 

 Sustainable manufacturing and multi-criteria decision making  2.4

 

Developing sustainable products is based on having a vision to foresee interrelations 

between a product’s characteristics and its economic, social and environment impacts.  

To support sustainability task an extensive range of design methods has been developed.  

When product characteristics are defined, design engineers determine product 

properties. The product structure influences the product life cycle and its ability to 

optimise the procedure in early design phases (Buchert, et al., 2015). Therefore, the 

integration of sustainability aspects based on product design involves continuing 

quantitative assessment of the product along with its manufacturing process (Arena, et 

al., 2013). Life cycle assessment (LCA) which is used currently to assess sustainability 

of the products requires a big and detailed amount of information about a product which 

is usually not available; however simplified LCA methods only cover environmental 

aspects. (Millet, et al., 2007).  Therefore, quantitative oriented methods are used to 

address sustainability issues in process design stages. 

  So developing a method to address following three subjects is very important (Buchert, 

et al., 2015): 

1) Engineering design methodology: a systematic approach for developing 

sustainable products. 

 

2) Multi-criteria assessment: an approach to determine which manufacturing 

method is more sustainable in comparison with other methods. 
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3) Life cycle evaluation: a methodology is developed on how to assess the whole 

lifecycle of a product considering economy, environment and social dimensions.  

 

Developing sustainable design requires attention to multiple criteria of sustainability 

target at the same time (e.g. Reduction of energy used against higher technology cost), 

therefore conflicting of the requirement can result in an over constrained design space 

consequently developing multi- criteria decision making is necessary.  

Multi-criteria decision making problems contain a fundamental feasible solution and 

several objectives to be assessed with feasible solutions (Buchert, et al., 2015). In 

general, for multi- criteria decision making problems there is no generic solution 

approach and clear-cut concept of definition, and different approaches depending on the 

decision of decision maker based on the underlying problem.  

 Multi-criteria decision making (MCDM) methods have become more and more popular 

in decision-making for sustainable design because of the multi-dimensionality of the 

sustainability goals and the complexity of socio-economic and biophysical systems 

(Wang, et al., 2009). MCDM is a tool to evaluate problems where, is faced with several 

alternatives and finding optimal solutions are needed, while there are several conflicting 

criteria. The advantage of using MCDM is addressing questions concerning sustainable 

development, when ecological, economic, social and technical objectives are involved 

(Antunes, et al., 2006). Multi- criteria, methods provide an influential framework for 

policy analysis in the context of sustainable development, because of their ability to 

achieve the goals of accounting for multiple dimensions of sustainability problems. 

Multi-criteria decision making consists of ranking alternatives based on the legitimate 

synthesis of the criteria (Arrow & Raynaud, 1986). Generally, there is not a solution for 

optimizing all aspects of the problem at the same time, but this method can help to 

improve quality of decision by making the criteria more explicit, rational and efficient.  

A decision maker needs to choose among quantifiable or non-quantifiable and multiple 

criteria. The objectives are generally conflicting consequently; the solution is dependent 

on the preferences of decision-maker. (Pohekar & Ramachandran, 2004). Applications 

of MCDM are in the fields of integrated manufacturing systems, evaluations of 

technology investment, water management in agriculture and energy planning. A set of 
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multi-criteria methods have been developed by (Bana & Carlos, 1990), (Janssen & 

Munda, 1999) and (De Montis, et al., 2000).  Pohekar & Ramachandran, 2004 specified 

a list of classification of MCDM methods by their application areas.   

The purpose of using multi criteria decision making in sustainable manufacturing is to 

minimize negative environmental impacts, conserve energy and natural resources, while 

economic and technology sides are also considered. multi- criteria decision making is 

investigated in three dimensions: economic, environmental and technical. 

2.4.1   Four dimensional system approach 

When manufacturing changes raw material to products, emission and environmental 

wastes are generated from consumption of energy and material. Therefore, sustainable 

manufacturing has attracted attention in recent years for reducing the environmental 

impact and improving the economic performance of manufacturing industries by 

attention to the process design. Traditionally, process design has been evaluated by 

technical and micro-economic attention to ensure that new plants are good enough to 

fulfil the purpose, and maximize economic returns to an industry. However, now it is 

becoming clearer that modern plant cannot be designed based on the only these two 

dimensions. The other dimensions of sustainability, environmental and social aspect, 

should be included in the process of design. Figure 2-1 shows a paradigm for 

sustainable manufacturing (Westkamper, et al., 2001). 

 

 

 

 

 

 

 

Figure 2-1 A model for sustainable industrial manufacturing (Westkamper, et al., 2001) 
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2.4.1.1  Economic dimension  

Today’s life is dependent on economic and, economy dominates the environment and 

technology. The British government’s definition of sustainable development includes 

the aim of a ‘high level of economic growth’ (Deter, 1999). Therefore economy plays a 

big role in sustainable development. 

Net Present Value (NPV) is widely used by economics. In finance NPV or NPW (net 

present worth) is defined as the summation of the present value of income and outcome 

of cash flow over a period of time. NPV is used for capital budgeting and also measures 

the excess or shortfall of cash flow, when financing charges are met. NPV method is an 

approach to assess the possibility of a project.  

Benefits of using NPW are increasing in order to awareness or understanding to 

improve decision making.   

Investment cost also is important to make decision, since it comprises all costs relating 

to the cost of mechanical equipment, installation of technology. Operation and 

maintenance cost are excluded from investment cost and they are calculated separately, 

however, they are important to make a decision too.  Operation and maintenance costs 

consist of two parts; first include employee wages, cost of material and energy, another 

is maintenance cost to avoid failures of operation suspension. Operation and 

maintenance cost are also divided into fixed and variable costs (Wang, et al., 2009).  

The economic sustainability of different power parks are evaluated by means of NPV by 

(Quaia, et al., 2015). 

2.4.1.2  Environmental dimension  

Environmental consideration can be treated as an objective to be balanced against other 

objectives (Allen & Rosslelot, 1996). This need, creating environmental performance 

measures. Allen, (1992) believes that the deficiency of metrics to support objective 

environmental assessment is one of the main barriers to developing effective pollution 

prevention and design for environment approach. Moreover, lack of a general necessary 

value system for environmental impact assessment makes the environmental impact of a 

design difficult to assess.  
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When emission of a single pollutant is the most significant environmental concern 

affecting a design, the mass of pollutant released to the environment can be used as an 

indicator for environmental impact (Rossiter & Kumana, 1994). This method has been 

used by (Diwekar, 1995). In case of having more than one chemical source of 

environmental concern, environmental evaluation turns into more complicated. One 

way to solve this complexity is to use the release inventory directly as a set of 

indicators; this approach is used when there are only a few pollutants that are involved. 

COX, NOX and SOX are used as a three environmental emission source to be 

minimized for chemical plants by (Chang & Hwang, 1996). The approach becomes 

difficult to manage when upstream emissions are considered. In these cases it is 

necessary to summarize the information into a small number of indicators to optimize 

and rank alternatives. 

It should be always a balanced between all of the demands on the forthcoming products. 

This means that environmental criteria must be balanced with all other requirements 

such as economic, quality, material, safety and so on (Luttropp & Lagerstedt, 2006).  

Because up to now environmental criteria are not the only priority, all environmental 

action should be related to all the elements in design without allowing them to 

dominate. Environmentally friendly design requires the coordination of several 

databases, for example, environmental impact metrics, data management, design 

optimization and etc., (Mizuki, et al., 1996) and ( Bovea & Pérez-Belis, 2012).   

Integrating environmental criteria into decision making is a necessary and an initial step 

to move toward sustainable development. Integration of environmental management 

with decision making process to convert the resource into usable products is called 

environmental operation management (Gupta & Sharma, 1996).So far, regardless of the 

direct impact and important role of environmental management on the manufacturing 

operations, much of the research has done is based on anecdotal evidence, that 

apparently remind managers to be aware of environmental impacts within a wide    

choice of different technology, and little attention to the environmental performance as 

a competitive dimension for different technologies.  Environmental technologies are 

defined as any production methods, equipment or product design that can limit or 

reduce the negative impacts of the process or product on environment; therefore it is 

accepted as an important base for sustainable development in environmental 
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performance. Environmental technologies can reduce operation costs, and can create 

competitive advantages.  

2.4.1.3  Technical dimension 

The basis dimension of sustainability is the technology which is employed in 

manufacturing. However, it is difficult to determine the sustainability performance of 

manufacturing as both material and energy consumption of the process is determined by 

requirements of manufacturing processes (Yuan, et al., 2012). Improvement of 

technological process led to improve the sustainability performance of manufacturing 

industry by reducing energy and material.  

Technical feasibility and implementation of technologies are the fundamental of this 

study that cause several requirements: 

 Definition of minimum requirements 

 Technical description of the process (efficiency, operating stage) 

 Technical description of alternative products or technologies  

 Selection of potential systems 

 Optimization strategies 

Generally, the study begins with the objective definition for technical requirements for 

example: the minimum requirements. Table 2-1 shows a list of technical criteria 

considered in the manufacturing area like paint shop. 

The other important characteristic of the technology is establishment of alternative 

technologies, which are based on the technically conceivable of existing technologies.  
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Table 2-1 Technical requirements for automotive painting 

Criteria Requirement 

Product  Material, Layout, Design,  Quality  

Process 

Engineering 

Process technology (process, cycle times, flexibility, etc.), 

Production capacity, Logistics (integration of surface technology in 

production process), Process safety, Application technology 

(efficiency, layer thickness), Drying technology (convection, IR, 

UV, air drying, etc.), Degree of automation (fully automated, 

partially automated, manual), Paint recycling external treatment 

Painting 

systems 

Conventional solvents (water based, powder coating), application  

recyclability, rework ability 

 

The comparison of alternative technologies, their advantages and disadvantages in 

different scales do not give consistent results. Therefore, there is a need for quantitative 

method to assess the technologies. Some methods that contribute to the technology 

assessment are: 

 

1. Technology assessment: is an institutional analysis to evaluate the design of 

engineering or technology development (Loveridge, 2009). 

2. Value analysis: is a solving method for complex problems which are not fully or 

not described by algorithm. It includes the behaviour and management of the 

system element, their simultaneous mutual influence with aim of optimization 

results. As a whole it is a business management method for cost minimization 

(Ordoobadi & Mulvaney, 2001). 

3. Holistic Utility Analysis (HUA): It is a comprehensive method that investigates 

three dimensions, including technology, environment and economy. Therefore, 

it is a good analytical development method (Finkbeiner, et al., 2010). 
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2.4.1.4  Social dimension 
 

Social dimension of sustainability has been not considered as much as other dimensions 

of sustainability (Cuthill, 2009), (Vavik & Keitsch, 2010). There are various opinions 

about what issues to be evaluated (Murphy, 2012). The literature suggests about having 

a greater look at the linkage between social and environmental dimensions (Gough, et 

al., 2008) and (Littig & Griessler, 2005).  

With reference to Brundtland definition of sustainability, “Development that meets the 

needs of the present without compromising the ability of future generations to meet 

their own needs” (Brundtland, 1987), social development is the integration of people’s 

needs with bio-physical environment management goals through economic 

development (Vallance, et al., 2011). This definition includes; changing the quality of 

growth; meeting vital needs such as jobs, food, energy, water and sanitation, reorienting 

technology, merging environment and economics in decision making, orientation of 

international economic relations.  

Another social aspect of sustainability is that only when people’s basic needs are 

satisfied, they can be concerned about biophysical environmental activities (Crabtree, 

2005), for example building energy efficient houses for people who are faced with the 

immediate needs for food, is meaningless. Therefore it is unrealistic to expect people to 

care about their environment when they are unsafe, without food, job, house and etc.  

To summarize; society has influenced sustainability, and how sustainability is important 

for a society is dependent on the economic and social growth of the society. So 

sustainability horizon is different from one society to the other society.  

 Mathematical programming 2.5

Management science is known by its ability to use mathematical models in order to 

provide guidelines for managers to make effective decisions by having the current 

information, or even if current information is not enough, to make a decision ask for 

more information. The essence of management science is the model-building approach, 

which is an effort to identify the most important factors which have effects on the 

decision to implement them in a mathematical abstraction. Models are simplified of the 

real world. Mathematical models in order to support management decisions should be 
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simple and easy to use, while they have to provide a complete representation of the 

decision environment by integrating all the required elements to characterise the 

problem under study, which is not an easy job. Through on these efforts to design 

mathematical model management science provide guidelines for managers to 

understand of the consequences of their actions.  

The mathematical programming goal is a process synthesis optimisation to find the best 

combination of process units. 

Mathematical programming and linear programming, particularly, is one of the most 

used branches of management science. Mathematical programming deals with the 

optimum allocation of limited resources among activities, subjected to the set of 

constraints enforced by nature of the problem under study. The constraints may reflect 

financial, marketing, operational, technological or many other considerations. Generally 

a mathematical programming is defined as a mathematical representation for planning 

the best possible allocation of scarce resources.  

There are numerous numbers of published mathematical programming formulations. A 

common characteristic of these formulations is using of cost minimization as the 

objective to optimize. Generally mathematical programming formulations try to use a 

total cost minimization approach, which include capital costs in the objective function 

(Dunn, et al., 1995) (Srinivas & El-Halwagi, 1993). However, they do not include the 

opportunity of improving economic performance. In table 2-2 six MP techniques are 

brought for detailed review. In the following sections, LP, IP, GP, and SP are reviewed 

as subsets of Mathematical Programing. 

 

 

 

 

 

 

 

 

 



Chapter 2  Literature Review 

 Page 20
  
  

 

Table 2-2 Mathematical Programing 

Technique  Usage  Literature  

Linear programming 

(LP) 

 The mathematical optimization method to 

achieve the optimum result in a given 
mathematical model, when there is a 

number  of requirements based on linear 

relationships 

a) Simple LP: (Chen, et al., 

2011), (Lin, et al., 2011) 

b) Fuzzy LP: (Yucel & 
Güneri, 2011) (Amin, et 

al., 2011), (Lin, 2012) 

c) Multi-objective LP 
(MOLP): (Ozkok & 

Tiryaki, 2011), (Yucel & 

Güneri, 2011) 
d) Mixed integer LP (Amin & 

Zhang, 2012), (Toloo & 

Nalchigar, 2011) 

 

Nonlinear 

programming (NLP) 

 Some of objectives or constraints are 

nonlinear 

 There are two directions (Chai, et al., 

2013): 

1. Simple utilization of NLP 
2. Mixed integer NLP 

formulations 

(Hsu, et al., 2010), (Razmi & Rafiei, 

2010), (Rezaie & Davoodi, 2012) 

Data Envelopment 

Analysis (DEA) 

 

 Non parametric Mathematical methods 

 Used to evaluate the relative  efficiency of 
entities for decision making  

 Can be used as a performance 
measurement to evaluate  the relative 

efficiency of decision-making units  based 

on multiple inputs and output 
 

(Aliakbarpoor & Izadkhah, 2012), 

(Cooper, et al., 2011) 

 

Multi-objective 

programming (MOP) 

 Decision making problem when  there are 
conflicting objectives 

 Recently, research on fuzzy multi-
objective linear programming become 

mainstream direction 

 It can be linear or non-linear 

 Mixed integer non-linear MOP is  a 

common type of MOP 

 
 

(Adeyefa & Luhandjula, 2011), 

(Haleh & Hamidi, 2011), (Yeh & 

Chuang, 2011) 

Goal programming  Is type of optimization methods 

 Is an extension of MOLP to multiple and 

conflicting objectives 

 Each of objectives are given a goal value to 

be achieved 

  

(Büyüközkan & Berkol , 2011), (Kull 

& Talluri, 2008) 

Stochastic 

programming (SP) 

 Framework for modelling uncertainty 
optimization problems  

 
 

 

(Kara, 2011), (Kull & Talluri, 2008) 
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2.5.1  Linear programming 

A linear programming is defined as a problem of maximizing or minimizing a linear 

function subject to linear constraints. The constraints may be equalities or inequalities.  

Simple linear problems have got two or three constraints, therefore they can be solved 

by graphing the set of points in the plane that satisfies all the constraints and finding the 

set of the point which maximize or minimize the value of the objective function.  

Not all linear programming problems are easy to solve. There might be many variables 

and also many constraints. 

Linear programming may face with difficulties to solve practical problems, because of 

their limitations, especially in the processes that have many parameters that must be 

identified based on experience or observations. 

Linear programming is used widely in microeconomics and company management, like 

production planning, transportation, technology selection, and so on. However, most 

companies are looking to maximize profits or minimize cost with limited resources, so 

there are many issues that should be determined to solve by linear programming. For 

example (Kannan, et al., 2013) use fuzzy technique to analyse the importance of 

multiple criteria to determine the best green suppliers and then use multi-objective 

linear programing to formulate different constraints such as quality control, capacity, 

and other objectives. The objective of the mathematical model is maximizing the total 

value of purchasing and minimizing the total cost of purchasing. In addition (Ng, 2008) 

proposed a weighted linear program for the multi-criteria supplier selection problem. 

Simple Linear programing can be solved by two algorithms; first Simplex algorithm and 

second Criss-cross algorithm. 

2.5.2  Integer programming 

Integer programming is a type of mathematical programming that some or all of the 

variables are restricted to be integers. Integer linear programming is a term which refers 

to linear objective function and constraints. This restriction increases the number of 

problems that can be modelled. In addition, it makes the models more difficult to solve 

(Taha, 2011).  

As a whole there are two applications of integer variables:  
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1. When only integer variables are needed in order to represent the integer 

quantities, for example quantity of human resources. 

2.  When integer variables signify decisions and only should take the value 0 or 1. 

Based on the above applications, linear integer programming is used widely in 

production planning, scheduling in transportation networks, Telecommunications 

networks and Cellular networks. 

(Hong, et al., 2005) Developed a mixed-integer linear programing model to select 

optimal number of suppliers and optimal order quantities to maximize profits, this 

model can be used in technology selection as well. Kilic (2013) uses mixed integer 

linear programing to determine the supplier and the quantities of products to be 

produced and from the related supplier in the air filter sector.  

Integer linear programming is solved widely by branch and bound methods. 

2.5.3  Goal programming 

Linear programming study can be used when only there is a single overriding objective, 

for instance minimizing cost. However, in reality, focusing on only one objective is not 

true always and studios are looking for a variety of other objectives, e.g., increase profit, 

decrease environmental emission, and reduce energy consumption.  A way to overcome 

toward several objectives simultaneously is using Goal programing.  

The goal programming fundamental approach is providing a specific numeric goal for 

each objective; formulate an objective function for each objective, then looking for a 

solution to minimize the sum of the deviations of the objective functions for their 

respective goals. 

Goal programming is a subset of multi-objective optimization, which is an extension of 

linear programming to do multiple and conflicting objective measure.  

The major strength of goal programming is its ability and simplicity of being easy to 

use. Linear goal programmes can be solved by linear programming software as a single 

linear programme or as a series of connected linear programmes. Goal programing is 

mostly used to provide the optimum solution when there are varying amount of 

resources and priorities of the goals. 
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(Taha, 2011) Presented two algorithms for solving goal programing, both algorithms are 

based on the multiple goals by a single objective function.  These two methods do not 

usually give the same solutions and none of them is superior to the other, since these 

methods entail distinct decision making preference. The first method is weights method, 

which the single objective function is the weighted sum of the function representing the 

goal of the problem. Second method is the pre-emptive method which prioritizing the 

goals based on their importance, and then model optimizes the goals one at a time in 

order of priority in a manner that does not degrade a higher-priority solution. 

The most direct employment of GP as a decision tool is in (Kull & Talluri, 2008); GP is 

used as a decision tool for supplier selection in the presence of risk measures and 

product life cycle considerations. (Sharma & Balan, 2013) Use goal programing model 

to identify the best performing supplier among weighted supplier. 

2.5.4  Stochastic programming 

Stochastic programming is defined as mathematical programming with a set of 

uncertain parameters, which are normally described by discrete distributions (Birge & 

Louveaux, 1997).  Uncertainty is usually characterized by a probability distribution on 

the parameters. Uncertainty in practice can be from the outcomes of the data   to 

specific probability distributions, for example the set of possible demands for the next 

few weeks.  

The fundamental idea behind stochastic programming is its ability to take correct action 

after the realization of a scenario has taken place (Grossmann & Guillén-Gosálbez, 

2010). Stochastic programs are solved by a number of stages. Between each stage, there 

is some uncertainty to decide and then choose an action to optimize existing objective 

and also an expectation of the future objectives. The most common type of stochastic 

programs is two-stage models. With a two-stage problem, some decisions are made on 

the first stage, when more information is found; in stage 2 decisions involve variables 

that can be adjusted based on the realization of the scenarios. 

One application of stochastic programming is that its ability to solve problems where 

some of the decisions can be delayed later when the experience with the primary 

decision has eliminated some or all of the uncertainty in the problems. This is stated as 
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stochastic programming with recourse since corrective action is made later to 

compensate for any undesirable outcomes with the initial decisions (Hillier & 

Lieberman, 2015). A multi-product supplier selection that has stochastic demand 

developed by (Yang, et al., 2011). 

2.5.5  Sensitivity analysis 

Sensitivity analysis is an important step in optimisation models in general and in multi-

criteria decision making models in particular. Uncertainty in input data makes 

sensitivity analysis important for optimisation models. When it comes to multi-criteria 

decision making, however, the problem becomes even more complicated due to the fact 

that one is mostly dealing with conflicting criteria; hence an optimum solution is not 

achievable. Under these circumstances, sensitivity analysis will help to find 

satisfactorily good solutions when parameters change.  An extensive research is 

conducted on sensitivity analysis for operations research and management science 

model like linear programming. For example (Wendell, 1992)has done a tolerance 

approach to manage variations in the parameters of more than one term at a same time, 

when he also considered sensitivity analysis as a post optimality step as well. The main 

goal of sensitivity analysis is to identify if the best alternative progresses the design 

objectives enough or not.  

Some aspects of the process design are subject to considerable uncertainty. The impact 

of uncertainties associated with technical factors and economic and environmental 

performance is examined by (Diwekar, 1995). A sensitivity analysis is done by 

( Govindan, et al., 2015) As a most important method of selecting a supplier that has the 

best environmental performance.  

 Ontology-based modelling and analysis 2.6

The ontology based analysis provides a comprehensive framework for describing 

system component relationships, to help users to understand the complexity of the 

system. As a whole ontology refers to explicit specification of a conceptualization 

(Sharman & Kishore, 2007). Ontology offers a chance to utilize and unify framework to 

embody objects and concepts, relationships and definitions.  



Chapter 2  Literature Review 

 Page 25
  
  

Ontology has a strong role in the development of semantic web, because it has ability to 

represent of a shared conceptualization of a particular domain and also capturing 

knowledge about concepts in the domain and relationships among concepts (Gruber, 

1993).  

Recent studies show that future systems will be knowledge-driven, by emphasizing the 

need to develop integrated tools to extract existing knowledge and transform it to the 

new and more useable knowledge. This goal is achievable by defining a comprehensive 

ontology to consider the desired product or process aspects. 

Ontologies can be considered as a collection of classes of objects like entity-relationship 

models from the community or object-oriented class (Ding, 2001), on the other hand, 

ontologies are a theory of reality which describe the kinds and structures of objects, 

properties, events, processes and relations in reality. An ontology-based framework for 

sustainable factories is developed by (Gagliardo, et al., 2015), this model intended to 

develop a include factory framework to includes data and process necessary for energy 

and environmental assessment in order to support sustainable design of factory entities.  

A recommendation system for anti-diabetic medication is designed by (Chen, et al., 

2012) for doctors to recommend suitable medicine. 

2.6.1  Ontology and knowledge representation 

“Ontologies are used to represent human knowledge in a machine understandable 

format” (Gobin, 2012). Ontologies also capture knowledge of concepts in the domain 

and relationships among these concepts (Horridge, et al., 2004). Relations can be 

hierarchical between classes, subclasses, supper classes and slots which describe 

properties of classes and instances, axioms and rules between classes. 

An ontology defines a common vocabulary for those who want to share information on 

a domain. It includes machine-interpretable definitions of basic concepts in the domain 

and relation among them (Noy & McGuinness, 2001). The goal of ontology is “to 

formalize domain of knowledge in a generic way and provide a common agreed 

understanding of a domain, which may be used and shared by applications and groups 

(Aufaure, et al., 2006)”. The most important advantage of using ontology is being good 

at demonstrating and utilization of relations.   
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Based on the job done by (Noy & McGuinness, 2001), developing an ontology includes; 

defining classes, arranging the classes in a taxonomic hierarchy, defining of slots filling 

the values for slots for instances. 

 There are seven steps for developing ontologies:  

I. Determine the domain and scope of the ontology 

II. Consider reusing existing ontologies 

III. Enumerate important terms in the ontology 

IV. Define the classes and the class hierarchy 

V. Define the properties of classes—slots 

VI. Define the facets of the slots 

VII. Create instances 

 

In the following section the reasons of using ontologies are described. 

According to (Noy & McGuinness, 2001) There are five important reasons for using 

ontology: 

 “To share common understanding of the structure of information among people 

or software agents”. 

  “To enable reuse of domain knowledge”. 

 “To make domain assumptions explicit”. 

 “To separate domain knowledge from the operational knowledge”. 

 “To analyses domain knowledge”. 

2.6.1.1  Ontology- based decision making system 

“Ontology is a unique form of representing knowledge applied in various domains” 

(Smirnov & Chandra, 2000). Chang, et al  (2012) Used ontology to define a set of data 

and structure to share knowledge, manage reuse of data and help designers to make 

decisions by considering economic, environmental and technical criteria. (Sadeghi 

Niaraki & Kim, 2009) developed a decision hierarchical framework to provide the basic 

rules for evaluation in the multi-criteria decision methods. (Pandit & Zhu, 2007) use 
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ontology to integrate heterogeneous systems,  the ontological framework is used to 

support decision making ontology in order to select transformations. 

Most of the systems which have been developed, use ontology to represent and 

exchange knowledge, ease confusion to provide a knowledge base for decision support 

systems in particular areas. In this research an ontology-based method developed to 

provide a decision support to illustrate relationships for users, and to provide a 

knowledge base system to make decisions more scientifically. Figure 2-2 represent 

working processes of ontology-based decision making based on (Chang, et al., 2010) 

works. 

 

 

Figure 2-2 Working process of ontology-based decision making (Chang, et al., 2010) 

 

2.6.1.2  Ontology editors 

Ontology is the fundamental of this research, and should be built by an ontology editor. 

Lambrix, et al., (2003) compared four ontology editors: protégé- 2000, Chimaera, 

DAG-Edit and OilEd. Among these four ontology editors Protégé-2000 compared with 

other editors has a better user interface, easy to use and configurable tool for knowledge 

extraction. However protégé-2000 is the old version of protégé but up to now the latest 

version has its advantages of the old version. Based on a survey done by (Michael, 

2002) Among 94 ontology editors in terms of 11 characteristics, such as base language, 

web support, graph view and other characteristics, Protégé has more advantages than 

others. 

Protégé is a free, open source editor, which has ability to be a knowledge acquisition 

system (Noy & McGuinness, 2001). The ontology developed by Protégé can be 

imported or exported in RDF, RDFS, OWL, OIL, DAML+ XML, and CLIPS or UML. 

Protégé also allows visualizing ontologies with AT&T's highly sophisticated Graphviz 

visualization software like OntoViz and TGViz. Moreover, there is some plug-ins to 

extend ontology construction, check   axiom and integration functions. In this study 
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ontologies are built by protégé to represent the relationship, concepts and properties for 

the available automotive paint shops.  

2.6.2  Knowledge representation schemes 

Knowledge representation schemes are tools to encode and store knowledge in a 

knowledge base (Rosenberg, 1986). This representation can be in different forms, based 

on the type of problem which is needed to solve. 

Knowledge representation schemes generally is categorised into two groups: knowledge 

structuring schemes and implementation schemes. First groups are used to organize 

knowledge that have some common theme or have a same goal point. The second group 

is used to represent domain knowledge within a computer system. Knowledge 

representation is described in terms of its roles by (Davis, et al., 1993): 

1. It can be used as a tool that can determine the effects by thinking instead of 

acting 

2. A set of ontological commitments  

3. A part of intelligent reasoning expressed in terms of recommended inference 

4. It is a medium for practically well-organized computation 

5. It is a medium of human expression 

Therefore, knowledge representation is defined as a multidisciplinary subject that 

combines techniques of logic, ontology and computation. 

The challenges of knowledge modelling and representation are investigated from two 

points of view by (Chandrasegaran, et al., 2013): 

A. Coding of design and process knowledge at different stages of design in order to 

have a better quality design 

B. The capture, use and communication of knowledge between teams and 

organizations. 

The use of ontologies can be helpful in means of integrating unstructured information 

and knowledge and provide a richer conceptualisation of a complex domain (Rezugi, et 

al., 2011). Ontology is a fundamental concept that lets the designers to represent a 
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specific domain in terms of axiomatic definition and taxonomic structure. Ontology as a 

structured concept covers process, objects and attributes of the domain along with 

complex relations.  

As mentioned in previous sections, designing a sustainable manufacturing process has 

shifted in the design process to support early design decisions. During design, designers 

need to know whether they should do more evaluation of information or generate new 

possible solution, negotiate changes in criterion features and missions, breakdown the 

problem into sub problems, or get conclusion and document results (Chandrasegaran, et 

al., 2013).  Recent research is looking to develop a methodology to design decisions, for 

example, design a methodology for selection of product design projects (Wei & Chang, 

2008). A decision support system in the knowledge representation form uses utility 

theory to deliver a mathematical tool to capture designer's preferences, and also 

construct decision support to make a decision (Fernandez, et al., 2005); in addition 

because of complexity of system which is tied with constraints, designer might fail to 

estimate the effect of each change on the other variables.  Therefore a knowledge based 

model for product and manufacturing process that encompass key attribute for decision 

making regarding sustainability development (such as energy consumption and material 

cost) is needed. 

2.6.3  Machine learning 

Machine learning is a subclass of computer science that investigates the construction of 

algorithms that can learn from data and make prediction. These types of algorithms 

work by building a model from example inputs to make data driven predictions or 

decisions, instead of following static program instructions.  

Machine learning is working closely with computational statistics, which is expert in 

prediction making. Machine learning also has a strong relation with mathematical 

optimisation to take its methods, theory and application domains. Machine learning 

when is applied in industries, might be referred to predictive analytics or predictive 

modelling. 

Tom M. Mitchell defines machine learning as: "A computer program is said to learn 

from experience E with respect to some class of tasks T and performance measure P, if 



Chapter 2  Literature Review 

 Page 30
  
  

its performance at tasks in T, as measured by P, improves with experience E" (Mitchell, 

2007), therefore machine learning is more operational rather than being cognitive based 

on this definition. 

2.6.3.1  Machine learning types 

Machine learning algorithms based on their nature of learning are usually categorized 

into three categories. These categories are (Russell & Norving, 2003): 

 Supervised learning 

 Unsupervised learning 

 Reinforcement learning 

The definition and usage of each category are coming in following.  

2.6.3.1.1 Supervised learning 

Supervised learning is a general learning method, which inferring a function from 

training data, training data is a set of data which is used to know if there is any 

predictive relationships, training data is a set of training examples. Basically, in 

supervised learning each example consists of an input object and output value as a pair. 

The infrared function produced by supervised learning algorithm is called a classifier if 

the output is discrete, or regression function if the output is continues.  

Supervised learning is used commonly in training neural networks and decision trees. 

Both of these techniques are based on the information given by the pre-determined 

classifications.  

2.6.3.1.2 Unsupervised learning 

Unsupervised learning looks more difficult than supervised learning, since the goal is to 

learn computer to do something without teaching how to do it. There are two 

approaches to unsupervised learning; the first is to teach the algorithm by using some 

sort of reward system to indicate success, this type of training is used for the decision 

problem framework, since the aim is to maximize rewards not classification. The second 

type is named clustering, which finds similarities in the training data. The main concern 

of cluster analysis is to group objects and their attributes into clusters that each 

individual element in a cluster has a high degree of natural association among 

themselves and very little natural association between clusters (Selim, et al., 1998). 
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2.6.3.1.3 Reinforcement learning 

Basically, in RL standard method, a learning agent repeatedly observes the state of its 

environment, and then it chooses how to perform, by doing an action the state of its 

environment is changed, therefore agent gets a payoff instantly. Positives are rewards 

and negatives are punishments. Reinforcement learning algorithms are different from 

supervised learning in case of that correct input/outputs are not given in supervised 

learning.   

 

 Summary  2.7

In this chapter, the present situation of sustainable manufacturing and its difficulties are 

stated. The basic knowledge and development of mathematical programming is 

introduced in Section 2.4. Mathematical programming is playing a vital role to develop 

our model in order to find an optimum technology when environmental, technical and 

economic criteria are conflicting. Computer-based approaches are used to facilitate this 

research to explore the ontology-based method for technology selection for a 

sustainable manufacturing. Ontology and machine learning schemes are represented in 

section 2.5.  

From the literature review, it can be concluded that there are the following research 

needs which provide the motivation for the focus of this work. 

1. To achieve environmentally sound product design goals, environmental criteria 

should be integrated into process design with economic and technical 

restrictions. This issue requires a systematic decision making for integrated 

process design; to deal with these conflicting criteria a systematic decision 

making framework is needed. This system should have the ability to trade-off 

and comparison among environmental performance, economic and technical 

restrictions. 

2. Using ontology to represent and exchange knowledge, increases the clarity, and 

provides a knowledge base to support decision making. In order to facilitate the 

system thinking and ease of relation understanding, an ontology-based method is 

used. 

3. As mentioned earlier in section 2.2 and 2.3 up to now there is no comprehensive 

framework to integrate technology selection and capacity planning and this is one of 
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the knowledge gaps. In this research there is the need for an integrated model to 

select the best available technology, while an integration of different technologies is 

also acceptable. Simultaneously an optimum level of production capacity for each 

technology is needed.  
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 Development of the Research Chapter 3  

Framework for Technology Selection and 

Capacity Planning Towards Sustainable 

Manufacturing 
 

 Introduction 3.1
 

Today’s manufacturing systems face many challenges, amongst which are;  

a) To enable integrated decisions (e.g. technology selection and capacity planning) 

b) To achieve sustainable manufacturing 

c) To deal with dynamism and uncertainty about the environment 

 

Isolated decision making within manufacturing systems, especially at the strategic 

levels leads to conflicts, inefficiency, or at the least it could produce a sub-optimal 

solution. For example, two types of decisions, namely technology selection and capacity 

planning to have some elements in common. But they have been addressed in the 

literature largely in an isolated way. Integrated strategic decisions provides a better 

result, while it generates a larger, more complex problem to solve.  

New technologies, such as powder-based painting systems in automotive 

manufacturing, are becoming widespread that are offering more environmentally 

friendly solutions, or higher quality products, or energy efficiency. It is, however, less 

likely that these benefits come all at once, at least not together with a lower capital price 

of the technology. Thus, the question is how to optimize such a multi-criteria decision 

on the choice of technology.  

On the other hand, manufacturing firms are working in an environment that is changing 

on a continuous manner. For instance, demand for products is affected by many factors 

such as population, substitute products, price, competition, and so on. Such a 

complexity is a recipe for dynamism and uncertainty. 
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We address all the above three challenges in this research and provide solutions 

accordingly. This chapter aims to present a general architecture of the proposed 

methodology. The general design of the proposed framework, including the selection of 

methods and algorithms is described in this chapter. Some general algorithms, such as 

normalization, cost structures and economic evaluation, are also explained. Further 

details about optimization models, sensitivity analysis, and solution structuring are 

described later in chapters four and five. 

 Technology selection and capacity planning 3.2

There are two perspectives to the technology selection problem. a) A zero-one selection 

where a technology is either selected or rejected, b) A combined use of different 

technologies, or so-called ‘technology mix’, which allows the split of capacity among 

different technologies.  

Technology mix perspective is not usually addressed in widely studied scenarios in 

recent years. For example, the study presented in (Van de Kaa, et al., 2014) aims to 

analyze the data to select one dominant technology out of five available alternatives. 

The authors use fuzzy Analytic Hierarchy Process method to achieve their aim. (Onar, 

et al., 2015) Concentrates on the selection of the appropriate wind energy technology. 

The problem is constructed as a multi-expert multi-criteria decision making problem. At 

(Ren & Lutzen, 2015)VIKOR was used to evaluate and prioritize three alternative 

technologies out of which one technology is selected. The study by (Evans, 2013) aims 

to adopt an approach where both experts and non-experts can use historical decision 

information to support the evaluation and selection of an optimal manufacturing 

technology. This form of approach is based on the logic in which a decision maker 

would irrationally recall previous decisions to identify relationships with new problem 

cases. In all these types of studies, the problem is actually treated like a rather simple 0-

1 decision type of scenario, where a technology is either selected or rejected. Just a 

fraction of these studies provide an approach with an aim to contribute to manufacturing 

sustainability. Yet in reality, more complex scenarios are happening.     
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In line with the inception of globalisation age, the emergence of global manufacturing 

corporations with several plants located around the world started off decades ago and is 

still on the rise. While some of the decisions in such a structure are made de-centrally, 

the importance of integrated decisions at some strategic levels, such as technology 

selection and capacity planning, is still evident. Such an integrated decision is supported 

by justifications in the areas of economies of scale and accumulated knowledge-base.  

The driving force of these decisions is multi-faceted. Manufacturing technologies are 

subject to a continual improvement process, especially in the context of sustainable 

development. Technologies have a limited life-cycle and need to be replaced. Further, 

increasing demand for an existing product would require capacity expansion, while new 

product development could justify new technologies as well as capacity acquisition. 

In this research, a model is developed with an integrated view to solve both problems 

‘Technology Selection’ and ‘Capacity Planning’ simultaneously. The general scenario 

targeted in this research assumes that the firm’s management is going to make a decision 

on:  

“How much of capacity from which technology to acquire?” 

In order to meet demands and in accordance with a number of criteria. A technology mix 

would enable an appropriate level of trade-off amongst conflicting criteria, such as cost, 

quality, and emissions. Managers might face this type of decisions in various industries 

and in different stages of their business, either to establish a new plant, or to expand on 

existing facilities, or even to replace the old technologies.  

Existing studies rarely look at this combined problem of ‘Technology Selection’ and 

‘Capacity Planning’ in an integrated way. (Filomena, et al., 2014) address technology 

selection and capacity investment under uncertainty for an electricity generation 

problem in a game theory-based competitive environment. The study focuses on cost 

evaluation against a portfolio of technologies and does not address multi-criteria nature 

of decisions or sustainability analysis.   
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 Sustainability perspective 3.3

Manufacturing plays a key role in the realisation of sustainable development. 

Manufacturing systems make a significant contribution in creating wealth, jobs, as well 

as pollution. Thus the concepts of ‘sustainable manufacturing’ and ‘sustainable 

technologies’ are key in achieving sustainable development. When it comes to 

sustainable technologies, however, there is another very important dimension to 

consider, namely ‘Technical’ aspects and specifications. In fact, the major global 

challenges that the manufacturing sector is facing today need to be addressed in the 

multifaceted context of economy, society, environment and technology (ESET) (Jovane 

et al., 2008). Figure 3.1 illustrates a conceptual model of manufacturing performances 

from these four dimensions. 

 

 

Figure 3-1 Sustainable Manufacturing (Kiritsis, 2007) 
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A drive for sustainable technologies generally leads to ways that reduce the 

consumption of resources. Three major initiatives to achieve such objective have been 

identified (Westkamper, 2007) .Miniaturization of products, technical components and 

machines is the first initiative. The substitution of hardware by software constitutes the 

second initiative. Finally, the implementation of technical intelligence throughout the 

process has the potential to reduce waste. 

One major aspect of this research is to observe the ‘Sustainability’ of manufacturing 

systems in the course of technology selection. The proposed methodology should drive 

the selection of more sustainable technologies. This objective can be achieved through 

an optimisation algorithm in which sustainability criteria are involved along with other 

selection criteria. In the next section, a discussion of selection criteria is presented. 

 Technology selection criteria 3.4

Inspired by the fundamentals of sustainability theory in the context of manufacturing, 

our approach to the problem ‘technology selection and capacity planning’ considers 

three criteria, namely  

a) Environmental (e.g. Emissions)  

b) Economic 

c) Technical (e.g. quality) 

These three criteria are largely in conflicting positions. Environmentally friendly 

technologies could come as pricey, because they may require advanced components to 

reduce the scale of emissions. Similar argument is true with quality and cost criteria. 

This gives rise to the multi-criteria decision making challenge, which is addressed later 

in the thesis. 

It is assumed that there exist regulations on controlling the environmental emissions for 

industries, making them keep their emissions generation at a certain level. This 

restriction is treated as a constraint in the proposed model.  

Modelling the economic aspect of the problem is more complicated. The cost structure 

includes both capital and operational elements, latter of which should be considered 
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over a time horizon. Thus, a total life-cycle costing method is proposed. The concept of 

‘Time Value of Money’ is addressed through a discounted cash-flow method that is 

‘Present Value (PV)’ analysis. Further, the effect of inflation rates is considered, 

making the proposed model more realistic. Figure 3.2 presents this research’s triangular 

perspective to sustainable manufacturing.    

 

 

 

Technology Selection 
& Capacity Planning

PV Life-Cycle 
Evaluation

(Economic)

Emissions
 (Environment)

Quality 
(Technical)

 

Figure 3-2 A triangular perspective to ‘Technology Selection and Capacity Planning’ 

 

 Modelling uncertainties 3.5
 

Every decision faces some uncertainties, the level of which becomes intensive where 

the decision has a long prospect in the future. It is assumed that the decision-making is 

happening in a time window through which the new circumstances might occur, e.g. 

prices change or criteria priorities are shifted, on the basis of which it requires the 



Chapter 3 Development of the Research Framework  

 Page 39
  
  

decision to be revised or adapted. Some of these uncertainties are taken into account in 

this research, which in turn introduce a great deal of complexity into the model. 

Dealing with uncertainty constitutes one of the biggest challenges in an optimisation 

approach. Very few studies take uncertainty into account and use a set of methods 

called ‘Non-Deterministic or Stochastic’ in general. On the other hand, the mainstream 

literature tends to assume that all data are certain and use the methods called 

‘Deterministic’. Non-deterministic models have to deal with a much larger set of data, 

which require high level of computational resources. Some methods use approximations 

to reduce the problem into a manageable size. 

 

3.5.1  Types of uncertainties: 

There are three types of uncertainties that are addressed in this research, as follows:  

Uncertainty factors with virtually no control over: Perhaps the most important 

uncontrollable factor associated with this type of uncertainty is; 

a) Demand  

This factor has a key role in capacity planning decisions. It is, however, assumed that 

there exists some information about future demand based on historical records or other 

types of sources such as expert opinions.   

Uncertainty factors with some level of flexibility: The other possibility is that although 

some of the parameters used in the model are beyond the user’s control, they might still 

be influenced by the user’s power, e.g. through negotiations, or give the decision maker 

a certain level of flexibility with the parameter value. Here are the most important ones 

that fall into this category: 

a) Purchasing price of the technology 

b) Regulatory limits 

Controllable parameters: In addition, the technology selection and capacity planning 

problem are characterised by some parameters within the decision maker’s control that 

could have impacts on the final results. Therefore, it is important to identify the 
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sensitivity of the model results to the deviations on these parameters. Some of these 

parameters are:  

a) Criteria weights( the criteria are not all eaqually important, so allocating 

weights give them relative priority in the decision) 

b) Rate of return (RoR) 

c) Budget limit 

 Proposed research framework 3.6

A framework consisting of ten major steps in four modules is proposed (figure 3.3). The 

framework puts an emphasis on facilitation of communication with users; hence two 

modules of ‘Problem Structuring’ and ‘Solution Structuring’ are developed to facilitate 

problem formulation and solution representation, respectively. ‘Ontology’, which 

compartmentalises the variables needed for some set of computations and establishes 

the relationships between them, plays a key role in the former module. 

Module ‘Optimisation for Sustainable Manufacturing’ addresses the optimisation of 

technology selection and capacity planning decisions in an integrated model. It also 

takes the multi-criteria aspect of sustainability in the model developed. 

‘Sensitivity Analysis’ module is designed to deal with the uncertainty associated with 

the model through scenario generations and model re-optimisations.  

As a part of the ‘Solution Structuring’ module, the results, which constitute a large 

number of solution sets, are then processed using Machine Learning techniques and 

translated into two solution formats, namely a) decision trees, and b) interactive slider 

diagram. 

The next sections describe the general functionalities of the above four modules as well 

as some algorithms developed. Further details are presented later in Chapters Four and 

Five.        
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Figure 3-3 General architecture of an integrated optimisation approach to technology selection and capacity 

planning 

 

3.6.1  Problem structuring 

Decision for choosing technology often needs to be made with respect to several 

aspects, for example energy consumption, demand, environment impacts, etc. it is a big 

challenge for designers to consider all the constraints and relations at the same time and 

make a balance among these parameters especially when they are not familiar with the 

process and available technologies. Ontology can take care of this problem, however it 

is not well developed yet. 

An ontology is an approach to deal with the structure of reality. For instance ontology 

provides terms and definition of concepts that are important in terms of objects, 

processes, entities, etc.  

In reality, developing ontology is defining classes, arranging classes, subclasses and 

subclasses, slots and specifying values for slots, and input or edit of the slots (Natalya & 

McGuiness, 2001). 

There are seven steps based on the Noy and McGuinness (2001) report as shown in 

Figure 3.4. 
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In the first step the purpose, scope and requirements are defined. The aim of ontology is 

capturing domain of knowledge and share information in a domain of interest. 

Therefore the requirements the proposed ontology should be specified based on the 

intended applications.  

In the second step is class and concepts categorisation.  The classes and relations among 

them and also their subclasses are formed as a tree structure.  

After class, concepts and relation are defined in ontology model; new design 

alternatives can be generated. A new design alternative is a new instance corresponding 

class in the ontology. 

In Protégé query tab is realized through searching instances according query needs. To 

query the knowledge in ontology, data reasoning based on JTP reasoner.  

After all steps done, designers can use ontologies to make and add new design 

alternatives into the knowledge base, they can infer new knowledge by the relations 

exist in ontology.  
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Figure 3-4 Ontology development flowchart 

 

 

3.6.2  Optimisation for sustainable analysis 

System analysis and design for achieving sustainability is a challenging task. Multi-

objective decision making is fundamental to the solution approach. Analytical methods 

are adopted to conduct optimisation of the design task.  

Query ontologies to integrate 

data  

Design alternatives instances 

Infer new knowledge by a 

rule engine 

Identify slot relations 
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This module consists of four steps, namely a) PV life cycle economic evaluation, b) cost 

optimisation, c) normalisation, and d) multi-criteria optimisation, as described in the 

next sections. 

3.6.2.1  PV Life-Cycle economic evaluation 
 

Economic evaluation of design alternatives has always played a major role in decision 

making. Various levels of detail and evaluation methods have been used before. Due to 

historical and ever increasingly vital importance of the cost factor, this research 

attempts to present a highly detailed economic evaluation algorithm based on ‘Present 

Value (PV)’ method.  

Technology investments are characterised by both initial capital spending and annual 

running costs. The real value of money is changed throughout time, due to the effects of 

‘Inflation’ and ‘Market Return’. PV method transforms all annual costs into their 

equivalent present values in a way that can be treated in the model similar to the initial 

capital part of an investment. Then various investments are evaluated based on their 

total equivalent present value. The details of the PV modelling in this research are 

described in the next sections (Fabrycky, et al., 1998): 

 Cost structure 

 

Two major cost categories for each technology investment are defined in this research:    

a. Capital costs (cc): Mainly includes ‘purchase cost’ of one unit of technology.     

b. Running costs (rc): Includes five sub-categories, namely i) materials, ii) labour, 

iii) energy, iv) rework, and v) maintenance. These cost items need to be 

discounted over the life of the technology (e.g. 20 years) and transformed into 

present value. The running cost formulae is presented below:  

𝑴𝑻𝒊𝒋 = [𝒙𝒊𝒋  × 𝒎𝒕𝒊𝒋 × (𝟏 + 𝒓𝒘𝒊𝒋)]                           ∀ 𝒊, 𝒋 

𝑳𝒊𝒋 = [𝒙𝒊𝒋  × 𝒍𝒊𝒋 × (𝟏 + 𝒓𝒘𝒊𝒋)]                                 ∀ 𝒊, 𝒋 

𝑬𝒊𝒋 = [𝒙𝒊𝒋  × 𝒆𝒊𝒋 × (𝟏 + 𝒓𝒘𝒊𝒋)]                               ∀ 𝒊, 𝒋 

𝑴𝑨𝒊𝒋 = 𝒚𝒊𝒋 × 𝒎𝒂𝒊𝒋                                                     ∀ 𝒊, 𝒋 
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Where  

𝑴𝑻𝒊𝒋 = cost of materials per one year production by technology 𝑗 for operation 𝑖, 

𝒎𝒕𝒊𝒋 = cost of materials per unit of product produced by technology 𝑗 for operation 𝑖, 

𝑳𝒊𝒋 = cost of labour per one year production by technology 𝑗 for operation 𝑖, 

𝒍𝒊𝒋 = cost of labour per unit of product produced by technology 𝑗 for operation 𝑖, 

𝑬𝒊𝒋 = cost of energy per one year production by technology 𝑗 for operation 𝑖, 

𝒆𝒊𝒋 = cost of energy per unit of product produced by technology 𝑗 for operation 𝑖, 

𝑴𝑨𝒊𝒋 = cost of maintenance per one year production by technology 𝑗 for operation 𝑖, 

𝒎𝒂𝒊𝒋 = cost of maintenance per unit of technology 𝑗 for operation 𝑖, 

𝒓𝒘𝒊𝒋 = percentage of rework associated with technology 𝑗 for operation 𝑖, 

𝒙𝒊𝒋 = capacity volume required for technology 𝑗 of operation 𝑖; 

𝒚𝒊𝒋 = Number of units required for technology 𝑗 of operation 𝑖; 

 

 The effect of inflation:   

In the real world, where price inflations exist, the expenses will rise from one year to the 

next at the rate known as ‘Inflation Rate’. In a simple word, a cost item 𝑐 will rise to 

𝑐(1 + 𝑟𝑖) next year, where 𝑟𝑖 represents the rate of inflation. Therefore, the annual 

running costs will actually rise in real term in the form of a geometric series (Table 3.1). 

Furthermore, the inflation rates actually vary with regards to different cost items, 

namely materials, labour, energy, and maintenance. In this research, the effect of 

inflation for each cost item is taken into account using different inflation rates.  
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Table 3-1 Geometric series representing the effect of inflation (Fabrycky, et al., 1998) 

Year 1 2 3 … t 

Cost rc rc rc … rc 

Inflated 

Cost 

rc x (1+ri) rc x (1+ri)
2 

rc x (1+ri)
3 

… rc x 

(1+ri)
t 

 

 The effect of market return: 

Market return is a profit on an investment, also called return on investment (ROI). It is a 

measure of investment performance. The effect of market return is involved when 

dealing with cash flows over time. Market return is represented by the Rate of Return 

(RoR) in a sense that every pound invested at time zero should grow over time at a rate 

RoR when used in a business. In other words, every pound spent at time one would be 

worth 1/(1+RoR) at time zero. The equivalence value of running costs at time zero 

when considering the effect of market return can be shown in Table 3.2. 

 

Table 3-2 The effect of market return on investment rate on annual running costs (Fabrycky, et al., 1998) 

Year 1 2 3 … t 

Cost rc rc rc … rc 

Equivalent 

Cost at 

year 0 

(effect of 

market 

return) 

𝑟𝑐

(1 + 𝑅𝑜𝑅)
 

𝑟𝑐

(1 + 𝑅𝑜𝑅)2
 𝑟𝑐

(1 + 𝑅𝑜𝑅)3
 … 𝑟𝑐

(1 + 𝑅𝑜𝑅)𝑡
 

 

 

 

 

 Present Value (PV) model: 
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The PV model of annual running cost 𝑟𝑐 when considering the combined effects of 

inflation and market return can be shown in the form of a new geometric series as 

follows: 

𝒓𝒄 (𝟏 + 𝒓𝒊)

(𝟏 + 𝒓𝒓)
 ,
𝒓𝒄 (𝟏 + 𝒓𝒊)𝟐

(𝟏 + 𝒓𝒓)𝟐
 ,
𝒓𝒄 (𝟏 + 𝒓𝒊)𝟑

(𝟏 + 𝒓𝒓)𝟑
 , … 

Or  

𝒓𝒄 × 𝒅𝒓     , 𝒓𝒄 × 𝒅𝒓𝟐     , 𝒓𝒄 × 𝒅𝒓𝟑      , … 

Where 𝑑𝑟(=
(1+𝑟𝑖)

(1+𝑟𝑟)
) represents the combined discounting effects of both inflation rate 

and return on investment. 

The summation of the series terms, which represents the equivalent present value of all 

running costs of the technology 𝑗 for operation 𝑖, is calculated using the following 

formulae: 

 

𝑹𝒖𝒏𝒏𝒊𝒏𝒈 𝑪𝒐𝒔𝒕 𝑷𝒓𝒆𝒔𝒆𝒏𝒕 𝑽𝒂𝒍𝒖𝒆 = 𝒓𝒄𝒊𝒋 × 𝒅𝒓 × (
𝟏−𝒅𝒓

𝒕𝒊𝒋

𝟏−𝒅𝒓
) 

 

Where 𝑡𝑖𝑗 refers to the life period of the technology 𝑗 for operation 𝑖. 

Finally, the total PV of each technology investment, including both capital and running 

costs, can be calculated as follows: 

 

𝑷𝑽𝒊𝒋 = 𝒄𝒄𝒊𝒋 + [𝑴𝑻𝒊𝒋 × 𝒅𝒓 × (
𝟏−𝒅𝒓

𝒕𝒊𝒋

𝟏−𝒅𝒓
) + [𝑳𝒊𝒋 × 𝒅𝒓 × (

𝟏−𝒅𝒓
𝒕𝒊𝒋

𝟏−𝒅𝒓
) + [𝑬𝒊𝒋 × 𝒅𝒓 ×

(
𝟏−𝒅𝒓

𝒕𝒊𝒋

𝟏−𝒅𝒓
) + [𝑴𝑨𝒊𝒋 × 𝒅𝒓 × (

𝟏−𝒅𝒓
𝒕𝒊𝒋

𝟏−𝒅𝒓
)]    

 

3.6.2.2  Cost optimisation 

This part of the proposed framework is particularly responsible for finding the total cost 

goal for the purpose of normalisation as described later in the next section. The cost 

optimisation model is similar to the main model assuming there is only one criterion to 

(Fabrycky, et al., 1998) 

(Fabrycky, et al., 1998) 
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consider, namely cost. A Linear Programming (LP) model is developed to solve this 

problem. The details of the cost optimisation model are explained later in chapter four.   

3.6.2.3  Normalisation 

One of the first steps in a multi-criteria approach is to normalise the effects of various 

criteria. In normalisation, impact potentials and resource consumptions are expressed on 

a common scale by relating them to a common reference, to enable a comparable 

assessment across impact categories ( Wenzel, et al., 2001) .All potential impacts are 

converted intthe same unitsts to facilitate a systematic comparison. To compare 

different impact potentials, an evaluation should be based on the seriousness of the 

impact, which is assessed by a set of weighting factors.  

All the three criteria mentioned earlier in section 3.4 require normalisation 

transformations in order to enable a comparable evaluation of the various scenarios. 

Common normalisation algorithms convert various scales into a unique scale for all the 

criteria scores. ‘Normalisation algorithm by comparison with the best value’ method is 

adopted in this research. This method can be formulated in two ways, as presented 

below, assuming that the criterion is to be minimised.   

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 

= 1 −
𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒−𝑀𝑖𝑛.  𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 

𝑀𝑖𝑛.  𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠
  

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =
𝑀𝑖𝑛.  𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑎𝑐𝑟𝑜𝑠𝑠 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒
 

 

Our initial experimentations showed very close results generated by both 

transformations. The first formula was, however, preferred in this research due to the 

fact that the second one turned the linear model into a non-linear one, which 

compromises on the efficiency and effectiveness of the solution.  

Normalisation algorithm requires a target (or best) value for each criterion. In the 

current research, the best criteria value across different technologies for a specific 

operation is used as the target value for normalisation calculations. The normalised 

transformation of the best value is set to ‘1’ based on the above formula.    
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There are, however, some complications involving the technology mix nature of the 

problem. Technology mix makes both optimisation and normalisation algorithms more 

complicated, because the number of alternatives is numerous. Each alternative could 

involve a mixed use of several technologies per operation. Under such circumstances, 

calculations in normalisation algorithms are carried out per each technology mix rather 

than per each individual technology. 

Assuming all the three criteria values are to be minimised in the context of this research, 

the following normalisation formulae are proposed. 

 Normalised environmental impact measure: 

It is calculated based on the following formulae, as presented above.  

 

𝑁𝐸𝑖 = 1 −
∑ (𝑒𝑖𝑗 ×𝑗 𝑥𝑖𝑗) − 𝑀𝑖𝑛𝑗(𝑒𝑖𝑗) × 𝐷𝑖

𝑀𝑖𝑛𝑗(𝑒𝑖𝑗) × 𝐷𝑖
                     ∀ 𝑖 

 

Where 𝑁𝐸𝑖 denotes the normalised environmental impact value associated with 

operation 𝑖 (𝑁𝐸𝑖 ∈ {0,1} with 1 being the least environmental impact), 𝑒𝑖𝑗 denotes raw 

environmental impact value associated with technology 𝑗 for operation 𝑖, 𝑥𝑖𝑗 denotes the 

capacity acquisition of technology 𝑗 for operation 𝑖, and 𝐷𝑖 denotes the level of demand 

for operation 𝑖. It is important to note that the environmental impacts of technologies are 

compared for each operation rather than across all operations. Therefore, 𝑀𝑖𝑛𝑗(𝑒𝑖𝑗) is 

referred to the minimum environmental impact value across technologies available for 

operation 𝑗. 

 Normalised technical measure: 

Assuming that technical scores are allocated in a way that best scenario will get a lower 

score, the normalised score, similar to the environmental measure, is calculated based 

on the following formulae:  

 

𝑁𝑇𝑖 = 1 −
∑ (𝑡𝑖𝑗 ×𝑗 𝑥𝑖𝑗) − 𝑀𝑖𝑛𝑗(𝑡𝑖𝑗) × 𝐷𝑖

𝑀𝑖𝑛𝑗(𝑡𝑖𝑗) × 𝐷𝑖
                     ∀ 𝑖 
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Where 𝑁𝑇𝑖 denotes the normalised technical (quality) value associated with operation 𝑖 

(𝑁𝑇𝑖 ∈ {0,1} with 1 being the highest technical index), and 𝑡𝑖𝑗 denotes raw technical 

value – such as quality rejection rate - associated with technology 𝑗 for operation 𝑖. It is 

important to note that 𝑡𝑖𝑗 represents a variable that is to be minimised.  

 Normalised economic measure:  

As for the economic measure, the best value cannot be obtained as straightforward as it 

was with the other two criteria. This is due to the fact that the cost structure of each 

technology is more complicated and consists of several elements, as described earlier in 

section 3.6.2.1. Therefore the minimum total cost value needs to be obtained. This is 

carried out using an auxiliary model called ‘Cost Optimisation’, as discussed earlier in 

3.6.2.2. The cost optimisation is carried out through a separate mathematical model that 

finds the minimum total cost across all the operations. Therefore, the normalised 

economic score is calculated based on the following formulae; 

𝑁𝐶 =  1 −
𝑡𝑐 − 𝑡𝑐∗

𝑡𝑐∗
         

Where 𝑁𝐶 refers to the normalised economic value (𝑁𝐶 ≤ 1 with 1 being the lowest 

total cost), 𝑡𝑐 refers to the total cost associated with each technology combination 

scenario across all operations, and 𝑡𝑐∗ refers to the minimum total cost across all 

operations. 

3.6.2.4  Multi-criteria optimisation 
 

This element of the research framework is responsible for the actual multi-criteria 

optimisation of technology selection and capacity planning for a sustainable 

manufacturing. The problem addressed in this research is characterised by a number of 

complexities, namely: 

 Multi-criteria nature of sustainability perspective, where different types of 

criteria (both quantitative and qualitative) are taken into account.  

 The ‘technology mix’ approach to the problem. This makes optimisation 

algorithms more complicated compared to the situation where there are only two 
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states; ‘selection’ or ‘no selection’. Instead, a numerous number of 

combinatorial scenarios need to be considered in this research. 

 The model is to work under uncertainty. Problem-solving approaches under 

uncertainty face a huge complication, dealing with uncertain data.    

To the best of our knowledge, no previous studies have addressed all the above major 

challenges simultaneously. This research adopts a group of methods and algorithms to 

tackle these challenges. The main approach used in this research is ‘Mathematical 

Programming’, which is a general term for a suit of methods. More specifically, a Goal 

Mixed Integer/Linear Programming method is used, where Goal Programming model is 

responsible for multi-criteria optimisation and the Mixed Integer/Linear Programming 

model deals with an integrated optimisation of technology selection and capacity 

planning. Further details about the Multi-Criteria Optimisation module can be found in 

chapter four. 

3.6.3   Sensitivity analysis 

Decisions are made in a highly uncertain environment. This means that the results might 

not be valid by the time the decisions are to be implemented. Also, the decision-making 

might be happening in a time window through which the new circumstances might 

occur, on the basis of which it requires the decision to be revised or adapted. There are 

several ways to deal with uncertainty. A related field is sensitivity analysis. With 

sensitivity analysis one can ascertain the impact of the uncertainty with respect to the 

parameters’ values on the quality of the optimum solution. Uncertainty analysis and 

sensitivity analysis are essential parts of analyses for complex systems.  

The proposed approach to high variability situations in this research is to predict 

possible scenarios in advance and pre-plan for each. The focus of this research is on 

sampling-based sensitivity analysis, which is an effective and widely used approach 

(Helton, 2008).  

There is a very important property of the Linear Programming (LP) models that is 

called ‘Duality’. Knowledge of the duality provides interesting economic and sensitivity 

analysis insights to the problem. The optimisation model developed in this research is, 

however, essentially of a mixed Integer/Linear Programming type, which does not allow 
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the applicability of duality. Therefore, a controlled re-optimisation approach was 

adopted where the original model is re-optimised for a set of sampled input data. Each 

re-optimisation episode is characterised by one set of input data against one set of 

output results. The re - optimisation module uses the same method as used in the 

original optimisation step. A software tool is designed to control the re-optimisation 

process in an efficient way. Further details on this module are presented in chapter four. 

3.6.4   Solution structuring 

Sensitivity analysis module provides rich pieces of knowledge for decision makers in a 

form of scenario-solution pairs in the scale of hundreds or perhaps thousands. Such a 

massive knowledge, however, needs to be structured in an abstract way, yet 

scientifically sound to represent the knowledge originally generated.  

This research adopts ‘Machine Learning’ approach to the solution structuring stage of 

the framework. More specifically, two types of knowledge structuring are suggested, 

including:  

i) Decision tree 

ii) Interactive slider diagram 

These representation schemes provide decision-maker with a variety of methods to 

structure the solution set. Decision tree is a widely-used and effective knowledge 

representation scheme. The generation of the most precise, yet smallest decision tree out 

of a large number of solution instances (thousands) is scientifically a very hard problem. 

‘Machine Learning’ in general and a combination of ‘Clustering’ and ‘Classification’ 

algorithms are applied in this research to generate the best decision tree.  

Further details on the algorithms can be found later in chapter five. 

 Conclusions 3.7

In this research, a model is developed with an integrated view to solve two problems 

‘Technology Selection’ and ‘Capacity Planning’ simultaneously. A ‘technology mix’ 

decision is allowed, which enables an appropriate level of trade-off amongst conflicting 

criteria, such as cost, quality, and emissions. A framework consisting of ten major steps 
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in four modules is proposed, namely a) Problem Structuring, b) Multi-Criteria 

Optimisation, c) Sensitivity Analysis, and d) Solution Structuring. 

One major aspect of this research is to observe the ‘Sustainability’ of manufacturing 

systems in the course of technology selection. The proposed methodology should drive 

the selection of more sustainable technologies. This objective is achieved through an 

optimisation algorithm in which sustainability criteria are involved along with other 

selection criteria. Three criteria are considered, including a) Environmental (e.g. 

Emissions), b) Economic, and c) Technical (e.g. quality).  

‘Normalisation algorithm by comparison with the best value’ method is adopted in this 

research in order to facilitate a systematic comparison among various criteria. 

Calculations in normalisation algorithms are carried out per each technology mix rather 

than per each individual technology. 

A total life-cycle costing method is proposed. The concept of ‘Time Value of Money’ is 

addressed through a discounted cash-flow method that is ‘Present Value (PV)’ analysis. 

Further, the effect of both inflation rate and market return are considered, making the 

proposed model more realistic. A mathematical model to represent the total PV of each 

technology investment, including both capital and running costs, is developed.  

A variety of uncertainties are taken into account in this research, which in turn 

introduces a great deal of complexity into the model. 

In summary, the main characteristics of the proposed framework are: 

 An integration of technology selection and capacity planning functions. 

 Tackling uncertainty 

 Addressing multi-operation problems 

 Considering the effects of inflation and market return 

 Total life-cycle economic evaluation 

 Sustainability perspectives 

 Decision tree-based solution structuring 

 Technological constraints (incompatible technologies)  
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 Development of a Mixed Chapter 4  

Integer-Linear Goal Programming Model 

for Technology Selection and Capacity 

Planning 

 

 

 Introduction 4.1

The problem addressed in this research can be regarded as an optimisation one where 

two sub-problems, namely technology selection and capacity planning, are solved in an 

integrated way. The objective, however, is multi-faceted mainly due to the multi-

disciplinary characteristic of the sustainability science.  

Mathematical programming allows the problem-solving approach to incorporate usual 

resource constraints as well as other types of constraints, such as technological 

incompatibilities. The theoretical foundation of mathematical programming supports a 

sound solution approach to the problem.    

Some assumptions might, however, be established when working with a solution 

approach in general and with a mathematical programming approach in particular. The 

assumption established in the proposed model is as follows:  

 Manufacturing technologies are supplied in discrete capacity levels. For 

instance, each unit of a specific car paint shop technology could be supplied in a 

capacity level of 250,000 cars per year.   

This chapter aims to present the development of a mathematical model for solving the 

integrated ‘technology selection’ and ‘capacity planning’ problem towards sustainable 

manufacturing. A method to conduct intensive, controlled sensitivity analyses is also 
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developed. The proposed methods are illustrated with a small example. A flowchart of 

the optimisation module steps is demonstrated in Figure 4.1.  

 

Cost Optimisation 
Model Run

PV Life-Cycle 
Economic 
Evaluation

Start

Criteria 
Normalisations 

Cost Optimised?

PV Life-Cycle 
Economic 
Evaluation

PV Life-Cycle 
Economic 
Evaluation

Main Model Run
Model 

Optimised?

Parameter 
combination 

changes

Sensitivity 
Analysis 
finished?

Result Presentation

Yes

Yes

Yes

End

No

No

No

 

Figure 4-1 Flowchart of the optimisation module steps 

 

 Problem definition and formulation 4.2

Mathematical programming, and especially linear programming, is one of the best 

developed and most used branches of management science. When the mathematical 

representation uses linear functions exclusively, a linear-programming model is created 

(Bradley, et al., 1977). Mathematical modelling in general and Goal Mixed 

Integer/Linear Programming in particular is used to solve both ‘Technology Selection’ 

and ‘Capacity Planning’ problems in this research. 

A mathematical model has three main components: a) Decision Variables, b) Objective 

Function, and c) Constraints.   
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4.2.1   Decision variables 

Decision variables represent the entities about which a decision is going to be made. 

Solving a mathematical model means finding the best numerical values for these 

decision variables in the presence of constraints. 

Decision variables defined for the problem addressed in this research are as follows: 

D
ec

is
io

n
 V

a
ri

a
b

le
s 

𝒙𝒊𝒋: Capacity volume required for technology 𝒋 of operation 𝒊; 

𝒚𝒊𝒋: Number of units required for technology 𝒋 of operation 𝒊; 

𝒅𝒄: Deviation from goal on economic criteria 

𝒅𝒊𝒆: Deviation from goal on environmental impacts criteria with 

regards to the 𝒊th operation 

𝒅𝒊𝒕: Deviation from goal on technical (quality) criteria with 

regards to the 𝒊th operation 

 

𝒙𝒊𝒋 and 𝒚𝒊𝒋 represent the key variables to solve the technology selection and capacity 

planning problems. The other three variables - namely𝒅𝒄, 𝒅𝒊𝒆, and 𝒅𝒊𝒕 – take care of 

multi-criteria aspect of goal programming method. A combination of different 

technologies can also be accepted. This is important when there is a budget limit. 

4.2.2  Objective function 

In the mathematical models, the goal is to maximise or minimise a quantity such as 

profit, cost, number of employees, customer satisfaction, etc. The maximisation or 

minimisation of the quantity is known as objective. Objective function highlights the 

fact that the objective is a function of decision variables. 

Multi-criteria mathematical modelling approaches face the challenge of dealing with 

several objectives of different scales. Furthermore, some of the objectives might be in 

conflict with each other, such as cost and quality. Goal Programming (GP) is the type of 

method to deal with such situations. In a GP model, ‘Goals’ are set for each criterion as 
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the targets. Then, the ultimate objective is set to minimise total deviations from the 

goals. This ensures that the model will find the best possible solution. Prior to that, 

however, normalisation of the measures as well as weighting of the criteria needs to be 

taken into account. Therefore, the objective function in this research is formulated as 

follows: 

Objective 

Function 

𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒇(𝒅) = (𝒏 × 𝒘𝒄 × 𝒅𝒄) + (𝒘𝒆 × ∑ 𝒅𝒊𝒆
𝒏
𝒊=𝟏 ) + (𝒘𝒕 ×

∑ 𝒅𝒊𝒕)
𝒏
𝒊=𝟏   

 

Where n denotes the number of operations, and wc,we , and wt denote the relative weight 

assigned to total cost, environmental impacts, and quality criteria, respectively. 

4.2.3  Constraints 

Constraints represent some limitations on resources such as money, labour and material 

or to represent relationships between decision variables, these constraints are set by 

personal conversation with experts.  

 In this research, nine sets of constraints are presented below: 

4.2.3.1  Technical goal constraints 

 

Represent relationship between decision variables and the goal on technical criteria. 

One such constraint is developed for each operation. Technical goal constraints are 

formulated in this research as follows (technical goal constraints are defined as quality 

problems here):  

Technical 

Goal 

Constraints 

𝑵𝑻𝒊 + 𝒅𝒊𝒕 =  𝟏                       ∀ 𝒊 = 𝟏,… , 𝒏 

 

Where 𝑁𝑇𝑖 denotes normalised technical value associated with operation 𝑖 as presented 

earlier in section 3.6.2.3. 
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4.2.3.2  Environment goal constraints 
 

Represent relationship between decision variables and the goal on environmental 

impacts criteria. One such constraint is developed for each operation. Environmental 

goal constraints are formulated in this research as follows: 

 

Environmental 

Goal 

Constraints 

𝑵𝑬𝒊 + 𝒅𝒊𝒆 =  𝟏                       ∀ 𝒊 = 𝟏,… , 𝒏 

 

 

Where 𝑁𝐸𝑖 denotes normalised environmental impact value associated with operation 𝑖 

as presented earlier in section 3.6.2.3. 

4.2.3.3  Economic goal constraint  
 

Represent relationship between decision variables and the goal on economic criteria. 

One such constraint is developed for all operations. Economic goal constraint is 

formulated in this research as follows: 

 

Economic 

Goal 

Constraint 

𝑵𝑪 + 𝒅𝒄 =  𝟏                        

 

Where NC denotes normalised economic value associated with operation i as presented 

earlier in section 3.6.2.3. 

 

4.2.3.4  Technology unit constraints 

As mentioned earlier in section 4.1, it is assumed that manufacturing technologies are 

supplied in discrete capacity levels, so-called ‘Technology Unit’. This means that the 

demand for total capacity requirement is met by a number of technology units from each 

technology type. The technology unit constraints establish a logical relationship 

between capacity volume decision variables (xij) and technology unit decision variables 
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(yij). The model should assume that yij is an integer variable, because it is the number of 

unit required.  

It is important to point out that any fraction of one technology unit should be treated as 

one full unit. For instance, if the mathematical model finds a solution as 2.3 units of 

technology, it will round it up to 3 units. Therefore, the capital cost of three units is 

taken into account. The constraint formula ensures that this condition is met.  

Technology unit constraints are formulated in this research as follows: 

 

Technology 

Unit 

Constraints 

𝒙𝒊𝒋

𝒖𝒊𝒋
≤ 𝒚𝒊𝒋                        

 

Where 𝒖𝒊𝒋 denotes the unit capacity of technology 𝑗 for operation 𝑖. 

 

4.2.3.5  Demand constraints 
 

As suggested earlier in the research scope, new capacities can be acquired from a 

combination of different technologies, a concept that is called ‘Technology Mix’.  

Demand constraints ensure that the total capacity acquired from the technology mix 

meets the demand for each operation. Demand constraints are formulated in this 

research as follows: 

Demand 

Constraints 
∑ 𝒙𝒊𝒋 = 𝑫𝒊

𝒎
𝒋=𝟏                      ∀ 𝒊 = 𝟏,… , 𝒏                

 

Where 𝐷𝑖 refers to the demand level for operation 𝑖. 
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4.2.3.6  Environmental impacts limit constraint 
 

Regulatory bodies in national and international levels (for example EU Industrial 

Emissions Directive) set out emission limits on selected pollutants for certain activities, 

such as large combustion plants, waste incineration and co-incineration plants, solvent 

using activities and titanium dioxide production. As an example, the EU Paints 

Directive sets out the limitation of emissions of volatile organic compounds due to the 

use of organic solvents in decorative paints and varnishes and vehicle refinishing 

products. As a result, such limits are enforced for related industries, where decisions, 

such as technology selection, are made to comply with these limits.  

Environmental impact limit constraint in this research, as formulated below, assumes 

that each production unit, for instance, painting of a car, generates a certain emission 

level. 

  

Environmental 

Impact Limit 

Constraint 

∑ ∑ (𝒆𝒊𝒋 × 𝒙𝒊𝒋) ≤ 𝑳𝒎
𝒋=𝟏

𝒏
𝒊=𝟏      

 

Where eij refers to the annual amounts of environmental impact resulted from 

technology j for operation i, and L refers to the annual limit set out by regulatory 

bodies. 

4.2.3.7  Capital budget limit constraint 

A technology selection decision is normally constrained by a capital budget limit, which 

in turn would lead to a trade-off decision in terms of some other criteria, such as quality 

and environmental impacts. It should be pointed out that the capital budget applies to 

the purchase price of the technologies and is not allocated to the running costs.   

Capital budget limit constraint is formulated in this research as follows: 
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Capital 

Budget  Limit 

Constraint 

∑ ∑ (𝑪𝑷𝒊𝒋 × 𝒚𝒊𝒋) ≤ 𝑩𝒎
𝒋=𝟏

𝒏
𝒊=𝟏      

 

Where 𝐶𝑃𝑖𝑗 refers to the capital price of one capacity unit of technology 𝑗 for 

operation𝑖, and 𝐵 refers to the total capital budget limit set out by the management. 

4.2.3.8  Technological constraints 

This type of constraints represents some restrictions associated with specific 

technologies. For instance, there might be incompatibility constraint between two 

technologies 𝑗 and 𝑗′ for operations 𝑖 and 𝑖′. For instance Water base primer cannot use 

with Solvent base coat. 

Technological incompatibility constraints are formulated in this research as follows: 

 

Technological 

Incompatibility 

Constraints 

𝒚𝒊𝒋 × 𝒚𝒊′𝒋′ = 𝟎                ∃ [(𝒊, 𝒋), (𝒊′, 𝒋′)]  ∈ 𝑷 

 

 

Where P includes the set of incompatible technologies j and j' for operations i and i'. 

This innovative formulation ensures that both these incompatible technologies would 

not be selected together. 

4.2.3.9  Variable constraints 

This type of constraints ensures that the decision variables take values in an acceptable 

range, normally non-negative. All the decision variables defined earlier in section 4.2.1 

should be non-negative. This applies to the goal deviation variables too due to the fact 

that the normalisation algorithm proposed in this research does not allow criteria values 

beyond their goal value, which is ‘one’.  

Furthermore, some variables might be required to take integer values only, such as the 

technology units in the context of this research. Such a restriction in a mathematical 
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programming model normally results in making the problem hard to solve. The more 

number of integer variables, the more complicated the solution process would be. 

Therefore, it is recommended to develop a model with the least number of integer 

variables, if any. Thus, in the current research, 𝒙𝒊𝒋, namely capacity volume required for 

technology 𝑗 of operation 𝑖, is not defined as an integer variable. This is because 𝒙𝒊𝒋 

takes grand values, in a scale of thousands or even more. Therefore, non-integer values 

can easily be rounded down or up in practice without a major impact on the final results.    

Variable constraints are formulated in this research as follows: 

 

Variable 

Constraints 

 𝒙𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

 𝒚𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

𝒅𝒄 ≥ 𝟎 

𝒅𝒊𝒆 ≥ 𝟎      ∀ 𝒊 

𝒅𝒊𝒕 ≥ 𝟎      ∀ 𝒊 

                           𝒚𝒊𝒋: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓     ∀ 𝒊, 𝒋 

 

 Formulation of the cost optimisation auxiliary model 4.3

As explained earlier in section 3.6.2.3, the normalisation algorithm requires a total cost 

goal value. An innovative algorithm is proposed in this research to identify this goal 

value. First, it is suggested to use the minimum total cost as the goal value. This is in 

harmony with goal value setting suggested for the other two criteria, namely technical 

and environmental impacts. Then a cost optimisation model is developed to find the 

minimum total cost. 

It is claimed that the minimum total cost can be found through a cost optimisation 

mathematical model that is somehow similar to the main mathematical model, as 

explained earlier in section 4.2, but with cost as the only criterion to consider. All the 

elements associated with the other criteria in the main model do actually compromise on 

the economic outcome. In other words, taking out the effects of other criteria in the 

main model is believed to generate the most economically viable solution.  
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A major difference between the main model and the cost optimisation auxiliary one is 

on the fact that the auxiliary model is of a single-criterion type. This means that there is 

no need to use Goal Programming method within the auxiliary model. The effect is a 

different objective function and no need for goal constraints. The cost optimisation 

model is of a Linear Mixed Integer Programming type. Accordingly, the formulation of 

the cost optimisation auxiliary model is proposed as follows: 

 

 

 

 

Decision 

Variables 

𝒙𝒊𝒋: Capacity volume required for technology 𝒋 of 

operation 𝒊; 

𝒚𝒊𝒋: Number of units required for technology 𝒋 of 

operation 𝒊; 

Objective 

Function 

 𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒕𝒄 = ∑ ∑  (𝒄𝒄𝒊𝒋 + [𝑴𝑻𝒊𝒋 × 𝒅𝒓 × (
𝟏−𝒅𝒓

𝒕𝒊𝒋

𝟏−𝒅𝒓
)] +𝒋𝒊

[𝑳𝒊𝒋 × 𝒅𝒓 × (
𝟏−𝒅𝒓

𝒕𝒊𝒋

𝟏−𝒅𝒓
)] + [𝑬𝒊𝒋 × 𝒅𝒓 × (

𝟏−𝒅𝒓
𝒕𝒊𝒋

𝟏−𝒅𝒓
)] + [𝑴𝑨𝒊𝒋 × 𝒅𝒓 ×

(
𝟏−𝒅𝒓

𝒕𝒊𝒋

𝟏−𝒅𝒓
)]) 

Technology 

Unit 

Constraints 

𝒙𝒊𝒋

𝒖𝒊𝒋
≤ 𝒚𝒊𝒋 

Demand 

Constraints 
∑ 𝒙𝒊𝒋 = 𝑫𝒊

𝒎
𝒋=𝟏                      ∀ 𝒊 = 𝟏,… , 𝒏                

Capital 

Budget  

Limit 

Constraint 

∑ ∑ (𝑪𝑷𝒊𝒋 × 𝒚𝒊𝒋) ≤ 𝑩𝒎
𝒋=𝟏

𝒏
𝒊=𝟏      



Chapter 4 Development of a Mixed Integer-Linear Goal Programming 

 

 Page 64
  
  

The result of this model is a solution associated with the minimum cost, 𝑡𝑐∗, which is 

then used in the cost normalisation formulae presented earlier in section 3.6.2.3.
 
 

It is important to point out that any changes to the environmental data or quality data or 

criteria weights would have no effects on this model. More precisely, the results of this 

model will be valid as long as the data in the model, namely a) economic data, b) 

demand, c) capital budget limit, or d) technological constraints, are not changed. In case 

any of these four groups of data do change, the auxiliary model needs to be re-run. This 

is the topic of the next section, namely ‘Sensitivity Analysis’.   

 Sensitivity analysis 4.4

One popular method to do certain types of sensitivity analyses in mathematical 

programming is called ‘Duality’. It provides a streamlined way to conduct sensitivity 

analyses without a need to do several re-runs of the model. While this makes duality an 

efficient method, there are three main drawbacks associated with it, namely; 

a) Duality can be used for certain types of sensitivity analyses, including analysis 

on the objective function coefficient values and constraint limits. But it cannot 

be used for changes to the, for instance, constraint coefficients.  

b) The results of duality method will be valid only for a limited threshold changes 

to the parameters. Any changes beyond those thresholds will require a model re-

run. 

c) Duality can be used only for non-integer models where Simplex method is 

applicable.   

However, in our model, where some of the variables are forced to be integer, duality 

cannot be adopted. Furthermore, our research is going to address various types of 

sensitivity analyses in an extensive scale, most probably beyond the duality 

threshold limits. Therefore, the proposed approach to conduct sensitivity analysis 

and tackling all the uncertainties cited earlier in section 3.5 is through a controlled 

set of re-optimisation runs, which is guided by a tool developed in this research and 

coded in Visual Basic for Applications (VBA). The VBA program code is presented 

in Appendix D.  
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4.4.1  Parameters 
 

Our model and VBA tool allows for conducting sensitivity analyses on all the 

parameters mentioned earlier in section 3.5, which are found to be the most important 

ones in the context of the problem addressed in this research. These parameters are; 

 

a) Capacity demand for operations 

b) Purchasing price of the technologies 

c) Regulatory limits 

d) Criteria weights 

e) Rate of return (RoR) 

f) Budget limit 

 

4.4.2  Re-optimisation method 

Re-optimisation method uses the same mathematical model developed earlier in section 

4.2. Parameters’ value ranges are identified by the user. Then all the possible 

combinations of parameter values are worked out by the VBA tool, which will 

subsequently re-run the original model in a controlled fashion based on each 

combination. Results are generated for each combination. The results might not show a 

difference compared to the baseline, in which case an implication would be that the 

model is not sensitive to that specific change in parameters. Otherwise, a new set of 

results are generated. This controlled model re-run is repeated for every combination. 

Figure 4.2 exhibits the proposed sensitivity analysis process. 
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Selection of 
Parameters and 
their value range 

Controlled Model 
re-run for each 
combination of 

parameter values

Possible 
combinations of 

parameter values

Result generation 
for each model re-

run

Is there any further 
combinatory set of values?

End

Yes

No

 

Figure 4-2 Proposed sensitivity analysis process 

 

 

Each parameter set is associated with its own result set, forming what is known as a 

‘Solution Example’. A number of such examples, also known as a ‘Solution Set’, are 

produced by the VBA tool and then are fed into the Solution Structuring module, which 

is described in detail later in chapter five. An illustration of a solution set is shown in 

Figure 4.3.    

 

 
 

Figure 4-3 An illustration of a ‘Solution Set’ 
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 Illustrative example 4.5

A small illustrative example is presented in Appendix A, to elaborate on the 

development of a) the cost optimisation model, b) the main model, and c) sensitivity 

analysis.   

 Summary 4.6

Two mathematical models are developed, one as the main model to solve the main 

problem addressed in this research, and the second one as the auxiliary model to 

identify the best solution in terms of the total cost only. 

The main model adopts Goal Mixed Integer/Linear Programming to solve both 

‘Technology Selection’ and ‘Capacity Planning’ problems. The model consists of five 

types of decision variables, two of which to solve the twin integrated problem above 

mentioned, and the other three to deal with the multi-criteria aspect of the sustainability 

perspective.  

The objective is set to minimise total deviations from the goals. Normalisation of the 

measures as well as weighting of the criteria are incorporated in the objective function. 

Nine sets of constraints are developed in this research, three of which are concerned 

with goal constraints, and the other six include technology unit constraints, demand 

constraints, environmental impact limit constraint, capital budget limit constraint, 

technological constraints, and variable constraints.  

The auxiliary model aims to find the economic criteria goal for normalisation purpose. 

A linear programming model is developed to find the minimum total cost. It is 

somehow similar to the main mathematical model, but with cost as the only criterion to 

consider.  

A controlled set of re-optimisation runs, which is guided by a tool coded in Visual Basic 

for Applications (VBA), is developed to perform intensive sensitivity analyses. It is 

aimed to address the uncertainty element of the problem. 
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The working of the proposed methodology is illustrated based on a small example that 

includes three operations with 2 to 3 technology options for each. Both the main model 

and the auxiliary model are developed and then are run using What’sBest software. 

 

 

 



 Chapter 5 Machine Learning Approach to Solution Structuring 

 

 Page 69
  
  

 Machine Learning Approach to Chapter 5  

Solution Structuring  

 Knowledge structuring 5.1

The scale of the results and knowledge generated by the sensitivity analysis tool is 

large. Hundreds or thousands of parameter combinations will have to be defined, each 

of which requires one solution set generated by our model and the software tool. What 

we are facing here is the transformation, or generalisation, of the massive number of 

solution sets into a format that can be handled and adopted easily by decision makers. 

An appropriate knowledge structuring scheme needs to be developed that allows 

decision makers to handle the massive scale of the knowledge-base. 

The nature of knowledge in this context represents a set of information across various 

fields, namely manufacturing technologies, production planning, environmental, 

technical, economic and management priorities. All these information are reflected in 

the solution set (Figure 5.1) 

Ontologies are explicit formal specifications of the terms in a domain and the relations 

among them (Gruber, 1993). Ontologies allow the development of a knowledge 

representation capable of integrating information across various scientific disciplines. 

This will also facilitate the collaboration between different disciplines.  

This research adopts two knowledge structuring schemes, namely a) Decision Tree, and 

b) Interactive Slider Diagram. Novel algorithms are developed to build decision trees 

and interactive slider diagrams based on the results of sensitivity analyses generated. 

The details of these algorithms are described in this chapter. 

 Decision tree generation 5.2

A decision tree is a classifier expressed as a recursive partition of the instance space. 

The decision tree consists of nodes linked together in a hierarchical way. The terminal 

nodes in a tree are also called ‘decision nodes’ or ‘leaves’. Each internal node splits the 



 Chapter 5 Machine Learning Approach to Solution Structuring 

 

 Page 70
  
  

instance space into two or more sub-spaces according to a certain discrete function of 

the input attribute values. Each leaf is assigned to one class representing the most 

appropriate target value (Rokach & Maimon, 2008). 

 

Figure 5-1 Proposed ontology framework to represent solution knowledge in the context of technology 

selection in a sustainable manufacturing 

Decision tree is a widely-used and effective knowledge representation scheme. There 

exist three criteria to evaluate the goodness of a decision tree generation algorithm, 

namely a) its correctness to predict the class of an unseen example, b) its completeness, 

in a sense that the tree can cover all the possible examples, and c) the size of the tree, in 

terms of the number of its nodes. The generation of the most correct, most complete, yet 

smallest decision tree out of a large number of solution instances (thousands) is 

scientifically a very hard problem. 

‘Decision Tree’ scheme was found appropriate for the problem addressed in this 

research because; 

a) It can easily be understood by people, 

b) It can reduce the size of a knowledge-base in an optimised way, using Machine 

Learning algorithms. 

c) It prioritises the sensitivity level of various parameters against the model results.    
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A tree can be learned by splitting the database into subsets based on an attribute value 

test. This process is repeated on each derived subset in a recursive manner 

called recursive partitioning. The recursion is completed when the subset at a node has 

all the same value of the target variable, or when splitting no longer adds value to the 

predictions. This process of top-down induction of decision trees (TDIDT) is an 

example of a greedy algorithm, and it is by far the most common strategy for learning 

decision trees from data.  

There are two key, conflicting criteria to evaluate the goodness of a decision tree, 

namely a) correctness, b) tree size. An ideal situation is to generate a decision tree that 

is the smallest and the most correct one. In a realistic situation, there needs to be a trade-

off between these two criteria. There are techniques known as ‘Decision Tree Learning’, 

a branch of Machine Learning approach that uses specific algorithms to generate 

decision trees.   

 Decision tree learning algorithms 5.3

Machine Learning is a class of algorithms that is data-driven. In other words, it is the 

data that tells what the "good answer" is. For example, a hypothetical non-machine 

learning algorithm for truck shape recognition in images would try to define what a 

truck is (rectangular shape of a specific size with round shapes as wheels underneath, 

etc.). A machine learning algorithm, however, would not have such coded definition; 

instead it ‘learns by examples’, which means the algorithm is given a set of images of 

trucks and non-trucks and a good algorithm will eventually learn and be able to predict 

whether or not an unseen image is a truck. 

This particular example of pattern recognition is ‘supervised’, which means that the 

examples must be tagged with information about its category or so-called ‘Class’. In the 

above case, the class would reflect the information as to whether an example is a truck 

or not. 

On the other hand, in an ‘unsupervised’ algorithm the examples are not tagged with 

‘Class’ data. This means that the data are not classified. In such a case, the algorithm 

itself cannot ‘discover’ what a truck is, but it can try to ‘cluster’ the data into different 

groups. For example, it can distinguish that trucks are very different from balls, which 



 Chapter 5 Machine Learning Approach to Solution Structuring 

 

 Page 72
  
  

are very different from humans. Good algorithm will eventually learn and be able to 

predict whether or not an unseen image is a truck. 

This particular example of pattern recognition is ‘supervised’, which means that the 

examples must be tagged with information about its category or so-called ‘Class’. In the 

above case, the class would reflect the information as to whether an example is a truck 

or not. 

On the other hand, in an ‘unsupervised’ algorithm the examples are not tagged with 

‘Class’ data. This means that the data are not classified. In such a case, the algorithm 

itself cannot ‘discover’ what a truck is, but it can try to ‘cluster’ the data into different 

groups. For example, it can distinguish that trucks are very different from balls, which 

are very different from humans. 

 Proposed hybrid decision tree algorithm 5.4

In the current research, both supervised and unsupervised learning algorithms are used. 

Figure 5.2 exhibits the flowchart that represents sequential steps developed in this 

research to carry out solution structuring. 

 

 

 

 

 

Figure 5-2 Flowchart of the proposed solution structuring module 
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The result of sensitivity analysis in terms of solution representation can be shown in 

Figure 5.3. Each solution example, as illustrated in the figure, is formed of a pair of 

value sets, first of which is called ‘parameter value set’ and the second is called 

‘technology value set’.  

 

As parameter values change, the technological values will be calculated accordingly 

using the optimisation module. Sensitivity analysis module in this research will produce 

a massive number of solution examples to handle modelling uncertainties, as shown in 

Figure 5.4. Each row in this figure can be named as one training example. 

 

 

Figure 5-4 An illustration of the population of solution examples generated by the sensitivity analysis tool 

 

Figure 5-3 One solution example 
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The objective of this stage of research is to learn a reasonably small decision tree out of 

the massive number of training examples at the highest accuracy level. Machine 

learning algorithms do not necessarily generate 100% accurate rules, although it is the 

target. This is because machine learning algorithms are normally supposed to 

generalise, which would result in some inaccuracies.  

In order to be able to use supervised learning methods, the examples must include 

information about the category of the examples or so-called ‘Class’. In this case, the 

class would normally be the solution part of the training example. However, in our 

research the solution part consists of a number of data fields (technology data) rather 

than a single data field that represents a ‘class’. This causes some complications if using 

supervised learning. A multi-step hybrid algorithm is proposed in this research, in 

which the unsupervised learning method is first used to cluster solution examples, 

before a supervised learning algorithm can be applied. The details of this hybrid 

algorithm are presented in the next sections.  

 Unsupervised learning (Clustering) 5.5

A sensitivity analysis experiment is normally resulted in a number of similarly patterned 

solution examples. This is because some parameter changes might have no impacts on 

the results. In such cases, especially where there are a large number of sensitivity 

analyses involved, patterns can be recognised to streamline solution structuring. Each 

recognised pattern is allocated a class number, which will then be used for supervised 

learning.  

The process of pattern recognition within the sensitivity analysis results is driven by a 

method called ‘Unsupervised Learning’, or so-called ‘Clustering’. This method looks 

for similarities or patterns in the examples and clusters them accordingly. Before that, 

however, a ‘solution streamlining’ step is carried out on the solution examples to 

simplify the clustering process. This step aims to reduce the size of the examples based 

on the mathematical relationships between them. For instance, in a solution set 

illustrated in table 5.1, the capacity volume of various technologies for each operation 

are defined as dependent variables, as shown below: 
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Op1Tech1 + Op1Tech2 = Demand1 

Op2Tech1 + Op2Tech2 + Op2Tech3 = Demand2 

Op3Tech1 + Op3Tech2 = Demand3 

Table 5-1 An example of pattern recognition in the ‘Technology value set’ part 

Budget 
Limit (m) 

Economic 
Weight 

Dema
nd 1 

Dema
nd 2 

Dema
nd 3 

Op1 
Tech 1 

Op1 
Tech 2 

Op2 
Tech 1 

Op2 
Tech 2 

Op2 
Tech 3 

Op3 
Tech 1 

Op3    
Tech 2 

27 5 
190,0

00 
190,0

00 
290,0

00 26,070 
163,93

0 30,000 
160,00

0 0 
290,00

0 0 

30 5 
190,0

00 
190,0

00 
290,0

00 26,070 
163,93

0 30,000 
160,00

0 0 
290,00

0 0 

33 5 
190,0

00 
190,0

00 
290,0

00 26,070 
163,93

0 30,000 
160,00

0 0 
290,00

0 0 

27 3 
190,0

00 
190,0

00 
300,0

00 50,000 
140,00

0 0 
190,00

0 0 
300,00

0 0 

30 3 
190,0

00 
190,0

00 
300,0

00 50,000 
140,00

0 0 
190,00

0 0 
300,00

0 0 

33 3 
190,0

00 
190,0

00 
300,0

00 50,000 
140,00

0 0 
190,00

0 0 
300,00

0 0 

As a result, one column out of each operation can be removed randomly, as shown in 

Table 5.2.  

The aim of clustering is to recognise similarity patterns. For instance, two patterns can 

be recognised in the technology part (orange-coloured) of the solution set illustrated in 

table 5.2. In fact, repetitions are noticeable in this part. The pattern recognisable is that 

the production capacities allocated to the different technologies do not change in 

response to different budget limits as long as the other parameters are the same. This 

means that the results are not sensitive to the scale of budget limit shift shown in the 

Table 5.2.  

The clustering algorithm then allocates ‘cluster number’ to each pattern. This allows the 

application of supervised learning in the next step. The outcome of the clustering 

algorithm is shown in Table 5.3. 
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Table 5-3 The solution set after clustering 

 

5.5.1  Density-based spatial clustering of applications with noise (DBSCAN) 

method 

DBSCAN, proposed in 1996 (Ester, et al., 1996), is a density-based clustering method 

that identifies high-density group of examples that are close together, while 

distinguishing outlier points that lie alone in low-density regions. DBSCAN has proved 

one of the most commonly used clustering algorithms and also one of the most cited 

ones in scientific literature (Microsoft Academic Search, 2015). Unlike some other 

methods, DBSCAN does not require one to specify the number of clusters in the data a 

priori. Such a characteristic makes this method less parametric. 

 

 

Table 5-2 Solution streamlining and Pattern Recognition 
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DBSCAN requires two parameters with descriptions as follows: 

a) ε (epsilon): It represents neighbourhood radius. In general, small values of ε are 

preferable, and as a rule of thumb only a small fraction of points should be 

within this distance of each other. Trial and error is a common method that can 

be used to find the appropriate value for epsilon.  

 

b) MinPts: It represents the minimum number of points required to build a dense 

region or cluster. Larger values are usually better for data sets with noise and 

will yield more significant clusters. The larger the data set, the larger the value 

of MinPts should be chosen. In the context of this research, the level of noise 

could be low.  

This research adopts DBSCAN method. The parameters are obtained through a process 

based on trial and error runs.  

 

  Supervised learning (Classification)  5.6

Supervised learning works based on a ‘Class’ attribute already in the data set, hence 

called ‘Classification’. It aims to infer generalised rules or other simple types of 

knowledge structures such as decision trees. 

The aims of supervised learning in this research are two-fold: 

1) To generate the optimum representation for the solution set: This is a 

generalised form of representation that connects various combinatorial 

parameter values to different set of solutions at the highest correctness rate 

acceptable.  

2) To predict what class an unseen point belongs to: An unseen point for the 

exemplary case presented earlier in table 5.3 can be shown in table 5.4. As 

shown, the economic weight for this new point is 3.5 while all other attribute 

values are similar to an existing point. A function of the supervised learning 

algorithm is to predict the best possible cluster (or class) for this unseen point. 
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Economic  

Weight 

Class=1 Class=2 

Table 5-4  An example of unseen point 

Budget Limit 
Economic 

Weight 
Demand 

1 
Demand 

2 
Demand 

3 
Cluster 

no. 
27000000 3.5 190,000 190,000 300,000 ??? 

 

 

This algorithm is applied to the result of ‘Unsupervised Learning’ step developed earlier 

in the previous section. A simple decision tree generated out of the dataset illustrated 

earlier in table 5.3 is shown in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-5 A possible decision tree for the dataset in Table 5.3 

 

This tree is complete, which means it covers all the six examples. The tree is also 100% 

correct in a sense that it correctly predicts all the two classes. But, perhaps the most 

important advantage is that the tree learning method has generated a much simpler 

representation of the knowledge compared to the original dataset.  

Different classification methods can generate different trees that might vary in terms of 

attributes, size, and correctness. For example, another tree is shown in Figure 5.6, which 

uses a different attribute as classifier, namely demand3. This tree is also 100% complete 

and 100% correct.  
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Demand  

Three 

Class=1 Class=2 

Both these trees constitute optimum solutions in tree generation algorithm in terms of 

the size, completeness and correctness.   

 

 

 

 

 

 

 

 

Figure 5-6 An alternative tree for the dataset in Table 5.3 

 

The last step is to replace the tree leaves with their equivalent solution set as obtained 

earlier by the unsupervised learning (Table 5.2). Figure 5.7 represents the outcome of 

this step. 

 

 

Figure 5-7 Decision tree generated for the dataset in Table 5.3 
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5.4.1. C4.5 Method 

C4.5 method was developed by Quinlan in 1993 as a decision tree generation 

algorithm. It is an extension of an earlier method called ID3. Both C4.5 and ID3 

have been amongst the most popular decision tree generator algorithms available.  

At each node of the tree, C4.5 chooses the attribute of the data that most effectively 

splits its set of examples into subsets enriched in one class or the other. The splitting 

criterion is the normalized information gain (difference in entropy). The attribute 

with the highest normalized information gain is chosen to make the decision. The 

C4.5 algorithm then recurs on the smaller sublists. 

 

One key parameter in C4.5 is the ‘minimum number of instances per leaf’. This 

parameter determines how big and consequently how correct the generated tree will 

be. The bigger the tree, the more correct it will be, and vice versa. However, bigger 

trees would generally make it difficult to follow by decision makers. Thus, there 

needs to be a trade-off between size and correctness of a tree. For example, a 

threshold can be defined for the correctness of a tree.  

 

J48, a Java implementation of C4.5 method in the Weka data-mining software tool, 

was used in this research to conduct supervised learning. 

 Illustrative example 5.7

The results of the example presented earlier in section 4.5 were fed into the solution 

structuring module. Unsupervised learning was conducted using DBSCAN method 

with parameters set at Epsilon=0.2 and MinPoint=3 and was implemented in the 

Weka software tool. One technology option of each operation was removed 

randomly. Eighteen clusters (or patterns) were recognised and a unique cluster 

number was allocated to each cluster. A sample of the clustering result consisting of 

24 solution examples are shown in Appendix B. 

 

Supervised learning was conducted using C4.5 algorithm with two parameter values 

‘Min. number of instances per leaf’ set at 3 and 4 and was implemented in Weka 

software tool, as shown in Appendix B respectively. 
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 Interactive slider diagram representation 5.8

An alternative way to represent the sensitivity analysis results is suggested here by 

using an interactive slider diagram, which is developed in a spreadsheet platform. The 

slider diagram is linked to the decision tree and illustrates its result in a histogram 

format interactively. The slider diagram exhibits the model results (technology mix) 

against the input parameter values. It is interactive in a sense that every change to the 

parameter values is reflected onto the results on a real-time basis.  

While decision trees allow the recognition of general patterns in the solution set, 

interactive slider diagram works based on a point-to-point approach where each input 

data point identifies one solution point.  

 Summary 5.9
 

Two knowledge structuring schemes, namely Decision Tree and Interactive Slider 

Diagram, are proposed to deal with the massive size of solution sets generated by the 

sensitivity analysis module. 

Machine learning approach in general, and a hybrid supervised and unsupervised 

learning algorithm in particular, is developed to generate a decision tree that aims to 

structure problem solution set. The unsupervised learning method is first used to cluster 

solution examples, before a supervised learning algorithm can be applied to generate a 

decision tree. The unsupervised learning stage is implemented using DBSCAN 

algorithm, while the supervised learning element adopts C4.5 algorithm. The 

algorithm’s parameters are obtained through a process based on trial and error runs.  

The working of the proposed decision tree generation algorithms is illustrated based on 

the same example presented in chapter four.  

Finally, an alternative way to represent the sensitivity analyses results is suggested by 

using an interactive slider diagram, which is linked to the decision tree and illustrates its 

result in a histogram format interactively. The slider diagram exhibits the model results 

(technology mix) against the input parameter values.  
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  Case Study  on Automotive Chapter 6  

Painting Systems 

 

 Introduction  6.1
To validate the proposed methodology in chapters 3, 4, and 5, defining an appropriate 

case study is necessary.  Since this research deals with technology selection the case 

study should consist of different operations that each or some of them can be replaced 

by another compatible technology. Therefore, automotive coating is chosen because of 

having variety of available technologies.    

 

This chapter starts with an introduction about automotive industry, particularly specified 

in coating section, followed by environmental strategy, industry’s economic condition 

of the painting process structure in Iran, followed by implementing methodologies and 

analysing findings. 

6.1.1  Automotive industry 

Automotive manufacturing is one of the largest industries in the world. According to the 

European Motor Manufacturers Association (ACEA), 17.2 million cars, vans, truck and 

buses are manufactured in Europe per year with a turnover of 452 Billion EURO. By 

this large amount of demand for passenger car, there are strong competitions among 

automotive manufacturing companies.  Moreover, external pressures from governments 

by their rules have affected these industries. For example Clean Air Act (CAA) has 

changed the basic method of vehicle coating in the United States, to reduce amount of 

VOC emissions in painting processes. VOCs, volatile organic compounds have 

hazardous effects to the atmosphere.  

6.1.2  Environmental effects 

The automotive painting is considered as an emission intensive process among all 

manufacturing stages of an automotive. Around 90% of VOC emission of car 

manufacturing belongs to the painting activities (Rivera & Reyes-Carrillo, 2014). 
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Environmental emission of paint shop included emission to air, water and soil. Air 

emission includes; VOCs, SOx, NOx, CO, and CO2. Table 6-1 shows The European 

Emission limit value of the SE Directive (Directive 1999/13/EC). 

The energy which is required for coating of a car is between 5-15 GJ, dependant on the 

size of car and painting methods. Painting processes, including surface preparation, 

paint application and drying, that consume around 48 to 60% of the energy of 

automotive assembly section (Rivera & Reyes-Carrillo, 2014).  

Table 6-1 Emission limit values for vehicle coating  (EC, 2009) 

Activity Annual production Emission limit 

Vehicle coating >5000 New 

installations 

Existing 

installation

s 

45 g/m² or 

1,3 kg/body 

+ 

33 g/m² 

60 g/m² or 

1,9 

kg/body + 

41 g/m² 

≤5000 90 g/m² or 

1,5 kg/body 

+ 

70 g/m 

90 g/m² or 

1,5 

kg/body + 

70 g/m² 

 

 

 

The need for low/solvent free, and less energy consuming painting systems, is very 

important for automotive manufacturing companies. However, when production cost 

aspects are come into account the conflicting issues is noticeable.  

 

 Automotive painting at Pars Khodro  6.2
 

Founded in 1956, in Iran under Jeep licence to manufacture and assemble different 

types of Jeep. In 1973 Pars Khodro started to cooperate with General Motors. In 1980, 

after Iran revolution cooperation with GM has been interrupted and Pars Khodro started 

to work with Japanese companies like Nissan. Recently Pars khodro is manufacturing 

some French automotive as well. 

In recent years, many innovative developments in painting process have been 

introduced. Moreover, environmental pressure of government with respect to the 

solvent emissions is another consideration of Pars Khodro to comply. Although new 
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technologies and government pressures are pushing organizations to meet the criteria, 

but existing plants and operation are also parts of potential improvements.  

 

6.2.1  Process flow and structure 

Automotive assembly plant has 3 areas: Body Shop, Paint Shop, and assembly. as 

shown in Figure 6-1 Each of these areas have their own different processes.  

 

Figure 6-1 Three components of automotive assembly plant 

The automotive paint shop is complex, multi-stage operation and high consumption of 

energy. As said before, it is a source of air pollution known as the VOC. Moreover 

automotive coating is expensive in terms of capital investments and high material costs. 

The exact cost of paint materials is dependent on the colour, application methods and 

chemical formulation. The coating material cost is half of the cost of automotive 

painting. 

The coating process is consisting of several stages as shown in Figure 6-2.  First of all 

body-in-white is dipped in cleaning baths to remove oil and other substances. This 

process, including alkaline degreasing, neutral detergent, phosphating is used to make 

the metal surface property better for painting. Then bodies go through painting 

processes. The most commonly applied coating techniques are solvent based system. E-

coat process is given an electrostatic charge by paint spray and helps that coat applied 

on the total car body. Ovens are used for drying processes. After painting, the body is 

checked to be sure the paint is applied all over of the body. 

 

 

Body Shop Paint Shop Aseembly 
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Figure 6-2 Automotive paint-shops process steps (Streiberger & Dossel, 2008) 

6.2.2  Existing painting process and technologies 

Table 6-2 shows different technology of painting systems that can be compatible with 

each other and used by the automotive industries (Prendi, et al., 2006).  The painting 

processes with water-based clear coat results in reduction of big amount of the VOCs 

emissions compared with conventional procedures that use solvent-based products. 

Powder clear coat leads energy, saving about 10% in comparison with other methods of 

clear coat. Powder polyester resins are cheaper than waterborne alternatives in surface 

primer process. The combination of water-based and powder slurry produces very low 

VOC emission by experience. 

Due to the conflicting issues decision making for new coating lines or replacement 

equipment should consider following aspects: 

 environmental aspects 

 costs 

 quality and 

 process reliability 

 

 

 

 

 

Body-in-White 

Inspection Repair  

  Base coat   

Clear Coat 

 

Oven 

Washer 
Pre-

treatment 
E-Coat Oven 

Sanding Sealing 

 Sound 

dampers Drying 

Cleaning  Primer Cleaning Oven 

Flash Off 
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Table 6-2 The possible combination of coating methods, http://eippcb.jrc.ec.europa.eu/reference/sts.html 

 

 

 

Painting process is very complex and completely integrated operation consisting of 

several interdependent steps. Therefore, because each step influences other steps, 

decision making about one step can effect on other parts of the system. Moreover, some 

combinations of systems might be incompatible with the others. Since pre-treatment and 

e-coat application technologies are the same for the almost coating processes, they are 

intentionally excluded. 

6.2.2.1  Waterborne coating 

A waterborne painting has been introduced to the automotive industry since 1980. 

Water-based coating is based on polyester, acrylate, alkyd, melamine and epoxy resins. 

Waterborne coating contains solvents as a solubiliser to improve the properties of the 

wet film layer. Primers, clear coat and base coat can be solvent-based or powder based.  

Waterborne basecoat is generally low cost, in liquid form and they contain VOCs 

amount from zero to 12%. However, there are some disadvantages of using a 

waterborne coating, for example, water could be trapped under the surface skin during 

dehydration in heated flash stage. Economically material costs of waterborne paints are 

up to 20% higher than solvent based paints. 

6.2.2.2  Solvent-borne coating 

Solvent-borne paints have the ability to be used in all stages of the painting process on 

plastics or metals. Solvent based coating materials are classified as polycondensation- 

e.g. phenol/urea/melamine resin, polymerisation (e.g. polyesters-, acrylate resin, alkyd 

resins) and polyaddition-laquers (e.g. epoxy or PU lacquers). 

Primer Base coat Clear Coat 

SB WB SB 

SB with Booth air 

abatement 

SB SB with booth air 

 

WB SB with booth air abatement 

Primer Base Coat Clear Coat 

SB   

WB 

WB 

WB Powder 

None Powder slurry 

Powder Primer 
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Solvent-borne painting methods compared to the waterborne painting methods, 

consume 15% lower energy because of effective flash- off of solvent-borne systems.  

Curing time for solvent-borne painting is shorter than the time is needed for waterborne 

systems. 

6.2.2.3  Powder coating 

Powder coatings are solvent-free coating systems that are suitable for metal surfaces. 

Powder coating materials are based on acrylic resins with an acid or anhydride. They 

can be applied in primer or clear coat. The most important characteristic of powder 

coating is that its zero VOC emission and no needs for water use for particulate 

abatement. Powder coating materials can be reused up to 97%.  Energy requirement for 

powder coating is lower than waterborne material and also solvent-based technology.  

The main concern of using powder technology is difficulty of control of the film 

thickness, since the thickness that is created is usually more than necessary.   

From economics point of view, changing from existing technology to retrofitting 

powder technology, has high capital costs, since powder technology is quite different 

technology and wants a general refit of facilities, materials and equipment. Although 

reduction of operation costs in comparison with water-based and solvent-based methods 

is achievable. 

6.2.2.4  Powder slurry coating 

Powder slurries are powder coating dispersed in water, therefore it has properties of 

both water-borne and powder coatings, but chemical formulation of powder slurries is 

closer to powder coatings. On environmental aspects, a significant reduction of VOC 

emission is achievable by replacing the conventional component of the wet-on-wet of 

the clear coat stage. However, controlling of booth temperature and humidity to meet 

quality criteria is difficult. A thinner film is easier to achieve in comparison with 

powder coating. Powder slurry requires a forced flash-off, since water must evaporate 

from wet film to baking it.  

Powder slurry coating like powder coating has surface quality problems, for example 

thick films and poor flow during cure leads to ‘orange peel’. Another problem of using 

powder paint is high usage of material is achieved only if recycling of overspray is 

done.   
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 Data collection 6.3

As a part of the assessment of components and systems, the product lifecycle in terms 

of economic data(manufacturing costs), environmental data (emissions, raw materials, 

energy consumption, exhaust air) and engineering data( system parameter) are collected.  

Based on economics, environmental and technical dimensions of sustainability a big 

amount of data is required. Definitely collecting of these data is not an easy job and 

cannot be collected from one source. Most of the economic and technical data are 

collected from Pars khodro. Environmental data (emission) are collected from GaBi. 

GaBi is chosen because of its capability to model products and systems from a life cycle 

viewpoint. Inputs for this case study include material and energy and outputs are 

emissions.  

 Base case scenario 6.4
 

The baseline scenario is defined as three dimensional points of view of a painting 

process which include: 

 The economic life cycle (NPV) 

 The environmental life cycle (emissions, waste) 

 The technical lifecycle (efficiency, paint job) 

Size of the problem and available information are control factors for selection of the 

process models but limited to primer, base coat and clear coat painting processes. Table 

6-3 summarizes the basic conditions required to compare automotive painting systems. 

The goal of optimization in three areas (technology, economy, and environment) for the 

automotive coating systems is to investigate the changes in holistic optimum. This 

optimisation allows the decision makers to develop new potential painting systems to be 

analysed and interpreted. Table 6-4 present basic data associated with each candidate 

technology. 
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Table 6-3 Basic conditions required for comparing automotive coating systems 

Subject Condition 

Goal  evaluate  current automotive painting systems and possible coating 

systems in multi-dimensional conditions, when priorities criteria is 

possible to select prospective technology 

 capacity planning, when there is a possibility to add another or 

several coating line to the current coating line  

 

Dimensions  technology: efficiency of each component, relation of each 

machine with each other, line arrangement, compatibility of 

systems components  

 environmental: primary energy, VOC emission 

 economic: machinery cost, resource and material cost 
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Table 6-4 Technologies' basic data 

 

Operation Technology Capacity Unit 
(Cars/Year)

1 
Price of 

Capacity Unit
1 

Running Cost (Per car)
1 

Maintenance 
Cost (Per 

Year)
1 

Environmenta
l Impact                  

(g Per m
2
) 

Technical 
Fault 

 
 

Materials Labou
r 

Energy
1,

2 
Rework (%) 

Primer Solvent Base 190000 120,000,000,00

0 

162203 9473 63175 0.15 4,500,000,000 12 23 

Water Base 150000 160,000,000,00

0 

170313 7200 72651 0.17 8,000,000,000 9 25 

Powder Primer 100000 130,000,000,00

0 

202754 10800 5300 0.9 6,500,000,000 1 25 

Base Coat Water Base 190000 300,000,000,00

0 

283856 3789 84736 0.20 15,000,000,00

0 

14 18 

Solvent Base 190,000 569,373,688,00

0 

892120 3789 73684 0.34 28,500,000,00

0 

24 16 

Solvent Base with booth air 

abatement 

190,000 569,340,725,00

0 

770466 5684 79600 0.37 28,462,000,00

0 

28.8 20 

Clear Coat Water Base 150,000 599,000,000,00

0 

1038104 4800 66580 0.12 29,950,000,00

0 

8 19 

Powder slurry 100,000 419,538,507,00

0 

999174 10800 54000 0.15 20,976,900,00

0 

1 15 

Powder 100,000 323,538,507,00

0 

5677130 10800 52105 0.18 16,276,900,00

0 

1 15 

Solvent Base with booth air 190,000 299,670,362,00

0 

425784 5684 57895 0.15 10,500,000,00

0 

10 18 

1Personal communication, Pars Khodroo Iran, 2015 
2GaBi 2015 
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6.4.1  Technical dimension 

In order to make all systems comparable, all the systems under evaluation must be 

based on similar conditions.  

Table 6-5 Basic technical data for car painting (Pars khodro, 2015) 

Description  Unit Value 

Production time H/day 16 

Working day Per year 250 

Oven time Hr/day 20 

Car weight kg 300 

Coating surface m
2 

25 

 

6.4.2  Environmental dimension 

For investigating environmental dimension relevant energy usage, material flow and 

VOCs emission is needed. Table 6-6 shows energy consumption, material used, and 

VOC emission for Pars khodro Painting process, which is solvent based.  

Table 6-6 Basic environmental data for Pars khodro coting system 

Description Unit Value 

Primary energy 

(per 1kg) 

Primer MJ  1.902 

Basecoat 3.29 

Clear coat 2.839903727 

Material Primer Lit(per 

car)
 

1.5 

Basecoat 2.89 

Clear coat 10 

VOC emission Primer g/m
2 

 

12 

Basecoat 24 

Clear coat 10 
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6.4.3  Economic dimension 

The other dimension of this study is economic dimension, which its data are 

fundamental of Net Present Value (NPV) and cost optimisation model. These data 

include: 

 Capital cost (cc): purchase cost 

 Running cost (rc): including materials, labour, energy, rework, maintenance 

These costs should be discounted over the life of technology and transformed into 

present value. 

6.4.4  Criteria weights and general data 

Criteria weights, as set by the management, as well as general data are presented in 

Table 6-7.  
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Table 6-7 Criteria weights and general data 

Criteria Economic Environment Technical 

Weight 4 2 1 

 

Capital 

Budget 

Limit 

Emission Limit  

(g/m
2
) 

Rate of Return 

(RoR) 

Life-Cycle 

Period (Years) 

£2.6b 45 11% 20 

 

Cost Items Materials Labour Energy Maintenance 

Rate of Inflation (ri) 11% 20% 20% 15% 

 

 

Operation 1 2 3 

Demand 250k 300k 400k 

 

 Problem structuring (ontology) 6.5

In order to define and give our problem structure ontology is developed. Ontology is 

used to promote capture of design knowledge and reusing the knowledge design 

selection. Ontology in this research is developed to locate the proper information and 

the relationships between each operation and technologies to offer users a compatible 

combination.  

The aim of using ontology is to formalize domain of knowledge in a generic way and 

develop a common understanding of a domain that can be shared and used by users 

(Chang, et al., 2008). Ontology compered to with data bases is more flexible and skilled 
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owl:Things 

Operation 
Technology 

mixture 
Material 

Local 
databases 

to capture and manage knowledge about concepts and their relationship (Horridge, et 

al., 2011). 

The ontology presented here can be used to capture manufacturing aspects of different 

coating methods of automotive and their relations along with how they can be 

compatible with each other in addition to their limitations. This ontology is used as 

central ontology. In the following sections, ontology’s hierarchy, important classes and 

their relations are described. 

6.5.1  Ontology hierarchy and important classes 

Protégé is used as a tool to develop ontology. The hierarchy of the ontology classes is 

shown in Figure 6-4. 

 

 

 

 

 

 

Figure 6-3 Hierarchy of the ontology 

The operation class is consisted of available technologies which exist for three main 

operations of coating: 

 Primer 

 Base coat 

 Clear coat 

Each of these classes is divided into their subclasses in the ontology model. Figure 

6-5 shows the representation method to categorize the concepts. 
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Base coat 

Water 
based 

Solvent 
Based 

Solvent 
Base with 
booth air 

abatement 

Clear coat 

Water 
based 

Powder 
slurry 

Powder 

Solvent 
base with 
booth air 

 

 

Figure 6-4 Hierarchy classification of technologies in painting ontology 

 

Technology mixture class is classified into combination of coating technologies that 

exist or the combination of them is possible. There are 17 possible coating systems in 

this ontology. This class is made after each combination is created in the form of 

individual.  

Material class is consisted of different material used for each technology.  

Figure 6-7 shows classes in the automotive coating Process. 

Energy consumption cost per painting a car, environmental impact (VOC amount 

produced per car), technology cost, material cost per each car for each technology are 

defined by data type properties for each individual. “Datatype properties describe 

relationships between an individual and data values” (Horridge, 2004). 

 

 

Figure 6-5 Classes of the automotive coating ontology 

Operation 

primer 

Basecoate 

Clear 
coate 

Primer 

Solvent 
base 

Water 
base 

Powder 
Primer 
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Figure 6-7 shows technologies mixture and their relationships with operations which are 

linked together. By clicking on each line with the object properties that linked the 

classes are shown. For instance, in Figure 6.7 technology 1&2 are expanded to 

demonstrate its operations, and on the object property line is clicked to show the 

relationship types. 

 

 

 

Figure 6-6 Schematic view of the automotive paint shop ontology 

 Normalisation 6.6

 

Normalisation is necessary in order to give different standards of the optimisation 

factors a comparable value.  

All the three criteria mentioned above, environmental, technical and economic, require 

normalisation in order to enable a conversion to single-criteria Linear Programming 

model. Normalisation takes the range [0, 1] for all the criteria with 1 being the highest 

score. Table 6.8 includes the technologies’ normalised measures. 
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The cost optimisation model was developed, as presented in table 6-8, and was run 

using What’sBest software. The minimum total cost was obtained as 14,700,036,966. 

This figure is used for the purpose of the normalising economic measure in the main 

model. 

Table 6-8 Technologies’ normalised measures 

 

 

 Mathematical model 6.7

The main mathematical model is developed, as presented in Appendix C and was run 

using What’s Best software. The main model results are presented in table 6-9. 

 Sensitivity analysis 6.8
 

Five key parameters and three different values per parameter were chosen to test the 

sensitivity analysis algorithm. The list of key parameters and their value ranges are 

presented in Table 6-10. 

 

 

 

 

 

Operation Normalised 

Economic 

Measure 

(NCij) 

Normalised Environmental 

Impact Measure (NEij)                  

Normalised 

Technical Measure 

(NTij) 

1 -0.03 -1.85 0.93558744 

2 1.00 0.875 

3 1.00 0.99999887 
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Table 6-9 Main model results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6-10 Key parameters and their range of values 

 

 

 

 

 

 

 

 

 

 

 

 

 

The number of all combinations of various parameter values work out as 243 (= 3 

×3×3×3×3). The full results of the intensive sensitivity analysis are shown in Appendix 

E. 

Operation Technology Production 

Mix 

No. of Technology 

Units 

Primer SB 150,000 1 

WB 1 0 

Powder 100,000 1 

Base Coat WB 300,000 2 

SB 0 0 

SB with 

booth air 

abatement 

0 0 

Clear Coat WB 0 0 

Powder 

Slurry 

400,000 4 

Powder 0 0 

SB with 

booth air 

abatement 

0 0 

Key Parameter Range of Values 

Budget Limit 23b, 26b, 29b 

Economic Weight 3, 4, 5 

Demand 1 230k, 250k, 270k 

Demand 2 280k, 300k, 320k 

Demand 3 380k, 400k, 420k 
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Pre-processing: Base Coat operation was removed fully, because there is a clear pattern 

that is technology ‘Water Base’ is the best option in all conditions. Also, Powder 

technology at Primer operation was removed, because its capacity can be identified 

from the other two technologies. As for Clear Coat operation, a clear pattern is that the 

technology Solvent Base with booth air is not selected at any condition. Finally, Powder 

technology on the Clear Coat operation was removed, because its capacity can be 

identified from the other two technologies. 

Unsupervised learning was conducted using DBSCAN method with parameters set at 

Epsilon=0.3 and MinPoint=2 and was implemented in the Weka software tool. One to 

two technology options of each operation were removed. Eighteen clusters (or patterns) 

were recognised and a unique cluster number was allocated to each cluster. There are 

three examples that were not clustered. The results of clustering are shown in Appendix 

D. 

Supervised learning was conducted using C4.5 algorithm with parameter values ‘Min. 

number of instances per leaf’ set at 3 and 4 and was implemented in Weka software 

tool, as shown in Figures 6-7 and 6-8. The quality of generated decision trees is 

demonstrated in Table 6-13 based on two measures, namely ‘Tree Size’ and ‘incorrectly 

classified instances’. 

What can be implied from both trees is that: 

1. The first tree which is bigger with 67 nodes, represent 90.5% correct inference. 

The second tree represents 80% correctness. So if the correctness threshold is set 

on 75%, then second tree is acceptable too.  

2. Technology 2 of operation 1, technology 2 and 3 of operation 2, technology 1 of 

operation 3 and technology 4 of operation 3 are subjected by the other 

technologies any are not selected. 

3. the descending order of parameters with regard to the sensitivity on the final 

results is ‘Demand 3’, ‘Demand 1 and Budget Limit’, and ‘Economic Weight 

and ‘Demand 2’.  
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Table 6-11 The quality of two generated decision trees 

Min. number of 

instances per leaf 

Tree size(No. of nodes) Incorrectly Classified 

Instances 

3 67 9.5% 

4 41 20% 
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   Figure 6-7 Decision Tree generated (Min. number of instances per leaf = 3)  

CLUSTER-3 
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Figure 6-8 Decision Tree generated (Min. number of instances per leaf = 4) 
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 Interactive slider diagram representation 6.9

 

Figure 6.10 and 6.11 show interactive slider diagram, which is developed in excel 

platform. The slider diagram demonstrates the model results against the input values. 

The Interactive slider diagram’s inputs are Budget limit, Economic weight, and 

Demands 1, 2 and 3.  The out puts are total costs of each technology. 

 

 

Figure 6-9 Input interactive slider diagram 

 

Figure 6-10 Output interactive slider diagram 
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 Conclusion 6.10

In this chapter, the automotive coating technologies are implemented as a case study by 

methodology to validate the methodology in real environment. Ontology is used to give 

structure and shows available alternatives. Normalisation is done to facilitate the case 

study a systematic comparison among various criteria. The mathematical model is 

developed to solve the integrated technology selection and capacity planning based on 

the demand in Appendix C.  Results are provided in table 6.9. Based on the results 1 

unit of Solvent Base and 1 unit of Powder Base technology of Primer operation is 

needed to meet the demand.  2 units of Water Base technology for Base Coat operation 

is needed and 4 units of Powder Slurry technology for Clear Coat operation is required.  

Sensitivity analysis is done for five key parameters and three different values per 

parameter. Based on the sensitivity analysis results clustering is conducted using 

DBSCAN methods and then unsupervised learning was done by C4.5 algorithm. At the 

end the developed interactive slider diagram is used as an alternative way to represent 

sensitivity analysis results. 
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 Conclusions and Chapter 7  

Recommendations for Future Work 

 

Achieving sustainability in manufacturing needs a general view that spans not only the 

product, but also the manufacturing process. Therefore process design and particularly 

the technology selection are playing an important role in the realisation of a sustainable 

manufacturing. This research focused on the development of a novel methodology 

based on mathematical programming for sustainable technology selection and capacity 

planning simultaneously, and designing a set of algorithms based on machine learning 

for solution structuring under uncertainty.  

 Fulfilment of the project objectives 7.1

As outlined in the Introduction chapter, there were four fundamental objectives in this 

research to be met, namely: 

 Develop a research framework for technology selection and capacity planning 

This objective is covered by chapters three and four, where a general 

architecture of the methodology, an integrated mathematical programming 

method as well as all the proposed algorithms are developed and explained. 

 Develop a Mixed Integer-Linear Goal programing model for technology 

selection and capacity planning 

This objective is covered by chapter four, where two mathematical models are 

developed. The main model use Goal Mixed Integer/Linear Programming to 

solve ‘Technology Selection’ and ‘Capacity Planning’ problems. The auxiliary 

model is used to find the economic criteria goal for normalisation. A linear 

programming model is developed for this purpose.  

 Conduct sensitivity analysis to  deal with uncertainty 

Sensitivity analysis is conducted through a tool coded in Visual Basic for 

Applications (VBA),inorder to address the uncertainty elements of the problem 

in chapter four. 

 Validate the developed methodology in an appropriate manufacturing setting  



Chapter 7 Conclusion 

 

 Page 106
  
  

This objective is met This objective is met through a case study in chapter six 

where the proposed methodology is tested and validated based in an automotive 

company painting process. The case is characterised by three operations, twelve 

possible technology mix states, both capital budget and environmental limits, 

and 243 different sensitivity analysis experiments.  

 

 Conclusions and research contribution 7.2

No previous studies were found in the literature that looks at an integrated supplier 

selection and capacity planning functions with an aim to achieve sustainable 

manufacturing under uncertainty. This research achieved the development a 

comprehensive methodology to address such a very complicated problem and provided 

its validation through a case study in the automotive industry. The methodology has 

broad applications and is not limited in terms of the type of manufacturing industry.   

Significant contributions this research has been able to extend to the body of knowledge 

are as follows: 

a) The design of a novel research architecture consisting of four modules in ten 

different major steps that work together to solve the problem addressed. 

b) The development of an integrated mathematical model using Mixed Integer, 

Goal Programming method to solve both ‘Technology Selection’ and ‘Capacity 

Planning’ functions simultaneously in a manufacturing setting with a multi-

criteria perspective of sustainability. The model incorporates a number of 

original capabilities that deal with multi-operational settings, technological 

incompatibilities, and technology unit calculations. 

c) The development of an innovative way to carry out solution structuring 

consisting of a suit of algorithms based on Machine Learning approach in 

general, and a combination of ‘Unsupervised Learning’ and ‘Supervised 

Learning’ methods in particular. This will result in a decision tree structure of 

the solution sets.      
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 Limitations 7.3

While this research makes any efforts to address complexities of the real world, such as 

decision making under multi-criteria and uncertain circumstances, no research can offer 

an all-inclusive methodology. This research is no exception, hence the following 

limitations apply:     

 The proposed methodology does not take the pre-installed technologies into 

account when these technologies are to work alongside the new selected 

technologies. 

 The ontology component is working on an off-line mode in connection with the 

main model.  

 Recommendation for future work 7.4

Some avenues for further research are suggested in line with the achievements made in 

this research, as follows:  

 

1. To integrate the ontology component into the optimisation model, in a way that 

these two parts of the whole system could communicate automatically.  One 

potential outcome of such integration is that the incompatibility of technologies 

could be evaluated through ontology. 

2. From practical implementation point of view, the methodology can be converted 

into integrated software with a user friendly interface, which can be shared 

through technology suppliers to get exact information and give reliable decision 

solution to the user.  

3. The methodology which is developed in this research is implemented in the 

process design stage of manufacturing phase of Life Cycle Assessment. This 

model has the ability to be implemented in the recycling /reuse phase of the 

LCA as well, with more research about recycling, adjusting the parameters, and 

adding or removing some parameters based on the nature of reuse or recycling 

concept.  

4. Report research feedback to the automotive company and make the model more 

tangible according to the available market criteria or requirements.  
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 Overall benefits of the research outcome 7.5
 

The outcome of the research is a unique method to integrate decisions for technology 

selection and capacity planning. This method covers technology selection and capacity 

planning together, while the other methods are designed just for only technology 

selection or capacity planning. In addition the designed framework has the ability to 

deal with sustainability issues such as economic and environmental. Moreover 

uncertainty is considered in the developed method. All these aspects of the developed 

method make this research a novel approach for designing or optimisation of a 

manufacturing system. 
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Appendix A: Illustrative example for development of a mixed integer-

linear goal programming 

A small illustrative example is presented to elaborate on the development of a) the cost 

optimisation model, b) the main model, and c) sensitivity analysis.    

 

System composition 

The example includes three sequential operations, each of which can be performed with 

a number of candidate technologies, as depicted below.  

 

An exemplary system composition of operations and candidate technologies 

 

Technological constraint: 

As it can be seen from the diagram above, technology 1 of operation 1 and technology 2 

of operation 2 are incompatible and cannot be adopted together.  

Criteria weights and general data: 

Criteria weights, as set by the management,  base on the management preference and 

government ruls. General data are presented below as well. 

 

 

 



Appendices 

 Page 127
  
  

Criteria Economic Environment Technical 

Weight 4 2 1 

  

 

 

Capital 

Budget Limit 

Emission Limit  

(Units per Year) 

Rate of Return 

(rr) 

Life-Cycle 

Period (Years) 

£27m 70m 11% 20 

 

Cost Items Materials Labour Energy Maintenance 

Rate of Inflation (ri) +4% +3% +3% +5% 

 

Operation 1 2 3 

Demand 200k 200k 300k 

 

Technology basic data: 

Following tables  present basic data associated with each candidate technology and 

technologies’ normalised measures. 
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Technologies’  basic data 

 

Technologies’ normalised measures 

 

 

 

 

 

 

 

 

 

 

 

Operation Technology 
Capacity 

Unit 
(Cars/Year) 

Price of 
Capacity 

Unit 

Running Cost (Per car) Maintenance 
Cost (Per 

Year) 

Environmental 
Impact                  

(Units Per Car) 

Technical 
Faults 
[0,1] 

Materials Labour Energy Rework (%) 

1 
1 50,000 2,200,000 5 2 1 5% 25,000 95 0.8 

2 70,000 1,800,000 3 1 5 6% 30,000 91 0.85 

2 

1 60,000 2,300,000 2 2 6 5% 25,000 95 0.7 

2 80,000 3,000,000 4 2 5 5% 30,000 85 0.8 

3 90,000 3,200,000 8 16 6 7% 35,000 80 0.9 

3 
1 110,000 3,300,000 3 10 5 6% 40,000 87 0.85 

2 120,000 3,500,000 9.5 10 9 3% 50,000 76 0.92 

Operation 
Normalised Economic 

Measure (NCij) 
Normalised Environmental Impact 

Measure (NEij)                  
Normalised Technical 

Measure (NTij) 

1 

1.0 

0.96 1 

2 0.86 0.94 

3 0.86 1 
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Cost optimisation model 

 

Decision 

Variables 

𝒙𝒊𝒋: Capacity volume required for technology 𝒋 of operation 𝒊; 

𝒚𝒊𝒋: Number of units required for technology 𝒋 of operation 𝒊; 

Objective 

Function 
 𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒕𝒄 = ∑ ∑ 𝑷𝑽𝒊𝒋𝒋𝒊  

Technology 

Unit 

Constraints 

𝒙𝟏𝟏 − 𝟏

𝟓𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟏                

𝒙𝟐𝟏 − 𝟏

𝟕𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟏 

𝒙𝟏𝟐 − 𝟏

𝟔𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟐                 

𝒙𝟐𝟐 − 𝟏

𝟖𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟐                  

𝒙𝟑𝟐 − 𝟏

𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟐 

𝒙𝟑𝟏 − 𝟏

𝟏𝟏𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟏                      

𝒙𝟑𝟐 − 𝟏

𝟏𝟐𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟐 

Demand 

Constraints 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 = 𝟐𝟎𝟎𝟎𝟎𝟎    

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 = 𝟐𝟎𝟎𝟎𝟎𝟎    

𝒙𝟑𝟏 + 𝒙𝟑𝟐 = 𝟑𝟎𝟎𝟎𝟎𝟎                     

Capital Budget  

Limit 

Constraint 

(𝟐, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟏 + 𝟏, 𝟖𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟐 + 𝟐, 𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟏 + 𝟑, 𝟎𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟐 + 𝟑, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟑 + 𝟑, 𝟑𝟎𝟎, 𝟎𝟎𝟎 ×

 𝒚𝟑𝟏 + 𝟑, 𝟓𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟑𝟐) ≤ 𝟐𝟕, 𝟎𝟎𝟎, 𝟎𝟎𝟎     

Technological 

Incompatibility 

Constraints 

𝒚𝟏𝟏 × 𝒚𝟐𝟐 = 𝟎    

Variable 

Constraints 

 𝒙𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

 𝒚𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

                           𝒚𝒊𝒋: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓     ∀ 𝒊, 𝒋 
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Where  

𝑃𝑉11 = 𝟐, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟏 + [𝟓 × 𝒙𝟏𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟐 × 𝒙𝟏𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟏 × 𝒙𝟏𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟐𝟓𝟎𝟎𝟎 × 𝒚𝟏𝟏 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

 

𝑃𝑉12 = 𝟏, 𝟖𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟐 + [𝟑 × 𝒙𝟏𝟐 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟏 × 𝒙𝟏𝟐 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟓 × 𝒙𝟏𝟐 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟑𝟎𝟎𝟎𝟎 × 𝒚𝟏𝟐 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

 

𝑃𝑉21 = 𝟐, 𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟏 + [𝟐 × 𝒙𝟐𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟐 × 𝒙𝟐𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟔 × 𝒙𝟐𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟐𝟓𝟎𝟎𝟎 × 𝒚𝟐𝟏 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 
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𝑃𝑉22 = 𝟑, 𝟎𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟐 + [𝟒 × 𝒙𝟐𝟐 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟐 × 𝒙𝟐𝟐 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟓 × 𝒙𝟐𝟐 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟑𝟎𝟎𝟎𝟎 × 𝒚𝟐𝟐 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

 

𝑃𝑉23 = 𝟑, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟑 + [𝟖 × 𝒙𝟐𝟑 × (𝟏 + 𝟎. 𝟎𝟕) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟏𝟔 × 𝒙𝟐𝟑 × (𝟏 + 𝟎. 𝟎𝟕) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟔 × 𝒙𝟐𝟑 × (𝟏 + 𝟎. 𝟎𝟕) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟑𝟓𝟎𝟎𝟎 × 𝒚𝟐𝟑 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

 

𝑃𝑉31 = 𝟑, 𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟑𝟏 + [𝟑 × 𝒙𝟑𝟏 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟏𝟎 × 𝒙𝟑𝟏 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟓 × 𝒙𝟑𝟏 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟒𝟎𝟎𝟎𝟎 × 𝒚𝟑𝟏 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 
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𝑃𝑉32 = 𝟑, 𝟓𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟑𝟐 + [𝟗. 𝟓 × 𝒙𝟑𝟐 × (𝟏 + 𝟎. 𝟎𝟑) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)]

+ [𝟏𝟎 × 𝒙𝟑𝟐 × (𝟏 + 𝟎. 𝟎𝟑) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟗 × 𝒙𝟑𝟐 × (𝟏 + 𝟎. 𝟎𝟑) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟓𝟎𝟎𝟎𝟎 × 𝒚𝟑𝟐 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

 

 

 

Main model 

Decision 

Variables 

𝒙𝒊𝒋: Capacity volume required for technology 𝒋 of operation 𝒊;                                  

𝒚𝒊𝒋: Number of units required for technology 𝒋 of operation 𝒊; 

𝒅𝒄: Deviation from goal on economic criteria 

𝒅𝒊𝒆: Deviation from goal on environmental impacts criteria with regards to the 𝒊th operation          𝒊 = 𝟏,… , 𝟑 

𝒅𝒊𝒕: Deviation from goal on technical (quality) criteria with regards to the 𝒊th operation                    𝒊 = 𝟏,… , 𝟑 

Objective 

Function 
 𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒇(𝒅) = (𝟑 × 𝟒 × 𝒅𝒄 + 𝟐 × (𝒅𝟏𝒆 + 𝒅𝟐𝒆 + 𝒅𝟑𝒆) + 𝟏 × (𝒅𝟏𝒕 + 𝒅𝟐𝒕 + 𝒅𝟑𝒕) , 
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Technical Goal 

Constraints 

(𝟏 −
𝟎. 𝟖𝒙𝟏𝟏 + 𝟎. 𝟖𝟓𝒙𝟏𝟐 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖)
) + 𝒅𝟏𝒕 =  𝟏  

(𝟏 −
𝟎. 𝟕𝒙𝟐𝟏 + 𝟎. 𝟖𝒙𝟐𝟐 + 𝟎. 𝟗𝒙𝟐𝟑 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟕)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟕)
) + 𝒅𝟐𝒕 =  𝟏 

(𝟏 −
𝟎. 𝟖𝟓𝒙𝟑𝟏 + 𝟎. 𝟗𝟐𝒙𝟑𝟐 − (𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖𝟓)

(𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖𝟓)
) + 𝒅𝟑𝒕 =  𝟏 

Environment 

Goal 

Constraints 

(𝟏 −
𝟗𝟓𝒙𝟏𝟏 + 𝟗𝟏𝒙𝟏𝟐 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟗𝟏)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟗𝟏)
) + 𝒅𝟏𝒆 =  𝟏  

(𝟏 −
𝟗𝟓𝒙𝟐𝟏 + 𝟖𝟓𝒙𝟐𝟐 + 𝟖𝟎𝒙𝟐𝟑 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟖𝟎)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟖𝟎)
) + 𝒅𝟐𝒆 =  𝟏 

(𝟏 −
𝟖𝟕𝒙𝟑𝟏 + 𝟕𝟔𝒙𝟑𝟐 − (𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟕𝟔)

(𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟕𝟔)
) + 𝒅𝟑𝒆 =  𝟏 

Economic Goal 

Constraint 
(𝟏 −

∑ ∑ 𝑷𝑽𝒊𝒋𝒋𝒊 − 𝟑𝟏𝟎, 𝟔𝟏𝟐, 𝟔𝟎𝟒

𝟑𝟏𝟎, 𝟔𝟏𝟐, 𝟔𝟎𝟒
) + 𝒅𝒄 =  𝟏 

Technology 

Unit 

Constraints 

𝒙𝟏𝟏 − 𝟏

𝟓𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟏                

𝒙𝟐𝟏 − 𝟏

𝟕𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟏 

𝒙𝟏𝟐 − 𝟏

𝟔𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟐                 

𝒙𝟐𝟐 − 𝟏

𝟖𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟐                  

𝒙𝟑𝟐 − 𝟏

𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟐 

𝒙𝟑𝟏 − 𝟏

𝟏𝟏𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟏                      

𝒙𝟑𝟐 − 𝟏

𝟏𝟐𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟐 
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Demand 

Constraints 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 = 𝟐𝟎𝟎𝟎𝟎𝟎    

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 = 𝟐𝟎𝟎𝟎𝟎𝟎    

𝒙𝟑𝟏 + 𝒙𝟑𝟐 = 𝟑𝟎𝟎𝟎𝟎𝟎             

Capital Budget  

Limit 

Constraint 

(𝟐, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟏 + 𝟏, 𝟖𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟐 + 𝟐, 𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟏 + 𝟑, 𝟎𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟐 + 𝟑, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟑 +

𝟑, 𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟑𝟏 + 𝟑, 𝟓𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟑𝟐) ≤ 𝟐𝟕, 𝟎𝟎𝟎, 𝟎𝟎𝟎     

Technological 

Incompatibility 

Constraints 

𝒚𝟏𝟏 × 𝒚𝟐𝟐 = 𝟎    

Variable 

Constraints 

 𝒙𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

 𝒚𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

                           𝒚𝒊𝒋: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓     ∀ 𝒊, 𝒋 
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Main model's result 

Operation Technology Production Mix 
No. of Capacity 

Units to Purchase 
Purchase Cost PV 

1 
1 0 0 0 0 

2 200,000 3 5,400,000 26,046,025 

2 

1 120,000 2 4,600,000 17,984,199 

2 80,000 1 3,000,000 12,862,093 

3 0 0 0 0 

3 
1 300,000 3 9,900,000 69,286,467 

2 0 0 0 0 

Total 22,900,000 126,178,762 

Total capital cost £22,900,000 

Total environmental impacts (units per year) 62,500,000 

 

Sensitivity Analysis Results 

We choose 5 key parameters and two to three different values per parameter to test our sensitivity analysis algorithm. The list of key parameters 

and their value ranges are presented 
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The number of all combinations of various parameter values work out as 157 (=3×2×3×3×3). A sample of the intensive 

sensitivity analysis results consisting of 24 solution examples is shown in folloing Figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key Parameter Range of Values 

Budget Limit 27m, 30m, 33m 

Economic Weight 3, 4, 5 

Demand 1 190k, 200k 

Demand 2 190k, 200k, 210k 

Demand 3 290k, 300k, 310k 
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A sample of intensive sensitivity analysis results 
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Appendix B: Machine learning approach to solution structuring 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A sample of unsupervised learning results illustrating the clustering of 24 solution examples 

      
Operation 1 Operation 2 Operation 3  

 
Solution 
no. 
 

Budget 
Limit 

Economic 
Weight 

Demand 
1 

Demand 
2 

Demand 
3 Tech 1 Tech 2 Tech 1 Tech 2 

Tech 
3 Tech 1 

Tech 
2 

Cluster 
No. 

1 27000000 3 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
2 30000000 3 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
3 33000000 3 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
4 27000000 4 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
5 30000000 4 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
6 33000000 4 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
7 27000000 5 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
8 30000000 5 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 
9 33000000 5 190,000 190,000 290,000 26070 163930 30000 160000 0 290000 0 0 

10 27000000 3 190,000 190,000 300,000 50000 140000 0 190000 0 300000 0 1 
11 30000000 3 190,000 190,000 300,000 50000 140000 0 190000 0 300000 0 1 
12 33000000 3 190,000 190,000 300,000 50000 140000 0 190000 0 300000 0 1 
13 27000000 4 190,000 190,000 300,000 0 190000 118695 71305 0 300000 0 4 
14 30000000 4 190,000 190,000 300,000 0 190000 118695 71305 0 300000 0 4 
15 33000000 4 190,000 190,000 300,000 0 190000 118695 71305 0 300000 0 4 
16 27000000 5 190,000 190,000 300,000 0 190000 118695 71305 0 300000 0 4 
17 30000000 5 190,000 190,000 300,000 0 190000 118695 71305 0 300000 0 4 
18 33000000 5 190,000 190,000 300,000 0 190000 118695 71305 0 300000 0 4 
19 27000000 3 190,000 190,000 310,000 50000 140000 60000 130000 0 310000 0 10 
20 30000000 3 190,000 190,000 310,000 50000 140000 60000 130000 0 310000 0 10 
21 33000000 3 190,000 190,000 310,000 50000 140000 60000 130000 0 310000 0 10 
22 27000000 4 190,000 190,000 310,000 50000 140000 60000 130000 0 310000 0 10 
23 30000000 4 190,000 190,000 310,000 50000 140000 60000 130000 0 310000 0 10 
24 33000000 4 190,000 190,000 310,000 50000 140000 60000 130000 0 310000 0 10 
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 Decision tree generated by J48 method with ‘Min. number of instances per leaf = 3’ 

 



Appendices 

 Page 140
  
  

 
 

 

 

 

CLUSTER11 

Op1Tech1=0 
Op1Tech2=dem1 

Op2Tech1=0 
Op2Tech2=dem2 
Op2Tech3=0 

Op3Tech1=dem3 
Op3Tech2=0 

 

 

 

 

CLUSTER12 

Op1Tech1=50k 
Op1Tech2=dem1-Op1Tech1 

Op2Tech1=60k 
Op2Tech2=dem2- Op2Tech1 
Op2Tech3=0 

Op3Tech1=dem3 
Op3Tech2=0 

 

 

 Decision tree generated by J48 method with ‘Min. number of instances per leaf = 4’ 
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What can be implied from both trees is that; 

1) Technology 3 of operation 2 and technology 2 of operation 3 are dominated by the other technologies and are not selected at any 

circumstances studied. 

2) ‘Budget limit’ parameter does not exist in any of the two trees. This means that the budget limit change in the range specified has no 

effects on the final result.  

3) The descending order of parameters in terms of sensitivity on the final results is ‘demand 3’, ‘demand 1’, ‘demand 2’, and ‘economic 

weight’. This can be drawn from the position of parameters in the hierarchy.  

4) The first tree is bigger (41 nodes and 21 leaves), but represents a 100% correct inference. On the other hand, the second tree is smaller 

(29 nodes and 15 leaves), while it represents a less correct knowledge of 88.535%. If the correctness threshold is set at minimum 85%, 

then the second tree would still be acceptable. 

5) The only difference between two trees is that the second one, which is smaller, has actually removed the ‘economic weight’ nodes, which 

was less effective compared to ‘demands’. This obviously has made this smaller tree less correct by about 11.5%. 
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Appendix C: Case study model 

 

 

 

 

 

Decision 

Variables 

𝒙𝒊𝒋: Capacity volume required for technology 𝒋 of operation 𝒊; 

𝒚𝒊𝒋: Number of units required for technology 𝒋 of operation 𝒊; 

Objective 

Function 
 𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒕𝒄 = ∑ ∑ 𝑷𝑽𝒊𝒋𝒋𝒊  

Technology 

Unit 

Constraints 

𝒙𝟏𝟏 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟏                

𝒙𝟏𝟐 − 𝟏

𝟏𝟓𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟐                  

𝒙𝟏𝟑 − 𝟏

𝟏𝟎𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟑 

𝒙𝟐𝟏 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟏                 

𝒙𝟐𝟐 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟐                  

𝒙𝟐𝟑 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟑 

𝒙𝟑𝟏 − 𝟏

𝟏𝟓𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟏                      

𝒙𝟑𝟐 − 𝟏

𝟏𝟎𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟐                

𝒙𝟑𝟑 − 𝟏

𝟏𝟎𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟑                      

𝒙𝟑𝟒 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟒 

Demand 

Constraints 
𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 = 𝟐𝟓𝟎𝟎𝟎𝟎    

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 = 𝟑𝟎𝟎𝟎𝟎𝟎    

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟒𝟎𝟎𝟎𝟎𝟎                     

Capital 

Budget  Limit 

Constraint 

(𝟏𝟐𝟎 × 𝒚𝟏𝟏 + 𝟏𝟔𝟎 × 𝒚𝟏𝟐 + 𝟏𝟑𝟎 × 𝒚𝟏𝟑 + 𝟑𝟎𝟎 × 𝒚𝟐𝟏 + 𝟓𝟔𝟗. 𝟑𝟕𝟑𝟔𝟖𝟖 × 𝒚𝟐𝟐 + 𝟓𝟔𝟗. 𝟑𝟒𝟎𝟕𝟐𝟓 × 𝒚𝟐𝟑 + 𝟓𝟗𝟗 × 𝒚𝟑𝟏 +

𝟒𝟏𝟗. 𝟓𝟑𝟖𝟓𝟎𝟕 × 𝒚𝟑𝟐 + 𝟑𝟐𝟑. 𝟓𝟑𝟖𝟓𝟎𝟕 × 𝒚𝟑𝟑 + 𝟐𝟗𝟗. 𝟔𝟕𝟎𝟑𝟔𝟐 × 𝒚𝟑𝟒) ≤ 𝟐, 𝟔𝟎𝟎     

Variable 

Constraints 
 𝒙𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

 𝒚𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

                           𝒚𝒊𝒋: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓     ∀ 𝒊, 𝒋 

Cost optimisation model 
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Where  

𝑃𝑉11 = 𝟐, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟏 + [𝟓 × 𝒙𝟏𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟐 × 𝒙𝟏𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟏 × 𝒙𝟏𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟐𝟓𝟎𝟎𝟎 × 𝒚𝟏𝟏 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

𝑃𝑉12 = 𝟏, 𝟖𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟏𝟐 + [𝟑 × 𝒙𝟏𝟐 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟏 × 𝒙𝟏𝟐 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟓 × 𝒙𝟏𝟐 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟑𝟎𝟎𝟎𝟎 × 𝒚𝟏𝟐 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

𝑃𝑉21 = 𝟐, 𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟏 + [𝟐 × 𝒙𝟐𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟐 × 𝒙𝟐𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟔 × 𝒙𝟐𝟏 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟐𝟓𝟎𝟎𝟎 × 𝒚𝟐𝟏 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 
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𝑃𝑉22 = 𝟑, 𝟎𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟐 + [𝟒 × 𝒙𝟐𝟐 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟐 × 𝒙𝟐𝟐 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟓 × 𝒙𝟐𝟐 × (𝟏 + 𝟎. 𝟎𝟓) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟑𝟎𝟎𝟎𝟎 × 𝒚𝟐𝟐 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

 

𝑃𝑉23 = 𝟑, 𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟐𝟑 + [𝟖 × 𝒙𝟐𝟑 × (𝟏 + 𝟎. 𝟎𝟕) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟏𝟔 × 𝒙𝟐𝟑 × (𝟏 + 𝟎. 𝟎𝟕) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟔 × 𝒙𝟐𝟑 × (𝟏 + 𝟎. 𝟎𝟕) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟑𝟓𝟎𝟎𝟎 × 𝒚𝟐𝟑 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 

 

 

𝑃𝑉31 = 𝟑, 𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝒚𝟑𝟏 + [𝟑 × 𝒙𝟑𝟏 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)] + [𝟏𝟎 × 𝒙𝟑𝟏 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)]

+ [𝟓 × 𝒙𝟑𝟏 × (𝟏 + 𝟎. 𝟎𝟔) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)] + [𝟒𝟎𝟎𝟎𝟎 × 𝒚𝟑𝟏 ×
𝟏. 𝟎𝟓

𝟏. 𝟏𝟏
× (

𝟏 − (
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)] 
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𝑃𝑉32 = 𝟑, 𝟓𝟎𝟎,𝟎𝟎𝟎 × 𝒚𝟑𝟐 +

[
 
 
 
 

𝟗. 𝟓 × 𝒙𝟑𝟐 × (𝟏 + 𝟎.𝟎𝟑) ×
𝟏. 𝟎𝟒

𝟏. 𝟏𝟏
×

(

 
 𝟏 − (

𝟏.𝟎𝟒
𝟏.𝟏𝟏

)
𝟐𝟎

𝟏 −
𝟏. 𝟎𝟒
𝟏. 𝟏𝟏

)

 
 

]
 
 
 
 

+

[
 
 
 
 

𝟏𝟎 × 𝒙𝟑𝟐 × (𝟏 + 𝟎. 𝟎𝟑) ×
𝟏.𝟎𝟑

𝟏.𝟏𝟏
×

(

 
 𝟏 − (

𝟏. 𝟎𝟑
𝟏. 𝟏𝟏

)
𝟐𝟎

𝟏 −
𝟏.𝟎𝟑
𝟏.𝟏𝟏

)

 
 

]
 
 
 
 

+

[
 
 
 
 

𝟗 × 𝒙𝟑𝟐 × (𝟏 + 𝟎.𝟎𝟑) ×
𝟏. 𝟎𝟑

𝟏. 𝟏𝟏
×

(

 
 𝟏 − (

𝟏.𝟎𝟑
𝟏.𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏.𝟎𝟑
𝟏.𝟏𝟏

)

 
 

]
 
 
 
 

+

[
 
 
 
 

𝟓𝟎𝟎𝟎𝟎 × 𝒚𝟑𝟐 ×
𝟏.𝟎𝟓

𝟏.𝟏𝟏
×

(

 
 𝟏 − (

𝟏. 𝟎𝟓
𝟏. 𝟏𝟏)

𝟐𝟎

𝟏 −
𝟏. 𝟎𝟓
𝟏. 𝟏𝟏

)

 
 

]
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Decision 

Variables 

𝒙𝒊𝒋: Capacity volume required for technology 𝒋 of operation 𝒊; 

𝒚𝒊𝒋: Number of units required for technology 𝒋 of operation 𝒊; 

𝒅𝒄: Deviation from goal on economic criteria 

𝒅𝒊𝒆: Deviation from goal on environmental impacts criteria with regards to the 𝒊th operation          𝒊 = 𝟏,… , 𝟑 

𝒅𝒊𝒕: Deviation from goal on technical (quality) criteria with regards to the 𝒊th operation                    𝒊 = 𝟏,… , 𝟑 

Objective 

Function 

 𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒇(𝒅) = 𝟒 × 𝟑 × 𝒅𝒄 + 𝟐 × (𝒅𝟏𝒆 + 𝒅𝟐𝒆 + 𝒅𝟑𝒆) + 𝟏 × (𝒅𝟏𝒕 + 𝒅𝟐𝒕 + 𝒅𝟑𝒕) , 

Technical Goal 

Constraints (𝟏 −
𝟎. 𝟖𝒙𝟏𝟏 + 𝟎. 𝟖𝟓𝒙𝟏𝟐 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖)
) + 𝒅𝟏𝒕 =  𝟏  

(𝟏 −
𝟎. 𝟕𝒙𝟐𝟏 + 𝟎. 𝟖𝒙𝟐𝟐 + 𝟎. 𝟗𝒙𝟐𝟑 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟕)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟕)
) + 𝒅𝟐𝒕 =  𝟏 

(𝟏 −
𝟎. 𝟖𝟓𝒙𝟑𝟏 + 𝟎. 𝟗𝟐𝒙𝟑𝟐 − (𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖𝟓)

(𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟎. 𝟖𝟓)
) + 𝒅𝟑𝒕 =  𝟏 

Environment 

Goal 

Constraints 

(𝟏 −
𝟗𝟓𝒙𝟏𝟏 + 𝟗𝟏𝒙𝟏𝟐 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟗𝟏)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟗𝟏)
) + 𝒅𝟏𝒆 =  𝟏  

(𝟏 −
𝟗𝟓𝒙𝟐𝟏 + 𝟖𝟓𝒙𝟐𝟐 + 𝟖𝟎𝒙𝟐𝟑 − (𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟖𝟎)

(𝟐𝟎𝟎, 𝟎𝟎𝟎 × 𝟖𝟎)
) + 𝒅𝟐𝒆 =  𝟏 

(𝟏 −
𝟖𝟕𝒙𝟑𝟏 + 𝟕𝟔𝒙𝟑𝟐 − (𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟕𝟔)

(𝟑𝟎𝟎, 𝟎𝟎𝟎 × 𝟕𝟔)
) + 𝒅𝟑𝒆 =  𝟏 

Economic Goal 

Constraint (𝟏 −
∑ ∑ 𝑷𝑽𝒊𝒋𝒋𝒊 − 𝟑𝟏𝟎, 𝟔𝟏𝟐, 𝟔𝟎𝟒

𝟑𝟏𝟎, 𝟔𝟏𝟐, 𝟔𝟎𝟒
) + 𝒅𝒄 =  𝟏 

Technology 

Unit 

Constraints 

𝒙𝟏𝟏 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟏                

𝒙𝟏𝟐 − 𝟏

𝟏𝟓𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟐                  

𝒙𝟏𝟑 − 𝟏

𝟏𝟎𝟎𝟎𝟎𝟎
≤ 𝒚𝟏𝟑 

𝒙𝟐𝟏 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟏                 

𝒙𝟐𝟐 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟐                  

𝒙𝟐𝟑 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟐𝟑 

𝒙𝟑𝟏 − 𝟏

𝟏𝟓𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟏                      

𝒙𝟑𝟐 − 𝟏

𝟏𝟎𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟐                

𝒙𝟑𝟑 − 𝟏

𝟏𝟎𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟑                      

𝒙𝟑𝟒 − 𝟏

𝟏𝟗𝟎𝟎𝟎𝟎
≤ 𝒚𝟑𝟒 

Main mathematical model 
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Demand 

Constraints 

𝒙𝟏𝟏 + 𝒙𝟏𝟐 + 𝒙𝟏𝟑 = 𝟐𝟓𝟎𝟎𝟎𝟎    

𝒙𝟐𝟏 + 𝒙𝟐𝟐 + 𝒙𝟐𝟑 = 𝟑𝟎𝟎𝟎𝟎𝟎    

𝒙𝟑𝟏 + 𝒙𝟑𝟐 + 𝒙𝟑𝟑 + 𝒙𝟑𝟒 = 𝟒𝟎𝟎𝟎𝟎𝟎                     

Capital Budget  

Limit 

Constraint 

(𝟏𝟐𝟎 × 𝒚𝟏𝟏 + 𝟏𝟔𝟎 × 𝒚𝟏𝟐 + 𝟏𝟑𝟎 × 𝒚𝟏𝟑 + 𝟑𝟎𝟎 × 𝒚𝟐𝟏 + 𝟓𝟔𝟗. 𝟑𝟕𝟑𝟔𝟖𝟖 × 𝒚𝟐𝟐 + 𝟓𝟔𝟗. 𝟑𝟒𝟎𝟕𝟐𝟓 × 𝒚𝟐𝟑 + 𝟓𝟗𝟗 × 𝒚𝟑𝟏 +
𝟒𝟏𝟗. 𝟓𝟑𝟖𝟓𝟎𝟕 × 𝒚𝟑𝟐 + 𝟑𝟐𝟑. 𝟓𝟑𝟖𝟓𝟎𝟕 × 𝒚𝟑𝟑 + 𝟐𝟗𝟗. 𝟔𝟕𝟎𝟑𝟔𝟐 × 𝒚𝟑𝟒) ≤ 𝟐, 𝟔𝟎𝟎     

Environmental 

Impact Limit 

Constraint 

(𝟏𝟐 × 𝒙𝟏𝟏 + 𝟗 × 𝒙𝟏𝟐 + 𝟏 × 𝒙𝟏𝟑 + 𝟏𝟒 × 𝒙𝟐𝟏 + 𝟐𝟒 × 𝒙𝟐𝟐 + 𝟐𝟖. 𝟖 × 𝒙𝟐𝟑 + 𝟖 × 𝒙𝟑𝟏 + 𝟏 × 𝒙𝟑𝟐 + 𝟏 × 𝒙𝟑𝟑 + 𝟏𝟎 ×

 𝒙𝟑𝟒) ≤
(𝟐𝟓𝟎,𝟎𝟎𝟎+𝟑𝟎𝟎,𝟎𝟎𝟎+𝟒𝟎𝟎,𝟎𝟎𝟎)

𝟑
     

Technological 

Incompatibility 

Constraints 

𝒚𝟏𝟏 × 𝒚𝟐𝟏 = 𝟎                 𝒚𝟏𝟏 × 𝒚𝟐𝟑 = 𝟎                     𝒚𝟏𝟐 × 𝒚𝟐𝟐 = 𝟎                      𝒚𝟏𝟑 × 𝒚𝟐𝟐 = 𝟎   
𝒚𝟏𝟑 × 𝒚𝟐𝟑 = 𝟎                 𝒚𝟐𝟏 × 𝒚𝟑𝟒 = 𝟎                     𝒚𝟐𝟐 × 𝒚𝟑𝟏 = 𝟎                      𝒚𝟐𝟐 × 𝒚𝟑𝟐 = 𝟎   
𝒚𝟐𝟐 × 𝒚𝟑𝟑 = 𝟎                 𝒚𝟐𝟑 × 𝒚𝟑𝟏 = 𝟎                     𝒚𝟐𝟑 × 𝒚𝟑𝟐 = 𝟎                      𝒚𝟐𝟑 × 𝒚𝟑𝟑 = 𝟎   

Variable 

Constraints 

𝒙𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋                                  𝒚𝒊𝒋 ≥ 𝟎     ∀ 𝒊, 𝒋 

𝒅𝒊𝒆 ≥ 𝟎      ∀ 𝒊                                     𝒅𝒊𝒕 ≥ 𝟎      ∀ 𝒊                                             𝒅𝒄 ≥ 𝟎 

                           𝒚𝒊𝒋: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓     ∀ 𝒊, 𝒋 
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Appendix D: The VBA program code of controlled re-optimisation tool 

developed for the purpose of intensive sensitivity analyses 

Sub Macro2() 

     

    'This macro performs intensive sensitivity analysis 

     

    'Count1 to count5 are Loop counters and are integers 

    Dim Count1 As Integer 

    Dim Count2 As Integer 

    Dim Count3 As Integer 

    Dim Count4 As Integer 

    Dim Count5 As Integer 

    'TableRow is the row number of result cells, and is integer 

    Dim TableRow As Integer 

 

    Sheets("Model").Select 

    'Set Demand1 initial value 

    Range("K62") = 210000 

    'Set row number initial value 

    TableRow = 2 

         

    'Demand1 loop 

    For Count1 = 1 To 3 

        'Set Demand2 initial value 

        Range("L62") = 260000 

        'set demand1 value 

        Range("K62") = Range("K62") + 20000 

         

        'Demand2 loop 

        For Count2 = 1 To 3 

        'Set Demand3 initial value 
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        Range("M62") = 360000 

        'Set Demand2 value 

        Range("L62") = Range("L62") + 20000 

         

        'Demand3 loop 

        For Count3 = 1 To 3 

        'Set Economic Weight initial value 

        Range("K39") = 2 

        'Set Demand3 value 

        Range("M62") = Range("M62") + 20000 

         

        'Economic Weight loop 

        For Count4 = 1 To 3 

        'Set Budget Limit initial value 

        Range("K44") = 2000000000 

        'Set Economic Weight value 

        Range("K39") = Range("K39") + 1 

         

        'Budget Limit loop 

        For Count5 = 1 To 3 

        'Set Budget Limit value 

        Range("K44") = Range("K44") + 300000000 

         

        'Solve the main model 

        Application.Run macro:="WBUsers.wbSolve" 

         

        Sheets("Model").Select 

         

        'set the result row 

        TableRow = TableRow + 1 

        'Capture the result values 

        Cells(TableRow, 17) = Range("E30") 

        Cells(TableRow, 18) = Range("K39") 
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        Cells(TableRow, 19) = Range("E23") 

        Cells(TableRow, 20) = Range("E24") 

        Cells(TableRow, 21) = Range("E25") 

        Cells(TableRow, 22) = Range("K9") 

        Cells(TableRow, 23) = Range("K10") 

        Cells(TableRow, 24) = Range("K11") 

        Cells(TableRow, 25) = Range("K12") 

        Cells(TableRow, 26) = Range("K13") 

        Cells(TableRow, 27) = Range("K14") 

        Cells(TableRow, 28) = Range("K15") 

        Cells(TableRow, 29) = Range("K16") 

        Cells(TableRow, 30) = Range("K17") 

        Cells(TableRow, 31) = Range("K18") 

        Cells(TableRow, 32) = Range("B3") 

        Cells(TableRow, 33) = Range("D2") 

        Cells(TableRow, 34) = Range("C35") 

         

        Next Count5 

         

        Next Count4 

         

        Next Count3 

         

        Next Count2 

     

    Next Count1 

 

End Sub  
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Appendix E: Case study solution set with the result of unsupervised learning
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