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Abstract

The ultimate goal in robotics is to create machines which are more indepen-

dent and rely less on humans to guide them in their operation. There are

many sub-systems which may be present in such a robot, one of which is path

planning — the ability to determine a sequence of positions or configurations

between an initial and goal position within a particular obstacle cluttered

workspace.

Many classical path planning techniques have been developed, but these tend

to have drawbacks such as their computational requirements; the suitability

of the plans they produce for a particular application; or how well they are

able to generalise to unseen problems.

In recent years, evolutionary based problem solving techniques have seen a

rise in popularity, possibly coinciding with the improvement in the compu-

tational power afforded researches by successful developments in hardware.

These techniques adopt some of the features of natural evolution and mimic

them in a computer. The increase in the number of publications in the areas

of Genetic Algorithms (GA) and Genetic Programming (GP) demonstrate the

success achieved when applying these techniques to ever more problem areas.

This dissertation presents research conducted to determine whether there is

a place for Evolutionary Approaches, and specifically GA and GP, in the de-

velopment of future path planning techniques.

Simon Kent i March 1999
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The Three Laws of Robotics

1. A robot may not injure a human being, or through

inaction, allow a human being to come to harm.

2. A robot must obey the orders given it by human

beings except where such orders would conflict

with the First Law.

3. A robot must protect its own existence as long as

such protection does not conflict with the First or

Second Law.

Handbook of Robotics

56th Edition, 2058 AD

Isaac Asimov (I, Robot)
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Chapter 1. Thesis Introduction

1

Thesis Introduction

1.1 Introduction

Computers have shown themselves to be extremely capable in many applica-

tion areas, and have transformed the world in which we live. Their applica-

tion has helped to enhance the quality of traditionally human tasks, and has

completely automated other tasks, replacing the need for humans to carry

them out. However, automated systems controlled by computers cannot beat

man in all areas.

One such area in which computers fall short of humans is in their ability

to plan accurate paths for the movements which a robot should perform to

complete a task. The tasks can be very varied, for example transporting a

package around a warehouse, placing a bolt in a hole on a production line, or

pouring water from a kettle into a cup to make a cup of tea. In all of these

cases, a common problem is present which involves generating a sequence

of positions in the workspace allowing a robot to traverse, in as few moves

as possible, the route from an initial to a goal position whilst avoiding any

obstacles present.

It is not being suggested categorically that computers cannot plan paths, but

that the techniques currently available do not enable them to exhibit the com-

bined speed of planning, accuracy, and ability to generalise which is present in
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humans. Much research has been carried out on the problems of motion plan-

ning, particularly in the 1980’s, but few of these methods are simple enough

and powerful enough to be used for practical robotics [Lozano-Pérez, 1987]

This is borne out by the lack of robots which can match humans in their ability

to ski, play squash or drive, let alone perform all of these. Admittedly a robot

which could perform even moderately at any of these abilities would require

more than path planning alone, nevertheless competent path planning is an

essential component. This dissertation examines the existing methods used

to perform path planning, and seeks ways by which they might be improved

in the future.

This introductory chapter describes the need for motion planning. It consid-

ers the conventional way which computers are used to solve problems, such

as path planning, and how alternative problem solving techniques, using evo-

lutionary computation can overcome some of the drawbacks associated with a

more conventional approach. The chapter concludes with a summary outlin-

ing the way in which existing path planning techniques will be investigated

during the remainder of this thesis.

1.2 The need for Path Planning

There is an increasing need for proficient path planning systems. Use is made

of mechanical devices which improve the efficiency and safety of the manual

work traditionally carried out by humans or animals. Robots have been used

for several years in industrial assembly plants. These robots move compo-

nents into place, weld and bolt them together, and perform many of the func-

tions which would previously have required large manual work forces. These

robots are controlled by programs defining the specific movements which must

be performed in order to achieve a goal. A change in the goal, for instance the

introduction of a design change for a new model of car, would require ex-

pensive reprogramming using a robot control language [Sheu and Xue, 1993,
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Chapter 3]. It is suggested that a better approach is to build intelligent robot

systems which when provided with a goal, can establish for themselves the set

of positions which must be followed to achieve the goal [Sheu and Xue, 1993,

Chapter 1].

Historically, machines which have been used by humans to perform gener-

alised, rather than specific, repetitive tasks have not performed their own

path planning. Examples exist of agricultural machinery, which can be ap-

plied, by humans, to a miscellany of tasks. These have traditionally required

their human operators to perform the complex path planning necessary for

each task rather than operators relying on the equipment to plan for itself.

Auxiliary computer control systems have become commonplace in such ma-

chinery, for example to monitor gearing and keep the engine at an optimum

speed while maintaining a constant ground speed; or for ensuring a constant

furrow depth when ploughing uneven ground. However, these systems tend

to act as aids to the operator, improving the quality or efficiency of their work,

rather than freeing them to perform other jobs.

Robots exist which can perform automated, repetitive tasks, and machines

are available which humans operate to achieve more varied tasks, however, at

present, the two are not seen in a single system. Fully independent robots are

still not available either commercially or in research laboratories [Harsten,

1990].

It would be of great benefit to have independent robots which do not rely on

constant human intervention, but are able to continue performing their job

even if the goals of that job change slightly, or if the environment in which

they are working changes. As well as the possible financial advantages such

robots might bring to commercial operations, they could also be used for haz-

ardous work such as in nuclear reactors [Mann et al., 1988] or in underwater

situations [Herman and Albus, 1988], thus removing the need for humans to

be placed at risk performing these dangerous jobs.
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Humans are extremely complicated organisms, and if robots are ever to com-

pete with them on any level, it is likely that they too will consist of a com-

plex set of systems interacting with each other. Motion planning, therefore,

is by no means the only requirement needed to allow the implementation of

independent robots. Such a machine may require, for example, various tac-

tile sensors, vision systems to observe the environment, and precise actuators

to allow accurate movement and positioning of the robot. Nonetheless, path

planning is an essential component without which a robot can only blunder

round its environment randomly.

1.3 The Path Planning Problem

This section provides a high level discussion of some of the issues behind path

planning. It firstly considers planning from an intuitive, human viewpoint

in order to explain how the difficulty of the path planning problem varies,

but without complicating the issue by considering the computerisation of path

planning. Later, automated path planning is described showing how the prob-

lems of planning tasks of varying difficulty affect computerised planning.

1.3.1 Human Path Planning

The problems posed for humans when carrying out path planning vary con-

siderably. For instance, the path planning involved in controlling a railway

train poses a relatively simple problem. The train driver and signal controller

must route the train so that the train travels safely from A to B without col-

liding with other trains sharing the same track. The path chosen may be

optimised to make the journey as short as possible, or to minimise the energy

used. However, there is no need for any planning to be performed to avoid

collisions with objects in the train’s environment such as bridges, verges or

stations. The tracks are positioned to make such collisions impossible.
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The path planning involved when driving a car is much more difficult. Besides

the need for the relatively simple long term plan of deciding which roads to

use to reach the destination, there is also the need for continuous, short term

planning to negotiate bends, and to avoid driving off the road into a hedge.

Operating a mechanical digger presents a further level of difficulty, since the

addition of a hydraulic arm allows the digger a greater freedom of movement.

Because of this freedom, there are many more ways of moving the digging

bucket from one position to another, but a skilled operator can easily cope

with this sort of real-time path planning problem and would be able to adapt

to different jobs, construction sites and mechanical vehicles relatively easily.

It is important to consider the rate at which plans must be generated. Differ-

ent applications require planning to be performed within different time lim-

its. For example a police driver involved in a high speed pursuit must have

quicker reaction times than a driver of a road roller. In either case, if the

rate at which planning must be performed exceeds the driver’s capabilities, a

collision will be inevitable.

1.3.2 Automated Path Planning

In automated path planning, the general requirement is the ability to move

a vehicle between two points along a collision free course within a given en-

vironment. Two techniques often followed in achieving this goal are ‘path

planning’ and ‘obstacle avoidance’ [Cameron, 1994].

Ideally the route should be such that the robot avoids collisions with other ob-

jects in the environment, whether they be stationary or moving (as in the case

of other robots working in the same space). Certain robots, such as complex

robot manipulators (robot arms), may even be able to collide with themselves

— this too should be avoided.

Furthermore, the route which is computed should be optimised in that it

should minimise some dependent variable, such as the distance covered or
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the energy used, in executing the path. Typically there will be many possible

paths between two points but only the most efficient is sought.

If there exists only one robot in an environment, with all obstacles remaining

stationary, path planning alone may be sufficient for the robot to complete

its task. The route which is pre-planned can be followed without any chance

of collision. However, since the pre-planned route is generated on the basis

of information available at a single instance, path planning alone may not

be sufficient if the state of the workspace is continually changing as other

objects or people move around within the environment. This need for obsta-

cle avoidance also exists when the robot is working within an unknown, or

partially known environment, when it is not possible to rely on pre-planned

routes because of the limited information available to the planner.

In this case, the robot must have the ability to detect what is occurring in

its immediate environment by means of some kind of sensors. When an un-

expected obstacle is sensed, evasive action must be taken to avoid a collision

with that obstacle. A new path can then be planned on the basis of the most

up-to-date information available.

In order to develop fully independent robots, planning systems need to be

developed which can generalise. Given previous knowledge of situations, hu-

mans are able to generalise to new, but similar situations. For a robot, it

would be desirable to have a planner which does not have to return to first

principles and generate the plan from scratch every time. Instead, the knowl-

edge of previous experiences should be somehow stored and used to achieve

future goals faster. There should not be a reliance on humans to instruct the

robot as to precisely what actions to execute.

Each planner, from the hardware up, must be appropriate to its task. Plan-

ning in a simple, relatively uncluttered environment can be adequately achieved

with a cheap processor, and a simple, exhaustive search algorithm. If the

task requires planning in an application involving high resolution, a heav-
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ily obstacle cluttered environment, and very high speed responses, then fast

hardware, and advanced algorithms will be required. If a planner does not

plan fast enough to avoid a collision, then it has failed.

1.4 Problem Solving with Computers

Path planning poses an important problem, a view borne out by the wealth of

publications which offer different approaches to the path planning problem,

as exemplified by the work of Barraquand and Latombe [1991], Werbos and

Pang [1996], Rylatt et al. [1995], McLean and Cameron [1996] and Suh and

Kang [1988]. The research into motion planning has given rise to a variety of

techniques, each possessing their own merits and drawbacks. These are dis-

cussed later in Chapter 2. This section describes the conventional approach

which is used to solve most problems in computing, path planning included.

It recognises the problems of these approaches which particularly apply to

difficult problems such as path planning.

The conventional approach to creating solutions to problems with computers

has been to understand the problem to be solved, formulate an algorithm, and

then implement this algorithm using one of many programming languages.

The prevalence of computer technology demonstrates that this method has

proved to be very successful in many cases, however this development method

fails when not enough is known about the problem to manually produce an al-

gorithm. A computer has no inherent intelligence, and as such cannot achieve

anything without being told what to do by a programmer.

This problem is particularly prevalent when trying to artificially reproduce

the skills exercised by humans. Humans, and other animals, move around

and manipulate objects within their environment with apparent ease. Al-

though algorithms for path-planning have been implemented, the problem of

applying them is often intractable — it cannot be achieved in a useful time
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for complex scenarios. No automated motion planning system can currently

match the motion planning ability of humans [Hwang and Ahuja, 1992].

From personal experience we, as humans, know that we may make a con-

scious decision to perform an action such as moving a cup. However no such

conscious effort is made in the planning of the individual movements which

are required to complete the task. It is ironic that a task such as picking up a

cup of coffee is so simple for humans and yet it is so difficult to make a com-

puter carry out the same task. In contrast, a mathematical problem which

many would consider complex to solve manually can be relatively easily pro-

grammed into a computer, providing that the algorithm is well known.

The lack of sufficiently competent artificially intelligent1systems suggests

that our current knowledge of how humans process information in the brain,

at either the physical or psychological level, is severely lacking. As our scien-

tific knowledge increases, it may be that in the future we will fully understand

how the brain generates solutions to path planning, and other problems. The

fact remains that, at present, even the most powerful computers are not able

to compete with simple mammals at these problems. This lack of understand-

ing needs to be acknowledged and new methods adopted to address this prob-

lem. To this end, this dissertation describes the application of such methods

drawn from the field of Evolutionary Computing (Section 1.6), and applies

them to the difficult problem of path planning.
1The discussion of artificial intelligence can easily lead to philosophising as to what intelli-

gence is and whether intelligence can be instilled in a computer, answers to which a series of

dissertations would be hard pushed to address. The suggestion of artificial intelligence here

in the very broadest sense implies a system which is not instructed exactly how to behave, but

which indirectly, by the means of some algorithm, attempts to determine its own behaviour

from a large set of possibilities in order to solve a problem.
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1.5 Problems with Classical Path Planning

To date, most of the methods used to tackle path planning and obstacle avoid-

ance can be considered to be classical approaches, relying on the conventional

problem solving (Section 1.4) approach of applying, what may be, a limited un-

derstanding of the underlying principles in order to achieve solutions. They

rely on applying, what may be, a limited understanding of the problem in

classical computer problem solving.

Whilst there exist methods which provide us with perfect answers, the amount

of computation required to provide the solutions may be very large. This is

particularly true of multi-dimensional problems for robots with many degrees-

of-freedom (dof). Degrees-of-freedom refers to the freedom of movement which

a particular robot has. For example a translational robot which can move hor-

izontally and vertically has two dof. A complex robot arm may have 6 dof. It

is essentially the number of parameters required to specify the movement of

the robot.

Although it has been stated that a computer is unintelligent, various methods

are available, which may be referred to as Artificial Intelligence (AI). It is still

necessary to program these techniques into a computer which consequently

make the millions of components in the CPU exhibit apparently intelligent

behaviour. The neurons in the brain are only intelligent because they have

been connected in a certain way.

The evidence of the success of the intelligent human path planner suggests

that the use of some intelligent, automated motion planning would be useful

to investigate. With the adoption of intelligence, it can expected that very

complex tasks will be performed by robots [Sheu and Xue, 1993, Chapter 1].

Traditional approaches to instilling apparently intelligent behaviour in a com-

puter rely on explicitly supplied domain knowledge, from which inferences

are made to determine the behaviour of a system given some input [Rich,
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1983; Winston, 1992]. Whilst such approaches can provide excellent solutions

to problems it can be a significant, if not impossible, task to provide all the

necessary knowledge required to solve a complex problem [Angeline, 1994].

Assuming that this knowledge can be identified in the first place, the task

of testing and updating this knowledge base is a considerable task, making

some traditional AI approaches impractical [Angeline, 1994].

Because knowledge about a difficult problem, such as a complex path plan-

ning problem, is difficult to acquire, an appropriate alternative type of algo-

rithm is one which is able to generate the required knowledge implicitly.

1.6 Evolutionary Computation

The advance in computing hardware has allowed a new branch of AI to come

to the fore, namely Evolutionary Computation (EC). Techniques falling in the

EC area are also referred to as Evolutionary Algorithms (EA). EC has become

the standard umbrella term for a number of evolutionary driven techniques

[Fogel, 1997]. Techniques encompassed by EC require either the speed and/or

the large memory capacity offered by modern computers. The common feature

of EC techniques is that, in various ways, they draw on Darwin’s [1859] ideas

of natural selection and survival of the fittest as the means with which to

evolve data structures which represent potential solutions to problems. EC

techniques are claimed to offer Emergent Intelligence (EI) [Angeline, 1994]

which refers to the way in which they are able to create domain knowledge as

part of their process, rather than requiring that it be supplied explicitly (as in

traditional AI).

These techniques, including Genetic Algorithms (GA) [Holland, 1992; Hol-

land, 1975] and more recently Genetic Programming (GP) [Koza, 1989; Koza,

1992; Banzhaf et al., 1998], have been shown to be capable of solving complex

problems. Both GA and GP are iterative procedures which refine an initial

population, or set, of randomly generated solutions, or individuals, which are
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represented in a certain data structure. The use of ‘population’ and ‘indi-

viduals’ to refer to the set of solutions and a specific solution respectively is

common in the EC field, and will, therefore be used in this dissertation.

In the case of the GA, the data structure is typically a fixed length binary

string. A simple example is a problem involving the optimisation of a single

integer parameter taking values in range [0..7]. The representation of the

solution could be a 3-bit binary string which is capable of denoting eight dis-

crete values. A population of randomly initialised 3-bit binary strings would

be created and subjected to the automated evolutionary process to find the

optimum value.

The GP stores its representation in a tree data structure, which generally

makes it easier to work with solutions which are functions or programs op-

erating on input variables from the problem domain. GP could be used, for

example, to evolve a tree which represents a mathematical expression for a

curve which approximates a set of training data. A cubic such as x3 +2x2−x+5

could be represented in a binary tree form.

Both GA and GP assign a cost, or fitness value, to each solution in the initial

population, and use these costs to select the better individuals for involve-

ment in the next iteration of the evolutionary process. This selection is like

natural selection in nature. The individuals in the subsequent generation of

this simulated evolution are created either by directly copying them, by mak-

ing a composite of two individuals, or by making a mutated copy of a selected

individual. The process of evaluation, selection and insertion is then repeated

until some termination criteria are reached — a solution is found, or a timeout

has been reached. This is only a very brief description, and these evolutionary

paradigms are explained in greater detail in Chapter 3.

GA and GP have been successfully applied to fields as diverse as Electrical

Circuit Design [Bennett III et al., 1997], Control [Dracopoulos, 1997a], Med-

ical Diagnosis [Kent, 1996] and Power Distribution Maintenance [Langdon,
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1996]. It is also understood that there is interest in GA and GP from promi-

nent organisations such as the Ford Motor Company [Hampo, 1992], British

Telecom [Winter et al., 1994] and the British Defence Evaluation and Re-

search Agency (DERA).

GA and GP have both been used in robotics for planning and obstacle avoid-

ance [Handley, 1993; Ahuactzin et al., 1992; Davidor, 1991; Rylatt et al., 1995;

Reynolds, 1994; Xiao et al., 1997].

1.7 Research Aims

The ultimate aim of developing a fully independent robot is beyond the scope

of the research carried out for this dissertation. This dissertation necessarily

focuses on a more specific component of an independent robot — namely path

planning. The underlying thesis which this dissertation addresses is:

Do Genetic Algorithms and Genetic Programming have a role to

play in the future development of robot path planning?

In looking at this question, contributions are made to a number of different

research areas, some more related to robotics, and some more related to evo-

lutionary computing. To this end the overall research effort has been broken

down by focusing on a selection of research aims.

• Identify existing approaches to path planning, and determine the advan-

tages and disadvantages which are inherent in these approaches. This

is to gain knowledge which is useful in fulfilling subsequent aims. Take

examples both from:

– evolutionary computing

– non-evolutionary computing (classical approaches)
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• Identify methods for applying evolutionary approaches to path planning

either by using them to directly generate plans, or by using them to

support a traditional path planning technique.

• Evaluate the suitability of the application of GA and GP to path plan-

ning by implementing and executing exemplar software and drawing

conclusions from the results.

• Suggest how the results of the experimentation provide an indication of

how GA and GP might be utilised in future path planning applications.

1.8 Dissertation Outline

This chapter has defined path planning and why, despite advances in tech-

nology, there is still a need for improvement in automatic path planning tech-

niques. Existing techniques are either too slow, too computationally intensive,

or are not able to generalise. GA and GP have been proposed as a possible

means of improving future path planning techniques because of their success

in solving difficult problems for which solutions have not been found using

conventional problem solving methods. A number of broad aims have been

specified which will be addressed over the remaining chapters of this disser-

tation.

Chapter 2 describes the path planning problem in more detail. The idea of

‘path planning’, which is investigated in this thesis, is placed in context by

explaining where it fits in with other planning methods used in robotics. An

overview of existing techniques used in path planning is presented and the

advantages, disadvantages and ability to generalise are noted. Observations

are made as to how GP and GA could fit in with existing systems.

Chapter 3 concentrates on the Evolutionary Algorithms, GA and GP. The un-

derlying mechanisms which drive GA and GP are described, that is, how nat-

ural evolution is captured in these techniques to solve problems such as path

Simon Kent 13 March 1999



Chapter 1. Thesis Introduction

planning. The chapter discusses the practical application of GA and GP, and

describes some of the inevitable pitfalls which may be encountered. Methods

are described to help avoid potential drawbacks, such as the identification of

a suitable representation scheme for the problem, and the use of parallel com-

puting to speed up large runs. Some example applications of GA and GP are

presented, including a number of planning approaches. These are examined

to identify the drawbacks present in existing approaches, and to determine

any useful techniques which might contribute to the subsequent design and

implementation of an evolutionary path planning system.

Chapter 4 describes the implementation of a path planning system which is

based on GP. Rather than use GP to evolve a specific path as a solution to

a specific initial/goal position problem, the aim in this chapter is to evolve

a generalised planning rule for a given workspace. So in effect GP is being

used to evolve a planner rather than a single plan. A number of different

approaches are proposed and examined and results on the performance of the

techniques are presented.

Chapter 5 addresses the problems of the planner described in Chapter 4 by

proposing a technique which seeks to combine GA and an existing classical

approach to path planning. GA and GP have been shown to be excellent at

optimisation, therefore this approach applies GA to the optimisation of an

existing classical approach — the potential field method.

Chapter 6 provides an evaluation of the evolutionary approaches to path plan-

ning which have been investigated in this research. In particular it considers

some of the issues which are important when using a planner in a real robot

environment rather than in a simulated research environment. As well as

highlighting the achievements made in this research, it also suggests what

measures might be required to produce a real-world planner based on GA

and GP.

Chapter 7 concludes this thesis by summarising the work carried out, sug-
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gesting how others might continue the research, and by highlighting the con-

tributions which have been made in this dissertation.
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2
Classical Path Planning

2.1 Introduction

There is a need to place the research contained in this thesis in context. It was

proposed in Chapter 1 that the path planning problem prevalent in robotics

could benefit from the use of Artificial Intelligence (AI) techniques — in par-

ticular AI techniques which exhibit Emergent Intelligence (EI).

Before trying to apply these techniques, it is important to clearly understand

the nature of the planning problem which is the subject of this research. What

path planning is has only really been hinted at in Chapter 1. This chapter ex-

pands on the definition, and in doing so scopes the problem more clearly. The

nature of the path planning problem is looked at from both the human and

computer points of view. The ultimate goal for those carrying out research in

robotics is to create an automaton capable of analysing, interacting with, and

solving general problems in the real world. The design and construction of

such a robot requires resources of time and experience beyond that available

for this thesis. It is, however, possible to make a contribution by researching

an important component of an independent robot; that is, path planning. If a

robot is unable to plan a route for itself it will be of little use.

Having clearly identified the path planning problem, an overview of classical

approaches which have been used to solve it is given. This explanation de-

scribes the way in which problems involving robots and their environments
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are represented in a computer. It looks at different kinds of vehicles (robots)

and workspaces, explaining the problems involved in their representation.

A number of different techniques for generating paths are explained, and

their advantages and disadvantages are investigated with a view to using

this knowledge in the design of new approaches incorporating AI.

2.2 General Robot Planning and Avoidance

This section describes some different types of planning which are involved

when using robots to solve problems. By discounting areas which are not

of direct interest to the thesis, the research problem becomes more clearly

defined. A number of different sub-systems may be present in a complete

robot control system [Latombe, 1991, Chapter 1]. However, within the scope

of this research, not all can be considered here.

Figure 2.1 provides a basic breakdown of the different areas falling under the

general umbrella of planning. These range from the planning of individual

tasks to achieve some larger goal, to specific methods for determining the

trajectories to be followed by a robot. For the sake of simplicity this diagram

is hierarchical, although in reality the areas are complexly linked with many

overlaps. All the areas in this diagram will be discussed during this chapter,

however most attention will be paid to the global planning sub-tree.

2.2.1 Task Planning

Most tasks can be broken down into sub-tasks. Considering this the other

way round: given a sufficient set of sub-tasks, they can be executed in an

appropriate order to complete a larger task. In the simplest of terms, task

planning is the ordering of sub-tasks to achieve a greater goal.

This type of planning focuses on the domain of the problem rather than on

the robot itself. A simple example is the process of making a cup of tea. The
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Task Planning

Planning

Roadmaps Cell Decomposition Potential Fields

Approximate Exact

Obstacle Avoidance

Local Planning Global Planning

Trajectory Planning

Figure 2.1: Different Types of Path Planning

problem involves a number of objects including tea bags, water, milk, kettle

and cups. These objects may be in certain states, for instance the cup may be

empty, or the kettle may be boiling. There are also certain actions to which

the objects may be subject which will change the state of the objects. For

instance the kettle may be switched on/off or poured. What is required in

task planning is for a planner to find the correct set of actions which, when

executed, will achieve the goal. A more formal description of task planning

can be given as the process of identifying the sequence of actions required to

transform from an initial state to a goal state. In the case of a cup of tea, the

initial states will include kettle empty and tea in cupboard, and the eventual

aim will include tea in cup.

One of the earliest planners was the General Problem Solver (GPS) which was

developed by Newell and Simon [1963]. It used a technique called means-

end-analysis — a hierarchical planning technique which works backwards

from the goal to an initial state using a set of heuristic rules, some general

purpose and some domain specific. Another example of an automated task

planner is the STRIPS system developed by Fikes and Nilsson [1971]. The

STRIPS approach searches for a sequence of operators which transform an

initial model of the world to a goal model. The initial and goal models are
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defined using well formed formulas (wffs). Similar wffs could be defined for

the cup of tea problem described above. Using the wff notation, STRIPS is able

to reason about the problem. It finds the action sequence which represents a

plan to achieve the goal given the initial world state.

This type of work is by no means outdated. A more recent planner has been

developed by Chapman [1987]. His planner draws on techniques used in pre-

vious planner work, but he showed that his planner used a set of techniques

which were necessary and sufficient for solving the task planning problem.

Nilsson’s Teleo-Reactive (T-R) programs [Nilsson, 1994] provide a formalism

which basically uses an ordered set of production rules to solve a problem.

Each rule maps a condition to an action, and provided that the action of a

rule i results in the condition of rule i+1, eventually all the rules will be exe-

cuted and the goal will be met. Nilsson intends these production rule systems

to be executed continuously, and allows features such as recursion and param-

eter binding. The actions are intended to correspond to electrical circuits (or

programs) which could be present in a robot, and simple experiments in path

planning for robots have been carried out. Since these programs are intended

to be written by programmers, they are still not able to be independent. Nils-

son himself hints at the possibility of automatically writing T-R programs, and

indeed GP may provide the perfect method for their automatic generation in

an application where limited knowledge of the domain is known.

Although it is important to perform automated task planning, it is not neces-

sarily sufficient to give the robot or vehicle its independence. It is still neces-

sary to plan the path in Euclidean space, rather than in an abstracted task

space.

2.2.2 Path Planning

Path Planning or Robot Motion Planning is a fundamental problem in robotics,

and has been the subject of research for many people [Glasius et al., 1995; Bar-
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raquand and Latombe, 1991; McLean and Cameron, 1996]. It is necessary to

plan a route for a robot, if one exists, between two points. The route should

avoid obstacles in the environment, and is usually optimised in some way, for

example with respect to length, or energy used.

This problem is a very general one. It applies equally to a theoretical point

based, translational robot; to a vehicular car-like robot; or to a complicated,

many degree-of-freedom (dof) robot arm. As the number of dof increase, the

problem of planning a collision free path become very much more complicated,

not least because a many dof robot arm may be able to collide with itself.

In general all the problems involved in planning deal with causal actions

which have corresponding effects on the state of the world. Tasks or actions

in the problem domain, such as pour kettle can be decomposed into robot level

actions of applying torques to different link motors. There are two underlying

problems which must be tackled, whether working in the problem domain or

the robot domain:

• Predicting the effect (outcome) given the cause (actions)

• Determining the actions which will cause a given outcome

These are known as the forward and inverse problems and are described in

more detail below.

2.2.3 Forward Problem

It is necessary when dealing in robotics to be able to predict the effect of a

particular action or control signal. Assuming the robot can be modelled as

a function, the set of control signals or actions represents the domain of the

function, and the set of resulting changes to the state of the robot and its

environment represents the range of the function. The forward problem is to
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find a function, or a model of a robot, or the vehicle which is being considered.

When driving a car we have some kind of model of the car, which tells us,

for example that turning the steering wheel left will move the car to the left

or that depressing the brake will decelerate the car. It is very difficult to

undertake planning without knowing the resulting effect of specific actions.

2.2.4 Inverse Problem

The inverse problem is somewhat more difficult. It can be described fairly

simply as the inverse of the forward problem. In this case a function is re-

quired which maps states back to the actions necessary to achieve them. It

involves searching for the actions required to achieve a given goal. Continuing

with the analogy of driving a car, consider the problem of parallel parking —

reversing a car into a space between two other vehicles. In this case we know

the target position and the current position, and we also know the result of

any number of driver actions on the movement of the car.

Motion planning is an inverse problem rather than a forward problem. The

goal is known, and what is required is the method of achieving the goal. The

forward problem is still relevant if software is used to simulate a robot of some

sort. A simulation must be able to mimic the corresponding effects of various

signals to the simulated robot.

2.2.5 Obstacle Avoidance

Once a suitable path is determined by the robot by, for instance, applying

power to wheels, or torques to joints. While the robot is traversing the pre-

determined trajectory, it may determine, through the use of external sensors,

that the path previously planned is no longer valid as an obstacle now blocks

the path. This may be due to limited knowledge of the environment, or be-

cause the obstacle is itself mobile and has moved into a new position since
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the path was planned. Such occurrences require some form of obstacle avoid-

ance (OA), to stop the robot colliding and to prevent accidents or damage to

the robot. OA [Brunn, 1996] is clearly a very important component in a plan-

ning system but, like task planning, it is not within the scope of this thesis to

consider this are in any greater detail.

The processes of task planning, motion planning and obstacle avoidance de-

scribed so far are not necessarily executed sequentially one after another. The

immersion of a robot in a dynamic environment is enabled by a system of in-

terlinked components forming a composite robotic planning system. It is easy

to imagine the complexity of a situation in which sub-tasks are planned, paths

are planned to allow for the execution of those sub-tasks, a collision is avoided

which requires for re-planning of the path, by which time the original task is

no longer required so a new task is planned and so on.

2.3 Robots and Vehicles

There are a great variety of different types of robots, and their complexity

varies enormously as the range of movements which they can perform in-

creases. A robot can be described by a set of control variables, the values of

which fall into a specific range. For example a car may have variables for its

speed, and the angle of its steering wheels, whereas a robot arm may have

variables describing the angles of each of its joints. The simplest robot (Fig-

ure 2.2a) is one which can translate horizontally or vertically like a rook on a

chess board. It may take up an area in its environment, but usually for plan-

ning purposes it can be considered as no more than a single point on a sheet

of paper.

A more complicated robot is one which is able to change the direction in which

it is facing. One example is a car-like vehicle (Figure 2.2b(i)) which can propel

itself forwards and backwards and change its direction via a set of steering

wheels. Another is a robot which can change its orientation by moving its
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b (i) b (ii)a

Figure 2.2: Examples of simple robots

driving wheels in opposite directions, an example of which is shown in (Fig-

ure 2.2b(ii)).

An important difference between robots b(i) and b(ii) is that b(i) can only

change its direction by changing its position. This robot is said to exhibit

non-holonomic movement [Latombe, 1991, Chapter 9]. The problem of con-

trolling b(i) is more difficult than b(ii) as it is more difficult for the vehicle to

move from one position to an adjacent position.

For instance, assume that it is necessary for each of these vehicles to reposi-

tion itself so that instead of facing north, it faces west, but still remain centred

on the same point. For b(ii) the problem is relatively simple — the right hand

wheel must be powered forward and the left backwards such that the robot

rotates by 90◦. The change in direction is achieved without any translational

movement. It is more difficult to achieve this with b(i) because it must move

away from the required point in order to change its orientation and then re-

turn to the point to complete the task. While doing this, it must avoid any

obstacles in the vicinity; a problem not encountered by the other robots.

At the most difficult end of the scale are robot manipulators. These robot

arms have a very wide range of movements, and subsequently have a large
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state space. An example is shown in Figure 2.3 which is taken from a screen

shot of the Simderella robot simulator package [van der Smagt, 1994].

Figure 2.3: Example of robot manipulator

A robot manipulator comprises a number of links which are analogous to hu-

man limbs such as forearm or upper-arm. The links are connected by joints

such as an elbow or shoulder joint. It has been shown by Reuleaux [1876]

that there are just six different joint types: revolute, planar, cylindrical, pris-

matic, spherical and screw. In robotic manipulators, only two are commonly

found: revolute and prismatic. Rotary joints are like human elbow or knee

joints where the adjoining ends of two connected links do not move in relation

to each other, only the angle between them changes. Prismatic joints allow

a sliding translational movement of one joint relative to the other, but the

relative orientation remains the same. Details of the others can be found in

robotics textbooks such as Fu et al. [1987] or Selig [1992].
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2.3.1 Kinematics

Kinematics is, in essence, a term for describing the forward problem in robotics.

It is not concerned with the forces acting on the robot, but in the position

of joints and angles of wheels. For simpler, vehicular robots as shown in

Figure 2.2, kinematics of a simple sort are present, but kinematics tend to

require greater consideration when working with higher degrees of freedom

manipulators.

Although a robot manipulator may consist of a number of links and joints, it

is the free end of the final link that is the point of interest. It is at this end-

effector that work will be carried out, for example by a welding tool or gripping

device. It must, therefore, be accurately positioned. The problem of finding

the set of joint angles to position the end-effector in the desired position is the

inverse kinematics problem (see 2.2.4).

The position of an arm could be described in any number of ways, but a uni-

form method of representing these types of manipulators has been developed

by Denavit and Hartenberg [1955]. A manipulator consists of a number of

links connected by joints. The end of each link may have an axis attached

to it. The Denavit-Hartenberg representation defines a robot manipulator by

describing the relative positions of successive link axes using a number of pa-

rameters. An example is shown in Table 2.1 for a PUMA robot manipulator.

Θi and αi define the joint angle between the ith and i− 1th joints. The offset

distances between successive joints are defined by ai and di. Coordinate frame

0 is attached to the base of the robot. From these parameters, transformation

matrices may be constructed which transform the base axes to that of the end-

effector given specific values for the settings of the manipulator joints. This

is a demonstration of the forward problem in robotics. Details of the applica-

tion of the Denavit-Hartenberg representation may be found in robotics books

such as Fu et al. [1987].
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Joint i Θi αi ai di Joint range
1 90 -90 0 0 -160 to 160
2 0 0 431.8 mm 149.09 mm -45 to 45
3 90 90 -20.38 mm 0 -45 to 225
4 0 -90 0 433.07 mm -110 to 170
5 0 90 0 0 -100 to 100
6 0 0 0 56.25 mm -266 to 266

Table 2.1: Example of a Denavit-Hartenberg description of a PUMA manipu-
lator

2.4 Workspaces

For a robot to function usefully, it must have some knowledge of its workspace.

This workspace may be input to the system when a model based path planning

approach [Sheu and Xue, 1993, Chapter2] is used, or a map must be built

from sensors if a non-model based approach is used [Andre, 1994; Sheu and

Xue, 1993, Chapter9]. Sensors may be used even when a model of the world

is available for the purpose of reactive OA, rather than pro-active planning.

Like the robots which work in them, the nature of workspaces can vary greatly.

It may be possible to use a discretised representation of a workspace stored

in some kind of bitmap. An alternative is to define the workspace as a se-

ries of polygons. The representation used is dependent on the method used to

perform the path planing.

A bitmap representation is easier to represent, possibly requiring little more

than an array of the correct dimensions in which each cell contains a 0 for

an empty cell or a 1 for a cell containing a part of an obstacle. Detecting

intersections between obstacles and robots is simple, but a bitmap may be

inefficient if the workspace is large, and of high dimensionality. The memory

used to store the array contains a lot of redundant information between the

obstacles, so in some cases a polygonal representation, where each obstacle

is defined by a set of points, may be preferable. In this case the detection of

collisions will be more complex, but this increased complexity may be more

than justified in the reduction in storage space required. These issues are

Simon Kent 26 March 1999



Chapter 2. Classical Path Planning

found in other areas of computing where the storage of spatial information is

required such as in computer graphics [Hearn and Baker, 1996] or in image

processing [Gonzalez and Woods, 1993].

The dimensionality of a workspace is an important factor as this will greatly

affect the space required to store the representation, and the complexity of

planning within it. In many real world problems, the workspaces encoun-

tered by robots are 3-dimensional. It may, however, be sufficient, even for real

world problems, to use a 2-dimensional representation of the workspace. The

workspace for a complex robot-arm will be 3-dimensional, but for a car route

planning problem, 2-dimensions are enough as the information in the third

dimension is not important in this application because although a car is itself

3-dimensional, it cannot change its vertical position.

Whether a bitmap or a polygonal representation is used, the use of a com-

puter will inevitably lead to some approximation of the workspace as comput-

ers operate in a discrete rather than continuous domain. The resolution of

the representation must be higher if the application dictates it, however the

result is that the memory required increases with the resolution.

2.5 Representing Robots within their Workspaces

Considering robots and workspaces independently is not sufficient for solving

motion planning problems. What is important is the interactions of the robot

with the workspace. Essentially the two state spaces must be combined into

a single, multi-dimensional space of all the possible positions of the robot

in all the possible locations in its environment which it may occupy. This

can become quite large — consider a 6-dof manipulator in its 3-dimensional

workspace. The state space for this common scenario is 9-dimensional. Add

to this the range of values of each dimension at a resolution high enough to

accurately model the problem and a very large set of states arise.

Simon Kent 27 March 1999



Chapter 2. Classical Path Planning

2.5.1 Configuration Space

An alternative way of considering this robot-environment state space has

been proposed by Lozano-Pérez [1983] who defines the idea of configuration

space. A configuration is a specific instance of a robot vehicle or manipulator

within its environment. A number of different configurations may be possi-

ble even at a single position in the workspace, as a vehicle may be oriented

in different directions, or a manipulator joint may be at any of a number of

different angles.

The basic idea of Configuration Space or C-Space is to take a robot and its

workspace, and reduce the robot to a single point, while expanding the obsta-

cles in the workspace to take account of the shape of the robot. The original

workspace is transformed into C-Obstacles and C-Free space. The appeal of

this idea is that problems of path-planning or of positioning a robot or object

within a workspace are reduced to problems involving a single point. It is eas-

ier, for example, to deal with the intersection of a single point with C-Space

obstacles, rather than with intersections of obstacles and robot in a Cartesian

workspace.

Figure 2.4: Creating C-Space ob-

stacles

Point Robot

Figure 2.5: Working with C-Space

obstacles and a point based robot

This process is demonstrated in Figure 2.4. In Figure 2.5 it can be seen how

the problem is transformed to that of moving a single point, represented by
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the cross-hairs, through the obstacles. This idea is not restricted to a 2-

dimensional workspace, and can indeed be used for the many dimensional

spaces required to solve robot manipulator problems.

The difficulty with this approach arises in the construction of the C-Space

data structure containing obstacles. The mathematics can become quite com-

plex [Latombe, 1991, Chapters 2,3], and therefore it must be considered whether

the complexity involved in the construction of the data structure is justified

by a reduction in complexity of the planning algorithms.

The ability to reduce a planning problem to a single point problem may be

very useful in evolutionary path planning, as it may result in a reduction in

the execution time of such planning. This issue is discussed in Chapter 3.

2.6 Classification of Planners

The complexity of planners varies with the particular application to which a

robot is applied. This section examines various ways in which a planner may

be classified.

2.6.1 Tracked and Untracked Systems

The simplest form of path planning can be achieved by restricting the vehi-

cle to well defined paths or tracks which are guaranteed to avoid obstacles.

These tracks can be modelled as graphs: arcs for the paths, and nodes at the

intersections. Routes between two points on the graphs can be efficiently de-

termined using standard graph search algorithms. This type of approach can

be applied to robots which do actually operate on tracks, or which follow some

virtual track such as a picking robot following a painted line on the floor of

an automated warehouse. Path planning in off-the-shelf personal computer

route planning packages can use these techniques, as roads can be considered
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to be tracks. The fine level control of a vehicle on the road is of no concern to

the route planner — it is assumed that the driver will keep it on the track or

road.

Efficient algorithms to search graphs are well documented [Dreyfus, 1969;

Even, 1979], a well known example being that of Dijkstra [1959] or the A*

algorithm:

1. Form a one-element queue consisting of a zero-length path that contains

only the root node.

2. Until the first path in the queue terminates at the goal node or the queue

is empty,

(a) Remove the first path from the queue; create new paths by extend-

ing the first path to all the neighbours of the terminal node.

(b) Reject all new paths with loops.

(c) If two or more paths reach a common node, delete all those paths

except the one that reaches the common node with the minimum

cost.

(d) Sort the entire queue by the sum of the path length and a lower-

bound estimate of the cost remaining, with least cost paths in front.

3. If the goal node is found, announce success; otherwise, announce failure.

Whilst easy to manage, tracked systems do not provide sufficient freedom of

movement for many applications. Once the vehicle is free to roam unrestricted

by tracks, the path planning problem becomes significantly more complex,

and computers cannot compete with humans.
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2.6.2 Completeness

The completeness of a planner is a classification of how exact its planning

ability is. Different degrees of completeness are:

Exact An algorithm is exact if it can always find ei-
ther a solution to a problem, or prove that there
is no solution. A typical problem with such
an algorithm is the computational effort re-
quired. An exhaustive search will be exact, but
for a complex problem its execution will take
too long.

Resolution Complete This is a member of the exact group. The use
of a computer algorithm means that often the
problem must be discretised, and as such is no
longer guaranteed to be exact. However, if, as
the resolution approaches the continuous do-
main, the algorithm approaches an exact one,
it is said to be resolution complete.

Probabilistically Complete These algorithms are not strictly exact. How-
ever where it can be shown that the probabil-
ity of them finding a solution can be made to
approach 1.0, they are said to be probabilisti-
cally complete. An example is simulated an-
nealing.

Heuristic A heuristic search is guided by rules. This
means that a solution will usually be found,
and usually in a time faster than an exact method.
However, if a solution is not found, this does
not necessarily mean that one does not exist.

Exact planners which either find a solution to the planning problem, or prove

that one does not exist [Hwang and Ahuja, 1992] are desirable in all planning

applications. However the computational cost involved often associated with

them means that they are not usable for complex problems. Instead, for prac-

tical application it is more likely that heuristically driven planners will be
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used. They are useful in commercial applications where often the need is for

fast planners and exactness is a secondary consideration. Exact algorithms

are useful for theoretical analysis of algorithms and problems.

There is often an inherent inaccuracy involved in computerising an algorithm

as the discrete rather than the continuous domain must be used. It is for this

reason that the terms resolution completeness and probabilistic completeness

are used. Planners which are resolution and probabilistically complete can

be considered, for all intents and purposes, to be exact. If a workspace is

broken down and represented as cells of a certain size, some approximisation

is used — the representation of the real world can never be continuous. As

the resolution is increased towards infinity, an algorithm may become more

and more exact. In this case it is considered to be resolution complete. A

heuristically driven method is not exact, but if the probability that it will find

a solution can be made to approach 1.0, given infinite resources, then such a

method is considered to be probabilistically complete.

2.6.3 Scope

The scope of a planner is described as local or global. A global planner consid-

ers the whole environment, planning a route from initial to goal position. A

local planner is concerned only with the contents of its immediate surround-

ings. Global planners are the type which will enable the planning of a path

from initial to goal position, as is required for this work.

Local planning is usually only used for planning in the very short term, as

a means of obstacle avoidance. However, as will be described later in this

chapter, it is possible to use local planning as part of a global planner.

2.7 Roadmap Methods

This section describes various roadmap methods, the first of a number of

classical path planning approaches. Previously in this chapter, traditional
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tracked systems were described, and it was noted that graph searching could

be applied to such systems to find optimal paths along the tracks. It is pos-

sible to use the idea of tracks even when a system does not naturally use

them, instead a virtual roadmap can be constructed for a problem. Roadmap

methods basically involve constructing a graph of the workspace, in Cartesian

or configuration space, which can be followed by a robot without it colliding

with obstacles. This graph can then be searched, using the standard graph

searching algorithms, previously described, to find the shortest path.

2.7.1 Visibility Graphs

A simple approach [Ó’Dúnlaing et al., 1983] is demonstrated in Figure 2.6 in

which a simple problem is presented where there are two polygonal C-space

obstacles. A number of nodes are created which correspond to the vertices of

the C-space obstacles, and the start and goal position. A visibility graph is

created whereby an arc connects a given node to all other visible nodes, that

is without passing through an obstacle. The thick, grey line represents the

shortest path in the visibility graph between the start and goal.

Start

Goal

Figure 2.6: Example of Visibility

Graph

Figure 2.7: Example of Voronoi Dia-

gram

An alternative to the visibility graph is the Voronoi diagram [Aurenhammer,

1991] which is a graph which follows a line equidistant from two or more ob-
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stacles. A straight arc will exist between a pair of edges, or a pair of vertices,

while a curved arc will exist between a (vertex, edge) pair. An example is

shown in Figure 2.7. The Retraction Method of Ó’Dúnlaing et al. [1983] cre-

ates a Voronoi diagram which, like the visibility graph, can be searched using

standard graph approaches.

The visibility graph creates paths which skirt the boundaries of obstacles,

whilst Voronoi diagrams keep the robot as far from obstacles as possible. This

may influence the decision to use one technique over another.

More generalised methods exist for roadmaps [Brooks, 1983],[Canny, 1988]

which, for example, account for obstacles with curved edges as was seen in

Figure 2.5.

In general, the problem becomes more difficult as the number of degrees of

freedom increase. Planning for a typical robot manipulator may involve work-

ing in a six dimensional space due to the movements allowed by its elbow and

wrist. The roadmap methods described above are not generally used with

high dimensional configuration space, as they become inefficient, and other

algorithms are available which produce better results [Latombe, 1991, Chap-

ter 4].

2.7.2 Freeway Method

The Freeway Method [Brooks, 1983] approximates free space using a number

of, so called, generalised cylinders. These cylinders are placed between pairs

of ‘facing’ edges and are bounded by obstacles. The idea is best demonstrated

with an example as shown in Figure 2.8. Each Freeway or cylinder has a

spine. A freeway net can be constructed by using the spines as arcs, and the

intersections of the spines as nodes. In this way a graph is constructed which

has similar properties to the Voronoi diagram in that the robot is kept as far

away as possible from obstacles in the workspace.
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Spine

Node

Figure 2.8: Example of the Freeway Method

The Freeway method is relatively fast, but incomplete, and therefore may

not find a path even if it exists. This is particularly the case for a cluttered

workspace. It is probably best to be content with this method as it is —

fast but incomplete. Complicating it with variations will be likely to make

it slower, but still incomplete [Latombe, 1991, Chapter 4].

2.7.3 Silhouette Method

Canny [1988; 1987] uses a method which generates a roadmap which borders

all the obstacles in the workspace. It therefore reduces a multi-dimensional

representation of a workspace into a 1-dimensional graph. The ‘silhouette’ is

what would be seen if the workspace was made of perspex and the observer

looked from above. The silhouette method builds the graph recursively by,

for example, sweeping a 2-d plane through a 3-d C-Space to locate the edges

of the obstacles, and then sweeping a 1-d line through the 2-d plane to iden-

tify unconnected sub-graphs, and joining them with extra arcs. For a space

with more than three dimensions, the process remains the same except the n-

dimensional C-space is swept using (n-1)-dimensional planes (hyper-planes),

and recursively working down to the single dimensional line sweep. The idea
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is demonstrated in Figure 2.9 for the 3-d problem — more dimensions than

this are difficult to visualise.

To generate the path, the start and goal are treated as nodes and are con-

nected to the rest of the graph, which can then be searched to find the shortest

path.

2D plane sweeps in direction of x-axis

1D line sweeps in direction of y-axis

Recursive call to lower dimension

Final Graph (silhouette)

Figure 2.9: Example of the Silhouette Method

The Silhouette method tends to be used in the theoretical analysis of workspaces

to find their complexity, rather than in practical path planning [Hwang and

Ahuja, 1992].
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2.8 Cell Decomposition

Another method used in classical path planning is cell decomposition which

involves dividing the obstacle free space into a number of cells within which

the robot can wander without colliding with obstacles. These cells do not over-

lap, in contrast with the cylinders of the freeway approach (Section 2.7.2). The

initial and goal configurations will lie in free space in one of the cells. By find-

ing a sequence of adjacent cells between the initial and goal configurations, a

path can be found.

2.8.1 Exact Cell Decomposition

To exactly represent the free space using cells, a number of irregularly shaped

cells must be placed in the workspace. These should be convex, since each

point within a cell should be visible to all other points within the cell, so that

in the event that the start and goal configurations are both with the same

cell, creating a path is a simple case of connecting them with a straight line.

Figure 2.10(i) shows the workspace divided into a number of convex poly-

gons. Figure 2.10(ii) shows a representation which is also exact, but which

is far simpler to compute, which uses trapezoid cells. The problem with the

trapezoid approach is that the paths generated are unlikely to be optimal in

Euclidean space, that is the distance travelled.

2.8.2 Approximate Cell Decomposition

Exact cell decomposition can involve time consuming algorithms. Approx-

imate cell decomposition represents the free space using a hierarchical ar-

rangement of regularly shaped cells. This means that the free space cannot

be exactly represented, and therefore planning methods using approximate

cell decomposition are not complete, although they are resolution complete,

with the consequence that execution time is unbounded.
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Start

Goal

(i) Polygonal Decomposition

Start

Goal

(ii) Trapezoid Decomposition

Figure 2.10: Examples of the Exact Cell Decomposition of Free Space

A Grid of cells is placed over the workspace — this is simply a process of

discretising the workspace. Each cell is then considered to be:

Empty When the cell falls entirely in free space.

Full When the cell falls entirely in obstacle space.

Mixed When the cell covers a mixture of obstacle and free space —
that is it lies on the boundary of an obstacle.

Figure 2.11: Approximate, Hierarchical Decomposition of Workspace
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The simple case for path planning with this method is when a sequence of

empty cells can be found between the initial and goal configurations. If this

is not the case, then it may still be possible to find a path if a mixed channel

exists — that is a sequence of adjacent cells consisting of empty and mixed

cells. The area of free space covered by the mixed cells can be further decom-

posed at a higher resolution. In 2-d space, one cell would be decomposed into

four sub-cells. This is known as a quad-tree representation. In 3-d space, an

oct-tree representation is used with eight sub-cells, and in an n-dimensional

space 2n sub-cells would result. These sub-cells are all labelled as empty,

full or mixed as before in the hope that an empty channel can now be found

at the higher resolution. This hierarchical decomposition can be repeated ad-

infinitum, but this theoretically means the algorithm would not finish in finite

time (unbounded). In a practical application, it is more likely that a limit to

the level of decomposition would be imposed. Figure 2.11 demonstrates the

approach. A mixed square is decomposed at successively higher resolutions.

As the resolution approaches the continuous domain (the cells are infinitely

small), all the cells can be classified as either full or empty. This technique is

not suitable for use with high dimensional spaces, as the space requirements

grow exponentially because of the bitmap representation used.

2.9 Artificial Potential Fields

The basic idea behind the Artificial Potential Field (APF) is that planning

can be divided into two components: one of pulling the robot to the goal, and

the other of repelling it away from obstacles in the workspace. Assuming

that the robot has a positive charge, a negative charge can be situated at the

goal which results in a force which pulls the robot from its current position

in the direction of the goal. Each obstacle in the workspace is also positively

charged, the same as the robot. This means that each obstacle is surrounded

by a field which repels the robot away. By combining the fields centred at
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the goal, and each of the obstacles, a composite potential field results which

should guide the robot towards the goal, but keeping it away from obstacles

en-route. Having generated a field, the robot moves from its current position

in the direction of the negated steepest gradient. More simply, it is like drop-

ping a marble on the potential field surface and letting gravity pull it along

the fall line to the goal.

The original use of the potential field idea in robotics is attributed to Khatib

[1986; 1980]. The original use of potential fields was for obstacle avoidance

rather than path planning with the primary aim being to avoid local obstacles

and the aim of finding the goal was only a secondary consideration. In this

respect it is considered a local rather than a global planner. Artificial potential

fields have, however, been used for global planning as is discussed in this

section.

The potential field operates on a single point. Most robots are not simple

point based robots, so before applying potential fields some additional consid-

erations need to be borne in mind. The potential fields can be calculated in

C-Space (Section 2.5.1) whereby a more complex robot is reduced to a point

whilst its environment is simultaneously ‘grown’. To avoid the necessity of

computing the C-Space for a problem, a number of points on a more complex

robot can be selected as control points. Each of these control points is then

independently subjected to its own potential field in the presence of the ob-

stacles in the workspace.

2.9.1 Construction of Potential Fields

The construction of an artificial potential field (APF) in a computer is a fairly

straightforward and fast procedure. The overall potential field Uart acting on

the robot is given by [Khatib, 1986] :

Uart = Uxd(x)+UO(x)
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Where Uxd(x) is the field attracting the robot to the goal and UO(x) is a sum of

the repulsive potentials repelling the robot from the obstacles.

The attractive potential Uxd is a parabolic well centred at the goal defined by:

Uxd(x) =
1
2

ξ(x− xd)
2

where x is the current position, xd is the goal position, and ξ is a positive gain.

The repulsive potential fields UO for each obstacle O are defined by the FI-

RAS (force inducing an artificial repulsion from the surface) function [Khatib,

1986] :

Uo(x) =







1
2 η( 1

ρ − 1
ρ02 ) i f ρ ≤ ρ0

0 i f ρ > ρ0

where η is a positive gain, ρ is shortest distance to obstacle O and ρ0 is the

limit distance of the potential function, that is, the distance of influence of the

potential field around the obstacle O.

Figure 2.12 shows what a potential field might look like.

2.9.2 Local Minima in Potential Fields

The problem with the potential field method is that of spurious local minima.

What is ideally required is a field which has the lowest value at the goal and

is monotonically increasing as the distance from the goal increases. There

should be no local minima, that is points in the workspace for which the po-

tential is lower than the immediately surrounding positions, other than at the

goal itself.

Path planning with potential fields relies on following the line of the steepest

gradient of the field from the initial position to the goal. If the position is in

a trough, or on a flat area of potential, there is no downhill gradient which
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Goal

Parabolic Well centred at Goal

Repulsive Peak
generated by FIRAS
function around
obstacle

Figure 2.12: Example of a Potential Field

can be followed, and therefore the planner becomes ‘stuck’. What is therefore

required is firstly for the number of minima to be minimised, and secondly for

their area of attraction to be minimised. A minimum which is very localised

will not cause too many problems simply from a statistical point of view. If a

local minimum is the minimum point of a large crater, then it is more likely

that a path between two arbitrary points will pass through this crater and

be sucked in, causing the planner to fail. As will be described later, it is also

easier to circumvent minima with smaller attractive areas than those with

large ones.

Unfortunately, from the planning point of view, it has been shown [Koditschek,

1987] that, in general, it is not possible to generate a potential field in the

presence of obstacles with only a single minimum point at the goal. However

the speed and ease with which potential fields can be generated means that

potential guided planning is a useful method when coupled with methods to

minimise or avoid local minima.
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2.9.3 Avoiding Potential Field Problems

Randomized Path Planning

Given that it is inevitable that local minima will exist, methods have been

developed for avoiding them. It is easy to detect when the planner is stuck

in a local minimum because the robot will stop moving, but it will not have

reached the goal as desired. The robot then needs to be given a bit of a push

to move it out of the dip in the potential field, and then be allowed to carry

on along the direction of steepest descent towards the goal as before. One

technique used to escape a minimum is to apply Brownian motions, which are

small random motions [Barraquand and Latombe, 1991]. This technique is

implemented in the Randomized Path Planner developed by [Li et al., 1990].

It can be seen that it is important that the wells are not too large as pointed

out earlier. The larger the well, the larger the random force which is required

to allow the robot to escape. If the well is very large, the force required to

enable its escape will need to be so large that it will cause the robot to deviate

sharply from its original course. The larger the well, the larger the deviation

from the optimal route from initial to goal position which is required to avoid

the well. The aim of the planned route is to avoid obstacles which exist in

the real world, not to avoid spurious minima which are a side effect of using

potential fields.

Virtual Springs

Another method used to avoid minima problems has been developed by McLean

and Cameron [1996]. They perform planning for a redundant manipulator by

applying APF planning to a number of control points on the robot. The dif-

ference between their method and conventional APF planning is that rather

than modelling the robot as a set of rigid links, they model links as stiff linear

springs, hence the name of the Virtual Spring Method. It has been found that
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although errors are introduced using this method, because the model is not a

true reflection of the real world, the number of local minima in the potential

field is reduced because of the relaxation in the constraints on the system.

The errors introduced are sufficiently small to allow them to be resolved later

at the control system level.

Improving the Potential Field Function

a
b

c

(i) Rectangular Field

a
b

c

(ii) Elliptical Field

Figure 2.13: Rectangular and Elliptical Potential Fields

Brownian motions and Virtual Springs build on the basic APF planning method.

Another way of tackling the minima problem is to look at improving the poten-

tial field function itself. It has been proposed by Khosla and Volpe [1988], and

previously by [Khatib, 1986] that elliptical potential functions could be used

for generating the repulsive potentials surrounding obstacles. Figure 2.13(i)

shows the equipotentials for a problem with a goal and a square obstacle us-

ing the FIRAS function which was described earlier. In Figure 2.13(ii) the

obstacle is approximated by a field which is square at the boundary of the

obstacle and becomes circular at infinity.

Three example points have been placed on each diagram. Each of the forces

has two arrows attached indicating the forces due to the attractive potential

field from the goal, and the repulsive potential field from the obstacle. In both
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cases, a is subject to both a lateral force moving it away from the obstacle,

and a downwards force pulling it towards the goal. The second point b hits

a local minimum in both diagrams because it is on a line which is the line of

symmetry of the obstacle and passes through the goal. This means that no

lateral forces come into play to move the point round the obstacle. Point c

successfully finds a path in 2.13(ii) but not in 2.13(i). In 2.13(i) the attractive

potential causes some lateral movement, but because the repulsive equipo-

tential at c has no lateral movement, the point will not be able to move round

the obstacle. In 2.13(ii), the use of elliptical potentials means that there is

some lateral force as a result of the repulsive field, and a local minimum will

not occur.

In general, a local minimum will occur whenever the radius of curvature of a

repulsive equipotential is greater than that of the attractive equipotential at

a given point [Khosla and Volpe, 1988]. A flat wavefront has infinite radius,

and so will always cause local minima.

The use of elliptical potentials for obstacles requires either that the obstacles

are approximated by discs, or that elliptical potential functions are used for

obstacles which are not actually elliptical. The first approach has the prob-

lem that it does not accurately model the workspace. There will be areas in

the workspace which are made inaccessible by this approximation. The sec-

ond approach has the problem that generalised elliptical functions can only

be generated for certain convex shapes (trapezoids) in 2- and 3-dimensional

workspaces [Khosla and Volpe, 1988].

Even without using alternative potential field functions, the number of min-

ima can be varied according to the settings of the gain and distance of influ-

ence parameters. For example, a potential field which performs very badly

can be achieved by setting the parameters to reflect the situation shown in

Figure 2.14 where the goal is very near to an obstacle, and the gain or dis-

tance of influence is set too high. Where the goal is inside the distance of

influence of the repulsive potential field of the obstacle, the global minimum
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Distance of Influence

Goal

Repulsive Field

Attractive Field

Figure 2.14: Example of a goal inside the distance of influence of an obstacle

cannot be at the goal because a minimum cannot exist inside the field of an

obstacle. The correct setting of the controlling parameters is therefore a very

useful way to optimise the performance of an APF planner.

2.10 Summary

This chapter has provided an overview of path planning which has allowed

a variety of classical techniques to be assessed. It has been seen how they

approach the path planning problem from perspectives directions, and details

of the ways in which they succeed or fail at their job. This information is use-

ful in the design, implementation and evaluation of improvements to existing

path planning techniques.

Techniques which are related to path planning have been described, such as

obstacle avoidance and task planning. It has been recognised that whilst they

are important in their own right, and would inevitably form part of a complete

robot solution, they are not to be the focus of this research.
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Different types of robots have been described for which plans may be gen-

erated. It has been explained that they may operate in a variety of envi-

ronments of varying dimension. It is important to realise that whilst the

complexity of the path planning problem increases as the size, resolution and

dimensionality of the environment increases, and as the number of degrees

of freedom of the robot increase, the underlying path planning problem re-

mains the same. Providing that this fact is acknowledged, it is valid to carry

experimentation at a relatively simple level with a point based robot in 2-

dimensions.

Having defined the area in which the research is to be conducted, and the

problems which are pre-existing in the area, it is possible to begin investigat-

ing how to address these problems. The aim is to examine the possibility of

a path planner for robots which is able to generalise, rather than plan from

scratch on every occasion. The planner should also be practical, in that it

should be able to produce timely plans and not plans which arrive too late to

be of use in their application.

It is intended that in an attempt to improve on the current state of planners,

the possibility of using intelligence in a computer should be examined. This

view is pursued further in the next chapter by looking at traditional and more

modern approaches to AI, namely EI, and how they have and could be applied

to path planning.
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3

Evolutionary Algorithms for Path Planning

3.1 Introduction

Having identified the domain for this dissertation in Chapter 2, this chap-

ter introduces Evolutionary Algorithms as a means with which to address

the path planning problem. This chapter begins by outlining how Evolution-

ary Computing (EC) differs from traditional Artificial Intelligence (AI), with

which it is sometimes compared, and explains why its use is becoming more

prevalent. A description is given of some EC techniques, focusing particularly

on Genetic Algorithms (GA) and Genetic Programming (GP). Some prominent

example applications of GA and GP are highlighted, which lend support to

their worth, and the drawbacks of the techniques are noted with suggestions

as to how these drawbacks can be minimised or removed. Finally, a review is

given of the existing use of GA and GP specifically in path planning.

3.2 Artificial Intelligence and Machine Learning

Early in the history of computing, it was recognised that if computers were

to solve complex problems, they would either have to be told explicitly what

to do by human programmers in a very exact way, or developments would be
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required to allow computers to solve problems without being told explicitly

what to do.

Traditional AI as researched in the 1960s and 1970s focused on studying the

problem domain, capturing pertinent expert knowledge, and building this

knowledge into the system. Prominent examples are expert systems rely-

ing on large knowledge bases of rules such as XCON (eXpert Configurer)

[McDermott, 1982] which provides configuration information for VAX com-

puter systems ordered from DEC (Digital Equipment Corp.); and MYCIN

[Shortliffe et al., 1973] which diagnoses certain antimicrobial infections and

recommends drug treatment. Such systems have been very successful, and

the techniques which they use continue to be used today in systems such as

that implemented by Hammond and Davenport [1997] which is a CAD sys-

tem for Dental Prosthesis design which automatically checks the correctness

of the design. Each of these systems share the requirement that knowledge,

perhaps in the form of a rule base, must be manually built into the system by

a human. The drawback to these systems comes when research into the do-

main has not yet, or cannot ever reveal the information required to implement

rules or develop an algorithm to solve a problem. Additionally there is a high

financial and time cost associated with the maintenance of the knowledge in

the system to ensure it is kept up-to-date [Hayman, 1997].

Research into systems which do not require explicit knowledge to be built

into them has been carried out since the early days of computing. Motivated

by the lure of AI or Machine Learning, Friedberg [1958], Schwefel [1975],

Rechenberg [1973] and Holland [1975] have carried out research into areas

which have developed into the present day techniques which fall under the

synonymous umbrella terms of Evolutionary Algorithms (EA) or Evolution-

ary Computing (EC). These techniques allow computers to learn and to adapt

solutions to problems without being told explicitly what to do. The term Emer-

gent Intelligence (EI) is sometimes used to describe the way in which Evolu-

tionary Algorithms create knowledge rather than having it built into them
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[Angeline, 1994].

Modern EA techniques place a heavy burden on computer hardware [Banzhaf

et al., 1998; Kent and Dracopoulos, 1996a]. Hence, early research into EA

techniques was rather limited due to shortcomings in computer hardware.

The continual improvement in hardware technology has allowed the use of

EA techniques to gradually become more commonplace in computer science.

The application of EA techniques seem to have particularly increased since

the adoption of Genetic Algorithms (GA) and more recently with the advent

of Genetic Programming (GP). As the computing resources which have become

available during Hardware developments in the 1990s have resulted in con-

siderable growth in the use of EA techniques as illustrated by the publication

of a new journal for Evolutionary Computation [Fogel, 1997].

With this new found interest in EA, it has been possible to re-visit problems

which have historically been tackled using more classical computer science

approaches, and to use evolutionary methods to try to find improved solu-

tions. Path planning, in particular, has been attempted in many ways, some

of which have been explored in Chapter 2, however none of these offer a per-

fect solution. The approaches which have been taken have, in one way or an-

other, sought to apply domain knowledge. This thesis proposes to investigate

the suitability of applying Friedberg’s [1958] alternative approach — that is

allowing the machine to do something without being explicitly told how — in

its application to path planning.

3.3 Evolutionary Computing

Nature presents us with an enormous number of examples of solutions to

complex problems. Every creature is a solution to the problem of thriving

within its environment. Each creature is a product of evolution.

Biological evolution operates on the DNA which is an enormous string of what

is effectively a 4-bit code. This code is constructed from pairs of the nucleic
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acid bases, adenine, guanine, cytosine and thymine. The representation of

a creature in a coded form in DNA is called the genotype, whereas the ex-

pression of the DNA in the physical form of a creature with all its particular

attributes is known as the phenotype [Johannsen, 1911]. This is analogous

with a program written in a language such as C, and the resulting running

application, which bear no physical resemblance to each other.

Evolution is an abstract concept; it cannot understand an algorithm for a fish

and then implement it by expressing it using the language of DNA. Instead

it efficiently searches all possible combinations of DNA (genotype) to find a

representation which is expressed as a creature (phenotype) which is good at

surviving under water. Evolution therefore learns how to produce a solution

without being explicitly told how to do it, it is only guided by outside influ-

ences.

There are a number of techniques which can be classified as Evolutionary Al-

gorithms. Each has a plethora of variants each tackling one issue or another,

but they share a common feature. In some way they draw on the principles

of evolution, as presented by Darwin [1859]. The techniques do not necessar-

ily seek to copy biological evolution, but are driven particularly by Darwin’s

theory that ‘survival of the fittest’ is the driving force of evolution, and that

a ‘good’ individual is more likely to reproduce, and consequently pass the ge-

netic information, which makes it ‘good’, onto subsequent generations.

It is not the intention here to describe all EA techniques in detail. GA, GP

and related EA techniques are covered in texts including: Fogel et al. [1966],

Fogel [1995], Banzhaf et al. [1998], Koza [1992], Holland [1992] and Goldberg

[1989].

3.4 Genetic Programming: Evolving Computer Programs

Although a number of people have worked in areas which eventually con-

tributed to GP, the field became more popular in the early 90’s with the publi-
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cation of Koza’s book [Koza, 1992] which followed earlier work on what were

called Hierarchical Genetic Algorithms [Koza, 1989]. This indication of a rela-

tionship between GA and GP is no coincidence — indeed they are very closely

linked. This section describes the Genetic Programming technique with a

view to its application to the motion planning problem. It is important to

bear in mind that many of the techniques, and considerations given in this

section similarly apply to Genetic Algorithms. Rather than considering GA

and GP as two distinct techniques, in this dissertation GA is seen to be a sub-

set of GP because of the amount of common ground which they share. The

differences between the techniques are discussed in Section 3.8.

3.5 The Simulation of Evolution

3.5.1 Initialisation of the Population

Initialisation is the first stage of the iterative GP process, as represented in

the flowchart in Figure 3.1. An initial population of individuals (programs) is

randomly generated at the start of the run. The programs are written in a pre-

specified language consisting of functions and terminal variables. If desired,

this initial population could be interspersed with non-randomly generated in-

dividuals to give the GP process a head start. This might be a previously

known good solution to a problem which is the best-to-date solution available.

Hopefully, GP should either use the components of these non-random solu-

tions to contribute to a better solution, or discard them if they have nothing

to offer. Care must be taken not to unduly pollute the population with such

previous knowledge, as the GP search may be inadvertently directed away

from better solutions, and instead converge early on sub-optimal solutions

because diversity in the population is lost.
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Figure 3.1: Flowchart of the GP process
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3.5.2 Measuring the Population

Each individual program in the population is evaluated against a function

(fitness function), to measure how well it performs against the problem it

is addressing. The result of the evaluation is known as the fitness of the

individual.

3.5.3 Natural Selection

The next step is the evolutionary stage where a new population of programs

is created from the old population. Having measured the fitness, this infor-

mation is used as the means of comparing the relative ability of programs to

solve the problem at hand. During the evolutionary phase, those programs

with a higher fitness are more likely to contribute either part, or all, of their

structure to individuals in the new population. This process of fitness evalu-

ation and evolution is repeated as the GP process efficiently searches for an

optimum or near optimum solution to the problem at hand.

3.5.4 Breeding
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Figure 3.2: The main operators used in GP
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The probablility of a solution arising in the first generation of a GP run is

very unlikely, as this generation is created randomly. Solutions are found in

GP by using operators which mirror the methods used in nature by which

new offspring are generated, namely sexual and asexual reproduction. In

nature reproduction involves the combination, or copying of sections of DNA.

In GP, genetic operators are applied over successive generations, to the tree

based structures which represent a solution to a problem. These operators

are described below, and demonstrated in Figure 3.2.

Crossover

To produce new offspring, branches of individuals from the previous gener-

ation are combined using a GP operation called crossover which is akin to

sexual reproduction. It is hoped that over successive generations, all the use-

ful sub-components, or building blocks, which are initially spread throughout

the population, will combine in a single individual which will offer a ‘good’

(near optimal), or even perfect solution.

Reproduction

To avoid the loss of good individuals from the population, and to improve the

speed of convergence of GP, reproduction (asexual) is also used to copy some

of the better individuals in their entirety to successive generations.

Mutation

Crossover and reproduction are the main operators used, typically to generate

90% and 10% of a new population respectively. Sometimes, it may be useful

to introduce a mutation operator applied to individuals with a much lower

probability (typically less than 1%) [Koza, 1992; Poli and Langdon, 1997]. The
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mutation operation involves the random selection of an individual’s subtree

and the replacement of this subtree by another randomly created subtree.

This alteration can be useful to prevent premature convergence to a solution

which is sub-optimal, and can be seen as the addition of a small amount of

random noise to the whole process.

3.6 Evolving a suitable Programming Language

GP evolves trees, but to solve a specific problem, the trees must be tailored by

specifying a language or representation scheme which can express a solution

to the problem. The scheme is specified in terms of functions which reside in

the internal nodes of the tree, and take one or more arguments, and terminals

which sit at the leaf nodes of the trees.

The definition of an appropriate language for the specific problem being solved

is of paramount importance. If the representation scheme used for a prob-

lem is ill defined, then this alone may prevent a solution from ever being

evolved. Sometimes it is very difficult to determine exactly what a represen-

tation scheme should contain. A necessary condition which must be met in

order to solve a particular problem using GP, is that of sufficiency of the ter-

minal and function sets. If a solution cannot be expressed in terms of the spec-

ified terminal and functions, then it is pointless to search for a solution using

GP or any other technique. On the other hand, the search space grows expo-

nentially with the number of terminals and functions, therefore their choice

must be appropriate so as not to increase the search space unnecessarily.

A second condition which must usually be met is that of closure: the value of

any terminal and the values returned by any function, must be processable by

all other functions. That is, an evolved program must always be able to run.

To this end, certain measures may need to be taken with some mathematical

functions. A common example is division, which is undefined when dividing

a number by 0. In this case a wrapper must be applied to the function, to
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ensure that it does not simply generate an error, but instead returns a value,

such as 0 or 1, which can be coped with by the other members of the function

set. This is known as protected division [Koza, 1992]. An alternative to the

closure condition, is to use strong typing [Montana, 1994]. This involves hav-

ing functions and terminals which can return different types. Type checking

mechanisms must be adopted during the creation of the initial generation and

subsequent evolution of the population such that type inconsistencies are re-

moved. In most cases however, a suitable closure can be defined for a problem

without the complication and the extra time overhead of strong typing.

3.7 Other Issues for GP

Having provided an overview of the GP, this section looks deeper at some of

the issues which needs to be considered when applying GP to a problem such

as path planning.

3.7.1 How to measure a candidate solution

The choice of the fitness function used to measure the “goodness” of a candi-

date program is a key point for the successful application of GP. The fitness is

the single means by which the GP process can choose which genetic material

should be propagated from generation to generation. The GP process which

relies on the feedback provided by the fitness value, resembles that of rein-

forcement learning techniques [Dracopoulos, 1997b; Sutton and Barto, 1998].

Individuals are punished (extinguished) if their fitness is low, while those with

above average fitness are rewarded with their selection for further reproduc-

tion.

To obtain fitness values, each program in the population must be run or evalu-

ated. The fitness value is what the GP run tries to optimise, therefore it must

accurately capture the requirements of the problem. An ill-devised fitness
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measure may inadvertently direct the GP search to the solution of a different

problem. Examples of fitness measures might be an error value for a curve

fitting application, the distance travelled in an obstacle avoidance applica-

tion, or even a human supplied score as to the aesthetic appeal in a genetic

art application. Several different types of fitness are described by Koza [1992,

Chapter 6] but the important feature of fitness is that it provides a continuous

scale of program performance to allow for comparison between programs, and

the ability to identify progressive improvement in the population. A binary

fitness measure which only measures perfect and imperfect will not allow the

GP process to differentiate sufficiently between poor and successively better

individuals.

Each program may be evaluated only once per generation, as in the Artifi-

cial Ant problem (Appendix C), or it may be evaluated many times against a

training set of data, as in the Oral Cancer Diagnosis problem (Section A.2) —

a classical example of supervised learning in which a set of input and desired

outputs is provided.

The programs can be evaluated by allowing them to interact with the real

world, for example in an embedded GP application to control a Khepera robot

[Lee et al., 1997], evaluating programs by making the robot move around.

Usually, however, programs are evaluated in a simulated environment. This

is:

• flexible because scenarios can be easily changed

• cheap because expensive hardware can be avoided

• fast, as time can be speeded up inside a computer.

There is also a safety issue, as sometimes real world evaluation is infeasible

as a poor genetic individual could cause damage to person or property.
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3.7.2 Survival of the Fittest

The underlying principle of evolution is that of ‘survival of the fittest’, whereby

‘good’ genetic material perpetuates at the expense of the ‘bad’ genetic mate-

rial. In nature this occurs through competition between members of a species

to survive and therefore mate. In evolutionary computing, the selection of

individuals to participate in the genetic operations is made according to an

algorithm which considers the fitness of the individuals in the GP population.

The most popular method used for selection, known as proportional fitness

or roulette wheel selection [Goldberg, 1989], involves calculating, for each

individual, its proportion of the sum of the fitnesses of the whole population,

such that the sum of all the individual fitnesses equals 1.0. The roulette wheel

method is demonstrated in Figure 3.3. The diagram shows five individuals

whose fitnesses have been normalised. The individual fitness of each individ-

ual is shown inside each segment, and the cumulative fitness of all individuals

so far is marked outside the circle. The individual with the highest fitness of

0.35 covers the largest proportion of the circle and is most likely to be chosen,

whilst the poorest individual with a fitness of only 0.05 is least likely to be

chosen. When a random number is chosen, as indicated by the arrow marked

0.20, this is analogous to the spinning of a roulette wheel. The greater the

area of the circle covered by an individual, the greater the likelihood of the

random number falling in their segment, thus enforcing the principle of ‘sur-

vival of the fittest’.

Another method often used is tournament selection [Koza, 1992]. It bears

similarities with the type of competition occurring in nature where two ani-

mals will fight for the right to mate. Various rules exist for tournament se-

lection, but in general two or more individuals are chosen randomly from the

population, and their fitnesses are compared. The individual with the high-

est fitness wins. This type of selection does not require the evaluation of the

fitness for all individuals in the population. It may be possible to evaluate
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Figure 3.3: Demonstration of the Roulette Wheel Selection Method

only the fitness of an individual as and when it is chosen for a tournament.

An alternative (rank selection) is to sort the individuals’ fitnesses and rank

them accordingly. During the tournament, the ranks can be compared rather

than the fitnesses. The relative merits of different selection schemes are dis-

cussed by Blickle and Thiele [1995] in the context of GA, but this is equally

applicable to GP.

3.7.3 The Population

To allow evolution to progress, sufficient diversity must exist in the popula-

tion. In GP, a loss of diversity will result in the premature convergence of a

run to a sub-optimal solution. The mean fitness of the population will become

close if not equal to the fitness of the best individual. The population is “pol-

luted” with duplicate genetic material such that new individuals, which differ

sufficiently from the rest of the population, can no longer be generated.
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The problem of loss of diversity and premature convergence can be caused by

a number of factors. If there is insufficient diversity at the outset, then this is

clearly going to cause rapid convergence. A simple way to ensure diversity at

the beginning of the run, is to ensure that each randomly generated program

is unique. A population which is too small for the problem being tackled is

another way in which insufficient diversity may occur.

Assuming that the initial population is sufficiently varied, it may still be pos-

sible for diversity to be lost during the run. For example, the adoption of an

elitist approach whereby the top n individuals are always copied to the next

generation may speed up convergence, but may result in a sub-optimal solu-

tion caused by premature convergence. The use of asexual reproduction with

a very high probability in combination with the proportional fitness selection

method, may also cause loss of diversity because genetic material is propa-

gated through the generations with little opportunity for new individuals to

be created.

The evolutionary process described so far evolves a new population which re-

places the current one. An alternative is to just replace one or two individuals

in the current population and gradually evolve the population rather than to

adopt a mass slaughter approach. This steady state GP (the equivalent of

steady state GA [Syswerda, 1989; Whitley, 1989]) is less prone to premature

convergence and it can improve the quality of solutions found by the GP run.

Another approach to maintaining diversity is to divide the population up into

smaller, sub-populations referred to as demes. If communication of genetic

material between demes is restricted to a small amount, the convergence of

the global population is slowed, as diversity is maintained. This is because

every few generations new genetic material is introduced into each deme as

individuals are migrated between sub-populations. Although demes can be

implemented in a single processing environment, they are very amenable and

ideal for parallelisation as discussed in Section 3.9.
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3.7.4 When to stop GP

The iterative GP/GA process previously shown in Figure 3.1 includes a point

for termination of a run. Unless it is the intention for a GP or GA applica-

tion to perpetually evolve to continually adapt to the changing environment,

some termination criteria must be determined. The run may be terminated

when the best individual in the population reaches some threshold level of

performance. In some cases, a given run may not be capable of reaching this

threshold, in which case another criteria, such as a maximum number of gen-

erations, may also be defined to prevent endless execution.

GP belongs to the class of probabilistic algorithms which give a different re-

sult every time they are run. Each run of GP is started from a random point

according to the value of a random number seed. It is sometimes necessary

to run the GP process a number of times, starting the search from different

positions in the search space before a suitable solution is evolved.

Given the limited time and resources available for GP runs on a specific prob-

lem, it is generally more efficient to use fewer generations with larger pop-

ulation sizes, rather than the other way round. This is because populations

converge much faster early in the run, so to maximise the improvement per

generation, it is better to restart runs rather than continue them.

A common problem encountered in the case of multiple data sets is determin-

ing the correct stopping point of training. Whilst it may often be possible to

find a perfect solution corresponding to the training data, this solution may

not be able to generalise well on previously unseen data, a feature which is de-

sirable for real machine intelligence. The problem is caused by over training

(over-fitting of data) where the solution evolved learns a one-to-one mapping

between the domain and range of the training data, rather than learning a

general rule. It is, therefore, important to consider the generalisation error

in addition to the performance of the solution against training data. An ap-

proach to achieve good generalisation is to divide the available data into three
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sets: training, validation and test data. The training data is used to evaluate

the genetic programs, and therefore to guide the genetic search. The fitness

against this set should consistently improve. The performance of the best in-

dividuals is also periodically measured against the validation set. This should

initially increase, but when successive generations result in a degradation in

the performance against the validation set, the run should be stopped. In this

way the second set is used just as a means of stopping the run at the best

point. The performance of the best evolved individual can finally be evalu-

ated on the third, unseen set of data after the termination of the run. Further

details of this approach can be found in Dracopoulos [1997b, Chapter 4].

3.7.5 The Control Parameters of GP

Besides the function set, the terminal set, the fitness function and the genetic

operators applied to the genetic programming process, a number of other con-

trol parameters must be determined, in order to apply the GP approach to a

problem. First, associated with each genetic operation there is a probability

p, which determines how often the genetic operation is applied to the current

population.

A second control parameter which has to be determined is that of population

size. A typical value of 500 is used many times, but depending on the com-

plexity of the problem and the size of the search space, this value might need

to be increased or decreased.

If left unchecked, the size of the data structures in GP could grow to an enor-

mous size as evolution progressed. To stop this, limits are set on both the

size of the initial, randomly generated programs, and the subsequent size to

which they may evolve. If the use of a crossover or mutation operator with

individuals would give rise to oversize offspring programs, the operation is

cancelled, and a new operator/program combination is tried. The limits may
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be set in terms of the maximum depth to which trees may grow, or the maxi-

mum number of nodes which trees may contain.

3.7.6 GP Problems and Solutions

Global and Local Minima

The aim of these optimisation methods is to find the global maximum or mini-

mum; the highest or lowest cost (depending on the problem) across all possible

solutions. A common problem encountered with all weak search methods is

the avoidance of local optima. These local optima represent the best solutions

to the problem in the immediate vicinity of the current point in the search

space being investigated. They do not necessarily correspond to the best,

global solution across the entire search space. Assuming the 3-dimensional

landscape, these local optima are sometimes referred to as foothills, plateaux,

and ridges. They are described below with reference to local maxima, but they

are equally relevant for minimisation problems:

foothills If the search starts somewhere on a hill which does not
have the highest peak in the search space, the search will
be directed uphill to a high point, but this will only be a
local maximum, not a global one. Having reached the
local maximum, the search will not be able to find any
adjacent, higher points and will terminate.

plateaux Although a search space may have peaks, these may be
connected by flat areas. A hill-climbing method will not
be able to follow the zero gradient on a plateau.

ridges A ridge of equal values in a search space may also cause
the search to terminate on a local solution because, again,
there is no uphill direction to be followed to achieve a bet-
ter solution.
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Computing Resources

The most obvious problems with GP are related to computer hardware. Given

infinite power and memory, GP could solve any problem, although this is also

true of a random search. As the complexity of the problems tackled increases,

the computational and memory requirements increase very rapidly. This is

because more complex problems typically require larger function and termi-

nal sets and larger trees. This increases the size of the search space, which

may mean that larger populations are required. Larger populations will ob-

viously take longer to evaluate, and the time taken will increase still further

if the simulator used in fitness evaluation is more complex. A larger popula-

tion will require more memory. Even if the host machine has limited memory,

the process should still be able to run if the operating system supports virtual

memory. The drawback here is further increases in run time if a large amount

of swapping takes place between real memory and hard disk.

Because of the limited resources available, good judgement must be applied

in setting up the run without huge amounts of excess capacity which will in-

crease the memory and computational requirements. Beyond that, attempts

can be made to increase the amount of memory and processor power avail-

able. This task will fall partly to the hardware engineers, but improvements

can be used by applying parallel processing techniques to GP as described in

Section 3.9.

Parsimony

One claim sometimes made of GP is that it evolves solutions which can later

be examined by humans. For instance it can be used to generate a function to

approximate some data. The researcher can examine the function and may be

able to gain some insight into the data. In reality, the evolved structures can

be rather unwieldy, containing hundreds of nodes. Mathematical or logical
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structures may be edited and simplified automatically either at the termina-

tion of the run, or during its progress. Another approach is to introduce the

idea of ‘parsimony’ into the fitness. In this way the fitness is based not only

on the problem being solved, but also on evolving a neat, compact solution to

the problem.

A method to introduce parsimony in the solutions found is the extension of

GP to automatically defined functions (ADF). According to this, GP is able to

evolve subroutines (ADF) as part of the large general solution routine. The

details of the incorporation of ADF to the standard GP is found in Koza [1994].

ADFs have also been shown to enable GP to solve problems more quickly than

plain GP, or in some cases to solve problems which plain GP cannot.

The improvement of GP as a technique is still an area of very active research.

It will be of great benefit to the GP field if the problems discussed above are

addressed, such that convergence to optimum or near optimum solutions can

be achieved in a smaller number of iterations.

3.8 Genetic Algorithms and their relation to GP

Genetic Algorithms and Genetic Programming are very similar. In the history

of Evolutionary Algorithms, the GA came about before GP; major milestones

being the book of Holland [1975] for GA well before the book of Koza [1992].

The main difference between the two techniques lies in the data structure

which is evolved. In GA it is usually a string, and in GP it is a tree. The string

may be of variable length, and each position in the string can take one of a

number of states. It is usual to use a fixed length binary string. In some re-

spects, the GA can be considered to be a subset of GP, as a string can be easily

represented in a tree with each string position being represented by the leaf

of a tree whose internal nodes consist only of unconditional branches. The

distinction is further blurred when considering traditional programs written

by human programmers. They write programs in a sequential fashion, and
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not as trees. A suitable GA with a large enough alphabet, and typing con-

straints could be used to evolve a program. Indeed, genetic approaches have

been used very successfully to directly evolve machine level code which can

be run immediately without interpretation [Nordin, 1994].

In practice, there is room for both techniques to co-exist. It is often easier to

define the representation scheme for a GP application. The nodes of a GP tree

contain symbols which have meaning to a programmer such as mathematical

or logical operators. The leaves often contain objects which correspond to

control variables in the problem domain. The programmer is able to think

about the problem domain, in terms of the problem domain.

GA is best used for evolving parameters which can be used to optimise a sys-

tem. Using GA to tackle a problem which is more amenable to GP may require

a somewhat abstract representation of the solution. GP is able to directly

evolve programs, whereas the typical GA string representation does not lend

itself so naturally to evolving program, or algorithm type solutions. A simple

example is the artificial ant problem, described in Appendix C, which can be

solved directly by evolving a simple program using GP, or more abstractly by

using a GA to evolve the specification for a Finite State Machine [Koza, 1992].

For the purposes of the research described in this dissertation, it is considered

that GA and GP can treated as one. They rely on the same underlying prin-

ciples to perform efficient searches of large spaces for solutions to problems.

The difference in the data structures which they manipulate mean that each

is amenable to slightly different problems: GA to problems which require the

optimisation of a set of values, and GP to a problem which naturally requires

a rule, program or expression as a solution to the problem.
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3.9 Speeding Up Genetic Programming

3.9.1 The Problem

Whilst GP has been shown to be able to solve difficult problems, an unfor-

tunate characteristic is the considerable computation which is sometimes re-

quired by the process. The maintenance of the population, and the simulation

of the evolutionary process is usually a very small proportion of the total run

time. The area where most execution time is spent is in the evaluation of

the fitness of the individuals in the population. Execution time can be par-

ticularly long when a complex simulation is required. This must, of course

be carried out for every individual in the population. Difficult problems, with

computationally expensive simulations inevitably demand larger populations,

thus the problem is exacerbated. Whilst the ever increasing performance of

modern CPUs will make more and more problems amenable to GP, in the im-

mediate term, parallelisation of the technique offers the most effective means

by which GP can be made to produce more timely results.

The idea of parallelising GP is by no means new. The Evolutionary Com-

puting community have recognised some time ago that parallel computing

could be used to improve performance in their field [Shonkwiler, 1993; Sten-

der, 1993; Cantú-Paz, 1995; Jones and Valenzuela, 1995]. It is a natural pro-

gression to apply similar techniques to GP [Juille and Pollack, 1995; Andre

and Koza, 1996]. A good example of applying parallel GP to a complex prob-

lem is provided by Bennett III et al. [1997]. In this approach GP was used to

evolve analogue electronic circuits. To evaluate the fitness of the circuits, a

patched version of the freely available SPICE (Simulation program with In-

tegrated Circuit Emphasis) simulator was used [Quarles et al., 1994]. The

experimentation was run on a system consisting of 64, 80MHz PowerPC 601

processors the architecture of which is described in Andre and Koza [1996].

Although it is reported that this is an efficient means of parallelising GP, the

equipment required is inaccessible to most GP researchers.
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3.9.2 The Bulk Synchronous Parallel Approach

It was felt that parallel GP should be available for those researchers who had

more usual computing resources at their disposal.

Most university researchers have access to a network of uni-processor ma-

chines which can communicate with each other via a local area network. It is

desirable for all researches to have access to parallel GP, because of the im-

proved performance which can be achieved, and it was felt that a network of

computers might provide the means to develop a parallel GP system spread

across a number of computers rather than within a single, very powerful ma-

chine.. The disadvantage of parallelisation using this approach was relatively

slow communication afforded by a typical Ethernet network. The important

question was whether a beneficial speedup could be achieved with such a sys-

tem.

Rather than build the parallel GP system from scratch, a parallel library was

used in the conversion of a custom-built C-based uniprocessing GP system to

a parallel version. The Bulk Synchronous Parallel (BSP) model of parallelisa-

tion [Valiant, 1990] was chosen as the framework within which to develop the

system. BSP is a simple, SIMD (Single Instruction Multiple Data) parallel

model.

The choice to use BSP was made for a number of reasons. It is a simple

parallel model which is easily implemented through a library such as that

developed by Miller and Reed [1993]. The library contains only six operations

as shown in Table 3.1. Source code is available for the library allowing it

to be recompiled on a variety of platforms. It is flexible because a number

of different communication media are supported, including shared memory

which can be used with, for example, a relatively cheap multi-processing SUN

workstation. It is scalable because it offers a solution on a range of machines

from PC clones running Linux, to machines with Alpha processors, and even

Crays. This offers the researcher the opportunity to develop an application
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on cheap machines, and if necessary to perform final experimentation on a

massively parallel supercomputer without having to re-write code.

BSP START start of the BSP program
BSP FINISH end of the BSP program
BSP SSTEP START(n) start of superstep n
BSP SSTEP END(n) end of superstep n
BSP STORE(to, from data, to data, length) store from local to remote processor
BSP FETCH(from, from data, to data, length) fetch from remote to local processor

Table 3.1: The Oxford BSP Library basic operations.

The emphasis for this parallel system was for the implementation on a net-

work of workstations. A particularly important requirement for this was that

communication should be kept to a minimum, as this was likely to be where a

bottleneck would occur, because any parallel GP system would inevitably be

competing with network traffic from other users.

In order to minimise communication a loosely coupled approach was adopted,

whereby the individual processes in the BSP machine were able to proceed

independently, with communication occurring periodically. It was noted in

Section 3.7.3 that the use of demes, or sub-populations have been shown to

be beneficial for maintaining genetic diversity in GP. It is logical to locate a

sub-population or deme at each processing node. In this way each processing

node can be considered to be an island. This island model has been previously

adopted in the GA field [Gordon and Whitley, 1993] and in parallel GP [Koza

and Andre, 1995]. The extreme case of loosely coupled system would involve

the simultaneous execution of a number of differently seeded runs as com-

pletely independent processes [Harris and Buxton, 1996], but this does not

take advantage of the use of demes.

The standard GP process is modified by the addition of a migration operator

as shown in Figure 3.4.

The processing islands are arranged according to a topology, examples of

which are shown in Figure 3.5. Every 10 generations, the top 10% of indi-

viduals from each island were migrated to neighbouring islands consequently
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Figure 3.4: Parallel GP process

displacing the lowest performing individuals, thereby distributing the best

genetic material throughout the global population.
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Figure 3.5: Topologies used with the island model GP implementation.

3.9.3 Results

The system which was developed was first tested using a well known problem

in the GP field: The Artificial Ant Problem [Koza, 1992]. This is described in

Appendix C.
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The workstations used to run the software were a number of SUN SPARC-

station 5 machines with 70MHz microSPARC-II processors, and running SO-

LARIS 2.4, each with 32Mb of RAM. These machines were connected on a

common subnet with Ethernet cabling. Communication between processors

was achieved using TCP/IP.

The two implementations were run for 50 generations, and the mean elapsed

time was recorded. The results are shown in Table 3.2.

processors elapsed time/s
ring star

1 4980 5100
2 5280 5400
4 6180 6120
8 7020 6430

Table 3.2: Elapsed time for runs of 50 generations for parallel GP implemen-
tations

The recorded speedups are shown in Figure 3.6.
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Figure 3.6: Graph of actual speedup achieved

The results demonstrate that a significant speedup can be achieved using

this simple approach to GP parallelisation. The size of this Artificial Ant
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problem is not very large, and it can be expected that problems requiring more

complex simulation during fitness evaluation can further benefit from this

approach, because the delays resulting from communication will be smaller

compared with the actual parallel execution time. By making use of demes or

sub-populations, the diversity of the population is maintained during the run.

During the development of this parallel approach, attempts were also made

to distribute the processing of a single GP population over several processors,

using a master-slave approach. The run was controlled from the master node

which directed slave nodes to perform fitness evaluations. Because of the

communication overhead this approach was not found to produce the same

significant speedups as did the island approach.

Although the size of the problem was not very large, it can be seen that a sig-

nificant speedup of the GP run is achieved. The differences between the star

and the ring topologies are negligible. As the size of the problem increases,

it can be expected that further speedups will be seen as the delays resulting

from communication will be smaller compared with the actual parallel execu-

tion time.

Although the system was initially tested on the Artificial Ant problem, be-

cause the system was a general GP problem solver, it can, and has, been

used throughout the research for this dissertation. The results of this re-

search into the BSP parallelisation of GP have been published in [Kent and

Dracopoulos, 1997], [Kent and Dracopoulos, 1996a] and [Kent and Dracopou-

los, 1996b].

3.10 EA Applications

The EA field has developed very rapidly over the past few years. For ex-

ample since its birth in 1992 the number of entries in the GP Bibliography
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[Langdon, 1999] has grown to over 1000 entries. Although much of this re-

search is theoretical, many examples can be found of research into the appli-

cation of GA and GP.

Applications have been found in medicine and biology. GP as an automated

diagnostic tool is presented in Section A.2, but there are also problems in

the more theoretical molecular biology where there is currently extensive re-

search into the identification and classification of DNA and protein sequences.

Traditional approaches to research in molecular biology are very labour inten-

sive and the structures which are being researched are enormous. The human

genome contains roughly 100,000 genes, each containing around 1,000 bases.

Intelligent techniques such as GP are being adopted [Handley, 1994b; Hand-

ley, 1995; Koza and Andre, 1996] to support the traditional methods, and thus

speed up research.

One of the most interesting areas of GP/GA application is in the evolution of

electrical hardware. Koza et al. [1996] have used GP to evolve analogue elec-

tronic circuits. The technique uses component creating functions and connec-

tion modifying functions to generate the final circuit by operating on a simple

embryonic initial circuit. The evolved circuits are evaluated on a patched

version of the freely available SPICE (Simulation program with Integrated

Circuit Emphasis) simulator [Quarles et al., 1994]. This is a very computa-

tionally expensive application which uses parallel computing as described in

Section 3.9.

Over the past couple of years some very interesting work has been devel-

oped on the direct evolution of Hardware. This Evolvable Hardware (EHW)

[Higuchi et al., 1997] field has arisen only due to the availability of the Field

Programmable Gate Array (FPGA). This is a large array of cells which can be

instructed to act as one of a number of logic gates. The device may be pro-

grammed as many times as required, thus allowing direct, hardware evalua-

tion of GA/GP structures. One, or a mesh of FPGA devices may be connected
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to a standard PC hosting the evolutionary process. Work in this area was pi-

oneered by Thompson [1996a] and has more recently been adopted by other

researchers [Koza et al., 1997; Liu et al., 1997]. The specialist hardware re-

quired undoubtedly presents a barrier to entry into this area, but the promise

of faster GP is likely to give rise to a considerable increase in research in this

area.

Successful applications have been developed which use hybrids of a number of

Evolutionary techniques. For example Rizki and Tamburino [1998] combine

GP, Evolutionary Programming,and GA in a pattern recognition application

which classifies radar signatures. GA have also been hybridised with other

machine learning technique, for example Dracopoulos and Jones [1997] com-

bine neural networks and GA to control the attitude of a satellite. These suc-

cessful hybridisations lend support to the idea that a successful path planning

application could combine an evolutionary approach with another technique.

3.11 Existing Evolutionary Approaches for Planning

The evidence of the use of GP and GA in various applications provides a useful

indicator of the worth of the techniques, but this thesis proposes that the use

of such techniques is of benefit specifically in the field of path planning. They

have been used extensively in various areas in robotics [Alander, 1996], and

this section presents examples of previous work specifically in the area of

planning, which will be built upon over the remainder of this dissertation.

3.11.1 GP Task Planning

[Handley, 1993; Handley, 1994a] used GP to generate plans for a robot. This

is an example of task planning where a robot is expected to transform a world

from one state to another state. The world in this case consists of three rooms

containing objects which can be manipulated. The goal world is presented
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to the planner as a single fitness case, so there is no attempt here at gen-

eralisation. The planner evolves potential solutions from a function set of

unconditional branches and a terminal set of robot actions. Handley’s work

demonstrates the ability of GP to solve an inverse problem of generating the

actions which, when executed, will produce a desired state. There are, how-

ever, no functions or terminals which provide any means for the evolved algo-

rithm to reason about the environment at run-time. This is freely admitted

by Handley:

The Genetic Planner does not reason about the world it is planning
to act in. Rather, it has a procedural model of the world and it
simply runs candidate plans to see how well they work.

The work of Handley and others has shown that GP can successfully generate

one-off plans. At least with current technology, these examples are infeasible

for use in a real-time application as they will take far too long to generate

a suitable plan. If GP is to be used in the off-line generation of generalised

planning algorithms, previous approaches will need to be enhanced.

One way in which this might be done is to use memory. Usually, when humans

solve problems, whether mentally or by computer, they use some store of state

or memory in the form of the brain, a piece of paper or computer RAM. In

most cases when GP is applied to a problem, there is no explicit use of state

or memory which can be manipulated and examined. Andre [1994] discusses

the use of memory using a problem involving digging pieces of ‘gold’ from a

grid world. He divides the problem into two stages — a map-making stage and

a map-using stage. The most complex problem he solves is for a 4× 4 world

containing 10 pieces of gold. The map-maker has access to the world, and to

the memory. It is able to interrogate the world but cannot manipulate it. The

map-user may access the memory and may manipulate the world by moving

around and digging. The map-user is not able to ‘see’ the world directly, only

indirectly via the map. A successful solution requires that the map-maker
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and user agree on a map representation, and correctly generate and read the

map thus collecting all the gold without performing any false ‘digs’ in squares

which are empty.

As was discussed in Section 2.2.1, whilst task planning is important in robotics,

the problem which is being focused on in this dissertation is that of path plan-

ning. Some of the techniques used in this related area may, however, be useful

in GP/GA path planning.

3.11.2 Path Planning

The classical path planning problem has also been tackled by a number of

researchers using GA and GP. GA has been used to evolve an order depen-

dent sequence of trajectory translations to allow the end-effector of a 3-dof

robot manipulator to follow a path between two points [Davidor, 1989; Davi-

dor, 1991]. Each movement of the robot was specified by a tuple of transla-

tions; one for each joint of the arm. The fitness was based on a sum of the

deviations of the evolved path from the desired, straight line path between

the start and end positions. This approach is easy to apply to a more com-

plex robot manipulator, although there will be an inevitable increase in the

computational requirements. It is a one-off planner, in that it plans for a sin-

gle instance of the path-planning problem and does not seek to generalise to

other, unseen instances of the problem.

A number of researchers have worked on an Evolutionary Planner/Navigator

(EP/N), a recent description of which can be found in Xiao et al. [1997]. It

is argued that standard evolutionary approaches are not able to effectively

solve path planning problems, and in response the system is a non-standard

GA approach where the problem is divided into an off-line planner and an

online navigator. This idea is analogous to the idea of off-line planning, and

online obstacle avoidance.
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The off-line system evolves a path encoded as a chromosone containing a

set of points. Special operators are used to modify individual solutions. Al-

though the more standard mutation and crossover operators are used, these

are supplemented with domain specific operators which have been designed

with some heuristic knowledge. They use eight different operators, and have

achieved better results by adapting the operator probabilities during the run

rather than adopting the more usual approach of fixing the operators at the

start of the run. They achieve this by measuring the performance of their

operators in terms of factors like how effective they are at improving paths,

and how costly they are to apply.

Having evolved successful paths off-line, the online navigator uses the pre-

evolved paths to manoeuvre in the world. It is able to modify the paths to

cope with previously unknown obstacles which are encountered. Whilst this

work has many merits, it is still evolving action plans for specific initial and

goal positions. It is interesting to note that in their future work, the authors

consider, like Andre [1994], Teller [1994] and others, that some concept of

memory may be useful in the further advancement of their EP/N algorithm.

An approach used by Zhao and Wang [1998] adopts one of the many variations

on GP. They use the Chromosome-Protein Scheme which uses the familiar hi-

erarchical structures, fitness assignment and evolution of GP and GA, but

the contents of the nodes of the trees are domain independent, as opposed to

domain specific as in GP or GA. The trees contain functions which manipu-

late domain specific ‘amino acids’. In this case the amino acids correspond

to direction ‘road-signs’ which the evolved chromosones placed on a grid rep-

resenting the workspace to direct a virtual robot around the obstacles to the

goal. In [Zhao and Wang, 1998] it is suggested that paths can be successfully

evolved, although the time taken to evolve solutions, nor the regularity with

which success is achieved are reported.

A recent novel approach adopted by Hocaoğlu and Sanderson [1998] uses an

evolutionary approach to evolve a successful path. The representation is an
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Figure 3.7: Path Representation method used by Hocaoğlu and Sander-

son[1998]

ordered set of one-dimensional distances, which are used successively to mod-

ify a straight line between the start and goal. The data structure used lies

somewhere between that of GA and GP in that it is a hierarchical structure

(a binary tree in this case), but all nodes are the same type — there is no dif-

ferentiation between function and terminal nodes as in GP. The construction

of the path is best demonstrated by a diagram as shown in Figure 3.7.

The evolved values d1 to d4 uniquely define points in a path. The root of the

tree shown contains d1 which defines point P1 as the end of the perpendicular

bisector of the line between S and G — the start and goal. The remainder of

the tree is traversed in a pre-order fashion (node first, then left branch, then

right branch). Child nodes to the left define extensions to the graph to the

left, and child nodes to the right define extensions to the right, as can be

seen in the diagram. Once the set of points have been positioned, the path

is defined as the result of traversing the tree in-order (left branch, followed

by current node, followed by right branch), with the start prepended and the

goal appended, resulting in this case in S,P2,P3,P1,P4,G.
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This approach simultaneously evolves a set of points and the order in which

they should be traversed in a very compact representation. It is, however,

limited to planning for a single start, goal combination.

3.11.3 Hybrid Approaches

Sometimes, it is possible to use GA or GP to enhance a pre-existing classi-

cal technique. Genetic Algorithms have been used to generate robot motion

plans for holonomic and non-holonomic robots. Ahuactzin et al. [1992] encode

a sequence of configurations in C-space, or a sequence of move or rotate com-

mands in a bit-string. They also utilise parallelism inherent in GA to speed up

their application on a transputer network. A problem with this approach will

arise when very long paths are required. The bit-string increases with the

length of the path. This work demonstrates the combination of GA and pre-

existing motion planning techniques, namely the use of configuration space,

to arrive at a successful hybrid technique.

More recently the authors have incorporated their approach into a framework

which they have called ‘Ariadne’s Clew’ [Bessière et al., 1993; Mazer et al.,

1998]. They use the original work to perform a local ‘SEARCH’, which is

augmented with an ‘EXPLORE’ algorithm. The Ariadne’s Clew algorithm

first executes a search to establish whether a simple path exists between the

initial and goal positions. If one cannot be found, the EXPLORE algorithm

is used to place a ‘landmark’ somewhere in the workspace. SEARCH is then

used to try to find a path between the landmark and goal. If, again, a path

cannot be found, the EXPLORE algorithm is used to place another landmark.

The landmarks are distributed evenly over the workspace. The SEARCH,

EXPLORE cycle is repeated until a path (if one exists) is found.

Genetic Algorithms are used to perform path planning in Artificial Potential

Fields (Section 2.9) by Rylatt et al. [1995]. The ability of GA to efficiently

search a space is used to find configuration sequences between the known
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initial and goal configuration which avoid obstacles in the environment. They

conclude that using APFs to characterise the problem space reduces the high

computational requirements associated with applying GA to path planning.

The emphasis within the research of Rylatt et al. [1995] is on deriving a path

from an APF, in contrast with the work presented in Chapter 5 which seeks

to improve the quality of the APF itself. Rylatt et al.’s [1995] work could be

combined with the work in Chapter 5 in the future construction of a complete

planner.

3.12 Summary

The use of Evolutionary Algorithms, and more particularly those of Genetic

Algorithms and Genetic Programming have been presented with a view to

their application to path planning. Problems associated with the techniques

have been highlighted and addressed, in particular the problem of the greedy

nature of GP with respect to processor and memory resources. Previous ap-

plications of GA and GP to path planning applications have been explained.

These applications are all worthy in their own right, but none of them seek

to generalise, and in most cases will not be scalable to higher dimensional

problems as the computational requirements rapidly increase.

Having identified a domain in path planning, and a technique for tackling

this domain, the forthcoming chapters will describe methods in which new

approaches to path planning using GA and GP have been implemented.

Despite the drawbacks, it is considered that GA and GP are both, neverthe-

less, suitable tools to tackle the path planning problem, in light of their previ-

ous successful application to planning and other problems. The forthcoming

chapters describe new applications of GA and GP to path planning and eval-

uate the success of these approaches.
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4

Evolving a Planner with Genetic Programming

4.1 Introduction

This dissertation has so far identified the need for capable path planning tech-

niques, and has identified shortcomings in traditional approaches. The fields

of GP and GA have been suggested as useful methods to apply to the path

planning problem. Existing applications of GP which perform planning have

been reviewed, but it has been seen that these tend to produce one-off solu-

tions, rather than generalised solutions which can generate paths to problems

which they have not necessarily seen before. This chapter explores the idea

of implementing a generalised path planning system using GP.

Although the path planning problem used throughout this chapter seems

quite simple, the aim of using a computer to automatically evolve a general

planner, or planning rule, rather than a single path is rather ambitious. The

domain knowledge which a human programmer can add to a manually devel-

oped planner is discarded, and the GP process is left to discover the knowledge

needed to solve the problem for itself.

In this chapter the path planning problem is explained, and is tackled us-

ing a variety of different GP approaches. The first evolves a rule to generate a

complete robot plan for a given initial and goal position by outputting instruc-

tions which can be directly followed by the robot. The second approach learns
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to output a distance transform for a given problem. This involves outputting

a ‘distance-to-goal’ value for each position in workspace, such that the robot

can follow these distances in a gradient descent manner to reach the goal.

The final approach uses GP to predict the next step to take. For a given posi-

tion and goal, it outputs the next direction in which the robot should travel in

order to move closer to the goal.

4.2 A Path Planning Problem for GP

Having looked at various different planning problems over the last two chap-

ters, it is worth re-stating the problem to be tackled in this dissertation. The

aim is to produce a plan to navigate a robot between an initial and goal posi-

tion in an environment containing obstacles. The ideal situation is to produce

a system which takes as inputs, the initial position, goal position and a de-

scription of the environment and outputs a plan which can be sent to the

robot. A further aim is that the rule should be general in that it should be

capable of producing a plan for a similar problem, such as one with different

initial conditions or different obstacle positions.

The scenario tackled in this chapter is a problem which involves moving a

simple translational robot around a 5×5 grid as shown in Figure 4.1. The grid

contains three obstacles at coordinates (2,4), (3,3) and (4,2) and is bounded

on all sides by walls which are effectively constructed of obstacles. In this

way, the grid is non-toroidal. The robot moves one step at a time north, east,

south or west. The problem to be solved is that of moving the robot within the

grid from an initial position (xi,yi) to a target position (xg,yg).

Such a small grid makes it easy to solve the problem simply by executing

a random walk, however what is required is that the trajectory followed is

optimised with respect to the number of moves made by the robot. A move

is counted as an attempt by the robot to move in any of the four directions,

even if that move would result in a collision with a wall. When a collision
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Figure 4.1: 5×5 grid used in simple path planning problem

does occur, a move and a collision are counted, but the robot position remains

unchanged. The robot is then allowed to continue. This assumes that in a

real application, a collision detection system would be present as a failsafe to

prevent invalid plans causing damage.

The aim is therefore to plan the shortest, collision free trajectory from an ini-

tial to a goal position. Furthermore, it is required that a solution work not

only for a single case of initial and goal position, but for all possible cases.

With this small grid, a program can be easily written to generate paths for all

462 cases which exhaustively searches for paths. However, for more complex

path planning problems, an exhaustive search may be intractable. Generat-

ing a solution to this simple problem without exhaustive search will lay foun-

dations on which to base future research into techniques which may provide

the solution to complex path planning problems.

The proposed result of this piece of research is a rule or function which may

take some inputs, perform some evaluation and produce corresponding out-

put. This type of problem fits naturally into the remit of GP. GP can be used

to evolve solutions which are programs or rules expressed in a language based
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on the problem domain. If GA were to be used for this problem, an abstract

representation would need to be devised which could be interpreted as a rule

which in turn could be used to produce the desired output. It is not the case

that GA is not as able as GP at solving problems — indeed they rely on the

same underlying mechanisms for their success — rather it is more intuitive

to use GP for the human programmer.

In this chapter, which makes a first attempt at addressing the path planning

problem, the classical work reviewed in Chapter 2 is somewhat put aside.

When applying evolution to solving a problem with a computer, there must

be an acknowledgement that the human understanding of the mechanisms

which surround the problem at hand are insufficient, or that the application of

this understanding is beyond the capabilities of a human programmer. When

setting out to solve a problem using GA or GP, care must be taken not to build

in too much domain knowledge such that the evolutionary search is in the

wrong direction, and prevented from ever finding its own way towards better

solutions.

The application of GP to the problems in this chapter was carried out using

custom software written in C. In most part runs were executed on a single

processor Pentium machine running Linux. On occasions, for large runs, ex-

ecution was carried out on a small network of Pentium powered Linux ma-

chines, or on SUN SPARCstations, using the parallel approach as described

previously in Section 3.9. The evaluation of the fitness for the problems was

achieved using a simulation and not with feedback from a real robot.

4.3 Evolving a Planner using GP

This section describes an approach whereby GP is used to evolve a rule which

inputs the maze, initial position and goal position, and outputs a complete se-

quence of moves which will successfully navigate the robot along an optimum

path between the initial and goal positions.
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It has become commonplace to follow the example of Koza [1992] in describing

the application of GP to a problem in a tableau. The tableau for this problem

is shown in Table 4.1, however further explanation of this GP application will

be given during the remainder of this section.

Objective: Evolve a program which generates the actions to move
a simple robot on a collision free trajectory between two
points on a 5×5 grid.

Terminal set: xi, yi, xg, yg, R
Function set: iflt, ifgt, ifeq, ifobs, branch2, plus,

minus, north, south, east, west
Fitness: Mean distance to goal over all fitness cases —

see text for more detail.
Fitness Case: 50 training cases, consisting of a pair of coordinates — an

initial and a goal position
Parameters: population = 200, generations = 600, program size <= 200,

crossover = 0.70, reproduction = 0.28, mutation = 0.02
Success predi-
cate:

Distance to goal for all cases = 0

Table 4.1: Tableau for Evolving Robot Plans

4.3.1 The GP Approach

If the aim of this work was to produce a one-off solution to a specific ini-

tial/goal position problem, the representation scheme could consist only of the

robot actions as terminals, which could be combined using some unconditional

branching functions. However, this problem requires different outputs from

the evolved rule in response to different inputs of initial and goal position. It

is, therefore, necessary to include these input arguments in the terminal set,

whilst the robot actions are included in the function set. The features which it

was decided should be captured in the representation scheme were identified

as:

• The initial and goal positions would need to be available in the function

set.
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• The rule would need a means of ‘seeing’ the maze with a querying func-

tion.

• The rule would require some ability to reason about the information it

was receiving from the input to the problem, otherwise there would be a

danger that a lookup table would be evolved rather than an ‘intelligent’,

general rule.

• The robot actions needed to be included somewhere in the representation

scheme.

Terminal Set

The terminal set is fairly straightforward, containing the four coordinates

which define the problem as well as a single random constant R ∈{0, 1, 2, 3, 4}.

The representation scheme is an unusual hybrid. The data type for the pro-

grams is integer, however the members of the function set are not what would

be classed as normal integer operators.

Function Set

The function set contains four conditional operators: iflt, ifgt, ifeq, ifobs.

These each have four sub-trees. The first three functions iflt, ifgt and

ifeq perform a comparison on the evaluation of the first two sub-trees; less

than (<), greater than (>) or equal to (=) respectively; and then execute the

third sub-tree if the comparison is true, or the fourth sub-tree if the compari-

son is false.

The final conditional operator ifobs takes the results of the evaluation of

the first two sub-trees and treats them as an x and y-coordinate. If there is

an obstacle at the position (x,y), then the third sub-tree is executed, otherwise
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the fourth sub-tree is executed. The fourth sub-tree is also executed if the co-

ordinates fall outside the boundaries of the maze. This operator was included

as an attempt to allow the evolved programs to ‘see’ the maze.

Each of these conditional operators returns the integer value which resulted

from the evaluation of the third (TRUE) or fourth (FALSE) subtree.

The next two functions, plus and minus, return an integer corresponding to

sub-tree 1 +/− sub-tree 2.

The next four functions generate the robot actions. Actions are often found

in the terminal set as in the artificial ant problem, however for this problem

it was decided that movement functions rather than terminals would be used

to enable the execution of multiple actions. This approach has been used

previously, for example by Andre [1994]. The four action functions therefore

each have a single sub-tree. The result of this sub-tree dictates the number

of times that the action is executed. Similar functionality could have been

achieved by using a two argument function which unconditionally executes

one sub-tree n times, where n is determined by evaluating the other sub-tree.

Finally the function branch2 permits unconditional two-way branching. First

it executes sub-tree 1, followed by sub-tree 2. The result of sub-tree 2 is re-

turned for use as an argument by higher level nodes.

4.3.2 Fitness

The difficulty with measuring fitness for this problem, is that there are more

than one criteria which need to be met for the problem to be solved — that

is, it is a multi-objective function. When travelling in a car, it is nice for the

journey to be completed as quickly as possible, but there is also a require-

ment to conserve fuel as much as possible. It is difficult to meet both these

objectives because they can conflict. Not moving at all will conserve fuel, but

will not help to complete the journey quickly. Driving very fast will complete
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the journey quickly, but because the engine is operating at above its most fuel

efficient speed, economy will be compromised. The primary objective for the

path planning problem is that the robot should reach the goal position. How-

ever, there are also secondary objectives that the robot should minimise the

number of steps taken to reach the goal, and should not collide with obstacles

during its journey.

The primary aim of making the robot arrive at the goal was achieved by using

a distance measure:

Euclidean Distance

The first, and most crude fitness measure used was to compare the distance

between the final position of the robot and goal after the execution of the GP

generated rule instantiated with specific initial and goal positions. The fitness

assigned was
√

x2 + y2, where x and y are the distances between the start and

the goal. Therefore the perfect fitness, when the robot finishes at the goal, is

0.

Distance Transform

The distance transform, or J-function value [Werbos and Pang, 1996] has been

used in robot path planning because of its simplicity, and its ability to cope

with multiple goals [Zelinsky, 1992]. The distance transform has also found

applications in computer vision [Rosin and West, 1995]. Although it is simple

to compute it can be computationally expensive for large search spaces. The

distance transform in the context of this problem is simply the number of

robot steps along the shortest path between the current position and the goal.

The distance transform accurately measures the performance of a solution to

the problem, because it takes account of the distance which must be travelled

to move round an obstacle. Euclidean distance only measures a straight line
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passing directly through obstacles if they happen to lie in the line of sight

between the robot resting position and the goal. In practice it is much easier

to calculate the Euclidean distance, than the distance along the path.

Multi-objective Fitness

For this problem, when using distance alone, good solutions will be encour-

aged to move towards the goal, but they may not necessarily take a very di-

rect route and they may also collide with obstacles on the way to the goal. To

counter this problem the fitness can be made to include a path length term,

and a collision term rather than distance alone. However, the inadvertent

result is that GP very quickly determines that an efficient way of avoiding

collisions and minimising path length is to evolve a rule which causes the

robot to remain stationary irrespective of the input. Therefore, by attempting

to improve the fitness measure, the result has been quite the opposite.

This non-moving solution occurs because early in the GP run, a relatively good

fitness is assigned to those individuals which do not move at all. Because the

first generation in the run is generated randomly, it is likely that several non-

moving individual programs will exist. The relatively good fitness assigned to

these individuals allows them to prevail in favour of other individuals which

do move towards the goal and therefore are likely to collide and therefore

incur a fitness penalty for path length.

One way of addressing this problem is to apply a multiplier or weight to each

fitness term in the fitness vector to indicate the relative importance of each

term [Zhao and Wang, 1998]. If the scaling of the secondary fitness terms

is relatively low, the population will not be polluted by non-moving individ-

uals early in the run. The scaling must also be sufficiently high such that

the fitness terms do have a sufficient effect on the solutions — too low a scal-

ing factor and they will influence the evolutionary process little or not at all.

Simon Kent 90 March 1999



Chapter 4. Evolving a Planner with Genetic Programming

Another problem to be considered is that each fitness criteria may be capa-

ble of returning values from different ranges [Bentley and Wakefield, 1998].

The weighting factors may be doing two jobs: unifying the fitness ranges, and

determining relative importance.

A more dynamic approach attempted, was to teach GP to produce good solu-

tions by gradually raising the expected standards over the course of a run.

This is achieved by applying a weight to the secondary fitness terms which

is a function of the progress of the run, for example ( g
gmax

)n. This results in

the initial fitness of individuals to be assigned only using distance, but as the

run progresses towards final generations, the secondary fitness terms become

significant as their weighting increases.

Another dynamic approach which has been tried is to set the scaling factor

or weight applied to the secondary fitness terms to be a function of the pri-

mary fitness term. This adaptive approach only introduces secondary fitness

requirements as performance against the primary fitness improves. If this

causes a degradation in the primary fitness term, the importance placed on

the secondary terms is played down. This approach is rather like the adap-

tive learning rates used in neural networks to adjust the rate at which error

is propagated back through a network in order to adjust the weights and im-

prove the performance of the network [Noyes, 1997].

4.3.3 Training Cases

For this problem, a single maze was used, that being the 5×5 maze shown in

Figure 4.1.

The fitness used was:

1
cases

cases

∑
i=1

di +w(ci +mi) ,
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where di is the distance between goal and the robot’s resting position for case

i and w is the weight applied to the secondary fitness terms ci and mi which

are the number of collisions and moves incurred by instantiating the evolved

rule against fitness case i.

4.3.4 Results

Experiments were carried out primarily to determine whether a good rule

could be evolved for this problem. However, the best method of dealing with

the multi-objective nature of this problem was also tested.

The tree shown in Figure 4.21 represents an example of a rule generated using

GP. It was evolved using a population of 200 individuals and arose at genera-

tion 978. The fitness of this individual is 0.9675, which is the mean number

of grid-squares between the resting position of the robot and the goal.

The full tree shown in Figure 4.2 is uneditted. A manually editted version is

shown in Figure 4.3. The unused branches have been removed from this tree,

and remaining nodes have been simplified.

The graphs in Figure 4.4 demonstrate the effect on the performance of the best

individual from each generation by setting n to 1, 2, 3 and 4. The parameter n

determines how quickly the weighting of the moves and collisions parts of the

fitness is increased. For the special case where n = 0, the weight is held at 1.0,

and therefore the secondary factors are given full consideration. In this case,

all runs immediately converge to solutions which do not move. For subsequent

values of n, the use of the scaling according to run progress seems to postpone

this effect. The gradual increase in the consideration of secondary fitness

terms eventually causes the sudden emergence of a non-moving individual

which then prevails for the remainder of the run.
1All trees in this dissertation were plotted using daVinci v2.0.3 [Frölich and Werner, 1996]
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Figure 4.2: Uneditted planner evolved with population size=200

The use of the adaptive weight was more successful, and it was found that,

on average, the performance of best individuals incurred less moves and col-

lisions than for the distance only fitness approach, but the mean distance to

goal increased. Two graphs are shown in Figure 4.5 which allow comparison

between an approach which does not use adaptive weights, and one which

does. Each graph shows the mean values from ten differently seeded runs.

The runs have only been executed to 50 generations to allow the details to be
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Figure 4.3: Edited planner evolved with population size=200

seen more clearly.

A summary of the best results evolved using various approaches is shown in

Table 4.2. The first fitness method uses only the resting distance between the

robot and the goal. The second also uses a sum of the distance, the number

of collisions and the number of moves made by the robot. No weighting was

applied to the secondary criteria. The result is the non-moving individual de-

scribed above. Results for this experiment are given to allow comparison of

the distance to goal achieved. The third method scales the secondary fitness

criteria by a function of the generation number. The fourth, and most success-

ful approach is that using adaptive weighting. From this table, it can be seen

that the best results come from the use of adaptive weighting of the secondary

fitness criteria.
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Figure 4.5: Demonstration of improvements achieved using adaptive sec-

ondary fitness weighting

4.4 Evolving Distance Transform

Given the lack of sufficient success for the previous approach, it was de-

cided that GP would be applied in a different way. This dissertation con-
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Fitness Method SEEN UNSEEN

(see key below) gen. dist. collide moves % at goal dist. collide moves % at goal

1 511 0.7811 9.07 14.75 41% 1.2844 8.31 14.53 27%

2 0 2.6769 0.00 0.00 0% 2.9508 0.00 0.00 0%

3 559 2.0700 3.80 7.00 0% 1.8159 3.51 6.73 16%

4 688 1.2443 1.30 4.02 48% 1.1844 1.31 3.59 50%

Key to fitness types:

1. minimise distance to goal only
2. minimise distance + moves + collisions
3. minimise distance + secondary scaled by generation no.
4. minimise distance + adaptive weighted secondary fitness

Table 4.2: Comparison of results of Simple Path Planning Experiments

centrates on evolutionary approaches to path planning, however, it is worth

noting that neural networks have also had a part to play in path planning

[Harsten, 1990].

Werbos and Pang carried out research on generalised path planning detailed

briefly in their published paper [Werbos and Pang, 1996] and in more detail in

[Pang and Werbos, 1998]. Their work uses Simultaneous Recurrent Networks

(SRNs), and adaptive critics [Barto et al., 1983] which are based on approx-

imate dynamic programming (ADP) — the state-of-the-art in neuro-control.

They claim to be able to solve a generalised Maze Navigation problem using

SRNs which cannot be solved by more traditional feed-forward or Hebbian

networks.

They solve the problem by using a network architecture which places an 11-

input, 5-neuron, 5-output net over each grid-square. The inputs indicate

whether the square is an obstacle or goal square; they also take input from

the four neighbouring cells, and the current cell itself. The weights are not

different for each cell, but instead are shared between the nets at all cells.

The inputs and outputs are obviously different at different cells. The idea

of placing a neural node at each grid cell follows on from work which uses

a network of automata to approach a path planning problem [Houillon and
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Caron, 1993].

The problem to be solved does not appear complex, but it is correctly argued

by Werbos and Pang [1996] that it is valid to attempt such a problem, because

if it cannot be solved then there is little point trying to solve more complex

problems. He draws an analogy between this 5×5 maze and the XOR problem,

which for some time posed a problem in the field of neural networks because

it is a linearly inseparable problem which could not be solved by the simple

perceptron [Minsky and Papert, 1969]. It is therefore justified to use what

appears to be a simple problem as the focus of the experiments.
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Figure 4.6: 5×5 grid overlaid with a J function landscape

This section presents the use of GP to learn to approximate a function which

maps a tuple (x,y,xg,yg) to a distance representing the shortest number of

steps between the current position (x,y) and the goal (xg,yg); that is, the dis-

tance transform discussed earlier. This distance is referred to in this section

as J as per the Werbos and Pang work. The problem is again applied to a

5× 5 grid. Figure 4.6 shows such a grid overlaid with values representing a

J-landscape for xg = 4, yg = 4. There are a total of 22 such grids, of which

this is one example. The intention is to generalise by training a rule using
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only a subset of the total possible examples, which can later cope with unseen

inputs.

It has been noted previously that the distance transform is more difficult to

determine than the more straightforward Euclidean distance. If, however, a

successful rule can be trained using relatively few training examples, the time

saved may justify the approach. There are 462 possible initial and goal posi-

tion combinations for a 5× 5 maze alone. If a successful rule can be evolved

with 10 or 20% of these combinations, and the time taken to evolve the rule is

less than the time taken to compute using a brute force approach the remain-

ing 80–90%, then it is useful to use GP.

4.4.1 The GP Approach

The evolution of a distance transform is, in essence, a function approxima-

tion problem. Unlike the previous approach, it is easier to find a function and

terminal set which fits well with the domain. In fact the domain has been

changed from a robot action oriented approach to a functional approach. A

layer has, therefore, been added to the problem, as solving the problem no

longer involves directly executing the evolved rule. Instead, a simple algo-

rithm follows the direction of steepest descent of the function evolved. Once

again a tableau is given Table 4.3. This approach has another appealing ad-

vantage, given the problems encountered previously, in that multi-objective

fitness is not required.

The terminal set provides a set of inputs consisting of two pairs of coordinates

for the current and goal position. It also contains two other symbols, OBS

and GOAL. These are effectively boolean variables taking the value 1.0 if

the current position, defined by (x,y), coincides with an obstacle or the goal

respectively. For any other grid position, these symbols are set to 0.0. The

terminal set also contains a random real variable which may take a value in

the range 0.0–5.0.
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Objective: Evolve an algorithm to output the distance transform for
a given current position and goal for a translational robot
in a 5×5 maze.

Terminal set: xpos, ypos, xg, yg, OBS, GOAL, R
Function set: +, -, /, *
Fitness: Mean Square error over fitness cases.
Fitness Cases: Between 1 and 23 grids of distance to goal values — see

text for more detail.
Parameters: population = 200, generations = 1000, program size <=

150,
crossover = 0.70, reproduction = 0.28, mutation = 0.02

Success predi-
cate:

Mean Error = 0

Table 4.3: Tableau for Approximation of ‘distance transform’ problem

4.4.2 Fitness

The fitness measure used was a mean square error, that is:

1
n

n

∑
i=1

(Ja − Jd)
2 ,

where Jd is the desired value from the training data, and Ja is the actual

value generated by the evolved algorithm. The number of data values n varied

according to the number of training grids used — n = 22 for a single grid to

n = 506 when all the available data is used.

The available training data for this problem comprised a set of 23 grids of

the type shown in Figure 4.6; one for each of the 23 possible goal positions.

Various runs were carried out varying the amount of training data.

4.4.3 Results

A series of runs were executed using training data consisting of 1, 5 and 8

training grids. Training for a single goal as per the Werbos and Pang experi-

ments, a per square error of 0.66 was achieved. This number does not really

mean very much, so it is better to see the resulting grid in Figure 4.7 and

compare it with the correct grid in Figure 4.6. Comparing these results with
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Pang and Werbos’s [1998] report, the error is significantly better than their

use of a Simultaneous Recurrent Network (SRN) trained using truncation,

for which the mean error per cell was 2.30. The GP approach, however, did

not perform better than their use of an SRN trained using Back Propagation

Through Time (BTT) for which the mean error per cell was only 0.18.

When trained against 5 grids of data, the performance worsened, yielding a

mean error of 1.53 per grid square. When trained against 8 grids, the perfor-

mance decreased further to 2.68. This progressive worsening of the results

conflicts with the intuitive view of supervised learning, the reason for this is

discussed in chapter 6. As the number of training grids increased, a tendency

towards a homogeneity in the J values output can be observed. An example of

this for the 5 grid experiments can be seen in Figure 4.7, as can the extreme

case for the 8 grid experiments.

Avoiding Obstacle Evaluation

If it were not for the obstacles in the environment, this path planning prob-

lem would be made very much easier. Obstacles represent discontinuities in

the ‘distance to goal’ landscape, and are therefore difficult to deal with. The

approach used was to assign a high ‘distance to goal’ value for an obstacle.

The experiments here have also used this approach by attaching a value of

10 to obstacles — a value which is known to be higher than any other valid

distance to goal.

Using this technique meant that sharp peaks appear in the landscape gen-

erated by the evolved GP function. When the target position is adjacent to

an obstacle, a high gradient must exist between two adjacent points in the

function, and when the target is further away from an obstacle, the gradients

are gentler. The evolved algorithm must capture this requirement to adjust

the gradient rapidly to small changes in domain variables.
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With Without
Obstacles Obstacles

Seed Fitness at gen. Fitness at gen.
1 10.928 68 9.755 494
2 9.574 497 9.325 377
3 9.857 476 10.042 459
4 10.095 496 10.089 81
5 10.971 25 8.700 398
6 9.171 347 8.874 274
7 10.084 423 8.336 493
8 8.262 456 10.565 2
9 10.090 265 10.095 499
10 10.083 175 10.095 451
11 9.320 311 10.655 8
12 10.098 99 8.920 174
Mean 9.878 9.621

Table 4.4: Results of Obstacle Evaluation comparison runs

A simple experiment was carried out to look at the difference in performance

of the system when evaluating GP individuals at obstacle coordinates, and

when excluding evaluation at these discontinuities. Two sets of runs were

executed with the intention of collecting the fitness of the best individual from

each run and to try and draw conclusions as to which method was best.

The results of these runs are shown in Table 4.4. Twelve, differently seeded

runs were started for each scenario. The fitness of the best individual from

each run, and the generation number at which that individual first appeared

is given. The fitness reported for each run is the mean sum of the squared

errors over a 5×5 grid. So, for example 10.928 represents a mean square error

of 10.925/25 = 0.437 per grid square. It can be shown using, the t-test [Rees,

1989], with 95% confidence, that the mean fitness from the two methods are

equal, therefore there does not seem to be any advantage in using one method

over the other.

Whilst it was hoped that one method would result in more fit individuals

than the other, this could not be demonstrated. However the similarity in the

results does confirm that it is not necessary to evaluate at obstacles, which
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means a time saving can be gained without degrading the performance of the

algorithm.

4.5 Evolving a Next Step Predictor

The evolution of a distance transform function yielded more positive results

than the direct evolution of a robot program, however there was still scope

for improvement. The final alternative presented in this section again uses

a function approximation approach, similarly to the distance transform ap-

proach described previously. The function which is sought to be approximated

in this approach is one which maps an input tuple (xpos,ypos,xg,yg) as per the

previous problem, and outputs a number in the interval [0..3] corresponding

respectively to the robot moving north, west, south or east — whichever di-

rection results in the robot moving along an optimal path from the current

position towards the goal.

The idea is demonstrated in Figure 4.8 where the top left grid shows the

distance transform for a problem where the goal is at (4,4). The top right grid

shows the corresponding direction in which the robot should move in order to

follow the optimum path to the goal. Finally, in the bottom right of the figure,

the numerical values corresponding to the direction are shown. It should be

noted that in some cases there are more than one direction which are equally

good. When this situation occurs, the lower number is chosen — this is an

arbitrary choice.

4.5.1 The GP Approach

The setup for this problem is very similar to the previous distance transform

approach. The main difference is the difference in the training data. The

tableau for this problem is given in Table 4.5.
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Figure 4.8: Diagrammatic explanation of the next step function
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Objective: Evolve an algorithm to output a number indicating the di-
rection of the next step which should be taken by a trans-
lational robot to travel along the optimal path between two
points in a 5×5 maze.

Terminal set: xpos, ypos, xg, yg, OBS, GOAL, R
Function set: +, -, /, *, cos, sin, pow, exp
Fitness: Function of the optimum number of moves for the given

fitness case (See Section 4.5.2)
Fitness Cases: 174 initial/goal position pairs, i.e. journeys
Parameters: population = 200, generations = 60, program size <= 100,

crossover = 0.70, reproduction = 0.28, mutation = 0.02
Success predi-
cate:

Mean Fitness = 0

Table 4.5: Tableau for Next Step Prediction problem

4.5.2 Fitness

A new fitness function was used to take advantage of the full knowledge now

available to the evolutionary process. The fitness is the sum of the differences

between the distance values along the optimum desired path and the actual

path taken by the robot.

Fitness =
t=T

∑
t=1

D(t) ,

where T is the total number of moves and D is a distance function.

The total number of moves is defined as,

T =







ma when ma > md

md when ma ≤ md

,

where ma and md are the actual and desired number of moves for the current

fitness case.

The distance function is defined as,

D(t) =







J(xa(t),ya(t))− J(xd(t),yd(t)) when t ≤ ma

J(xa(ma),ya(ma))− J(xd(t),yd(t)) when t > ma
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where xa(t), ya(t), xd(t), yd(t) are the coordinates of the position on the actual

and desired paths respectively at time t, and J(x,y) is the number of moves

from position (x,y) to the goal.

4.5.3 Results

The results for this final GP approach are shown in Figure 4.9. The results

are presented by showing three examples selected from the best run made.

Over all cases, a path to the goal could be found for 66% of initial positions in

the training set, and 45% of initial positions in the validation set. The three

grids in Figure 4.9 show results for three different goal positions — (1,1), (5,4)

and (3,4). The grey grid squares highlight positions on that grid from where

a successful path to the goal can be found. Those grid positions marked with

an asterisk are ones which appeared in the training set.

Particularly given that the size of environment used for these experiments is

only 5×5, it was hoped that this approach would perform much better. It very

much seemed that the fitness and representation scheme for this approach

did not enable the obstacles to be seen sufficiently. A neural approach taken

by Dracopoulos [1998] gave rise to considerably better results. This is perhaps

due to the environment being used as an intrinsic part of the neural network

architecture, in a similar way to Werbos and Pang’s [1996] approach described

earlier in this chapter.

4.6 Summary

This chapter has presented a number of approaches in which GP has been ap-

plied to a simple path planning. On this particular problem, it seems evident

that the neural approaches of both Werbos and Pang [1996] on the distance

transform problem, and Dracopoulos [1998] on the next step prediction prob-

lem perform somewhat better than the evolutionary approaches used here.
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Figure 4.9: Results of the next step prediction path planner

Even these neural approaches are not without their fault. In all cases, a sim-

ple 5×5 grid has been used for experiments, and it is easy to imagine the in-

crease in memory and computational requirements which will be experienced

when scaling the problem up to something closer to a real problem. In per-

sonal communication Werbos [1998] states that performance degraded when

attempts were made to generalise using his approach. The inevitable training

time versus performance dilemma came into play. Although in this case, neu-

ral approaches proved to be better than evolutionary ones, they are both very
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susceptible to the effects of making the problem more difficult. The evolution-

ary approach is not implicitly bound to the dimensionality of the problem as

is the neural approach.

The reason for applying neural or evolutionary approaches to the path plan-

ning problem is that humans lack a sufficient understanding of how to solve

the problem to be able to design an algorithm themselves. It is, therefore,

difficult to know exactly why the approaches adopted did not perform as well

as expected. The best explanation that can be given for the evolutionary ap-

proaches is that they cannot adequately ‘see’ the environment. With the neu-

ral approach, the network was effectively overlaid on the grid, enabling it to

‘see’ the whole of the environment. Functions were included in the GP ap-

proach to query the environment, but this proved to be insufficient. It may

be possible to input the environment in the terminal set of the representa-

tion scheme, but this will dramatically increase the size of the terminal set,

resulting in an explosion in the size of the search space for the problem.

Although none of the attempted approaches demonstrated the performance

hoped for, the most promising results came from the function approximation

approaches. In the meantime, the failings of these approaches will be ac-

knowledged, and a different direction is taken. In the next chapter, an alter-

native approach will be adopted, whereby a successful classical approach is

augmented by evolutionary approaches.
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5

Genetic Algorithm Optimisation of
Artificial Potential Fields

5.1 Introduction

At the end of the previous chapter, it was acknowledged that the application

of GP alone, although providing useful results, unfortunately did not offer a

suitable foundation on which to build a full robotics planning system. This

was because suitable means could not be found to enable the evolved algo-

rithm to ‘see’ the environment for which it was planning.

The best results from the Chapter 4 were from the function approximation

approaches. One of these evolved a function to output a distance transform

approximation. This distance transform is a sort of artificial potential field

(APF) laid over the workspace which a planner can follow to reach the goal

from any position. This method of using an artificial potential field has been

used previously for robot path planning and obstacle avoidance, and was de-

scribed in Section 2.9.

Having discarded all classical approaches in the previous chapter, this chap-

ter seeks to combine an evolutionary technique, GA, with a classical path

planning technique, APF path planning. The GA is used to try to improve
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shortcomings in the basic APF technique. The techniques adopted are de-

scribed, presenting problems which arose and the manner in which they were

addressed. In Chapter 4, a single maze was used throughout, as different GP

approaches were adopted to try and achieve a successful planner. In this chap-

ter, success is much more forthcoming, and therefore results are given show-

ing how the proposed planner performs in different environments of varying

difficulty.

5.2 Artificial Potential Fields

Artificial potential fields [Khatib, 1986; Khatib, 1980] are constructed in a

virtual robot environment by assuming a positive charge is placed on the robot

and the obstacles in the environment, and a negative charge is positioned at

the goal. This has the effect of attracting the robot towards the goal, while

repelling it from the obstacles.

The potential field acts on a single point, and whilst many robots do not

conform to this specification, it is, however, possible to reduce more compli-

cated robots to a single point problem by using the C-Space approach (see

Section 2.5.1). Alternatively, a robot can be reduced to a number of control

points, situated, for example at the joint positions of a robot manipulator. In

this case a potential field is constructed for each control point, and the effects

of all the potential fields on the control points are considered simultaneously

in order to move the robot.

The main problem with the APF technique is that the theory that the robot

will be pulled towards the goal without collision is not always borne out in

practice. Although the robot does not collide with obstacles in the workspace,

it can become ‘stuck’ part way through its journey because the attractive and

repulsive forces at a particular configuration cancel each other and cause the

robot to halt, or to oscillate around a few adjacent configurations. This situa-
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tion occurs at a well in the field which does not coincide with the goal — that

is, it is a local minimum, rather than a global minimum.

Despite this drawback, the technique is very attractive due to its simplicity

and the speed with which the necessary computation can be performed. In

theory there are techniques, such as exhaustive search, which are guaranteed

to find a global solution to any path planning problem if one exists, but are

unable to produce timely results.

This chapter describes an approach which adopts the positive points of the

APF approach and which uses GA to reduce the drawbacks.

5.3 Potential Fields for Global Planning

Although the original use of potential fields was for obstacle avoidance, they

have also been used for motion planning [Latombe, 1991] as they are easy

and fast to compute. Although potential fields offer an appealing means to

perform path planning, they suffer from the problem of spurious local minima,

because they are essentially local methods. This means that during its route

towards the goal, a robot may halt prematurely at a point in the workspace

where the potential is lower than in the local vicinity, but is not the lowest in

the workspace. For global planning there should only be a single minimum

point at the goal — the global minimum.

5.3.1 Numerical and Analytical Approaches

Methods of constructing artificial potential fields can be broadly broken down

into numerical and analytical approaches. An analytical approach involves

using a function which defines the APF, and to yield any specific value in the

potential field, the function parameters are instantiated to represent a given

configuration. A numerical approach, on the other hand, involves generating
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a lookup table of potential values by processing the configuration space, or

workspace of the problem domain.

In Section 4.4, GP was used to approximate a distance transform by evolving

a function which, when supplied with inputs would generate a corresponding

distance-to-goal value. The function being evolved is very similar to an analyt-

ical potential field function. During the training of this function, sample data

was provided which the GP process sought to approximate. This training data

was generated numerically, by exhaustively processing the path planning en-

vironment. A simple algorithm was used which labelled the goal as ‘1’, and

used a wavefront expansion process to recursively label all the neighbours of

the current cell, incrementing the label at each square by one as it moved

further from the goal.

The result of such a numerical approach is a potential field from which a

global navigation function can be very easily constructed. The steepest neg-

ative gradient is followed from starting position to the goal. If no path exists

from the initial position to the goal, this can be immediately recognised be-

cause the wavefront expansion will not have been able to assign a potential

value to an inaccessible square, in the same way as a fill algorithm in a graph-

ics package will not fill inaccessible areas of the picture.

The simplicity and effectiveness of the numerical approach makes it an excel-

lent choice for some path planning problems. However, as the environment

grows, the effort required to numerically generate the field will grow. For

the small 5× 5 maze used in Chapter 4, the construction of this field took

only a few seconds, even when repeated 22 times for each possible goal. As

the workspace grows to three or more dimensions, the approach loses its ap-

peal as the computational requirements increase explosively [Latombe, 1991,

Chapter 7].

The analytical approach is appealing in that a single function can be used

to generate only the values in the potential field which are required to make
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the path, and not the values for the whole grid, as required for wavefront

expansion. Typically values will be required for all configurations on, and

adjacent to, the optimum path. The problem with the analytical approach is

that which has been repeatedly mentioned — the occurrence of local minima

in the potential field. This chapter describes how GA can be used to minimise

the drawbacks of APF for path planning.

5.3.2 Global Navigation Function

When performing path planning, what is aspired for is a global navigation

function — that is a function which maps all the free space in the workspace to

a real potential value, and has a single minimum located at the goal [Latombe,

1991, Chapter 7].

It would be desirable to have an analytical function which has only a single

minimum which occurs at the goal. Unfortunately, it has been shown that, in

general, an analytical function cannot be made which generates a potential

field with only a single minimum [Koditschek, 1987]. He has demonstrated

that, with certain specific worlds containing elliptical or spherical objects, a

potential function must contain at least as many saddle points as there are

obstacles.

Despite the spurious minima inevitably present in artificial potential fields, if

the effect of these drawbacks can be reduced sufficiently, then the speed, and

ease with which the APF approach can be applied still allows it to offer an

attractive method for use in global planning.

5.4 A new Method for improving Artificial Potential Fields

A stock function for creating an APF is that originated by [Khatib, 1986]:

Uart = Uxd(x)+UO(x) ,
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where the value of the potential field at a point x is a combination of an attrac-

tive well centred at goal xd, and a sum of repulsive potentials around obstacles

O; Uxd(x) and UO(x) respectively.

Expanding this further:

Uxd(x) =
1
2

ξ(x− xd)
2 ,

and:

Uo(x) =







1
2η( 1

ρ − 1
ρ02 ) i f ρ ≤ ρ0

0 i f ρ > ρ0

These definitions have introduced a number of variables which are control

parameters which modify the behaviour of the equations:

ξ Gain of the attractive well, which influences the force with
which the robot is pulled towards the goal.

ρ The minimum distance between the robot and the edges of the
obstacle.

ρ0 The limit distance around an obstacle, outside which the re-
pulsive effect has no influence on the robot.

η Gain of the repulsive FIRAS (force inducing an artificial re-
pulsion from the surface — as previously described in Sec-
tion 2.9.1) function, which influences the force with which a
robot is repelled from a given obstacle.

Different settings of these variables result in different potential fields, even

for the same environment. Therefore, the settings of the variables influence

the existence and number of local minima. For example, if the limit distance

ρ0 of an obstacle is excessively large, and so too is the repulsive gain of that

obstacle, a robot may well not be able to circumnavigate the large peak in

the potential field to reach the goal. This example is an extreme case, but
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demonstrates that the parameters have an influence on the presence of un-

wanted minima, and by selecting appropriate values for the parameters, these

minima can be reduced. In the literature, there is a notable absence of sug-

gestions of methods for assigning values to these parameters, which is sur-

prising given their direct influence on the nature of the APF. Latombe [1991]

suggests some rules for setting the parameters in a world containing spheri-

cal obstacles, but in general, few papers make such suggestions. There does

not seem to be a common algorithmic way in which the gain and distance of

influence constants are set. It has been confirmed by Khatib [1998] that no

general method existed for setting parameters. Instead, it seems, an infor-

mal, heuristic approach is followed whereby common sense rules are adopted,

for example, the goal should not lie within the distance of influence of a repul-

sive field, and field gains should not be unnecessarily high so as to result in

very steep gradients. Experiments described in Section 5.11 suggest that the

manual setting of these parameters may not be as easy as it would initially

appear.

What seems to be lacking is a general method for optimising the parameters of

the APF generating function in its application to the path planning problem.

The previous attempt at using evolutionary algorithms, in the form of GP,

to approximate an appropriate APF yielded only partially successful results.

The remainder of this chapter describes how the more traditional method of

generating a potential field can be augmented by evolutionary algorithms,

this time in the form of GA, by optimising the controlling parameters of the

parabolic well and FIRAS functions.

5.5 A Case for Genetic Algorithms

As has been mentioned before there is little difference between GA and GP

as far as their underlying principles are concerned. They are both techniques

driven by natural evolutionary pressures, and for this thesis, the difference is
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considered to be in the data structure evolved and little more. For this path

planning approach, GA has been chosen rather than GP. The main reason for

this is that the problem more naturally fits the GA. This approach involves

optimally setting a number of parameters. If a rule, or function were required,

then GP would be the natural choice, however for this problem, the underly-

ing functions already exist in the form of the attractive well, and the FIRAS

functions. This approach seeks to make these functions work in an optimal

way, by using GA to set the parameters.

Having made the choice of GA from a data structure point of view, the ap-

proach inherits certain other advantages. The data structure is a string,

rather than a tree, and as such is a much simpler entity to work with. The

program code to manipulate the string is simpler, and the evaluation of fitness

is also simpler because the simulation involves instantiating the evolved vari-

ables rather than constructing and running a different program or function

for every individual.

For this problem there is a much lower computational and memory cost than

was found with the previous evolutionary approaches which were described

in Chapter 4. The basic GA approach is to use a fixed length string to evolve

the set of variable parameters which can be set for the attractive well and

FIRAS functions described above. The aim is to achieve a resulting potential

field which offers an almost global navigation function which can be used for

effective path planning.

5.6 Parameters

There are two sets of parameters which can be set; those associated with

the attractive well, and those associated with the FIRAS function. For the

attractive potential, the only parameter which can be adjusted is the gain ξ.

For the FIRAS function, there are two parameters: ρ0 and η. One approach

would be to evolve only these three values, but it was decided that it would
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be more useful to evolve a ρ0, η pair for each obstacle in the work space. This

gives the GA greater flexibility when setting the values which will influence

the potential field for the environment. Particularly as the number of obsta-

cles in the environment increases, the use of a single, global ρ0 and η offers a

very broad brush approach, unable to cater for subtleties in the environment.

5.6.1 Solution Representation

The representation of the parameters in a GA string is very straightforward.

Each value is represented as an n-bit integer, which is converted to a float-

ing point representation and scaled to lie between two floating point values.

Values for the gain parameters lie between 0.0 and 50.0 for obstacles and 0.0

and 100.0 for the goal, and values for the distance of influence lie between

0.0 and 1.0, where 1.0 represents the full width or height of the workspace in

normalised space.

5.7 Simulation

A simulation was used to train and evaluate solutions. The simulation used

was a custom built system operating on a 2D workspace. An important, early

design decision was how to represent the workspace.

Some path planning examples, such as that of Li et al. [1990] use a bitmap

representation in which obstacles are represented as filled pixels in an ar-

ray of appropriate dimension and size. This approach is easy to implement,

requiring the declaration of a portion of memory, and setting of the bits ac-

cordingly. Another advantage is that collision detection is particularly easy,

requiring a simple comparison for a given position in the workspace to deter-

mine whether that position is in free space or obstacle space.

The overriding problem with a bitmap representation, is that the memory

required grows very quickly as the size, resolution or dimensionality of the
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workspace increase. The experiments in this dissertation concentrate on the

2-dimensional case, but it is important from the outset to consider how tech-

niques developed here might scale to 3D problems with higher degree of free-

dom robots. It was, therefore, decided that a polygonal representation would

be adopted.

The advantage of a polygon approach is that the memory required for repre-

sentation is very compact. Each obstacle is represented by a polygon. Polygon

primitives can be defined for different shaped obstacles, and positioned on the

workspace via a simple graphics pipeline as found in a more complex form in

graphical programming languages such as PHIGS [Hopgood and Duce, 1991].

This applies appropriate transformations to the primitive polygon to rotate,

translate and scale the polygon. The obstacle polygons are selected from a

small library of primitives. Although in a real-world scenario this might not

be sufficient, as unusual obstacles could be difficult to approximate using only

the library polygons, it is quite adequate for this research. It makes the def-

inition of a problem very compact. Examples of the problem definition files,

and their corresponding environments are shown in Appendix B.

5.7.1 Polygon Collision Detection

When the workspace is represented as a bitmap, collision detection is very

simple. The point under test is queried, and if it is set as an obstacle cell,

then a collision is found. When obstacles are represented as polygons, the

process is slightly more complicated. In this case some vector mathematics

can be used. It is assumed that the point under test is P, and that the polygon

is defined by a number of points vn where n = [1..N] (N=number of sides of

polygon). These points are to be taken in the anti-clockwise direction.

The cross product of two vectors Pvn and vnvn+1 is a line perpendicular to the

plane defined by the two vectors. If Pvn = (a1,a2,a3) and vnvn+1 = (b1,b2,b3),

then the cross product is defined as:
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Figure 5.1: Illustration of Polygon Collision Detection

Pvn × vnvn+1 = i(a2b3)+ j(a3b1)+k(a1b2)− i(a3b2)− j(a1b3)−k(a2b1)

where i, j and k are the unit vectors along the x, y and z axes respectively.

If the z-component (k) of the cross product is positive for all edges n, then

the point P must be inside the obstacle, and correspondingly a collision has

occurred. Therefore all that is required to detect a collision is to calculate

of the z-component: a1b2 − a2b1. If for any Pvn, vnvn+1 pair this z-component

is not positive, then it can be immediately determined that no collision has

occurred, but if it can be shown for all pairs, then a collision has occurred.

This idea is demonstrated in Figure 5.1 in which a point P is being tested

against a polygon ABCD. Calculation of the z-component of the cross product

for this example reveals that PAB is negative, and PBC, PCD and PDA are all

positive. Because one of the z-components is negative, then the point must be

outside the obstacle.

5.7.2 Minima Detection

Local minima in the APF may reveal themselves at the robot level by the

robot stopping completely at a point because resultant forces from the attrac-

tive and repulsive potentials cancel each other out. Alternatively, the robot
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may oscillate around a position, moving towards the goal for a couple of steps

only to be repelled back in subsequent steps. Both cases can be caught by

keeping a buffer of the last few robot positions. A quick check to see if the cur-

rent position has been visited in the ‘recently visited buffer’ provides a simple

way to detect the presence of a minima at the robot level, rather than by eval-

uating the whole potential field, and seeking minima or saddle points in that

way.

5.8 Graphical User Interface

The output from the GA is a tuple of numbers representing the optimised

parameters. They are fed into the simulation together with the problem spec-

ification and a description of the workspace and consequently a path is output

in the form of an ordered list of coordinate pairs which represent a path. The

output from the simulation needs be presented in a way which is readily un-

derstandable, and from which insight can be gained as to how the algorithm

under test is performing, to allow for the incremental improvement of the

algorithm. A list of numbers does not offer a means of providing this.

A graphical user interface (GUI) allows easy visualisation of a problem. A

workspace can be created and filled with obstacles, and an initial and goal

position for a specific problem can be specified. The path resulting from the

application of GA can be seen as a line, rather than as a list of numbers. The

GUI used was a simple motif application which acted as one element of the

overall GA planning package. Screen shots later in this chapter show the GUI

in action1.

Communication between the GA planner and the GUI was achieved through

a series of files:
1The GUI was developed in coordination with a student visiting Brunel during an overseas

placement [Veronneau, 1998]
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jibber jabber
blah blah
piffle paffle

(x,y)(x,y)(x,y)

Figure 5.2: Interconnectivity of components of the GA APF planning system

Workspace Describing the workspace dimensions, and the ob-
stacles within it.

Problem Describing the initial and goal position.

Parameters Detailing the APF function parameters and sub-goal
positions evolved by the GA.

Path Ordered list of coordinate pairs describing the path.

The framework shown in Figure 5.2 allows software components to be eas-

ily changed. For example, much of the introductory coding was carried out

without the aid of the GUI which was slotted into the framework later in the

project without any change to existing components. The contents of each of

the files can be edited manually, or can be created automatically by one of

the software components. This framework proved to be an effective tool for

carrying out the experimentation for this work.

5.9 Fitness

As with all genetic applications, the purpose of the fitness is to provide an

indication of how good a particular evolved solution is at doing its job. For
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this problem, the aim is for the evolved parameters to optimise the potential

field function in order to create an almost global navigation function.

This application of GA does not try to approximate an input data set — there

is no ‘perfect’ potential field which is being aimed at. The very essence of the

problem is that such a field is difficult to define manually, which is the very

reason for using GA. The only ‘data’ available is the fact the robot should move

from the start to the goal. A reinforcement learning approach is used whereby

a solution which offers a good solution to this requirement is rewarded, and

one which performs badly is punished. The difficulty is in defining a fitness

measure which accurately captures the requirements of the problem.

Once again in this application of GA, the problem of a multi-faceted objective

function is encountered. Although the primary aim is to reach the goal posi-

tion, there is also a requirement that the path followed should be as short as

possible, and that the robot should not collide with obstacles en-route. These

goals can conflict, so what is required is a method for finding the best trade-off

between each of these goals. In Chapter 4, an approach was adopted whereby

the secondary fitness objectives are scaled by a function of the primary fitness.

A variant of this approach adapted for the APF optimisation problem is used

here.

A desirable fitness function returns monotonically increasing values repre-

senting the abilities falling between the two extremes of perfect and imperfect

individual.

The elements which comprise the fitness function are shown in Table 5.1. If

weights are to be applied to various elements of the fitness, it is important

that the weight only adjusts the significance placed on that fitness objective,

and is not simultaneously performing normalisation. For this reason, each

of the variables are normalised before combination into the multi-objective

fitness function, so that their values fall into the range 0.0-1.0. This allows

competition between the fitness objectives at an equal level. The normalised
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forms are subscripted with an n in Table 5.1, and maximum values are sub-

scripted with max.

Symbol Description Definition (if any)

w Weighting factor







0.3 i f sn = 0

0.3× (1.0−dn) i f sn > 0

sn Number of Steps s/smax

dn Euclidean distance between

rest and goal

d/
√

2

c Boolean style collision indica-

tor







1.0 i f collision occurred

0.0 i f no collision occurred

m Boolean style minima indicator







1.0 i f minima encountered

0.0 i f no minima encountered

l Number of intersections on the

line between the resting and

goal positions, with obstacle

boundaries.

Table 5.1: Components of the multi-objective GA APF fitness function

The multi-objective fitness function is defined as:

(0.3w(sn + c+m)+(1−w)dn)∗ l

The adaptive weight w is used to split the weighting between the primary

goal of moving nearer to the goal, and minimising the number of moves and

collisions. The constant 0.3 means that the secondary fitness objectives can

never contribute to more that 30% of the fitness value. This is an arbitrary

value which was found to work well in general situations and for different en-

vironments. If the weighting of the secondary fitness objectives was allowed
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to reach too high, the performance of the best individual in the evolved popu-

lation tended to converge too early.

The downside of the split adaptive weight is that the improvement of the

population cannot be monitored using the multi-objective fitness. The fitness

function is not static, outputting absolute values, rather it is a dynamic func-

tion outputting relative values. A demonstration of the effect of the use of

this adaptive weighting technique is given when used to solve a more difficult

path planning problem in Section 5.13.

The primary objective of arriving at the goal has to be measured in terms of

some sort of distance. Discussions have already been made in Chapter 4 as

to the undesirable nature of Euclidean distance as a measure for path plan-

ning problems, and equally the difficulty in generating a true distance-to-goal

value as this requires the solution to be known in advance. The approximation

here uses the Euclidean distance, multiplied by the number of times the line

of sight between the resting and goal position is broken by obstacle bound-

aries. This not perfect, but does encourage solutions to reduce the number of

obstacles between the resting position and the goal to a minimum.

5.10 First Steps in the Application

of GA APF path planning

Test Case 1

Initial attempts at path planning were made using an environment contain-

ing three square obstacles. The tableau for this problem is shown in Table 5.2.

The initial and goal positions were placed diagonally opposite at (10,10) and

(90,90) respectively as shown in Figure 5.3. The environment was designed so

as to place three obstacles in the direct line-of-sight between the initial and
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Objective: Test Case 1: Evolve a successful plan from initial posi-
tion=(10,10) to goal position=(90,90) in Workspace (Fig-
ure 5.3)

Evolved Pa-
rameters

Goal(1): ξ; Obstacles(3) ρ0, η; Subgoals(0)

Fitness: Adaptive weighted multi-objective function (Section 5.9)
GA Parame-
ters:

population = 1000, generations = 100,
crossover = 0.70, reproduction = 0.28, mutation = 0.02

Success predi-
cate:

Distance to goal = 0

Table 5.2: GA Tableau for Test Case 1            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 5.3: Test Case 1: Simple, three obstacle environment with

start=(10,10), goal=(90,90)

goal positions. It was intended to highlight any major flaws in the approach

before more difficult scenarios were attempted.

The planner is able to successfully plan a path of length 151 for this problem,

evolving parameters which when instantiated in the APF functions described

earlier give rise to the potential field shown in Figure 5.4. The evolved pa-

rameters are shown in Table 5.3.

The plot in Figure 5.4(a) shows a ‘landscape’ on which it may be envisaged
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Goal obstacles
1 1 2

ξ ρ0 η ρ0 η ρ0 η
90.6248 0.0061 0.7073 25.3895 0.0095 0.0237 0.6301

Table 5.3: Successful evolved parameters for Test Case 1

that a marble could be placed and would roll to the goal. The quiver plot in

Figure 5.4(b) shows the direction which a robot would move at any point in

order to move towards the goal. To generate these plots, evaluation of the

APF functions was obviously required for every position in the environment,

however in generating a plan, this is not required — only positions on, and

adjacent to the path need be evaluated.

As is demonstrated clearly on the Quiver Plot in Figure 5.4(b), the evolved

plot allows for generalisation over different initial positions, that is with a

fixed goal position. It is not possible to generalise over both initial and goal

positions as this is akin to summing and averaging all the potential fields for

all possible goal positions. To perform path planning with APFs, there must

be a global minima. By definition, it is not possible to have one potential field

with many global minima. It has been mentioned that numerical potential

functions can successfully account for multiple goals, however, not for all goal

positions. The ‘landscape’ would simply be flat with no gradient to follow — if

all positions in the environment are goals, then in all cases the start and goal

positions are in the same place.

5.11 Comparisons with a Manual Human Attempt

It was shown in the previous experiment that the GA is able to optimise seven

parameters to allow a successful path to be generated. What is not clear, how-

ever, is how this GA approach compares with manual tuning of the results. On

first glance it was not expected that the task would be too difficult, but as Ta-

ble 5.4 shows, this is not the case. Each subject was presented with a text file

containing zero valued parameters. Subjects were purposefully chosen from
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Figure 5.4: APF for Test Case 1 shown as (a) a Surface Plot, and (b) a Quiver

Plot
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Subject time (minutes) distance to goal moves

(as crow files)

1 24 78 74

2 32 78 74

3 50 38 120

4 50 55 101

GA (first) 2 0 180

GA (refined) 12 0 122

Table 5.4: Results of manual attempts at tuning seven APF function parame-

ters

the PhD student community who had an affinity with technical computing,

and were aware of the line of research being undertaken in this dissertation.

The purpose of each of the parameters was explained to them, as well as the

range within which each could fall. They were also given the ability to view

the path on the GUI, and produce a surface or quiver plot of the APF corre-

sponding to the parameter values which they had set.

After an initial period of ‘playing’ with the parameters for about 10 minutes,

the subjects deduced that another force was required other than the attractive

goal force and repulsive force from obstacle 1. These two forces alone would

always results in a path which had points only on the diagonal between the

initial and goal position. Another initial force was required which provided

the initial momentum to start the robot on its journey. To achieve this, the

subjects would increase the size of the distance of influence around either

obstacle 2 or 3, so that the initial position was under the influence of another

repulsive force. This typically allowed the path to suddenly grow from around

2 moves to around 40 or 50. Progress then slowed, as it took longer and

longer to adjust the parameters, and cope with the interdependencies of the

parameters. Although their paths were following similar directions as the

GA generated paths, no human subject was able to produce a path which was
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nearer than around 0.3 to 0.4 of the workspace, and around 96 moves.

The graph in Figure 5.5 shows the progress of manual attempts to set the

parameters for this problem. The graph shows how the number of moves

made by the robot increased as the parameters were tuned over time. For

comparison, the figures for the GA run were also plotted. It must be noted

that the GA found a solution in less than two minutes, after which the number

of moves decreased as the path was refined and made shorter. one of the

human subjects managed to complete a successful path.
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Figure 5.5: Progress of attempts to manually set APF parameters for Test

Case 1

5.12 The use of subgoals

Test Case 2

The simple three obstacle environment demonstrated the limited ability of an

APF planner. The scenario presented in Test Case 2 (Figure 5.6) introduces a

major problem for an APF planner. The tableau for this problem is shown in

Table 5.5.
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Objective: Test Case 1: Evolve a successful plan from initial posi-
tion=(50,65) to goal position=(50,80) in Workspace (Fig-
ure 5.6)

Evolved Pa-
rameters

Goal(1): ξ; Obstacles(1) ρ0, η; Subgoals(1): σ, α

Fitness: Adaptive weighted multi-objective function for subgoals
(Section 5.12.2)

GA Parame-
ters:

population = 1000, generations = 100,
crossover = 0.70, reproduction = 0.28, mutation = 0.02

Success predi-
cate:

Distance to goal = 0

Table 5.5: GA Tableau for Test Case 2            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 5.6: Test Case 2: Path Planning problem with inevitable local minima

This problem is difficult not simply because there is an obstacle in the line

of sight between the initial and goal positions, but because the initial and

goal share an x-coordinate, and the obstacle facing the initial position is per-

pendicular to the line-of-sight. The result of these circumstances is that it is

guaranteed that the robot will hit a local minima. Because the initial posi-

tion is directly in line with the goal, there is no lateral attractive force, and

similarly, because the facing edge of the obstacle is perpendicular to the path

of the robot, there are no lateral repulsive forces emanating from the obsta-

cle. This lack of lateral forces means that the robot is unable to move round

the obstacle. The only way this is possible, is if there is another attractive
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Figure 5.7: Quiver Plot for Test Case 2 with inevitable local minima.

force to pull it sideways. The GA is able to position a sub-goal, and set the

APF parameters to solve this problem. The evolved parameters are shown in

Table 5.6.

Goal obstacle sub-goal
ξ ρ0 η (x,y) σ α

70.0298 14.5571 0.0049 (10,77) 3.5370 0.0599

Table 5.6: Successful evolved parameters for Test Case 2

The case where the obstacle is directly in line with the goal is the extreme

case, but the wide obstacle means that a ‘shadow’ is cast over a large area of

the workspace, causing paths entering this region to be pulled towards the

local minima in line with the goal, but on the opposite side of the obstacle.

This can be seen by the quiver plot in Figure 5.7. Many of the arrows below

the obstacle are orientated inwards, pointing the way to a local minimum.

This example scenario highlights a problem which requires a means of intro-

ducing another force into the workspace to supply some lateral force to allow

the path to move round the obstacle rather than attempting to pass directly

through it. To this end, one or more subgoals were introduced to the environ-

ment.
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5.12.1 Implementation of Subgoals

Adding subgoals to the GA representation requires the addition of a tuple to

the GA string for each subgoal used. As many subgoals as required can be

catenated on the end of the string. Initially it was thought that a subgoal

could be defined using an (x,y) coordinate pair to position it in the environ-

ment, and a gain value, equivalent to ξ which is referred to as σ. However, the

simultaneous presence of more than one goal introduces a new problem as it

removes another. Considering the environment in Figure 5.6, if a subgoal is

placed to the left or right of the obstacle to pull the robot around the obstacle,

then inevitably, the attractive force of the real goal will not be strong enough

to pull the robot back towards it once the robot has cleared the obstacle. All

that is achieved by introducing a simultaneously active subgoal, is that the

global minimum in the landscape is moved away from the ultimate goal.

The solution to this problem is to allow the GA to evolve a sequence of sub-

goals, only one of which is active at any one time. The order in which they

are activated is determined by the GA. This is achieved by making the first

subgoal in the string active first, followed by the second, and so on. The final

goal to be active is, of course, the ultimate goal. The mechanism to switch

from one goal to the next can be implemented by introducing a deactivation

distance α around each obstacle. This is similar to the distance of influence

surrounding each obstacle. When the robot path enters the deactivation area,

the next ordered subgoal becomes active. The importance of order in the GA

representation is discussed in more detail by Davidor [1989].

In introducing subgoals, the GA string will consist of one parameter for the

ultimate goal, two parameters for each obstacle in the workspace, and a fur-

ther four parameters for each subgoal used. These four parameters are the

(x,y) coordinate pair to position the sub-goal, the gain of the attractive well

associated with the sub-goal, and the trigger radius around the goal, which

when breached by the robot will make the next goal the active one.
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5.12.2 Subgoal Fitness

The introduction of subgoals into the APF planner brings with it the require-

ment to adjust the fitness, to encourage the best possible configuration of the

subgoals. Table 5.7 shows the additional fitness elements which are intro-

duced.

Symbol Description Definition (if any)

gn Cumulative normalised dis-

tance between subgoals

∑subgoals
i=1

√
(xi−xi+1)2+(yi−yi+1)2

√
2

a Active Goal a is currently active subgoal,

ranging from 0—t, where t is

number of subgoals, and the

first subgoal, and 0 is the ul-

timate goal.

Table 5.7: Fitness components to account for the use of subgoals in the multi-

objective GA APF fitness function

These additional fitness measures are added to the fitness function:

(0.3w(sn + c+m)+(1−w)(dn +gn))∗a

The cumulative distance provides a coarse granularity measure of the path

length, and hence the lower the gn, the shorter the robot path. The active goal

measurement is to encourage all the subgoals to be used. It is unlikely that a

path will reach the ultimate goal unless all of the subgoals have fired in turn.

By multiplying the entire fitness by a, a heavy penalty is imposed for unused

subgoals. In fact, it was found that it was not necessary to use gn — it did

contribute to the fitness, but removing it did not make a noticeable difference.

On one hand the introduction of sub-goals allows otherwise unsolvable prob-

lems to be solved, and secondly it can improve the quality of solutions to some
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problems by breaking them down into simpler constituent problems. A down-

side of the use of subgoals, is that it is not possible to view a single diagram

of an APF field, because there are as many fields as their are subgoals.

5.13 More Difficult Problems

Test Case 3

This section demonstrates the performance of the path planner against exam-

ples with various more complex environments. The tableau for this problem

is shown in Table 5.8.

Objective: Test Case 3: Evolve a successful plan from initial posi-
tion=(10,10) to goal position=(50,80) in Workspace (Fig-
ure 5.8)

Evolved Pa-
rameters

Goal(1): ξ; Obstacles(2) ρ0, η; Subgoals(4) σ, α

Fitness: Adaptive weighted multi-objective function for subgoals
(Section 5.12.2)

GA Parame-
ters:

population = 5000, generations = 100,
crossover = 0.70, reproduction = 0.28, mutation = 0.02

Success predi-
cate:

Distance to goal = 0

Table 5.8: GA Tableau for Test Case 3

Test Case 3 uses two horizontal obstacles between the initial and goal po-

sitions which span 80% of the room, and are placed above each other but

slightly offset from each other (Figure 5.8). The only route the robot can take

is a zig-zag pattern which is difficult to achieve, because with an attractive

well situated at the goal, the robot tries to move towards the goal through

the obstacles. The repulsive field surrounding an obstacle prevents the robot

from colliding with it, but the adverse result of which is that the robot be-

comes stuck in a local minima. It is only through a combination of the multi-

objective fitness function using adaptive weighting (Section 5.9), and the use

of sub-goals that this problem could be solved. The progress of the run for
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Test Case 3, shown in Figure 5.8 shows how initially a successful path was

evolved, and then this path was refined to make it shorter.

The parameters evolved at generation 67 are shown in Table 5.9..

Goal obstacles
1 2

ξ ρ0 η ρ0 η
20.53 20.06 0.0057 15.31 0.0158

sub-goals
1 2 3 4

(x,y) σ α (x,y) σ α (x,y) σ α (x,y) σ α
(16,85) 5.740 0.259 (7,40) 0.024 0.039 (84,37) 8.230 0.065 (89,18) 15.973 0.075

Table 5.9: Successful evolved parameters for Test Case 3

The graphs in Figure 5.9 correspond to the Test Case 3 run, and show how the

distance to the goal, and the number of moves made by the best individual at

each generation changed during the course of the run shown in Figure 5.8.

Because of the adaptive weighting built into the fitness function, the empha-

sis placed on minimising the number of moves is low at the start of the run,

the distance to the goal reduces, and the number of moves made to achieve

the path is allowed to increase. This increase in moves is obviously necessary

to allow the robot to move closer to the goal. The primary concern of the GA

at the beginning of the run is to move closer to the goal.

At generation 19, there is a simultaneously peaking of the number of moves,

and minimisation of the distance to goal, as the path arrives at the goal. Dur-

ing these early generations, the weights ratio of distance to goal:number of moves

gradually changed from an 83:17 to 70:30. The remainder of the run main-

tains the primary objective of minimising the distance to the goal, whilst re-

ducing the number of moves taken to achieve that successful path from 298

to 226.

The progress of the path through the generations of a successful run is shown

in Figure 5.8. The top four examples show the path moving closer to, and

finally reaching the goal, and the bottom four show how, having reached the

goal, the path is refined and gradually made shorter.
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Generation 67

Figure 5.8: Test Case 3: Demonstration of the refinement of a successful path.
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Figure 5.9: Graphs of distance between goal and resting position, number of

moves in path and weighting emphasis for Test Case 3

Test Case 4

Test Case 4 represents a more difficult problem for the planner, where the ini-

tial and goal position are relatively close to one another, but they are divided

by a trap which requires quite a lot of moves to negotiate. The tableau for the

problem is shown in Table 5.10.

Figure 5.10 shows two scenarios with a new workspace, one in which a plan

is successfully generated (b) and the other in which the planner has failed (a).

When trying to plan from (55,55) to (10,90), the best path, as shown in Fig-

ure 5.10(a) is one which simply attempts to burrow through the wall, directly

towards the goal. The close proximity of the goal to the initial position, and

the positioning of the obstacles around the initial position mean that it is dif-
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Objective: Test Case 4: Evolve a successful plan from (a) initial
position=(55,55) to goal position=(10,90) (b) initial posi-
tion=(15,55) to goal position=(10,90) in Workspace (Fig-
ure 5.10)

Evolved Pa-
rameters

Goal(1): ξ; Obstacles(4) ρ0, η; Subgoals( (a)-0, (b)-3): σ, α

Fitness: Adaptive weighted multi-objective function for subgoals
(Section 5.12.2)

GA Parame-
ters:

population = 1000, generations = 100,
crossover = 0.70, reproduction = 0.28, mutation = 0.02

Success predi-
cate:

Distance to goal = 0

Table 5.10: GA Tableau for Test Case 4
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(a) Failure - init = (55,55), goal =

(10,90) (no subgoals)

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

(b) Success - init = (10,10), goal =

(10,90) (3 subgoals)

Figure 5.10: Test Case 4: Successful and Unsuccessful plans

ficult to encourage the GA to explore the workspace. It is content with the

‘good enough’ fitness which it achieves by moving to the interceding wall, and

no further. The GA population is quickly polluted with ‘bee-line’ individu-

als which exclude the possibility for the evolution of better solutions. Using

larger populations only serves to increase run times. Although Figure 5.10(a)

is taken from a run with no subgoals, even when subgoals are used the GA

does not have enough incentive to search around for better alternatives.

A successful plan can be generated for the scenario shown in Figure 5.10(b)
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where the aim is to move from (10,10) to (10,90). Because the initial position is

further away from the goal, evolved sets of parameters which result in a ‘bee-

line’ do not pollute the population with their sub-optimal ‘genes’, allowing the

GA to explore, and eventually arrive at a good solution. The successful path,

evolved at generation 23, is 225 moves long. The evolved parameters for the

successful path in Figure 5.10(b) are shown in Table 5.11.

Goal obstacles
1 2 3 4

ξ ρ0 η ρ0 η ρ0 η ρ0 η
38.687725 2.916 0.453 25.415 0.216 36.051 0.097 36.895 0.005

sub-goals
1 2 3

(x,y) σ α (x,y) σ α (x,y) σ α
(91,94) 31.245 0.082 (76,61) 13.552 0.961 (97,43) 35.195 0.309

Table 5.11: Successful evolved parameters for Test Case 4

Test Case 4 demonstrates how important the fitness measure is. The adap-

tively weighted, multi-objective fitness function developed for this planner

has shown itself to be very successful. However, the fact that it cannot per-

form for all scenarios indicates the need for further fitness function devel-

opment, and for some kind of fail-safe backup planner for cases when the

GA/APF planner does not produce a successful plan.

Test Case 5

This experiment uses a room which is more heavily cluttered with five obsta-

cles. There is, therefore, less free space in which the robot can move. The

tableau for this problem is shown in Table 5.12.

A successful path was evolved at generation 76 with 147 moves. This is shown

in Figure 5.11. The evolved parameters for this successful plan are shown in

Table 5.13.
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Objective: Test Case 5: Evolve a successful plan from initial posi-
tion=(10,10) to goal position=(90,90) in Workspace (Fig-
ure 5.11)

Evolved Pa-
rameters

Goal(1): ξ; Obstacles(5) ρ0, η; Subgoals(4): σ, α

Fitness: Adaptive weighted multi-objective function for subgoals
(Section 5.12.2)

GA Parame-
ters:

population = 4000, generations = 100,
crossover = 0.70, reproduction = 0.28, mutation = 0.02

Success predi-
cate:

Distance to goal = 0

Table 5.12: GA Tableau for Test Case 5            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 5.11: Successful path for Test Case 5: a 100×100 workspace cluttered

with five miscellaneous obstacles

Test Case 6

It has been mentioned previously that elliptical obstacles are easier to plan

for than rectangular ones. This is because they do not have the sharp changes

Goal obstacles
1 2 3 4 5

ξ ρ0 η ρ0 η ρ0 η ρ0 η ρ0 η
86.154 37.576 0.008 16.296 0.016 15.166 0.047 0.008 0.803 49.703 0.030

sub-goals
1 2 3 4

(x,y) σ α (x,y) σ α (x,y) σ α (x,y) σ α
(67,83) 47.475 0.758 (40,68) 25.497 0.963 (48,99) 48.437 0.620 (73,64) 37.976 0.599

Table 5.13: Successful evolved parameters for Test Case 5
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in direction of repulsive force associated with the vertices which may encour-

age local minima. Using a polygonal representation, where all obstacles are

constructed from straight line segments, it is not possible to define an ellipse,

however an approximation can be made, in the case of this experiment, an

octagon is used. The tableau for Test Case 6 is shown in Table 5.14.

Objective: Test Case 6: Evolve a successful plan from initial posi-
tion=(50,150) to goal position=(135,30) in Workspace (Fig-
ure 5.12)

Evolved Pa-
rameters

Goal(1): ξ; Obstacles(8) ρ0, η

Fitness: Adaptive weighted multi-objective function for subgoals
(Section 5.9)

GA Parame-
ters:

population = 6000, generations = 100,
crossover = 0.70, reproduction = 0.28, mutation = 0.02

Success predi-
cate:

Distance to goal = 0

Table 5.14: GA Tableau for Test Case 6

Figure 5.11 shows a larger 200× 200 workspace, which is more heavily clut-

tered with octagonal obstacles. A successful solution, of 78 steps can be gen-

erated for this workspace without the use of any subgoals, however a larger

population was required to account for the larger number of obstacles present

in the workspace.

Goal obstacles
1 2 3 4

ξ ρ0 η ρ0 η ρ0 η ρ0 η
7.698 24.846 0.014 39.247 0.001 32.274 0.028 30.679 0.015

obstacles
5 6 7 8

ρ0 η ρ0 η ρ0 η ρ0 η
0.690 0.036 41.695 0.548 12.019 0.073 5.895 0.068

Table 5.15: Successful evolved parameters for Test Case 6

5.14 Summary

This chapter has explained how it is possible to use GA to optimise an pre-

existing technique used in path planning. The literature in the APF area
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Figure 5.12: Successful path for Test Case 6: a 200×200 workspace cluttered

with eight octagonal obstacles

offered few suggestions as to what successful methods could be employed to

set the controlling parameters of Khatib’s [1986] functions. Tests showed that

manual optimal setting of these parameters is not easy, and using a GA to

perform the optimisation is very successful.

As in the previous chapter, multi-objective fitness functions have played a cen-

tral role in the success of the application of GA. The use of adaptive weights to

balance the importance placed on primary and secondary fitness targets gave

rise to successful solutions.

At this point in the dissertation, a number of new approaches to path planning

have been offered. This and the previous chapter have evaluated individual

examples of path planning problems tackled with evolutionary approaches.

However it is now important to evaluate the more general adoption of GA and

GP in path planning and look to how this might be achieved in the future.
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6
The Future of Evolutionary Path Planning

6.1 Introduction

At this point in this dissertation, various methods have been proposed and

tested which in their own way tackle the path planning problem. Specific

issues arising from the implementation of each of these different approaches

have been addressed in the previous two chapters. In this chapter a more

general evaluation is made.

At the beginning of this dissertation, the utopian ideal of a fully independent

robot was discussed. The production of such a robot is outside the scope of

this thesis which has focused on path-planning; a very specific, and very im-

portant, component of such a robot. However, when focusing on the specific,

it is worthwhile remaining aware of the greater goals. This chapter describes

the successes of the techniques developed in Chapters 4 and 5, and also con-

siders how the techniques which have arisen from this research might con-

tribute to the future of path planning and robotics in terms of how it might be

integrated with other technologies, and how it might form the seed for future

research.

Consideration is given to how the approaches developed here might fit into a

more complete motion planning system, and in particular how the GA optimi-

sation of an APF for path planning might be combined with other technolo-

gies. Issues of performance in a real-time environment, and generalisation
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are discussed with a view to the possible future realisation of a robot control

system based on Evolutionary path planning.

6.2 Review of Proposed Evolutionary

Path Planning Approaches

Chapters 4 and 5 documented the development of a range of different ap-

proaches which sought to apply GA and GP to the path planning problem.

Earlier chapters had paved the way for this experimental work by identify-

ing a need for improved path planning techniques; by providing useful back-

ground knowledge as to what shortcomings were found in existing techniques;

and by introducing GA an GP as a potential means for improving path plan-

ning.

The preliminary investigations revealed a number of important points which

were considered during the development of evolutionary path planning ap-

proaches, built on the underlying consideration that a useful path planning

technique must eventually be practical, for example in terms of cost and speed

of planning required:

Generalisation The ability for a planner to be trained to
generate plans for previously unseen sit-
uations.

Speed The ability to plan in a timely manner.

Workspace Independence The ability of a technique to be applied
to problems of greater resolution, size of
workspace, number of obstacles without
incurring significantly greater resource re-
quirement.

The fact that a successful planner must combine all these points, and of course

generate successful paths, is the very reason that the development of such a
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planner continues to elude researchers. There is no pretence that the ap-

plication examples in Chapters 4 and 5 satisfy all these points, indeed it

would have been extremely optimistic to assume that a single PhD disser-

tation would have achieved this. However, significant contribution is made by

both the GP and GA approaches. They demonstrate successful examples of

evolutionary path planning and and provide valuable input for those continu-

ing to research along the path which will eventually lead to even better path

planners.

6.2.1 Evolving a planner with GP

The use of GP to evolve a planner, rather than simply a one-off plan, par-

ticularly addressed the generalisation issue. The evolved planner, although

possibly taking a while to create, would run quickly online, rather like the

oral cancer diagnosis tool (Appendix A) which ran in a fraction of a second.

The work acts somewhat as a stress test, defining limits as to what GP is ca-

pable of given the current maturity of the field, and the current availability

of hardware. No use was made of special operators specific to the problem,

such as were used by Xiao et al. [1997] in the GA path planning, indeed the

reliance on domain knowledge built in by the programmer was avoided as far

as possible. An independent robot cannot afford the luxury of a human nurse-

maid to guide it at all times if it is to be used in dangerous, or inaccessible

environments.

Using GP to evolve a planner is a very difficult problem. In nature, evidence

exists of the evolution of enormously complex systems being evolved which

represent solutions, of a sort, to the problems of each animal living in their

respective environments. In GA and GP, an attempt to mimic the evolutionary

process is made, but even the largest GP runs, such as those undertaken by

Andre and Koza [1996] and Bennett III et al. [1997] are miniscule when com-

pared with the evolutionary process in nature which has given rise to modern

Simon Kent 145 March 1999



Chapter 6. The Future of Evolutionary Path Planning

species. Natural evolution has been occurring for several billion years. Man,

the most complex solution to date, appeared 200 million years ago in an early

form. The point being made is that in terms of current GP and GA runs, man

has been evolving for very many generations on a very powerful computer

with a lot of memory — one which is not available to us, at least at present.

6.2.2 Optimising Potential Field Planning with GA

Whilst the goal of generalisation remained a consideration, the work in Chap-

ter 5 concentrated more on the issue of speed and workspace independence.

The APF planning method was chosen because it offered a simple, fast algo-

rithm. Equally, GA is generally faster than GP because it typically has a more

compact data structure — this is certainly the case for this application.

Using GA to enhance APF planning was shown to be successful. Not only was

GA able to perform better than humans in the task of optimising the APF

parameters, but the technique was also shown to be capable of generating

paths for a number of different environments.

As described in Chapter 2, there are methods already in place for helping to

avoid the effects of local minima present in a potential field. The use of pre-

existing techniques, such as the execution of Brownian Motions [Barraquand

and Latombe, 1991] to jump out of minima, or the use of virtual springs

[McLean and Cameron, 1996] are not made obsolescent by this dissertation.

Indeed, by combining more elements with the GA APF planner, further im-

provements can undoubtedly be made to the planner, however this is a subject

for future research. In providing an automatic means for optimising the APF

functions, rather than relying on manual tuning, the aim has been to provide

a better foundation from which all other APF techniques can benefit. The

GA optimisation of APF functions is not limited to the original attractive well

and FIRAS functions [Khatib, 1986], but should be equally applicable to any

attractive or repulsive functions which have tunable parameters.
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6.3 Considerations for use of Evolutionary Computing

for Path Planning

Evolutionary computing and specifically GA and GP have provided the main

tools which have been used to approach the path planning problem. They have

been used both on their own, and to improve an existing, classical approach to

path planning. This dissertation does not define the limit for the application

of these techniques. Indeed, this section suggests ways in which EC may be

used to further improve path planning.

6.3.1 multi-objective fitness

Much of the success of the approach developed in Chapter 5 can be attributed

to the adaptive fitness weighting used to continually change the emphasis

placed on the primary and secondary fitness objectives used to measure the

performance of a candidate solution. The fitness measure used in Chapter 5

was specifically tailored for the path planning application, and it may be pos-

sible to further refine the adaptive weight approach and make it more general,

so it can be easily applied to other problems involving multi-objective fitness

measures. Improvements in coping with multi-objective fitness will hopefully

lead to a corresponding improvement in the GA optimisation of APF path

planning.

6.3.2 Improved repulsive APF functions

One component of the potential field used in APF planning is the attractive

well used to encourage the robot to move towards the goal. However, the com-

ponent which adds features corresponding to the obstacles in the workspace

is the set of repulsive fields generated by the FIRAS function [Khatib, 1986].

When the GA is used to set the parameters for the potential field, most of

Simon Kent 147 March 1999



Chapter 6. The Future of Evolutionary Path Planning

these parameters pertain to the FIRAS functions, and therefore the shape of

the overall field is controlled by these parameters.

Results presented in this dissertation, and the work of others, for example

Li et al. [1990] and Khatib [1986] show that the use of the FIRAS function

as the repulsive function leads to fields from which successful plans can be

generated. However, the FIRAS function generates a repulsive field which

extends a uniform distance ρ0 from the edges of the obstacle. If two obstacles

are positioned close together, it may be desirable to have a very small value

for ρ0 such that the robot can pass between the two obstacles, if in doing

so it can achieve a shorter path than by moving round the outside of the

obstacles. On the other hand, on the edges of an obstacle which are not close

to a neighbouring obstacle, it may be more desirable for the field to extend

further from the edge to prevent the robot from coming unnecessarily close

to the obstacle. Such a repulsive field cannot be generated using the FIRAS

function. Figure 6.1 illustrates the scenarios described above. In Figure 6.1(a)

two closely positioned obstacles have repulsive fields with uniform values for

ρ0 for all their edges. If this value of ρ0 is sufficiently large such that the robot

does not hug the obstacles, then the corridor between the obstacles which

must be traversed to achieve the shortest path becomes blocked by repulsive

fields. An alternative in Figure 6.1(b) shows a more desirable field where the

robot is encouraged to keep clear of obstacles where it is appropriate to do so,

but the value of ρ0 may be set very small where that is the only way to permit

the robot to pass through an area of the workspace.

Rather than using GA to optimise the FIRAS function, it may be possible

to use GP to generate a non-uniform repulsive field for each obstacle from

scratch. The GP representation scheme might consist of:

Function Set containing mathematical functions such as might
be found in many GP function approximation prob-
lems.
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(a) (b)

Figure 6.1: Illustration of a path plan between two closely positioned obsta-

cles having a (a) uniform distance of influence, (b) non-uniform distance of

influence

Terminal Set containing coordinates of the position of the robot
and some random real number values.

The evolved mathematical function would output a potential value for a par-

ticular robot position. Because the function is evolved for a specific obstacle,

the magnitude of the field and the distance of influence should be ‘hard coded’

into the function, and should not need to be supplied, for example, in the ter-

minal set. An optimum field gain and distance of influence from each obstacle

edge should be evolved by GP.

It is proposed that one GP process should be responsible for evolving the re-

pulsive field function for a single obstacle. Typically, an environment will

contain several obstacles, and correspondingly several GP processes will be

required. In a multi-tasking environment, the GA process responsible for

managing the attractive well, and the set of GP processes, each responsible for

an obstacle in the workspace can all run simultaneously in a co-evolutionary

approach [Juillé and Pollack, 1998; Ahluwalia and Fogarty, 1996].
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A clear drawback to this suggested approach of combinations of multi-tasking

GA and GP processes is the increase in execution time. It was noted that one

of the benefits inherited from using GA rather than GP was the corresponding

reduction in computation time required. The problem of evolving a function

from scratch is easier to implement within a GP framework. The computa-

tion problem can hopefully be addressed by using a parallel approach, as has

been done by others [Juille and Pollack, 1995; Andre and Koza, 1996] and an

example of which was described in Section 3.9. The proposed framework fits

naturally into a parallel environment, with one obstacle being dealt with by

one processor with little inter-process communication required.

The precise formulation of the representation scheme, fitness function and

parallel framework can only be speculated on here, however this seems to

offer an interesting area for future work.

6.4 Generalisation

At the outset of this research the aim was to produce path planning algo-

rithms which were trained against a set of examples, and which would then

be able to generalise and work effectively against unseen examples.

Generalisation can take a long time to achieve in terms of the time it takes for

GA or GP to learn a general, rather than a specific rule,. However the time

consuming learning can be performed off-line, whilst the online execution of

the rule can be performed relatively quickly.

Results from experiments with GP path planning in Chapter 4 did show that

GP was able to successfully generalise results from training data to test data.

The problem with the GP approaches was that the performance against seen

data was not really high enough for practical use in a real path planning

system. The problem was not so much with the ability to generalise, but with

the ability of the representation scheme to allow evolved rules to be able to

‘see’ the workspace effectively.
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When the move was made away from a pure GP approach to a hybrid GA/APF

approach, there was an implicit requirement to relinquish a certain amount

of ability to generalise. The APF planning method encourages a single mini-

mum point in the potential field which is positioned at the goal. Using a per-

fect, single minima field, generalisation is achieved because having evolved a

potential field on the basis of a set of seen initial positions, it should be possi-

ble to generate a path for other unseen initial positions. Whatever position is

chosen as the starting point, there should always be a route downhill to the

goal. By changing the definition of the APF approach slightly, the minimum

could similarly be positioned at the initial position, and generalisation could

be achieved over goals. However, it is not possible, using APF planning, to

generalise over both initial and goal positions, because this would require a

potential field with more than one global minimum, which is a contradictory

requirement. So, although complete generalisation must be ruled out, an ap-

plication which, for example has a recurring set of goal positions, but varying

starting positions could benefit from the generalisation possible using APF

planning.

When subgoals were introduced in Chapter 5 to improve the performance

against certain more difficult path planning problems, the ability to gener-

alise was further decreased. By introducing subgoals, path-planning prob-

lems were tackled by evolving a coarse grained path defined by the ordered

list of sub-goals, each of which points had a corresponding potential field. Be-

cause the ordered list of sub-goals is always tailored to a particular initial/goal

position pair, the ability to generalise is severely diminished, but at the ex-

pense of significantly improved path planning performance.

The experimental work for the thesis highlights the classical problem with

learning algorithms whereby performance worsens, or training time increases,

as the requirement for generalisation increases [Dracopoulos, 1997b; Wer-

bos, 1998]. In order to improve the performance, the programmer gives the

algorithm under development more and more ‘help’ by adding domain knowl-
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edge, but inadvertently worsens the ability to generalise.

The GP work used a plain approach which did not adopt domain specific add-

ons to improve performance. To produce a better planning, evolutionary algo-

rithms, this time in the form of GA, were used with a known path-planning

approach. To further improve performance sub-goals were added, and grad-

ually the onus is moved from the learning algorithm to the programmer or

researcher. The algorithm is necessarily left with less to learn in order to im-

prove performance, but the ability to generalise is reduced because the learn-

ing algorithms influence on the final result is similarly diminished.

This dissertation has, therefore, demonstrated both that generalisation can

be achieved, and that performance may be improved by adding various pro-

grammer influenced add-ons, but that the difficulty arises in balancing these

two goals.

6.5 Real Time Evolutionary Path Planning

Experiments were carried out in Chapter 5 to provide a comparison between a

human performing the optimisation of the APF parameters, compared to the

computer using GA. This comparison showed that the optimisation problem is

difficult, and that the GA is considerably faster and more able than humans.

However, a human will not be performing the optimisation in an independent

robot, so the fact that the computer is faster than a human is interesting, but

it does not necessarily mean that the computer is fast enough.

In moving towards the fully independent automaton, time constraints become

very important. When performing research in a virtual environment, as has

been done in this research, although it may be desirable for the planning and

execution of those plans to be quick, it does not really matter whether the

robot takes 5 minutes or 5 days to complete its task — no detrimental result

will occur in the real world.
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To realise an independent robot, the inevitable transition must, at some point

be made, from a virtual to the real world, and in the real world there exist

real-time constraints. Real time constraints can be broadly broken down into

soft and hard categories [Stallings, 1992, Chapter 6]. A soft real-time con-

straint exists when desirable time limits are imposed which a control system

should meet, but if the limits are exceeded then no harm will result. In a hard

real-time system, if the time limits are not met, then the system has failed.

The failure may be measured, for example, by the number of people on the

aircraft which crashed because the ground arrived too quickly.

The experiments carried out during this research did not execute quickly

enough to be used in modern robotics applications. Most runs took in the or-

der of minutes to run, rather than a fraction of a second which may typically

be required in a real environment.

Another time related problem when using non-deterministic techniques such

as GA or GP, is that there can never be a guarantee that results will be re-

turned in a set time. If an algorithm has been developed to control a system,

incorporating a set of controlling equations, it can be predicted how long it

will take to execute the algorithm. A single run of GA or GP may find a solu-

tion in a few seconds, or it may never find a solution because it encounters a

local minima in the search space.

These facts do not sound the death knell for GA and GP path planning. The

future will undoubtedly bring speed improvements from the further develop-

ment both of techniques underlying GA and GP, and of the hardware on which

they are executed. Indeed the practical use of GA and GP has only been made

possible by the relatively recent advances in hardware performance, and fu-

ture advances should open more areas of application. The remainder of this

section looks at two ways in which speedup might be achieved.
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6.5.1 Parallel GA and GP

Chapter 3 discussed the use of parallel computing to improve the speed of

execution. The exact method used in Chapter 3 may not be appropriate for

use in a robotic environment, but it indicates that a multi-processor computer

in a robot could speed up the use of GA or GP in path planning. A situation

could be envisaged where a relatively large number of very simple processors

could be combined to provide a significant speed up. During fitness evaluation

for the APF approach, one processor could be used for each obstacle, thus

eliminating the increase in computation corresponding to an increase in the

complexity of the environment in which planning is performed.

6.5.2 Evolvable Hardware

Another area which has not been explored in this thesis, but which has shown

promise in other areas of application is that of evolvable hardware. It might

be very interesting to see how a planner could be evolved in a FPGA (Field

Programmable Gate Array), in the same way as successful solutions have

been evolved in other application areas [Thompson, 1996b]. Perhaps robot

path planning will provide a suitable application for the CAM-brain [de Garis,

1994; Korkin et al., 1997; Nawa et al., 1998] which, although impressive in its

potential, to date seems to be lacking in any significant application.

6.6 A Future Motion Planning System

Perhaps the ultimate aim in robotics is a fully independent robot. Such a

robot may incorporate, amongst other technologies:

• vision systems to allow the robot to see the environment and construct

models of the environment which can be used for planning.
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• control techniques to apply appropriate torques to joints and motors to

move robot vehicles or manipulators to the desired position.

• path planning systems which in turn could incorporate neural net-

works, evolutionary approaches or other emergent intelligence techniques.

• obstacle avoidance to prevent collisions with stationary or moving ob-

stacles in the environment.

• task planning systems to plan how a job will be broken down into units

so as to complete it in a timely manner.

The combination of all of these fields is an enormous task, and one which is

likely to be achievable only by a team of experts, rather than a lone researcher.

It is for this reason that this dissertation has been limited to path planning

alone. The motion planning component in itself is complex, and this research

has not produced a plug-in solution, but rather offers techniques which can

form part of a motion planning system which in turn can form a part of a

complete robot planning and control system.

As this chapter has discussed issues related to the practical application of

the GA APF planner, it is appropriate finally to consider a framework within

which it might operate. Previously it was shown, in Figure 5.2, how the com-

ponents of the experimental planner were related. In Figure 6.2, the GA APF

planner is shown in a guise which might be suitable for use in a practical

planner. This figure by no means sets in stone how such a practical planner

should be implemented, but rather offers ideas as to what components might

be present, how they could be interrelated and how the GA APF components

fit in with external components which may be present in a complete robot

control system.

The diagram shows a grey region which is intended to represent the path

planning sub-system. The components outside this region are those which
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Figure 6.2: An example framework for the GA APF planner
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could exist in a robot control system providing information to, and which are

provided information from the path planner.

It is assumed that the robot for which this controller is intended would be

general in its application. It would not require precise commands to control

its every move, but rather would be fed with more general, task level instruc-

tions, such as ‘move box A from position 1 to position 3’, or ‘insert bolt type

A in hole B’. This information would be provided to the Task Planner which

would break the overall job into sub-tasks, each of which will in turn involve

a movement of the robot. The task planner could, therefore, provide input to

the path planner to request that a path be planned between an initial and

goal position.

If the robot were to be working in a known environment, such as in a ware-

house, or in a production plant, then it is assumed that there would be a

selection of workspace maps or descriptions which would be stored, and

provided to the planner as necessary. If working in an unknown environ-

ment, then it would be necessary to generate a map through robot vision, or

via robot exploration with sensors on the robot. In either case, by means of

the task planner and the vision system or map store, the planner has avail-

able to it the information which it requires to proceed with finding a suitable

path.

Before discussing the internal components of the planning sub-system, the re-

maining two external components will be briefly described. Despite the best

efforts of a planner, it is likely that some kind of Obstacle Avoidance sys-

tem would be present. Whether the path planner fails, performs an error in

planning due to problems with resolution, or whether an unexpected obstacle

has appeared which was not considered by the planner, there should be some

means by which to halt the robot to prevent a collision. This would likely be

achieved by continually monitoring the immediate surroundings of the robot,

perhaps via a vision system, or alternatively using sonar or proximity sen-

sors. Once a path has been generated by the planner, this must be followed

Simon Kent 157 March 1999



Chapter 6. The Future of Evolutionary Path Planning

by the robot. A method will be needed to provide the necessary signals to mo-

tors, thrusters, actuators or whatever means the robot uses to move. The field

of control is very large topic of research in itself [Dracopoulos, 1997b; White

and Sofge, 1992]. An alternative to having a separate control sub-system may

be to construct a potential field which has a relationship with the dynamics

of the system, enabling the forces or torques applied to motors to be based

directly on the field gradient [Guldner and Utkin, 1995].

Moving inside the grey, planner region of the diagram, the central compo-

nent is the Planning Manager. It is envisaged that this would work in a

supervisory role, coordinating the other components. It is therefore the Plan-

ning Manager which receives the initial request for a path to be planned, and

ultimately outputs a path. The GA component of the system is where the

evolution takes place. This component would be fed details of the problem for

which parameters are to be evolved, and attempt to evolve these parameters.

In doing so, it would have to invoke the APF planner during fitness evalua-

tion to measure the fitness of candidate solutions. As the cost of hardware is

continually reducing, it is suggested that a parallel approach is adopted. The

planning manager could run a number of wholly decoupled instances of the

GA process, each with a different seed, and could then use the best set of pa-

rameters evolved. Alternatively, the parallelisation could be used to speed up

a single run, by distributing a single population over a number of processors.

It is possible in some applications, that a certain configuration will act as

the goal on repeated occasions. It does not seem very sensible in this case

to perform unnecessary computation to generate new parameters each time.

The parameter cache is an idea proposed to address this issue. The Plan-

ning Manager can place parameters for specific problems into the parameter

cache, and when it receives a request for a path to a goal which has been

previously planned it can retrieve them and use them immediately without

consulting the GA component. Memory may be limited in this cache, so a

replacement scheme may be used to decide which parameters in the cache
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should be replaced by those freshly evolved. When the system is not busy

performing on-line planning, the Planning Manager could use this idle time

to try to improve on the parameters in the cache off-line. In a similar way, the

Task Planner outside the system may perform a similar speculative execu-

tion, instructing the Planning Manager to establish parameters for problems

which are likely to arise in the future, which can be stored in the cache for

rapid retrieval later.

Because the GA is only probabilistically complete, although it is very likely

to generate results, it is not guaranteed to. It may be that several runs of

the GA are required before satisfactory parameters are evolved and the du-

ration of these runs cannot be predicted, except insofar as a maximum limit

may be imposed on them. In a real-time system, failure is not an option, so

one or more Backup Planners, adopting a different, perhaps more exhaus-

tive path planning approach, could be included in the system. The Backup

Planner, running in parallel with the GA APF planner, finds a solution before

the GA APF planner, then this alternative path can be used. The problem

can continue to be tackled by the GA APF planner off-line, and parameters, if

evolved can be stored.

6.7 Summary

Previous chapters have described ways in which evolutionary computing, and

specifically GA and GP can be used for robot path planning. Whilst the re-

search for this dissertation has relied on virtual workspaces and simulations,

it must be borne in mind that the ultimate goal of research into all areas of

robotics is to make robots more independent in all aspects of their operation.

This chapter has looked at how the approaches developed during this research

might fit into a more complete robot control system, and has suggested some

improvements which might be required for the eventual, successful imple-

mentation of an Evolutionary Path Planner.
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7

Conclusions

7.1 Introduction

This concluding chapter provides an overview of the dissertation, from the ini-

tial review of the fields of path planning and evolutionary computing through

to the application and evaluation of path planning using GA and GP.

7.2 Summary

This dissertation began, in Chapter 1, by describing why it was necessary for

path planning to be researched further given that there were already existing

automated path planning techniques in place.

It was suggested that part of the problem with existing, classical planning

techniques was their use of the traditional method of problem solving in com-

puter science which imposes a heavy requirement to use knowledge from the

problem domain in solving the problem at hand.

As computers are applied to increasing complex problems, path planning in-

cluded, it is not always possible for human programmers to have a sufficient

understanding of the problem. Techniques which use Evolutionary Comput-

ing were offered as a means by which to address this problem, as they are
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able to learn the knowledge required to solve the problem as an inherent part

of their process. It was, therefore, proposed that GA and GP could be useful

in path planning, an assertion which this dissertation has sought to test.

Classical approaches to path planning were examined in Chapter 2 with a

view to identifying problems with these techniques, and to glean information

which would be useful in the subsequent design and implementation of evo-

lutionary path planning algorithms. Indeed a classical approach was later

adopted as a central aspect of this research.

The investigation did not seek to demean all existing approaches, but tried

to recognise common failings which, in the long term, need to be addressed

in future path planners. The speed at which a technique can produce plans

is clearly important for its application in a real-world robot. Some planning

techniques have quite heavy computational requirements. The dimensional-

ity, magnitude and resolution of the workspace affects some planning meth-

ods. As these parameters increase, the storage resources, and possibly com-

putational requirements increase. The inability of many existing planners to

generalise to unseen situations was also noted.

Having reviewed more traditional approaches in Chapter 2, attention was

drawn, in Chapter 3, to Evolutionary Algorithms which it was hoped would

be able to either assist in planning, or even directly perform planning. The

related techniques of GA and GP were discussed, with a view to using them

for path planning. As speed had already been noted to be important, the abil-

ity to speed up GA and GP by means of parallel computing was addressed.

To demonstrate that GA and GP showed some promise in their future appli-

cation to path planning, some existing applications were examined, including

planning applications.

Chapter 4 described the use of GP to evolve a generalised planner. GP can

be rather slow due to its high computational requirements for difficult prob-

lems, but can be used to evolve programs or rules which themselves can be
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executed quickly online. A number of different approaches were tested, the

best of which was the use of a GP to evolve a function which given a cur-

rent workspace position and goal would output the next step which the robot

should follow to move optimally towards the goal.

Although none of the approaches tried in Chapter 4 were able to evolve plan-

ners which could realistically be used in a successful robot, the results cer-

tainly did not mark an end to the application of evolutionary algorithms to

path planning. An important question addressed by Chapter 5 was “Can evo-

lutionary algorithms improve an existing planning technique?” To this end,

it was shown how GA could be used to address a shortcoming in a classical

approach — Artificial Potential Field guided path planning. A method was de-

scribed for using GA to optimise the parameters controlling the construction

of the potential field. Comparisons were made between manual and auto-

matic tuning demonstrating the automated version to be far superior. It was

then shown how the technique could be further developed to allow the GA to

evolve ordered subgoals in the workspace as well as optimised parameters to

solve more complex planning problems.

Chapter 6 evaluated the techniques developed over the course of the research,

and discussed the implications of implementing evolutionary based planners

in the future. The subject of generalisation was revisited, explaining to what

extent it had been realised. The chapter looked to the future when it is hoped

that an evolutionary path planner might form part of the control system for a

real-world robot which would be subject to real-time constraints. Apart from

improvements in the performance of hardware, other means for addressing

the high computational requirements of GA/GP path planning techniques was

described. A framework was offered as an example of how an evolutionary

path planner might fit in with other components of a robot control system.
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7.3 Contributions

This section summarises the contributions which the research described in

this dissertation has made. It first notes specific techniques and applica-

tions which make contributions to the fields of evolutionary computing and

robot path planning. However, the completion of this study has also given

rise to more general observations which also offer a contribution to future

researchers.

7.3.1 Evolutionary Computing

simple parallelisation of GP

This parallel implementation of GP demonstrated how significant speedups

could be achieved in run times, even when using moderately specified work-

stations connected together by a relatively slow ethernet (Section 3.9).

application of GP to oral cancer diagnosis

GP was applied to the task of diagnosing oral cancer or pre-cancer from a set

of data about patient’s lifestyles. This provided an example of GP solving a

difficult, real world problem (Section 3.9).

multi-objective fitness scaled through the run

This contribution addresses the problems encountered when the fitness of an

individual in a GA or GP population consists of a number of factors which may

conflict. The multiple fitness criteria were divided into one primary and one

or more secondary criteria. The influence placed on the secondary criteria is

a function of the generation number of the run. This encourages the primary

goal to be met first, and the secondary goals to be met as the run progresses

(Section 4.3.2).

Simon Kent 163 March 1999



Chapter 7. Conclusions

multi-objective adaptive weighting

This is another technique to cope with the problems of multi-objective fitness

functions, and was shown to be more effective than the scaling by generation.

Again criteria were divided into primary and secondary criteria, but with this

technique the relative importance does not monotonically shift from primary

to secondary, as with scaling by generation, but varies dynamically according

to the performance of solutions against primary objectives 5.9.

7.3.2 Path Planning

evolving a path planning rule using GP

A number of novel approaches were proposed to use GP to evolve a path plan-

ning rule off-line, which could later be used to generate plans very quickly

off-line (Chapter 4).

optimisation of artificial potential fields using GA

GA was used to automatically set the controlling parameters of the artificial

potential fields used for path planning. There is no other known way of auto-

matically setting these parameters (Chapter 5).

the use of sub-goals in an optimised APF planner

A simple planner was demonstrated which, by use of a GA optimised APF and

subgoals, was able to solve problems which were not solvable without the use

of goals.
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7.3.3 General Observations

a non-competitive approach to the application of GP and GA

In Section 3.8 it was noted that GA and GP are very similar, and that for

the purpose of this dissertation they would be treated as one. Although there

is not necessarily a reference to reinforce this, the impression is sometimes

given at conferences and in various publications that GA and GP are in com-

petition. The stance that has been taken during this research is that they are

both driven by the same underlying evolutionary principles, and that the pri-

mary difference is in the data structure, whether it be a fixed length string, a

dynamic tree, or some other hybrid appropriate to the problem being tackled.

The experimentation carried out during this research used both GP and GA

where it was felt that it was appropriate to do so. It is hoped that the future of

GA, GP will include a common sense approach whereby the techniques are ap-

plied appropriately, and not in competition, whether applied to path planning

or other problems.

Dealing with path planning more specifically, both GA and GP do have some-

thing to offer. Previous researchers have shown how the techniques can be

used in various guises in path planning, and this research has demonstrated

some new approaches, reinforcing the fact that GA and GP are applicable to

path planning. The developments made in this research lay the foundation

for future research in the application of GA and GP to path planning.

appropriate use of GA and GP for path planning

This dissertation has shown that, at present, given the current state of hard-

ware, the most appropriate way in which GA and GP can be applied to path

planning is in a support role, enhancing existing path planning algorithms.
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7.4 Recommendations for Future Research

This section makes some specific recommendations as to what research might

be carried out in the future to further improve robot path planning in order

to eventually realise more independent robots.

parallel path planning

Research should be undertaken into the parallel path planning. Whilst it

is clear that parallelisation will undoubtedly lead to higher speed planners,

research is still required to find the best architecture to use for GA or GP path

planning. Issues of cost against performance must be considered as the goal

of this research must eventually be to make realistic real-time planners for

real-world robots.

using GP to make functions for potential field

Combined with the use of parallel computing to address the computation re-

quirements, the use of GP to represent the repulsive function for each obsta-

cle, as described in Section 6.3.2, may result in potential fields from which

better plans can be derived.

better ways of seeing environment

The work on evolving planners using GP in Chapter 4 described how the pro-

gramming language used to represent the planner was not able to ‘see’ the

workspace effectively. Research into methods for allowing the workspace de-

scription to be effectively ‘input’ into an evolved program may radically im-

prove the ability of GP to evolve a planner.
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separating subgoal positioning and field optimisation

The hybridisation of GA and the APF planning technique led to the use of

subgoals to improve the ability of the planner to cope with more difficult prob-

lems. To improve the possibility of generalisation in an APF planner, research

could be undertaken which separates the optimisation of the potential field

and the placing of subgoals into two separate processes. It may be that the

optimisation of the potential field can be driven by a fitness measure based

on discouraging ‘bad’ features in the field, such as local minima, saddle points

and flat regions, rather than focusing too heavily on optimising the field to

get from a to b. Having generated a ‘desirable’ field, GA can then be used

to generate a coarse grained path by placing subgoals on the workspace, and

generating the fine grained plan using the APF to move between the subgoals.

build into a full planner

In Section 6.6, an outline for an APF planner integrated with other robot

system components was given. There is a huge amount of research to be

explored in this area, incorporating components from classical robotics, from

this dissertation, and perhaps from other branches of machine learning such

as the neural network field.

extend technique to higher dof robots

It would be interesting to apply future versions of the APF planner to robots

with higher degrees of freedom and in higher dimensional workspaces, as will

be required in a useful independent robot.

7.5 Concluding Remarks

This dissertation has enquired into previous classical approaches to path plan-

ning, and has demonstrated a number of different applications of GA and GP
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to path planning problems. In addressing the underlying thesis laid out in

Chapter 1:

Do Genetic Algorithms and Genetic Programming have a role to

play in the future development of robot path planning?

The results of the research carried out provide positive evidence that these

evolutionary techniques do have a role to play in path planning. Furthermore,

in seeking to contribute to the ultimate goal of a fully independent robotic

system, this dissertation hopefully offers the motivation to others to embark

on further research into the application of Evolutionary Approaches to Robot

Path Planning.
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A

Oral Cancer Diagnosis using GP

A.1 Introduction

This appendix describes work carried in the course of the research towards

this PhD. The study provided the opportunity for the practical application of

GP to a real world problem, rather than contrived examples sometimes used

in the evaluation of GP.

The results of the research carried out was reported in a technical report,

conference and in two journal publications [Elliot et al., 1997; Kent, 1996;

Kent and Dracopoulos, 1997; Elliott et al., 1997]

A.2 Background

There is a wide range of problems which historically have required experts

to examine samples of data, and from their analysis assign a classification

or make a prediction. The experts draw on their previous knowledge gained

through formal training and experience.

A particularly important area where such prediction is used is in medical

screening programmes. The idea of such programmes is to detect potentially

harmful conditions in patients sufficiently early, to enable effective treatment.
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The manual screening process is labour intensive, and therefore expensive,

with the consequence that only a limited number of patients are screened.

The less patients that are screened, the less problems will be identified early

enough for treatment.

Computer diagnosis enables very large patient samples to be analysed, either

as the only method of screening, or as a preliminary screening process to iden-

tify those most at risk of a particular condition and therefore in need of more

thorough manual screening. A specific example of such screening is for oral

cancer and pre-cancer.

Data was made available from the Eastman Dental Institute following a pre-

vious study [Jullien et al., 1995] which provided information on patient’s

lifestyles and habits. It was hoped that GP would be able to learn a rule

to classify patients into two groups. The rule should predict whether or not a

patient was ‘at risk’ from oral cancer or pre-cancer.

A.3 Patient Data

The data used for the project was derived from data collected from question-

naires distributed to over 2000 dental patients. The data were presented to

the GP diagnosis system by preparing a number of predicates shown in Table

A.1. For each patient, the system was therefore presented with a true (1) or

false (0) value for each of the 12 predicates. In addition to the data there

was a diagnosis for each of the patients. This diagnosis was from a specialist

who had access to all the necessary definitive diagnosis aids, such as biopsy,

at his disposal.

Some of the predicates need explanation. Firstly, the age of the patient from

the questionnaire was broken down into a ranges of 15 years. All patients

in the trial were over 40 years of age, which is why the ranges start so high.

There are subtle differences in the smoking predicates. The first specifies
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1. Gender is female (i.e. 0=Male, 1=Female)

2. Age > 50

3. Age > 65

4. Age > 80

5. Age > 95

6. Have been smoking within last 10 years

7. Currently smoke ≥ 20 cigarettes per day

8. Have been smoking for ≥ 20 years

9. Beer and/or wine drinker

10. Fortified wine and/or spirit drinker

11. Drink excess units
(i.e. Male > 21, Female > 14

12. Not visited dentist in last 12 months

Table A.1: Patient lifestyle and habit predicates

if the patient has smoked at any time in the last ten years, or whether or

not they currently smoke. The next predicate is true if the patient currently

smokes 20 or more cigarettes per day. The final predicate reflects whether

the patient has, at any time during their life, smoked for a period of 20 or

more years. The alcohol predicates are true if the patient drinks any of the

respective drinks, and the excess units predicate is set if the patient drank

over the recommended weekly units of alcohol. At the time of the study this

was 21 units for men and 14 for women.

Using this method of representing the data, each patient’s details were re-

duced to a 13-bit string consisting of the 12 predicates plus a diagnosis bit.

A training set and a test set were used. The training set contained 991 indi-

viduals of which 948 had negative diagnoses and 43 had positive diagnoses.

The test set contained 132 records, 121 with negative diagnoses and 11 with

positive diagnoses. A lot of records seem to have been lost from the original

2000 patients questioned. This is because the data contained a lot of negative

records, and very few positive records. A large number of negative diagnosis

patients were removed to balance the sets somewhat.
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A.4 GP Approach

It has become fairly standard practice in the GP field to present a “tableau”

which defines the parameters for a particular application of the technique.

This tradition is observed for this problem in Table A.2. This is expanded

below.

Objective: Evolve a rule to predict the presence of oral cancer or pre-
cancer from patient data.

Terminal set: 12 boolean values corresponding to data predicates
Function set: AND, OR, NOT
Fitness: Special ‘shifted’ fitness as described in text
Fitness Case: 991, 13-bit strings corresponding to patient data.
Parameters: population = 500, generations = 600

Table A.2: Tableau for Oral Cancer Diagnoses

Function and Terminal Sets

The function set is a very straightforward set of of three logical operators:

AND, OR, and NOT. A solution to the problem will therefore be a logical expres-

sion using patient attributes as variables. The patient attributes are instan-

tiated in the evolved rules in the terminals. There are therefore 12 bit-fields

corresponding to the predicates in Table A.1. The programs which are evolved

evaluate to either true for a positive diagnosis, or false for a negative diag-

nosis.

Fitness Measure

The fitness measure needs to reflect how well an evolved program performs

over all the records in the training set. To this end, there are two simple

candidates for measuring fitness. The first is the mean-square error:

1
n

n

∑
i=1

(oi− pi)
2 ,
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where n represents the number of patient records against which the individ-

ual was evaluated, oi is the observed diagnosis of the patient, and pi is the

diagnosis predicted by the genetic program.

The problem with such a measure is that it steers the evolutionary process in

a subtly wrong direction. There are some programs in the population which

are contradictory — they always evaluate to false irrespective of the input

values. Contradictory individuals will inevitably appear in the first, randomly

created, generation of the evolutionary process. Because there are a dispro-

portionately high number of training records with negative diagnoses, these

contradictory programs will perform very well, correctly diagnosing most of

the training examples. The GP process will rapidly converge; the individuals

will have high fitness, but will always predict a negative diagnosis.

A second method is simply a proportion of correct diagnoses:

T P+T N
T P+FP+T N +FN

,

where T P,FP,TN,FN represent the number of true positive, false positive, true

negative and false negative diagnoses respectively. This measure again falls

down due to the high number of negative diagnosis records present in the

training data, encouraging rules which only predict negative diagnoses.

To encourage convergence towards a good solution to the problem, a slightly

different fitness measure was devised which more accurately rewards a good

individual. The ms-error evaluates to 0.0 for a program with a perfect predic-

tion rate, and 1.0 for a completely useless individual. It was instead decided

to adopt a measure which rewards for true, positive diagnoses and punishes

for false, negative diagnoses. The measure is defined as:

TP
TP+FP − FN

TN+FN +1.0
2.0

.

This fitness allows the addition of between 0.0 and 1.0 for correctly predicted

positive diagnoses, and the subtraction of between 0.0 and 1.0 for incorrectly
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predicted negative diagnoses, resulting in a total range of -1.0 to +1.0. This

is then normalised so that the contradictory individuals which previously

caused problems are centred at 0.5, thus relatively reducing their fitness.

The optimum rule which correctly predicts all positive diagnoses and does

not falsely predict any negative diagnoses is valued at 1.0. The worst case is

at 0.0, where the rule incorrectly diagnoses all patients. This method rewards

for correct diagnoses and punishes for incorrect diagnoses more effectively

than the previous two methods. This shifted fitness method is the one which

was used in all diagnosis experiments.

A.5 Results

The performance of the evolved rule is measured using a range of metrics

used in the evaluation of diagnosis tools. These are defined in Table A.3 with

results for the best evolved GP rule. For comparison, values are given for

a Neural Network rule developed in Elliot [1996], and for a manual dental

screener.

Metric Description Definition Performance Ratings
GP NN Manual

Sensitivity

Performance of a test in
terms of its ability to ac-
curately predict a positive
outcome, given that the out-
come was actually positive.

T P
T P+FN 73% 64% 74%

Specificity

Performance of a test in
terms of its ability to ac-
curately predict a negative
outcome given that the out-
come was actually negative

T N
T N+T P 65% 68% 99%

Positive Predictive Value
Performance of the test in
terms of percentage of pos-
itive outcomes

T P
T P+FP 15% 15% 67%

Negative Predictive Value
Performance of a test in
terms of a percentage of
negative outcomes

T N
T N+FN 96% 95% 99%

Table A.3: Table performance metrics for best evolved diagnostic rule

These results show that although the evolved rule does not perform as well

as a manual screener, it does perform very similarly to a neural network im-
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plementation of a diagnosis tool. Although the evolved rule could not act as

a substitute for a dental screener, it could act as a suitable pre-filter which

could be embedded in patient management software.
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B

Configuration Files for GA APF Software

B.1 Introduction

The genetic algorithm, artificial potential field planning software written for

this thesis employs, at its heart, a set of files to specify the problem, and in

particular the environment containing obstacles. This appendix provides ex-

amples of the files and the environments to which they correspond, in order

to demonstrate how the representation is very compact when compared to

that which might be required for a bitmap representaiton of a similar envi-

ronment.

B.2 Obstacle Polygon Library

The polygons which are used to represent obstacles in the workspace are de-

fined only one in a library. Although this adds a fixed overhead to storage,

it makes creation of an environment simpler, and saves storage in the spec-

ification file itself. The library is stored in a C header file, although there is

no reason why the library could not be implemented in a file which could be

loaded at run time, removing the need for recompilation when a new shape is

added. The polygons are stored as ordered lists of coordinate pairs in a nor-

malised coordinate system. The convention used here has been to define the
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vertices in an anti-clockwise direction. Examples for a square, right angled

triangle and octagon are:

#define SHAPE_STORE 3

enum {SQUARE, TRIANGLE, OCTAGON};

/* Define some coordinates for some shapes */
float square_coords[8]={0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0};
float rt_ang_tri_coords[6]={0.0, 0.0, 1.0, 0.0, 0.0, 1.0};
float oct_coords[16]={0.2929,0.0000,

0.7071,0.0000,
1.0000,0.2929,
1.0000,0.7071,
0.7071,1.0000,
0.2929,1.0000,
0.0000,0.7071,
0.0000,0.2929};

B.3 An example Enviroment

An example environment is depicted in Figure B.1 which is a screen shot of

the GUI used in this research [Veronneau, 1998]. It is a typical enviroment

containing various shaped obstacles and an initial and a goal position.

B.3.1 Workspace file

The environment is defined by a text file:

FILETYPE:1
[xdim]
100
[ydim]
100
[obstacles]
4
[primitive]
0
[xpos]
10.0
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Figure B.1: An Example path planning workspace displayed using the custom

built GUI

[ypos]
30.0
[xmag]
0.100000
[ymag]
0.300000
[rot]
0.0
[primitive]
2
[xpos]
35.0
[ypos]
60.0
[xmag]
0.300000
[ymag]
0.300000
[rot]
0.0
[primitive]
0
[xpos]
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65.0
[ypos]
69.0
[xmag]
0.300000
[ymag]
0.120000
[rot]
0.0
[primitive]
1
[xpos]
60.0
[ypos]
20.0
[xmag]
0.200000
[ymag]
0.200000
[rot]
0.0

B.3.2 Initialisation file

To allow a single workspace file to be re-used with a number of different ini-

tial conditions, a separate file was used which contained just four co-ordinate

values:

FILETYPE:0
[init_x]
50
[init_y]
55
[goal_x]
90
[goal_y]
90

B.3.3 Parameter file

Once suitable parameters were evolved by the GA APF planner, these too

were output to a file:
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There is an issue relating to the use of a file to store these parameters in

that accuracy may be lost in converting the internal representation of floating

point numbers to string form for output to a file, and subsequently back to an

internal representation when these numbers are read back into a program

for creation of a path. This approach was adopted here to allow for manual

adjustment to the parameters, but it is accepted that an alternative method

might be desirable in a real, embedded application.
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C

The Artificial Ant Problem

C.1 Introduction

This appendix describes the Artificial Ant problem which is a well known,

toy-problem in Genetic Programming and was described by Koza [1992].

C.2 Description

The problem involves moving a robot ant along a trail of food which lies on

a grid. This trail contains 157 pieces of food as shown in Figure C.1. In this

figure, a black square represents a piece of food, and a grey square represents

a gap in the trail. The figure shows the top left corner of the full grid which is

100 × 100 squares. The tableau for this problem is shown in Table C.1.

Objective: Evolve a program to guide a robot ant along a trail of ‘food’.
Terminal set: LEFT, RIGHT, FORWARD
Function set: IF FOOD AHEAD, BRANCH2, BRANCH3
Fitness: Number of pieces of food collected before a timeout of 3,000

moves is made.
Fitness Case: Single case — a grid containing a trail of food
Parameters: population = 2000, generations = 50

Table C.1: Tableau for Robot Ant Problem
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Figure C.1: The Artificial Ant trail.

The ant is capable of a simple set of actions, these being:

• Move forward one grid square

• Turn Left 90o

• Turn Right 90o

The ant also has a limited decision making ability through a function:

• If food in square immediately ahead then action a else action b

The function set is augmented by the addition of two unconditional branching

functions. This allows sequences of ant actions to appear in the evolved pro-

grams. The 3,000 move timeout is to prevent the ant finding all the food on

the trail simply by randomly wandering over all 10,000 grid squares.
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