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Abstract 

Classifier ensembling research has been one of the most active areas of machine 

learning for a long period of time. The main aim of generating combined classifier 

ensembles is to improve the prediction accuracy in comparison to using an individual 

classifier. A combined classifiers ensemble can improve the prediction results by 

compensating for the individual classifier weaknesses in certain areas and benefiting 

from better accuracy of the other ensembles in the same area. 

In this thesis, different algorithms are proposed for designing classifier ensemble 

combiners. The existing methods such as averaging, voting, weighted average, and 

optimised weighted method does not increase the accuracy of the combiner in 

comparison to the proposed advanced methods such as genetic programming and the 

coalition method. The different methods are studied in detail and analysed using 

different databases. The aim is to increase the accuracy of the combiner in comparison 

to the standard stand-alone classifiers. The proposed methods are based on generating a 

combiner formula using genetic programming, while the coalition is based on 

estimating the diversity of the classifiers such that a coalition is generated with better 

prediction accuracy. 

Standard accuracy measures are used, namely accuracy, sensitivity, specificity and area 

under the curve, in addition to training error accuracies such as the mean square error. 

The combiner methods are compared empirically with several stand-alone classifiers 

using neural network algorithms. Different types of neural network topologies are used 

to generate different models. Experimental results show that the combiner algorithms 

are superior in creating the most diverse and accurate classifier ensembles. Ensembles 

of the same models are generated to boost the accuracy of a single classifier type. An 

ensemble of 10 models of different initial weights is used to improve the accuracy. 

Experiments show a significant improvement over a single model classifier. 

Finally, two combining methods are studied, namely the genetic programming and 

coalition combination methods. The genetic programming algorithm is used to generate 

a formula for the classifiers’ combinations, while the coalition method is based on a 

simple algorithm that assigns linear combination weights based on the consensus 

theory. Experimental results of the same databases demonstrate the effectiveness of the 
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proposed methods compared to conventional combining methods. The results show that 

the coalition method is better than genetic programming. 
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Chapter 1: Introduction  

1.1 Introduction 

Learning can be defined as obtaining knowledge about a certain situation or an environment 

in which tasks and situation responses are fulfilled. Humans learn things through studying in 

educational institutes (e.g. schools, colleges, etc.) or through self- or peer-learning. Machines 

on the other hand do not usually obtain knowledge by themselves. Handling machines 

requires special kinds of instructions. For many years, scientists have tried to create machines 

that can interact with the environment the same way that human beings do. (Bull, 2004) 

Machine learning relates to advanced computers and encompasses a developing field of work 

in solving real-world problems. The intricate or sometimes misconceptions about the nature 

of many domains e.g. data mining or process control, have created a need for methods that 

are capable of adapting to the task in hand. Learning classifier systems (LCSs) are machine 

learning methods that embed reinforcement learning, evolutionary computing and other 

heuristics to generate adaptive systems (Bull, 2004). 

Evolutionary computing methods are search algorithms that operate on the principles of 

natural selection and genetics. These principles have been employed in various domains such 

as design, optimisation, control, classification, etc. However, reinforcement learning is a type 

of learning executed through trial and error upon receiving a numerical reward. The learner 

tries to design state and action combinations to their benefit, with the objective of maximising 

future reward.  Reward is often obtained at the end of a number of actions that have been 

executed by the learner. Therefore, reward is generally delayed. This approach is known as 

secondary reinforcers in animal learning theory. The reinforcers act as stimulation factors and 

are associated with things such as pain, happiness and food. Reinforcement learning has been 

applied in a wide range of domains such as gaming, control, stimulation and many others 

(Bull, 2004). 

Classification can be defined as the problem of determining the belonging of a set of 

categories in a new observation; this determination is based on the training set of data that 

includes the observations whose category membership is known. A simple example to further 

understand this definition is by categorising received emails into “spam” and “inbox (non-
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spam)” or patient diagnosis based on observed characteristics such as gender, age, medical 

history, severity of ailment, etc. In machine learning, classification is an example of 

supervised learning, a learning by which a set of identified observations is presented 

(Dietterich, 2000). 

Normally, the individual observations are further explained as a set of quantifiable properties 

known as “features”. These features may take the form of: 

 Category: e.g. blood types (A+, AB-, O-, etc) 

 Ordinal: e.g. clothes’ sizes (small, Xlarge, XXlarge, etc.) 

 Integer value: e.g. the number of cars in a certain city 

 Real value: e.g. the measurement of blood sugar, blood pressure, vitamin deficiency, 

etc. 

 Previous observations: e.g. comparing current observations to previous ones based 

upon similarity or distance 

Based on the definition of classification, a classifier is known as the algorithm that solidly 

implements classification. In statistics, classification is mostly done with logistic recognition 

and the observations are known as explanatory or independent variables, while the predicted 

ones are outcomes which are considered as dependent variables. In machine learning, the 

observations are referred to as “instances” and the explanatory variables are “features” and 

the predicted categories are “classes”. Recently, the concept of combining classifiers was 

proposed as a novel operation to enhance the performance of individual classifiers. These 

classifiers can be based on various classification techniques and can also generate a different 

magnitude of correctly classified individuals. The goal of such an operation is to provide 

more accurate and precise results (Dietterich, 2000). 

Learning from the environment, either for real or artificial subjects, is done via reinforcement 

learning. A certain subject is provided with special tasks, and upon fulfilment, provided 

(reinforced) by a certain reward. However, in some cases, a negative reward is given as a sort 

of punishment or sometimes not given. The task can be a short one equipped with multiple 

feedback operations or it might be a long one where a bunch of operations are made before 

receiving feedback such as in board games (chess, checkers, etc.). 
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The learning classifier system (LCS) was proposed by John H. Holland in a book in 1975 

(Bull and Kovacs, 2005). In his model, a typical learning classifier comprises three major 

components. These components are: 

 Performance system 

 Apportionment of credit procedure 

 Rule discovery system 

These operations are shown in Figure 1.1. 

 

Figure 1.1: Components of a Learning Classifier System   

According to Figure 1.1, the performance system comprises a set of rules and a message list. 

These rules are considered as the system’s knowledge base. During processing, the set of 

rules is considered as the best approximation for the knowledge being analysed by the 

system. However, all the communication in the system is done through messages. Input is 

converted into messages via the sensors and then kept in the message list. The rules assign 

conditions for their execution and generate outputs as effectors. The rules may be considered 

as “if – then” statements.  

First of all, an input message is analysed by matching the first collection of rules in addition 

to the effecter conditions. In other words, an effecter is shown in the rule collection as other 

Performance System 

Rule Discovery 

System 

Apportionment of Credit  

System 

Conflict 

Resolving 

Rules and 
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Rule Conflict 

Resolving 

Learning 

Classifier 
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rules. The main difference is that it generates an output other than another message. In 

addition, one or more rules might match the message. One message is selected and if it is not 

selected, an effecter will generate a new message in the list. This will be done a few   times 

before the message placed on the list matches an effecter’s condition.  

The rule discovery system is quite similar to basic genetic algorithms. In conventional LCSs, 

the “if – then” rule is portrayed as fixed length strings over small alphabets. Holland has 

employed three characters which are “0”, “1” and “#”, with “#” denoting “don’t care” in the 

“if” part of the rule and “copy input” in the “then” portion of the rule.  

The fitness implemented in the genetic algorithm is the apportionment of credit procedure 

instead of a direct function of the rule. The apportionment of credit procedure is known as the 

“bucket brigade” algorithm due to the method through which credit is passed back via the set 

of rules. The basic algorithm represented by the “bucket brigade” algorithm is as follows: 

0. Assigning initial strength to all classifiers. Clearing the list and appending all input 

messages to the list. Also, assigning all classifiers to “not active”. 

1. Activating all classifiers that distinguish messages on the list to “active” and clearing 

the list 

2. Calculating a bid quantity for each classifier appointed “active”  

3. Picking randomly, with a probability related to the bid quantity, classifiers to include 

new messages on the list. Note: each message is marked with the classifier in order 

for the next to occur.  

4. Each classifier that posted a new message pays a payment quantity to the classifier 

that resulted in activating it. 

5. All the classifiers are set to “not active” 

6. New environmental messages are included in order to process the list and the 

operation is repeated again from step 1.  

 

1.2 Aim and Objectives 

In general, classifier ensembles are considered a significant development in the field of 

machine learning and artificial intelligence. They have made it possible for learners to 
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provide accurate outcomes when it comes to decision making in classification problems and 

pattern recognition. For that reason, in the process of making this thesis, the main objective is 

to explore the nature and structure of different ensemble methods and combination methods 

in order to identify which model provides the best outcome in terms of accuracy and 

ensemble size for different classification problems.  

The next objective is concerned with identifying and studying the nature and structure of an 

Artificial Neural Network (ANN) in addition to exploring different neural network models, 

providing the structure of each of the models and determining which of the networks provides 

the best outcome in machine learning. 

Moreover, another objective is to study combination methods in detail by identifying some of 

the well-known advanced combination methods that are concerned with dealing with huge 

amounts of data and handling complex classification problems.   

The last objective is to implement each model represented in this thesis in real-life problems 

and to analyse their behaviour under different parameters, comparing them to the actual data 

in order to distinguish which of the models provides the best predicted outcome when 

implemented in these particular classification problems. 

1.3 Research Methodology 

Artificial intelligence is an aspect of computer science that is concerned with making 

computers more intelligent. The most important requirement for making computers 

intelligent is the concept of learning. One of the most significant principles in machine 

learning is ensemble classifiers due to their many functions and benefits in a wide number of 

applications. This provides the motivation to explore and identify the main aspects of 

ensemble classifiers, in addition to exploring some of the important combination methods 

being used in various applications. Neural networks are basically models that mimic the 

operation of a nervous system such as the brain. These trained networks have many 

advantages such as real-time operation and adaptive learning. Therefore, this provides 

motivation for becoming familiar with some of the most popular neural network models. 

Combination methods are used to combine classifiers of the same type together, thus 

providing a better outcome and supporting various applications in both machine learning and 

pattern recognition. This provides the motivation to identify various aspects of combination 
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methods such as output types, operation levels, combination and algebraic rules, in addition 

to exploring different methods for classifier combination. Advanced combination methods 

are currently employed in science and technology and the more complex problems, the more 

advanced a model should be in order to provide the best prediction and decision making 

results. The motivation behind this thesis is becoming familiar with some of the most 

advanced combination methods. 

 In order to introduce a better algorithm, two main aspects should be taken care of; ensemble 

accuracy and decrease in error prediction. Ensemble combination methods are important in 

any ensemble design and each combination method has got its weaknesses and restrictions 

when it comes to practical implementation. For that reason, a novel combination method is 

introduced that is based on coalition. Coalition method develops an ensemble method for the 

datasets.   

1.4 Contributions to Knowledge 

In this thesis, the Ensembled Combiner Design (ECD) algorithm has been developed in order 

to improve the accuracy of classifiers. The novelty here is exploring various classifier 

combination methodologies and techniques, and thus developing a design that provides the 

most accurate prediction output. This aim was fulfilled by developing a combination method 

using advanced algorithm. 

Throughout this thesis, the introduction of Coalition-based algorithms and Genetic 

Programming has led to the fact that prediction accuracy can be obtained by developing a 

simple yet effective approach based on the principle of diversity so as to guide the process of 

producing the optimal classifier combination, leading to a better accuracy in the predicted 

outputs. As a result, the employment of a coalition of different classifiers can improve the 

accuracy of prediction by excluding the weaknesses of some data points, and including the 

strengths of other data points, in order to obtain an accurate prediction. 

The final novelty to this thesis is the most important one, which is the design of new 

ensemble combination methods that are based on the consensus theory and evolutionary 

algorithms. To obtain the best characteristics of the proposed combination methods, extensive 

experimentations and research have been adopted on various databases and comparisons have 

been made with single conventional combiners such as Voting, Average, Weighted Average 
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and Optimised Weighted Average combination methods. This comparison was made based 

on the output performance of each of the combiners mentioned in different arrangements of 

databases in order to obtain, as previously mentioned, the most optimal characteristics of the 

proposed combination methods. Thus, The results obtained have successfully demonstrated 

the best characteristics for the new proposed methods.  

1.5 Thesis Outline 

The thesis is divided in 7 chapters which are as follows: 

 Chapter 1-Introduction: This chapter talks about the research briefly, the objectives of the 

research, the area which the research is designed for, the addition to knowledge and the 

research outline.  

 Chapter 2-Literature Review: This chapter illustrates some previous studies in the 

research field including classifier techniques and ensembling techniques. 

 Chapter 3-Neural Networks: The theory of neural networks is presented in this chapter, 

and the different types of networks are described and presented. Each network is tested 

with a number of data sets. The data sets are presented and described. 

 Chapter 4-Ensembles: This chapter presents the ensembling techniques for different 

classifiers.  The different data sets are tested, and the results are presented for different 

techniques and classifiers. 

 Chapter 5-Combination Methods: This chapter shows the standard combination methods, 

such as average, weighted average, optimised weighted average and finally voting.  The 

results for all the data sets are presented and compared. 

 Chapter 6-Intelligent Combination Methods: In this chapter, two intelligent combinations 

methods are presented, namely genetic programming and the coalition method. The 

results are presented for all the data sets and compared. 

 Chapter 7-Conclusions and Future Work: This is the final chapter which illustrates the 

stages of the research in brief and presents some ideas that may improve the model in the 

future. 
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Chapter 2: Literature 

Review 

2.1 Introduction 

Users can compare classifiers across various data sets through the Matlab classification 

toolbox. Implementation of classifiers such as Neural Networks, Decision Tree, Gaussian 

Mixture Model, and Gaussian are included in the classification toolbox of (Duin,et al.,2000). 

A list of functions for unsupervised and supervised classification algorithms is also included 

in the Matlab classification toolbox. Using convenient graphic user interfaces, significant 

help in designing categorisation methods for synthetic as well as experimental data is 

provided by these algorithms. The graphic user interface is designed for two-class and two-

dimensional problems (Duin and Tax, 2000). However, most of the algorithms can be used 

on multi-class data and higher dimensional data. Moreover, by using one of several feature 

selection algorithms, the higher dimensional data can be reduced to two dimensions. Basic 

knowledge of Matlab is essential as most of the functions are operated only within the 

graphic user interface. This chapter reflects upon a critical literature of classifiers such as 

regression, neural networks, neuro-fuzzy systems, support vector machine (SVM) and 

Bayesian, and combination methods such as average (mean), weighted average, optimised 

weighted average and majority voting. 

2.2 Classifiers  

2.2.1 Regression 

Logistic regressions are considered as linear classifiers and are one of the widely used and 

popular classification techniques. Measured in both first-best and log loss classification 

accuracy across a number of tasks, logistic regression is one of the best probabilistic 

classifiers. It is a discriminative probabilistic classification model that operates over real-

valued vector. “Features” are those dimensions of the input vectors that are classified and no 
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limitations are imposed if they are correlated. Multinomial classification is provided when the 

logistic regression is implemented, i.e., more than two possible output categories are allowed 

by it (Krishnapuram et al., 2005).  

Linear regression is similar to neural network but without the hidden layer. However, one of 

the major disadvantages of logistic regression is that, in comparison to the other classifiers, it 

is relatively slow to train. In addition, it requires extensive tuning in the form of feature 

implementation and selection to achieve state-of-the-art classification performance. In cases 

where the categories are mutually exclusive and exhaustive, logistic regression models 

provide multi-category classification (Martin, et al., 2002). Inputs are coded as real-valued 

vectors of a fixed dimensionality, and are also known as features or predictors. No limitation 

is imposed on them to be fully or highly linearly correlated, to be with regularisation or to be 

independent (Cung, et al., 2011).  

For multinomial logistic regression, there are some aliases such as Softmax and generalised 

linear model, regularised regression and shrinkage, the Lasso and Ridge regression, the 

neural network, maximum entropy classifier and polytomous logistic regression (Kotsiantis, 

Kanellopoulos and Zaharakis, 2006). Multinomial logistic regression and multi-class, 

polychotomous logistic regressions are also referred to as multinomial logistic regression. 

The maximum entropy principle is followed by logistic regression estimation, and therefore, 

it is also known as “maximum entropy modelling”. The “maximum entropy classifier” is the 

resulting classifier.  

With a logistic activation function trained under log loss, the single-output and one-layer 

neural network is equivalent to binary logistic regression. It is also known as classification 

with a single neuron. Ridge regression is referred to as Maximum a priori (MAP) estimation 

with Gaussian. Parameter shrinkage is also known as MAP estimation with Cauchy, Laplace 

or Gaussian priors. Regularised regression is equivalent to Laplace and Gaussian priors. With 

the logit link function, logistic regression is a generalised linear model (Xue and Titterington, 

2008). Linear predictors can be converted into probabilities through logistic regression. 

Several classes are implicated in adapting the stats package logistic regression models for 

implementations of classifiers. To convert arbitrary objects into mappings to values from 

string-based features, a feature extractor is used first. Second, these features are converted by 

a symbol into dimensions. The conversion of arbitrary objects into vectors is supported by a 
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symbol table and a feature extractor. Finally, to convert the string-based category 

representations into the integer representation, another symbol table is used. 

2.2.2  Neural Networks 

A neural network (NN) consists of units (neurons) arranged in layers. An input vector is 

converted by these neurons within the network into some output. An input is taken by each 

unit and non-linear function is applied to it and then the output is passed on to the next layer. 

These networks are also known as feedforward networks, i.e. the output of a unit on the first 

layer is fed into all units on the next layer (Zhou, et al., 2002). However, there is no feedback 

to the previous layer. Weightings are applied to the signals that are passing from one unit to 

another and in order to adapt a neural network to the particular issue at hand, these 

weightings are tuned in the phase of training. However, for a variety of reasons, the standard 

feedforward multi-layer NNs often fail to converge completely in classification problems. 

This failure may occur due to an incorrect architecture with too few hidden neurons and too 

few layers of weights (Zhang, 2000). 

Applications have been found for neural networks in a wide variety of problems. Using 

Matlab newff function, the neural network classifier is the code that is written for the 

classification of an image. It is a supervised classification technique and is also known as a 

clustering tool. Neural networks have proved themselves as proficient classifiers and they are 

particularly well-suited for addressing non-linear problems. The neural network is certainly 

one of the best candidates for solving issues given the non-linear nature of factual world 

phenomena. The use of neural networks is one of several approaches for classifying data 

(Moradi and Zulkernine, 2004). One way to perceive neural networks is that any number of 

numeric outputs is produced by them through accepting any number of numeric inputs. They 

are virtual output-input devices. Patterns are also recognised by neural networks in addition 

to function fitting. One of the recent techniques in neural networks classification on Matlab is 

known as GCNN. This technique provides “gradient descent learning on smoothing 

parameter” and is known to be a toolbox for generalized classifier NN in addition to a recent 

form of radial basis function RBF-NN (ÇUKUROVA UNIVERSITY, n.d). 
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2.2.3 Neuro-Fuzzy Systems 

Neural networks are known to be suitable for the different applications concerning both 

pattern classification and recognition. In addition, Matlab contains an contemporary library 

and a toolbox concerning neural networks. To further explain the development of a fuzzy 

system, the use of strategies of heuristic learning based on the principle of neural networks is 

known as “neuro-fuzzy”,Which is the combination of both the fuzzy logic and the artificial 

neural networks. This kind of systems have shown to mitigate the issues of machine 

investigation that includes both dimension and space. Furthermore, the hybrid intelligent 

system in its turn combines two or more intelligent algorithms and methods (Czogała and 

Łęski, 2000). 

In terms of features and basic concepts , the advantage of a neural network learning ability to 

design a network is taken by a neuro-fuzzy system. To present data, expert knowledge and 

fuzzy system are used by such a system and then neural network is used in order to adjust 

output/input membership and develop IF-THEN rules to improve the overall system’s 

performance. The overall structure of a neural network is similar to that of neuro-fuzzy 

system. The system is comprised of five layers. In order to present the fuzzy system, it has 

three middle layers and an output and input layer. The layers exist within the structure of a 

neuro-fuzzy system. The input layer is the first layer within which the neurons enter into the 

network. The fuzzification layer is the second layer within which the input neurons are 

fuzzified according to the membership function. The fuzzy rule layer is the third layer which 

represents the fuzzy rules of the system. Each neuron is mapped into a fuzzy rule. The output 

fuzzy set is the fourth layer that represents the output neurons processed by the fuzzy system. 

The defuzzification layer is the fifth and the last layer within which the output membership 

functions are used to obtain a value for the input neurons. 

The adaptive neuro-fuzzy inference system (ANFIS) depends on the basis of functional 

equivalence and with some limitations between radial basis function neural networks RBF-

NN and Takagi-Sugeno-Kang (TSK) fuzzy systems. The output is a single unit directly 

calculated through weighting of the inputs based on knowledge base fuzzy rules. In addition 

they are assigned by a neural network computational algorithm. The Figure 2.1 represents an 

ANFIS model having two input variables x and y in addition to two rules (Thiago M. 

Geronimo et al., 2013).  
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The important things to be considered when it comes to ANFIS performance is the initial 

number of parameters in the system in addition to the number of inputs and rules. It consists 

of five layers; the first layer contains the two inputs as well as the rule inputs, while the 

second and third layers contain the logical operations for the rules. The fourth layer contains 

the output logic rules and the last layer contains the output which was earlier mentioned the 

way to obtain it. 

Fuzzy system provided explanation ability and knowledge representation (Paiva and 

Dourado, 2004). However neural network provided learning ability. Adaptability, 

imprecision tolerance and uncertainty tolerance are provided by both neural network and 

fuzzy system.  

With the nature of neural networking that is based on connections and through combination 

of human-like techniques of fuzzy systems, neuro-fuzzy is introduced. With the ability to 

devise IF-THEN rules, the main characteristic of neuro-fuzzy systems its universal-purpose 

approximation. In addition, both accuracy and interpretability are two characteristics in fuzzy 

modeling and both play a role in strengthening neuro-fuzzy systems (Abraham, 2001). 

Generally, both advantages of neural networks and fuzzy systems can be found in neuro-

fuzzy systems. Therefore, a fuzzy network that has the characteristics of both surpassing the 

limitations of fuzzy systems and neural network limitations in addition to containing a fuzzy 

interface system is known as a “neuro-fuzzy system”. In addition, a “neuro-fuzzy classifier 

(NFC)” is considered as one of the neuro-fuzzy systems.  

 

Figure 2.1: ANFIS Model (Thiago M. Geronimo et al., 2013) 
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2.2.4 Other Classifiers  

Support Vector Machine (SVM): One of the new types of pattern classifiers are SVMs. 

Used for regression analysis and classification, SVMs are supervised learning models in 

machine learning associated with learning algorithms that can recognise patterns and analyse 

data. . The main aim of SVMs is to minimise an upper bound of the generalisation error 

through maximisation of the bargain between the data and the separating hyper plane, unlike 

traditional networks such as neural networks that minimise the empirical training error. 

Ranging from image retrieval, recognition information, speaker and speech verification, text 

categorisation and detection, digit recognition, recognition of handwritten characters, object 

detection and face recognition, verification and detection, the SVMs have been applied 

successfully to a number of applications (Tong and Koller, 2002). Under small training 

sample conditions in high dimensional spaces, SVMs can generalise well enough. Also, in 

comparison to the traditional empirical risk minimisation principle employed by most neural 

networks, they have been shown to be superior. Due to numerous real-life data, decent 

generalisation performance is shown by SVMs. The principle of Structural Risk Minimisation 

(SRM) in the statistical learning theory lays the foundation of SVMs (Poggio, 2001). SVMs 

provide better generalisation abilities, i.e., performances on unseen test data. The factor on 

which the performance of SVMs largely depends is the choice of kernels.  A non-linear 

classification, can be performed efficiently by SVMs in addition to performing linear 

classification. 

Bayesian Classifier The probability of misclassification is minimised by the Bayesian 

classifier in statistical classification. The Bayesian classifier is based on Bayes’ theorem.  The 

idea that the role of an agent is to predict the values of features for members of a class lays 

the foundation of a Bayesian classifier. However, in the case of the agent being unaware of 

the class, the Baye’s rule can be used to predict some of the features of the given class 

(Ramoni and Sebastiani, 2001). A probabilistic model of the uses and features is built by the 

learning agent in a Bayesian classifier and that particular model is used by the learning agent 

to predict the classification of a new example. Observed variables are probabilistically related 

to classification which is a latent variable, whereas the Bayesian classifier is a probabilistic 

model. In the probabilistic model then the classification emerges as an inference. Since 

common values for the features are shared, examples are grouped in classes. Such classes are 

referred to as natural kinds. When there is appropriate independence assumption, i.e., when 

the other features are independent of the given class and when class is a good predictor of the 
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other features, then Bayesian classifier produces significant results. For natural kinds, this 

may be appropriate due to classes. In distinguishing the objects that are not distinguished by 

hands, the evolution of classes take place within natural kinds (Kim and Ghahramani, 2012). 

Nouns are often associated with natural kinds like the class of chairs or the class of dogs. 

Bayesian classifiers are also regarded as statistical classifiers, as class membership 

probabilities are predicted by them.  

2.3 Classifier Ensembles 

To talk about classifier ensembles, it is first necessary to become familiarised with the 

concept of supervised learning, particularly how each classifier is generated. A learning 

algorithm is shown with a training set (instances)                             for an 

unknown function          . The value of       is a vector                    and each 

   is known as a feature or an attribute. These features can have an either real or discrete 

(nominal) value, for instance, age, hair colour, height, weight, etc.    is considered as a set of 

values that correspond to classes or labels. In the case of classification, each       

corresponds to one value     and in the case of regression a continuous value is used. On 

the other hand, the work presented here is related to classification problems. An example is of 

a learning algorithm which will result in a classifier based on a hypothesis about a function 

  with a new object   and predicting the corresponding   value (Kononeko, 2005).  

For the purpose of classification the main goal is to come up with a classifier that minimises 

the prediction error in an independent test data set. Furthermore, the most popular technique 

used in evaluating the classifier’s performance is 0/1 loss function which is as follows:  

             
                       
                             

                                (2.1) 

According to Merriam Webster’s Collegiate Dictionary, ensemble is defined as “a group 

producing a single effect”. In the field of machine learning, an ensemble is a group of 

classifiers that are different and combined in a particular way (Polikar, 2009). The goal of the 

ensemble is to reach a single decision, as shown in Figure 2.2. The objective for any 

ensemble method is to improve accuracy of the classification prediction of the learning 

algorithm. Learning algorithms or trained base learners that are on a given training set are 

known as base classifiers (Adeva, et al., 2005). Ensembles have gained the interest of many 
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researchers and scientists and have been popular in research since the introduction of 

machine learning (Zhou, 2015). This area of supervised learning is known by different names 

such as multiple classifier systems, committees of learners, classifier ensembles etc. 

(Dietterich, 2014). 

Classifier ensembles have a huge benefit due to the fact that combined prediction can possess 

more accuracy than the base classifiers that make them. Particularly, the generalisation errors 

of base classifiers when the errors are not correlated are higher than in the case of classifier 

ensembles. Dietterich (2014) has shown three arguments to justify using classifier ensembles. 

Statistical: the main goal of a learning algorithm is to seek a hypothesis closer to the function 

needed to be predicted. The purpose of ensemble learning is to order patterns or instances 

into a set of classifications known as labels or classes. 14.Ensemble provides that learning 

predicts class label or prior unseen records by providing predictions made by multiple 

classifiers. In other words, each classification depends on the classification models 

(classifiers) in which they are motivated from a somewhat ideal set of prior classified 

patterns. In addition, the classification depends on knowledge provided by an expert in the 

predefined application.   
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Figure 2.2: Supervised learning process 

Moreover, in an ideal supervised learning process, a set of instances or a training set is 

provided and each set is labelled and the purpose is to build a model for the sake of labelling 

the new instances. The algorithm that builds the model is known as an “inducer” and an 

instance of an inducer for a specific set is known as a “classifier”. The main idea of ensemble 

learning is to combine a set of similar models doing the same task for the sake of obtaining a 

proper global model having more reliable and accurate decisions obtained than from a single 
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model. Bhulmann and Yu (2003) mentioned that ensemble learning methods began in the late 

1970s with a simple Turkeys Twining, a two linear regression ensemble model.  

In the past decade, research done in the machine learning community has led to a conclusion 

that combining the output of multiple classifiers has the effect of reducing the generalisation 

error (Cruz and Wishart, 2006). Moreover, ensemble methods are found to be very efficient 

due to the fact that each type of classifier has different “inductive bias” and that they can 

employ this diversity to reduce the variance error without increasing the bias error. With vast 

research and interest in the subject of ensemble methods, a huge number of classifiers are 

now available to researchers. In addition, there are many factors to differentiate between 

different ensemble methods and these factors are: 

1. Inter-classifiers relationship: how each classifier affects the other classifiers and how 

they are related. Ensemble methods are principally divided into two main types, sequential 

and concurrent. 

2. Combining method: the method of combining classifiers produced by an induction 

algorithm. The combiner determines the resultant output simply from the outputs of the 

individual inducers.  

3. Diversity generator: for the purpose of developing a more efficient ensemble, there 

should be some diversity among classifiers. This diversity can be obtained via different 

presentations of input data or by providing plenty of input data to the output data for the sake 

of diversity.  

4. Ensemble size: number of classifiers in the ensemble. 

The ideal ensemble method classifier contains the following blocks: 

1. Training set: the instances in a training set are represented as vectors having attribute 

values. A has been used for the sake of representing the input attributes set containing n 

attributes.  As a result, A and Y represent the goal attribute or the class variable.  

2. Base inducer: is defined as an inducer that gets a training set and produces a classifier 

that yields the input/target attributes. Let’s take “I” to denote an inducer, M = I (S) is used to 

represent A classifier M being stimulated by “I” on “S”. 

3. Diversity generator plays the role in diversity generation among classifiers. 

4. Combiner: for different classifiers, the combiner combines proper classifications. 
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Specifically, it is important to distinguish between independent and dependent frameworks 

when it comes to ensemble generation. In dependent frameworks, the output is employed in 

constructing the subsequent classifier. Therefore, it is likely to use the previous iteration’s 

knowledge to assist the learning of the subsequent iterations. On the other hand, each of the 

classifiers is constructed in an independent way and thus the outputs are combined. The block 

diagram in Figure 2.3 represents the framework of a general ensemble classifier: 

 

Figure 2.3: Framework of general ensemble classifier 

2.4 Combination Methods  

Ensemble combination methods have a huge impact on the ensemble design outcome in 

addition to the generalisation ability of the design itself. As mentioned in section 2.2, 

Dietterich has mentioned three arguments to substantiate using classifier ensembles. 

However, for these arguments to prevail and for the use of ensemble to present optimal 

benefits and results, a combination method must be employed so that the ensemble will not 

depend on the best single classifier for its output (Melville, 2003).  

Essentially, the failure of conventional learning methods is connected with the three issues 

mentioned by Dietterich (2014). A learning algorithm is known to have a high 
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“computational variance” however if it experiences a representational issue then the learning 

algorithm is known to have a high bias (Rokach, 2005).  

2.4.1 Average  

In machine learning, more specifically in the process of creating artificial neural 

networks, ensemble averaging is the method based on creating multiple models and 

producing a desired output by combining the models, in contrast to creating a single model. 

In brief, an ensemble of multiple models has been shown to perform better than any single 

model, due to the fact that the multiple errors of the models are averaged out (Naftaly,et al., 

1996).  

Ensemble averaging is considered as one of the simplest types of committee machines. It is 

one of the two main types of static committee machines, along with boosting.  Ensemble 

averaging is based on keeping the less satisfactory networks in place, but with less weight. 

Ensemble averaging theory depends on merely two properties of artificial neural networks 

(ANNs):  

1. The bias can be reduced at the trade-off of increasing variance in any network. 

2. The variance can be reduced at no cost to bias when in a group of networks. 

Ensemble averaging produces a group of networks each having low bias and high variance 

and thus combines them to a new network with comparatively low bias and low variance. The 

main principle of combining networks can be traced back to Pierre-Simon Laplace. In other 

words, the main idea behind this theory is as follows; creating a set of experts having high 

variance and low bias, and thus averaging them. So, the set of experts has varying 

parameters. The steps for the ensemble averaging can be summarised as follows:  

1. Generating N experts, each having its own initial values that are mostly assigned 

randomly from a distribution. 

2. Training each expert separately. 

3. Combining the experts.  

4. Averaging their values. 

On the other hand, domain knowledge can be employed for the sake of generating 

several classes of experts. Experts from each class are trained and then combined. A more 
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complex approach of ensemble average presents the final result not as an average of all the 

experts, but as a weighted sum. If each expert is   , then the overall result     can be defined 

as: 

                 

 

   

                                                     

where   represents the set of weights. It is clear that most forms of neural networks are a 

subset of a linear combination. The standard neural net in which only a single expert is used, 

is simply a linear combination having all      and one      . A raw average is where all 

    are equal to a constant value, which is 1 over the total number of experts.  

The simple mean combiner is considered to be the most popular combiner that can be 

considered from the “non-trainable” type of combiners, due to its simplicity and 

effectiveness. In other words, it does not need training of any extra parameters, therefore 

once the base classifiers are trained, the ensemble is ready to operate. It produces the 

combined output for a class label: 

      
 

 
       

 

   

                                                     

Which is the equation of the mean of base classifiers    in the class of   and an   number of 

classifiers. 

2.4.2 Weighted Average 

There are mainly two types of weighted mean combiners mentioned here. The difference 

between the two is provided from the method of calculating the weights. It is therefore as 

follows: 

Weighted average that requires assigning different weights to the base classifiers, then 

computing the combined output via averaging the output of the base classifiers:  
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Where    corresponds to the weight given to the  th classifier according to some performance 

criteria.  

In short, the estimated error rate verifies the weight that base classifier    recieves. 

Weighted average requires calculating the class    support from individual support for    

(class-conscious combiners). Thus the weights are unique for each class and are computed as 

mentioned before on (2.4). 

Since all base classifiers are assumed to have equal weights, the simple average can be 

considered as a special case of weighted average, despite the fact that it does not necessarily 

consider weighted average to be superior to simple average. Basically, empirical results here 

are not capable of confirming that weighted average is always better than simple average. 

This can be due to the difficulty in the estimation of the weights in the case of noisy and 

insufficient data or where the ensemble is rather large and learning the weights can result in 

overfitting. Commonly, simple average is suitable for ensembles where the base classifiers 

show similar performance, while weighted average is more convenient and provides better 

results when their performances are different. 

2.4.3 Optimised Weighted Average 

According to different research and observations concerning the various effects of the 

weighted averaging method on the variance and bias aspects of the prediction error, a 

significant amount of reduction in the variance can be obtained by averaging just above 

neural networks’ initial conditions without the necessity of changing the architecture or the 

training sets. The minimum prediction error for the ensemble is reached later than if it is a 

single network. In other words, the ensemble prediction error is found to be more flat 

compared to the error in a single network and as a result, it simplifies the optimal stopping 

decision. The main goal of this approach comes from observing the behaviour of the 

bias/variance composition, specifically the fact that averaging ensembles has no effect on the 

bias aspect of the error. However it reduces the variance when the estimators in the process of 

averaging are independent.  

The procedure here is to estimate a function,       of the observed data characteristics   to 

predict class label denoted by  , based on a training set                           and 

using some level of estimation on  . Moreover, the process of evaluating the estimator is 

generated from the mean squared error (MSE) distance. This is done through taking the 



 

22 

expected value with respect to P which represents the unknown probability distribution of Y 

as follows: 

             
 
                                                         

Decomposing the above yields: 

                                                                                

The first term is independent from either the training data   or the estimator    as it 

computes the magnitude of noise or variability of   with respect to  . therefore,   can be 

estimated by: 

                                                                        

The conventional MSE of     is: 

                                                                         

where    yields expectations given all possible fixed sized training sets  . To further  

analyse the performance through MSE, decomposition of the error into variance and bias 

components is conducted in order to obtain the following: 

                    

                                                        

The right hand side has two terms, the first one represents the bias while the second one 

represents the variance. In the case of training on a fixed training set  , reducing the bias 

with respect to the training set might lead to increasing the estimator’s variance yielding low 

generalization performance. This technique is called “the trade-off between bias and 

variance”. Basically, smoothing is used to reduce variance. On the other hand, this will lead 

to introducing bias resulting in for instance blurring sharp peaks. Reducing bias is done 

according to previous knowledge. When previous knowledge is employed for smoothing, it 

probably results in reducing the overall estimator’s MSE.  

In neural network training, the variance originates from two terms. The first one comes from 

“inherent data randomness” while the second one comes from the model’s “non-

identifiability” or in other words for a particular training data, there exists various local 
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minima of the error surface. As an example of an identifiable model is the “logistic 

regression”. 

The main point is to obtain the optimum training method for lessening the error of the 

particular ensemble average. Conventional training algorithms tend to decrease the error of 

the individual neural network for example the equation (2.9) complexity including variance 

and bias. Basically, the variance increases while the bias decreases with the continuous 

employment of several training instances. In addition, one will have to stop whenever their 

sum goes to a minimum. Since the predictor is an ensemble average in this algorithm, it has 

to seek different minima in order to eliminate some portion of the estimator’s variance 

through ensemble averaging. However, it should be a point which has a smaller bias or longer 

training time to function as an alternative for ensemble predictor. 

2.4.4 Majority Vote  

Thanks to significant improvements and research, the use of ensemble classifiers has been 

widely spread and two main popular ensembles have shown prominent performance which 

are the boosting and the bagging methods (Kim, et al., 2011). These techniques employ re-

weighted or re-sampled training sets obtained from the original data. After that, a learning 

algorithm is applied repeatedly for each training set.  

Boosting was proposed as a technique for enhancing the performance of any weak learning 

algorithm which needs rather more than a random guess approach (Kim ,et al., 2011). 

Boosting changes the distribution of the training set adaptively depending on the performance 

of previous classifiers. To combine these classifiers in ensemble, boosting takes its turn in 

taking a weighted majority vote of their predictions. Bagging uses bootstrap samples in order 

to construct the classifiers in ensemble (Kim ,et al., 2011). Each sample is generated by 

random sampling provided by the same number of instances of the original data. The final 

output produced by the ensemble is obtained through simple majority voting. Other ensemble 

methods have also shown that the ensemble can do better than single predictors in most of the 

cases. Simple majority voting is a method that selects one of many solutions depending on 

the predicted class with the most votes (Kim ,et al., 2011). It is considered as the most used 

decision rule in ensemble methods. Weighted majority voting can be generated if each 

classifier’s decision is multiplied by a weight to convey the confidence of each decision. 

Simple majority voting is considered as a special case of weighted majority voting. In this 
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method, a weight of 1/k is assigned to each classifier in which k corresponds to the number of 

classifiers in the ensemble. 

Based on the reviewed existing classifier methods, various classification methods showed 

good results such as logistic regression ,neural network, neural fuzzy and combination 

methods, however the slow to train and demands systematic modification concerning feature 

implementation of logistic regression and although NF provides the best results when 

compared to other classifiers software but it might face a problem when complex and high 

dimensional data are input, however the ensemble combination methods by combining 

multiple classifiers together can provides improvements in classification prediction accuracy 

via minimizing the prediction error. In addition, multiple classifiers provide further accuracy 

than the original base classifiers that introduced them.   

The ensemble combination method can further be enhanced by devising different types of 

neural networks, different models can be generated. Moreover, multiple initial weights are 

employed for accuracy enhancement. In order to handle high dimensional input data, 

different structures of ensemble methods and combination methods are employed. 

2.5 Summary   

This chapter carried out literature review on classifiers. Few of these classifiers are present 

within the toolbox of Matlab. Users can compare classifiers across various data sets through 

the Matlab classification toolbox. A list of functions for unsupervised and supervised 

classification algorithms is included in the Matlab classification toolbox. Classifiers studied 

critically are regression, neural networks, neuro-fuzzy systems and SVMs. Units (neurons) 

arranged in layers are comprised by a neural network. An input vector is converted by these 

neurons within the network into some output. An input is taken by each unit and a non-linear 

function is applied to it and then the output is passed on to the next layer. An extensive 

toolbox and library on neural networks is provided by Matlab. To support the development of 

a fuzzy system, the employment of strategies of heuristic learning driven from the theory of 

neural network is referred to as “neuro-fuzzy”. Also, in comparison to traditional empirical 

risk minimisation principles employed by most of neural networks, they have shown to be 

superior.  
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Chapter 3: Neural Networks  
3.1 Introduction   

An ANN can be defined as an information processing model in which its main motivation 

comes from how a nervous system, such as the brain, processes and analyses information. 

The main elements in this network are the architecture and the information-processing 

system. It consists of a large portion of complex intersected processing elements called 

neurons. ANNs tend to learn by configuring themselves on applications and feeding 

themselves with an enormous amount of rules and information that will further assist in 

pattern recognition or data classification to improve the network efficiency via a learning 

process. As a result, the programme can then learn how to respond to each input fed into it, 

and by then takes the appropriate measurements from data processing and pattern 

recognising. Nowadays, in biological systems, learning involves modifications in the synaptic 

connections between the neurons; the same process exists in ANNs (Stergiou and 

Siganos,2015; TechTarget, 2015). 

A classical neural network contains from a few dozens, hundreds, even up to millions of 

artificial neurons known as “units”, classified in a series of layers where each layer is 

connected to the next one. The first layer is known as “input units” and this layer is designed 

to receive different types of information from an external source for the sake of performing 

the learning process. Figure 3.1 shows an example of a neural network (Stergiou and Siganos, 

2015). 
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Figure 3.1: Example of a neural network  

As for the “output units” layer, it is responsible for handling the learned information, after it 

passes through the “hidden units” which comprise of one or more layers and these units 

comprise the majority of an artificial brain. Most of the neural networks tend to be “fully 

connected”, or, in other words, each hidden unit is connected to every output unit. This 

connection between one unit and another is known as a “value of weight” and is represented 

by a digit in which it can be either “positive” or “negative”. The higher the weight value the 

more  influence of projects unit on another (Stergiou and Siganos, 2015). 

3.2 Overview of Neural Networks 

Neural networks with their prominent capability of extracting meanings and patterns from 

complex inaccurate data, can be quite useful in pattern recognition and trend detection of data 

that are too difficult for humans and conventional computers to process.  

A trained ANN is known as an “expert” in the aspect of data analysis. These “experts” have 

various advantages such as: 

1. Adaptive learning: learning based on previous data training. 

2. Providing projections to new areas of interest in addition to providing answers to 

“what if” questions. 

Output 

Inputs 

Hidden Layer 
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3. Self-organisation: organising learned information on its own. 

4. Real-time Operation: processing of data is done in parallel, in addition to hardware 

being designed which utilises this practical process. 

5. Error Tolerance via Redundant Information Coding: it is possible to recover 

destruction of data despite the magnitude of network damage. 

Moreover, nowadays in software processing of ANNs, the approach of simulation inspired by 

biology has been somewhat abandoned for a more systematic approach that is inspired by the 

basis of signal processing, probability and statistics. In addition, some of these systems build 

components in larger systems to combine both adaptive and non-adaptive elements. These 

new systems do not have much relevance to the traditional connectionist models of an 

artificial intelligent system, despite their real-world problem-solving applications. However, 

principles that are in common include non-linear, parallel, local and distributed adaptation 

and processing (Stergiou and Siganos, 2015). 

3.3 Neural Network Models 

Neural network models in AI are famously known as “ANNs” and go under the simple 

mathematical function of       or a distribution over   or both        . An ANN 

model is generally defined by three parameters which are: (Russel, 2015) 

1. The pattern of interconnections between different neuron layers. 

2. The process of learning through updating the weights of the interconnections. 

3. The activation function   that processes the weighted input X into its output Y. 

The models discussed in this chapter are as follows: Cascade-forward back propagation 

network, feedforward input time-delay back propagation network, fitting network, 

feedforward back propagation network, radial basis function network and layered-recurrent 

network (Shiffman, 2012). 

3.4 Experimental Data   

In this chapter, and specifically chapters 4, 5 and 6, the performances of the algorithms are 

analysed through experimentations including 7 representative datasets obtained from the 

University of California, Irvine (UCI) repository. These data sets were employed in similar 

studies as well. While assigning these datasets, binary and multi-class datasets should be 
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considerably included. Moreover, multiple number of attributes and data items should be 

considered as well. 

There are up to 9 representative datasets which have been analyzed and 7 datasets applied in 

the algorithms. On the other hand, there were other datasets that were not included such as 

“Horse colic” which was missing some values and “Haber man” which was not practical 

when the previous methods were applied. 

In this section, the 7 data sets are summarised. In addition, different classes of data sets are 

included in each data set such as binary, categorical and numerical classes. Each data set 

includes the number of instances used for the training. Furthermore, each data set contains a 

different number of attributes depending on the nature of the data set, therefore dependently 

setting the standards. There is also statement of loss of data in each data set as experienced 

and the cost matrix for each data set.  

3.4.1. Johns Hopkins University Ionosphere Database 

This data set was conducted in 1989. The source of data is  Space Physics Group , Johns 

Hopkins University. 

The nature of this dataset is the analysis of radar returns from the ionosphere layer by 

employing neural networks. In this dataset, the analysis was made based on using back 

propagation and perceptron training algorithm. 200 instances were used for training, where 

they were thoroughly divided into 50% positive and 50% negative.  

The conclusion was that “linear” perceptron had 90.7% accuracy while a “non-linear” 

perceptron had 92% accuracy. On the other hand, back propagation had an average of up to 

96% accuracy. Those were carried out on the remaining 150 instances, with 123 “good” and 

24 “bad” instances. Accuracy on “good” instances was much greater than on “bad” instances. 

Going back to the back propagation, it was analysed with different numbers of hidden units, 

in other words, as a correspondence of the performance of the different variants of back 

propagation after a number of periods.  

The radar readings were obtained from a system located in Goose Bay, Labrador. It 

comprised of 16 high frequency antennas in phased array possessing a transmitted power of 

up to 6.4 kW. The main goal was to obtain free electrons in the ionosphere layer.  
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The radar returns that conveyed “good” were the ones presenting evidence of some sort of 

structure in the layer. On the other hand, “bad” returns were the ones that did not, meaning 

their signals will protrude through the ionosphere.  

Moreover, the received signals were handled by using an autocorrelation function in which its 

variables are the pulse time and pulse number. From Goose Bay systems, there were 17 pulse 

numbers. In this database, the instances are expressed using 2 attributes per pulse number, 

with each one yielding complex values obtained from the function through the complex 

electromagnetic signal.  

The number of instances was 351. While the number of attributes was 34 in addition to the 

class attribute (all of the 34 attributes were continuous while the 35
th

 attribute was either 

“good” or “bad” depending on the definition mentioned above). Moreover, this is a binary 

kind of classification. In addition, the missing values were none.  

3.4.2. Contraceptive Method Choice 

This data set was conducted on June 7, 1997. The sources are: 

   (a) Origin:  This dataset is a subset of the 1987 National Indonesia Contraceptive    

Prevalence Survey 

   (b) Creator: Tjen-Sien Lim  

   (c) Donor:   Tjen-Sien Lim  

The dataset is part of the 1987 National Indonesia Contraceptive Prevalence Survey. The 

samples for this data set were married women who were not pregnant or they did not know 

that they were pregnant at the period of the survey. The nature of this data set was to predict 

the used contraceptive methods: not using, long-term methods, or short-term methods. This 

prediction was based on the demographic and the socio-economic situation.  

The number of instances was 1473 and the number of attributes was 10 including the class 

attribute. There were no missing attributes. The 10 attributes had numerical, categorical, and 

binary types of inputs, and the categorical inputs had a range of ratings depending on the type 

of attribute. The wife’s age input is numerical. The education of the wife is a categorical 

input ranging from 1 to 3 for 1 being low in education. The same goes for the husband’s 

education with the categorical range from 1 to 3. The number of children born is numerical.  
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The religion has a binary approach with 0 being a non-Muslim and 1 being a Muslim. The 

same approach goes for the status of employment for the wife, being 0 as employed and 1 as 

not employed. The occupation of the husband takes a categorical approach from 1 to 4, the 

same as the standard of living which is 1 for low and 4 for high standard of living.  The 

exposure of media: 0 means having good exposure and 1 not having good exposure to media. 

The type of contraceptive methods used is a class attribute with 1 conveying no use, 2 long-

term use and 3 short-term use. 

3.4.3. Statlog (Heart) Data Set 

This data set has 13 attributes extracted from a set of 75 attributes. The attribute information 

includes age, sex, type of chest pain, blood pressure (resting), serum cholesterol (mg/dl), 

blood sugar (fasting) (>12- mg/dl), electrocardiographic results (resting) (values 0, 1, 2 ), 

maximum achieved heart rate, exercise stimulated angina, old peak = (ST depression 

stimulated by exercise in relevance to rest), peak exercise slope ST segment, number of major 

vessels (0 – 3) coloured by fluoroscopy and Thal: 3= normal, 6= fixed defect, 7= reversible 

defect. 

The types of attributes are real (1, 4, 5, 8, 10, 12), ordered (11), binary (2, 6, 9) and nominal 

(7, 3, 13). 

The variables concerned are used to predict either the absence or presence of heart disease. 

There are no missing values and the number of observations is 270. The cost matrix is as 

follows (the rows correspond to the real values and the columns represent the predicted 

values): 

 Absence Presence 

Absence  0 1 

Presence 5 0 

3.4.4. Statlog (German Credit Data) Data Set 

The number of instances is 1000. Two data sets were provided. The number of attributes in 

“German” was 20, from which 7 are numerical and 13 are categorical. As for “German 

number”, 24 numerical attributes were provided. The numerical values are: Attr. 2: duration 

(months), Attr. 5: credit amount, Attr. 8: instalment rate in percentage of disposable income, 

Attr. 11: present residence since (date), Attr. 13: age (years), Attr. 16: number of existing 
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credit cards in this bank and Attr. 18: number of people being liable to provide maintenance 

for. 

As for the qualitative or categorical attributes, they are as follows: Attr. 1: the status of 

existing checking account which ranges from A11 to A14, A11 being less than 0 DM, A12 

being between 0 and 200 DM, A13 being greater or equal to 200 DM (salary assignment for 1 

year at least) and A14 having no checking account. Attr. 3 is the credit history. This attribute 

ranges into 5 sects from A30 to A34 having A30 corresponding to no credit taken and all 

were paid; A31 conveys all credits at this bank were paid; A32 says that existing credits were 

paid back until currently. As for A33, it mentioned that there was a delay in paying in the past 

and the last one A34 conveys the possibility of a critical account or other accounts existing.  

Attribute 4 discusses the purpose. It ranges into 10 sub-attributes from A40 to A410. A40 is a 

new car, A41 is a used car, A42 is furniture or equipment, A43 is radio/TV, A44 is domestic 

appliances,  A45 is repairs, A46 is education, A47 is vacation (does not exist), A48 is 

retaining, A49 is business and A410 is others.  

Attribute 6 talks about savings account/bonds. It ranges from A61 to A65, A61 being less 

than 100 DM,  A62 from 100 to 500 DM, A63 from 500 to 1000 DM, A64 more than 1000 

DM and A65 having unknown or no savings account.  

Attribute 9 discusses personal status and sex. From A91 to A95, A91 being a 

divorced/separated male, A91 is a divorced/separated/married female, A93 is a single male, 

A94 is a married/widowed male, and A95 being a single female.  

Attribute 7 talks about present employment. A71 is unemployed, A72 is less than a year, A73 

ranges from 1 to 4 years, A74 from 4 to 7 years, and A75 is more than 7 years. Attribute 10 

talks about other debtors/ guarantors being A101 none, A102 co-applicant and A103 a 

guarantor.  

Attribute 12 is property. A121 is real estate. A122, if not A121, is building society savings 

agreement or life insurance. A123, if not A121 or A122, car or other, not in Attr. 6. A124 is 

unknown or no property. Attribute 14 is other instalments plans which A141 is bank, A142 is 

stores and A143 is none.  
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Attribute 15 is housing: A151, A152 and A153 being rented, owned, and for free 

respectively. Attribute 17 discusses job: 171 being unemployed or unskilled with no 

residency. A172 is unskilled but resident, A173 is a skilled official employee and A174 is a 

management/self-employed/highly-qualified employee/officer. 

Attribute 19 is having a telephone whether registered under the customer’s name (A192) or 

not (A191). Attribute 20 being a foreign worker (A201) or not (A202). 

The cost matrix is as follows: 

 1= Good 2= Bad  

1= Good 0 1 

2= Bad 5 0 

 

The rows correspond to the actual classification while the columns represent the predicted 

classification. It is worse to assign a customer as good when they are bad (5) and vice versa 

(1).  

3.4.5. Australian Credit Approval Data Set  

This data set is related to credit card applications. All attributes and values have been altered 

to vague symbols for the sake of protecting the secrecy of the information.  

There is a variety of attributes: continuous, nominal with a small number of values, and 

nominal with a large number of values. In addition, there are also a few missing values. The 

number of instances was 690 and the number of attributes was 14 in addition to the class 

attributes.  

From those 14, there are 6 numerical attributes and 8 categorical attributes. The attributes 

correspond to numerical and categorical. The categorical ones are A1: 0,1 (a, b), A4: 1,2,3 (p, 

g, gg), A5: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (ff, d, I, k, j, aa, m, c, w, e, q, r, cc, x), 

A6: 1, 2, 3, 4, 5, 6, 7, 8, 9 (ff, dd, j, bb, v, n, o, h, z), A8: 1, 0 (t, f), A9: 1, 0 (t, f), A11: 1, 0 (t, 

f) and A12: 1, 2, 3 (s, g, p). As for the continuous attributes, they are A2, A3, A7, A10, A13 

and A14. 

A15 is a class attribute of either 1 or 2 (+ or -). 
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About 37 cases (5%) had one or more missing values where both A1 and A2 had 12 missing 

ones. A4, A5 had 5 missing values. A6 and A6 had 9 missing values and A14 had 13 missing 

values. 

These missing values were compensated by the mode of the “categorical” and the mean of 

the “continuous”. 

For the class distribution, class 2 is “+” with 307 instances (corresponding to 44.5%) while 

the “– ” is with 383 (about 55.5%). There is no cost matrix in this data set. 

3.4.6. Breast Cancer Wisconsin (Original) 

This data set was conducted on 8
th

 January 1991. Attributes from 2 to 10 are concerned with 

representing instances, each instance having one of the two class possibilities: benign or 

malignant.  

The number of instances as of July 1992 had reached 699. The attributes are 10 in addition to 

the class attribute. The attribute information is: Sample Code number (ID number), clump 

thickness (1-10), uniformity of cell size (1-10), uniformity of cell shape (1-10), marginal 

adhesion (1-10), single epithelial cell size (1-10), bare nuclei (1-10), bland chromatin (1-10), 

normal nucleoli (1-10), mitoses (1-10) and class (2 = benign and 4 = malignant). 

The number of missing attribute values is 16, denoted by “?”. 

As for the class distribution, benign attribute has 458 which is 65.5% and 241 for malignant 

which is 34.5%. 

3.4.7. Bladder Cancer Data Set  

The number of inputs is 4 which are tumour type, patient details, protein expression and 

DNA mutation. Tumour type is divided into TCC grade from 1 to 3, where 1= best and 3= 

worse (yielding more aggressive tumours) and TCC stage from ‘a’ to 4 where a = superficial 

and non-invasive, 1 = superficial and just invasive, a+1 can be considered together or 

separately and 2 – 4: invasive tumours. 

The patient details include sex, age, smoking (cigarettes/day, cigarettes/year, packs/years), 

other non-bladder cancers and blood group. Protein expression is divided into three sub-

inputs which are P53 (0+1 = normal, 2 = abnormal [mutated]), msh2 (0+1 = abnormal [loss], 

2 = normal) and mlh1 (0+1 = abnormal [loss], 2 = normal). 
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DNA mutations are divided into 5 sub inputs which are bat 26 (5 loci have been analysed, bat 

26, bat 25 etc.). Normally they are stable (S), bat 25 (in some types of cancer they are 

unstable [I]), mfd 15 (any tumour with only 1 stable marker [I] – the whole tumour can), apc 

(considered as unstable [I]) and d2s123. 

The number of outputs is 2 which are actual tumour and behaviour. Actual tumour is 

basically how long it took to come back after the surgery in a month. As for the behaviour, 

there are a few criteria. These criteria are: no. of recurrent (for superficial TCC [a + 1] 

basically the number of times it came back), time of progression (when did it become more 

advanced), time to TCC specific death (when it did kill the patient [2-4 tumours], for 

superficial tumours [a +1] deaths rarely occur), time to non-TCC death (from other causes), 

status at 5 years (AV= alive and no tumour, AT= alive with tumour, DN = died not from 

TCC, DT = died from TCC) and Study ID number. 

3.5 Data Modelling 

There were multiple types of ANN models that has been employed according to their 

architecture or function. Each model is compatible for a certain method or application, 

therefore, it is not suitable for these methods. In addition, there were 12 models of ANN put 

to test, and they were Cascade-forward Back Propagation Network, Feedforward Input Time-

delay Backdrop Network, Fitting Network, Feed-forward Back Propagation Network, Radial 

Basis Function Network, Layered-Recurrent Network, distributed time delay network,    

Elman back propagation network, Generalized  regression network, feedforward back 

propagation network with feedback from O/P, Exact radial basis network and pattern 

recognition network present. As a result, 6 of these models Cascade-forward Back 

Propagation Network, Feedforward Input Time-delay Backdrop Network, Fitting Network, 

Feed-forward Back Propagation Network, Radial Basis Function Network and Layered-

Recurrent Network  present the most efficient results and therefore suitable for the methods, 

while others some were eliminated such as “Elman”, due to the fact that it takes a long time 

for training. Moreover, “Hopefield” contained no training syntax and while others that gave 

out multiple outputs, some are suitable for only one input and one output.  

Each of the algorithms was analyzed through number of experimentations regarding its 

performance. There are up to 9 representative datasets which have been analyzed and 7 
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datasets applied in the algorithms. On the other hand, there were other datasets that were not 

included such as “Horse colic” which was missing some values and “Haber man” which was 

not practical when the previous methods were applied.  

Sensitivity,specificity,accuracy, area under the curve (AUC) and root mean square (RMS) are 

the analysis parameters of the performance results of the models. Sensitivity and specificity 

are two statistical parameters that are concerned with performance and classification 

functions. Sensitivity in its turn measures the proportion of “positives” that are rightly 

recognized as such. On the other hand, specificity measures the amount of “negatives” that 

are rightly recognized as such (Altman and Bland, 1994). In statistics and engineering, 

accuracy is a measurement of the extent of “closeness” of a certain value to the true value 

(Berrizbeitia, 2016). 

Receiver operating characteristic (ROC). ROC is a graphical representation that shows the 

performance of a classifier system and the discrimination threshold is varied. The curve is 

done through the plot of the true positive rate (sensitivity) and the false positive rate 

(specificity) (Berrizbeitia, 2016). Area under the curve(AUC) is defined informally as the 

signed area of the region in the   -plane that is bounded by the graph of    the x-axis and the 

vertical lines       and      . The area above the x-axis adds to the total and that below 

the x-axis subtracts from the total. When imagining an    plane, the area under the curve 

AUC is signed area of the    region that is limited by the graph of the function, the x-axis 

and the vertical lines   and  . in addition, the area above the x-axis adds to the total while the 

area below the x-axis is subtracted from the total area . The root mean square (RMS) is the 

quadratic mean and is the square root of the arithmetic mean of squares of a set of values. In 

statistics,  the RMS of an estimator measures the imperfection of the estimator’s fitness to the 

data(Wolfram MathWorld, 2016) . 

The performance of these models is based on 80% network training and 20% network testing. 

Furthermore, for training and testing, different percentages for each proportion was made. 

For example, the ratio of 90% of training to 10% testing was made in addition to 70% 

training to 30% testing. However, the best performance was obtained from having 80% for 

training and 20% for testing, therefore we have utilized the 80 to 20 percentage as a default 

method throughout the research. 

 

https://en.wikipedia.org/wiki/Area_(geometry)
https://en.wikipedia.org/wiki/Graph_of_a_function
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3.5.1 Cascade-forward Back Propagation Network 

The cascade feedforward back propagation network is quite similar to the feedforward 

network. However, it includes a weight connection carried out from the input to each layer 

(output and hidden layers). This is shown in Figure 3.2. The neurons in the first layer, the 

input layer, have a single function of providing a buffer for spreading the input signals to the 

neurons in the hidden layer. Each neuron in the hidden layer sums its input signal, weights 

them, then computes its outputs. Training a network comprises of modifying its weights 

accordingly via learning algorithms (Godara and Gupta, 2012). 

 

                               

Figure 3.2: Cascade-forward back propagation network (Godara and Gupta, 2012) 

Though a two-layer feedforward network has the ability to virtually learn any input-output 

relationship, multi-layer feedforward networks possess the capability of learning even the 

most complex relationships quickly (Dheeraj, et al., 2014). 

To reach the optimised status in this algorithm, the Tangent-sigmoid transfer function is used. 

The performance (prediction accuracy) of each algorithm, the cascade forward back 

propagation and the feedforward back propagation can both be analysed via using Mean 

Square Error “MSE”, Mean Absolute Error “MAE”, Mean Relative Error “MRE” and 

Coefficient of Correlation “CC” (Dheeraj, et al., 2014). 
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At which n corresponds to the number of data patterns for the independent data set, while x 

and y correspond to the sample means average (observed) and (predicted) while x’ and y’ are 

the averages of observed and predicted values (Dheeraj, et al., 2014). There are two training 

algorithms that can be used to update the weights of the network which are Levenberg-

Marquardt and Bayesian regulation (Amiri and Esna, 2012).  

Back propagation algorithms which are gradient-based are mostly used by researchers. The 

thing about them is that they are inefficient due to the fact that the gradient tends to vanish 

when reaching the solution. However, Hessian-based algorithms permit the network to learn 

trends of complex mapping which are more appropriate. As the solution is reached, the 

training process converges quickly due to the fact that the Hessian does not tend to vanish on 

reaching the solution. Moreover, the Levenberg-Marquardt (LM) algorithm is employed to 

benefit from the advantages of the Hessian dependent training (Amiri and Esna, 2012).  

Bayesian Regulation algorithm is another training method for backpropagation, in which it 

begins by random distribution of initial weights and biases. After integrating the input 

patterns to the networks, updating the initial weight starts to reach final distribution. These 

methods are rather resilient to high noise level and possess good approximation with arbitrary 

accuracy of training and have the ability to enhance generalisation performance. Moreover, 

structural learning with forgetting is considered the main process used for regularisation. It 

possesses good approximation with arbitrary accuracy of training in addition to improving 

generalisation performance (Amiri and Esna, 2012). 

This model was proved to provide excellent results and has been applied in different 

algorithms employed in this chapter. There are 6 network models in this thesis and each one 

will be applied on the 7 data sets. Based on that, the model(s) that give the best results will be 

concluded. 
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Tables 3.1 and 3.2 show the performance results of cascade-forward back propagation 

networks. The tables represents a summary of the data sets. Some criteria were taken in 

consideration when choosing the datasets. Binary, non-binary and multi-class datasets are 

included in addition to a variety in the number of attributes and data items. 

In each table represented below, the row represents the 7 data sets which are: Breast Cancer, 

Bladder Cancer, Statlog (Heart), Contraceptive, German Credit and Australian Credit. In 

addition, the column represents the analysis parameters which are: Sensitivity, Specificity, 

Accuracy, AUC and RMS. Each cell contains a number which refers to a percentage (for the 

first three columns) while the other two columns represent measurements of area under the 

curve and root mean square. The performance of this model is based on 80% network training 

and 20% network testing. This division has been chosen as it delivers the best results. 

 

Table 3.1: Cascade-forward back propagation Network (CFBP) training performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 92.4528   99.6845   97.2689 0.99197 0.1984 

Bladder Cancer 66.6667   98.7654   85.9259 0.9337 0.3240     

Statlog (Heart) 78.3133   99.0385   89.8396 0.94158 0.3326     

Contraceptive  95.7627   27.4376   66.5373     0.69419 0.5857     

German Credit 76.8844   92.6148   88.1429     0.91382 0.3288     

Australian Credit 92.1296   91.0798   91.6084    0.96488 0.2727     

Ionosphere 92.8105   86.6667   90.535    0.92654 0.3390     
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Table 3.2: CFBP Network testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 72.6027   98.4127   88.9447 0.97894 0.3056      

Bladder Cancer 41.6667   67.6471   56.8966 0.59926 0.6282     

Statlog (Heart) 55.8824   90.6977   75.3247 0.82064 0.4948   

Contraceptive  94.0945   22.4599   63.7188      0.65916 0.6198     

German Credit 57 80.303   72.4832     0.75123 0.4640     

Australian Credit 87.9121   82.7957   85.3261   0.9063 0.3445 

Ionosphere 95.7143   68 88.4211 0.86495 0.5533       

 

Figures 3.3 to 3.9 are scatter plots representing the results that are shown in Tables 3.1 and 

3.2. Each of the 7 data sets mentioned above have both trained and tested figures. These 

figures contain three plots: the actual predicted output, the rounded predicted output and 

Specificity vs. Sensitivity plots. According to these plots, the overall performance of the 

model will be compared to that of the other models to determine which one of them presents 

a better outcome.  Relative to the results, the best prediction would yield a point in the upper 

left corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 

coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  
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Figure 3.3: ROC training/testing of Breast cancer record 

 

 
 

Figure 3.4: ROC training/testing of Bladder cancer record 

 

 

Figure 3.5: ROC training/testing of Statlog(Heart) record 
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Figure 3.6: ROC training/testing of Contraceptive record 

 

Figure 3.7: ROC training/testing of German record 

 

Figure 3.8: ROC training/testing of Australian record 
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Figure 3.9: ROC training/testing of Ionosphere record 
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the same as that of the features. For the recognising patterns place or time-invariant, the 

previous values of activation and connection of the feature units have to be stored. This is 
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These units are known as the “receptive field”. It is usually, though not necessarily, of the 

same number as the feature units. Moreover, the feature units might again split up between 
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field is recopied for every following step of time up to the total delay length. In the learning 

phase, these links are handled as single and modified depending on the average of those 

changes they would face when treated separately. The unit activation is performed by 

including the weighted sum of its input into an activation function (threshold or sigmoid kind 

of function). For TDNNs, this behaviour is altered via the delays. All the unit inputs are 

multiplied by the N delays. By structuring a whole network of time delay layers, the TDNN 

can connect inputs in different points in time or space (Mache, 1995). 

Training in this type of network is done through a process similar to back-propagation. It 

includes particular semantics of coupled links in consideration. To allow this network to 

provide the preferred behaviour, there has to be a sequence of patterns to be presented to the 

input layer provided with the feature being shifted within the patterns. Since each feature unit 

is copied to each frame shift, the complete history of activations is accessible at once. Though 

the unit copies are purely duplicates seeking the same event, the weights of the corresponding 

connections between these copies have to be handled as one. First of all, a normal 

backpropagation method is done, then the error of the output layer is calculated. After that, 

the error deviations are processed and propagated backward. This results in different 

correction values for corresponding connections. Furthermore, all correction values for the 

corresponding links are then averaged and the weights are then updated with that value. This 

update in the algorithm imposes on the network to train on time and position independent 

detection of sub-patterns. This significant trait of a TDNN makes them independent from 

error-facing processing algorithms. The disadvantage however is that it results in a long and 

complex learning phase (Mache, 1995). 

Theoretically, feedforward neural networks can have the chance to learn relationships 

depending on the mathematical function concerned. However, to model time-series or 

dynamic systems, memory is needed. One way to supply memory is through recurrent 

connections. A more practical method is through using a tapped delay line in the input time-

series. However the delay line must be long enough to attain suitable performance. By 

increasing the number of input units, meaning longer delay lines, training times may increase 

due to the large portion of data needed. In addition, it is also important to choose the delay 

line length where the memory is provided by internal units (Obst and Riedmiller, 2013). 

This network also was beneficial in obtaining great results when applied to the algorithms 

used in this chapter. Figure 3.10 shows the feedforward input time-delay system. 
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Figure 3.10: Feedforward input time-delay system (Obst and Riedmiller, 2013) 

Tables 3.3 and 3.4 show the performance results of feedforward input time-delay backdrop 

network. The tables represents a summary of the data sets. Some criteria were taken in 

consideration when choosing the datasets. Binary, non-binary and multi-class datasets are 

included in addition to a variety in the number of attributes and data items. 

In each table, the row represents the 7 data sets. In addition, the column represents the 

analysis parameters. Each cell contains a number which refers to a percentage (for the first 

three columns) while the other two columns represent measurements of area under the curve 

and root mean square. The performance of this model is based on 80% network training and 

20% network testing. This division has been chosen as it delivers the best results. 
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Table 3.3: FFITBP Network training performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 90 98.7382   95.8071 0.98364    0.2054  

Bladder Cancer 76.9231   43.2099   56.391 0.67353 0.5195     

Statlog (Heart) 79.5181   94.3396   87.8307 0.95044 0.3096 

Contraceptive  93.2203   42.4036   71.484     0.76149 0.5095           

German Credit 30.1508   96.4072   77.5714   0.82838 0.3925       

Australian Credit 93.9535   88.7324   91.3551     0.2668     0.96411 

Ionosphere 77.1242   60.6742   71.0744     0.78588 0.4533       

              

Table 3.4: FFITBP Network testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 81.8182   96.8254   91.133 0.96083 0.2718 

Bladder Cancer 79.1667   52.9412   63.7931 0.72672 0.5151 

Statlog (Heart) 75.6757   88.6364   82.716    0.91032 0.3438 

Contraceptive  90.1575   39.0374   68.4807     0.71596 0.5319        

German Credit 23.7624   95.9391   71.4765 0.77236 0.4434       

Australian Credit 85.5556   76.3441   80.8743   0.86683 0.4022       

Ionosphere 71.831   65.625   69.9029   0.71582 0.4975      

 

Figures 3.11 to 3.17 are basically scatter plots representing the results that are shown in 

Tables 3.3 and 3.4. Each of the 7 data sets have both trained and tested figures. These figures 

contain three plots, the actual predicted output, the rounded predicted output and Specificity 

vs. Sensitivity plots. According to these plots, the overall performance of the model will be 

compared to that of the other models to determine which one of them presents a better 

outcome. Relative to the results, the best prediction would yield a point in the upper left 
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corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 

coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  

 

 

Figure 3.11: ROC training/testing of Breast cancer record 

 

 

Figure 3.12: ROC training/testing of Bladder cancer record 
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Figure 3.13: ROC training/testing of Statlog(Heart) record 

 

Figure 3.14: ROC training/testing of Contraceptive record 

 

Figure 3.15: ROC training/testing of German record 
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Figure 3.16: ROC training/testing of Australian record 

 

Figure 3.17:  ROC training/testing of Ionosphere record 
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input and output. After training is done, this network can be used as a black box with an input 

to output characteristic almost equal to the relation of the training problem (Adrignola, 2010). 

Curve fitting works best when using neural networks because it is generally much faster than 

conventional iterative approaches. In addition to that, more improvements in speed can be 

attained by employing special purpose hardware for the network, making this method 

practical for real-time applications. The optimum parameters values can be obtained through 

minimising an error measure, often chosen to be the sum of the squares of the errors that are 

between the observed values and the predicted values (by the function). If the functional form 

is dependent linearly on the parameters (polynomial), this results in an easy-to- solve linear 

minimisation problem. In many situations, it is important to consider functional forms which 

rely nonlinearly on the unknown parameters. In such situations, the minimisation process 

basically includes an iterative algorithm with an initial guess. However, these processes are 

computationally thorough and thus they are slow, and for complicated problems the necessity 

for an appropriate initial guess requires human assistance to guarantee convergence to the 

correct solution (Bishop and Roach, 1992). 

For applications requiring large amounts of data and applications that are real-time, there is a 

significant interest in techniques which can automate the process of curve fitting in addition 

to operating at high speed. The issue of parameters optimisation of a provided functional 

form so as to fit experimental data is faced often in data analysis. Mostly, there is a prominent 

interest in non-linear curve fitting techniques due to their fast and automatic direct mapping 

with the best fit function. Although the training of these networks requires a lot of hard work, 

the trained network is capable of rapid data processing. Generally, they are much faster than 

other iterative methods (Bishop M and Roach, 1992). 

The feedforward neural networks (feedforward net) are used to fit an input-output 

relationship. The fitting network provided great results when applied on the algorithms in this 

chapter. Figure 3.18 shows a fitting network.  
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Figure 3.18:  Fitting Network (Bishop M and Roach, 1992) 

 

Tables 3.5 and 3.6 show the performance results of a fitting network. The tables represents a 

summary of the data sets. Some criteria were taken in consideration when choosing the 

datasets. Binary, non-binary and multi-class datasets are included in addition to a variety in 

the number of attributes and data items. 

In each table, the row represents the 7 data sets. In addition, the column represents the 

analysis parameters. Each cell contains a number which refers to a percentage (for the first 

three columns) while the other two columns represent measurements of area under the curve 

and root mean square. The performance of this model is based on 80% network training and 

20% network testing. This division has been chosen as it delivers the best results 
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Table 3.5: FITT Network training performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 96.2264   100 98.7395 0.99422 0.1491 

Bladder Cancer 42.3077   91.358   72.1805 0.78624 0.4842     

Statlog (Heart) 89.0244   87.3786   88.1081   0.3480      0.92942 

Contraceptive  96.6102   19.5011   63.6275   0.70272 0.5734    

German Credit 26.1307   96.2076   76.2857    0.75409 0.4156    

Australian Credit 90.2778   86.385   88.345    0.93762 0.3157    

Ionosphere 88.2353   96.7033   91.3934 0.96839 0.3422     

 

Table 3.6: FITT Network testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 72.0588   97.619   88.6598 0.97029 0.3830 

Bladder Cancer 21.7391   72.7273   51.7857 0.56863 0.6530         

Statlog (Heart) 72.2222   80.9524   76.9231    0.81388 0.4542   

Contraceptive  94.8819   14.4385   60.771     0.66878 0.6084 

German Credit 20.7921   93.4673   69 0.6976 0.4620      

Australian Credit 91.2088   78.4946   84.7826    0.90571 0.3497    

Ionosphere 80.2817   78.125   79.6117    0.84051 0.4241   

 

Figures 3.19 to 3.25 are scatter plots representing the results that are shown in Tables 3.5 and 

3.6 above. Each of the 7 data sets mentioned above have both trained and tested figures. 

These figures contain three plots: the actual predicted output, the rounded predicted output 

and Specificity vs. Sensitivity plots. According to these plots, the overall performance of the 

model will be compared to that of the other models to determine which one of them presents 

a better outcome.  Relative to the results, the best prediction would yield a point in the upper 
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left corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 

coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  

 

 

Figure 3.19:  ROC training/testing of Breast cancer record 

 

Figure 3.20:  ROC training/testing of Bladder cancer record 
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Figure 3.21:  ROC training/testing of Statlog(heart) record 

 

Figure 3.22:  ROC training/testing of Contraceptive record 

 

Figure 3.23:  ROC training/testing of German record 
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Figure 3.24:  ROC training/testing of Australian record 

 

Figure 3.25:  ROC training/testing of Ionosphere record 

 3.5.4 Feed-forward Back Propagation Network 

This model is considered as the most common neural network architecture in machine 

learning. This popularity is due to its applications in many tasks. To be familiarised with this 

architecture, one must analyse the principle behind its training and pattern processing. This  

is shown in Figure 3.26. The first term of the model, the feedforward algorithm, illustrates 

how this network processes and remembers patterns. In addition, neurons are connected 

forward only. Each layer possesses connections to the next layer e.g. from input layer to the 

hidden layer, with no back connections (Heaton, 2008).  
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Figure 3.26: Feedforward back propagation network (Heaton, 2008) 

The term ‘back propagation algorithm’ illustrates how this neural network is trained. Back 

propagation is a type of supervised training in which the network must be provided with 

sample inputs and predicted outputs. The predicted outputs are then compared to the actual 

output for the sake of the given inputs. Furthermore, the back propagation algorithm 

calculates the error and modifies the weights of the layers from the output to the input layer 

(backwards) (Heaton, 2008). 

The Feedforward Back Propagation algorithm comprises of one input layer, one output layer 

and one or more hidden layers as shown in Figure 3.27. For the sake of the learning method, 

back propagation is required as discussed above. For the back propagation, the output layer 

weights are updated. There is a predefined value for each neuron in the output layer. The 

weights updated are from the predefined values of the neurons in addition to the learning 

rules. This algorithm is practical for sequential problems, however when it comes to other 

problems, it provides inaccurate results. In addition, through some cases, the learning process 

was hindered because of local minimum value. This case occurs due to positioning the 

answers at the smooth part of the threshold function. In the training of such a network, 

calculations were conducted from the input of the network to the output, and error values then 

were propagated to previous layers. The output calculations however were carried out layer to 

layer for the sake of making the output of each layer to be the input of the next one. 

Basically, these two algorithms work side-by-side together without any mean. In other words, 

the feedforward algorithm is applied to determine the output and there is no need for back 

propagation, and the same applies for the back propagation to determine the output without 

the necessity of the feedforward when structuring a neural network. However this is a special 

case of that neural network (Amiri and Esna, 2012). 
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As for the feedforward algorithm, they comprise of one or more hidden layers of sigmoid 

neurons followed by an output layer of linear neurons. Several layers of neurons with non-

linear transfer functions permit the network to learn both linear and non-linear relationships 

between the input and the output vectors. Then, the output of a network produces values 

between 0 and 1, and after that the output layer employs a sigmoid transfer function. Figure 

3.27 shows a feedforward back propagation network. 

 

Figure 3.27: An example of a feedforward back propagation network (Amiri and Esna, 

2012). 

Tables 3.7 and 3.8 show the performance results of feedforward back propagation networks 

respectively. The tables represents a summary of the data sets. Some criteria were taken in 

consideration when choosing the datasets. Binary, non-binary and multi-class datasets are 

included in addition to a variety in the number of attributes and data items. 

In each table, the row represents the 7 data sets. In addition, the column represents the 

analysis parameters. Each cell contains a number which refers to a percentage (for the first 

three columns) while the other two columns represent measurements of area under the curve 

and root mean square. The performance of this model is based on 80% network training and 

20% network testing.This division has been chosen as it delivers the best results. 
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Table3.7:  FFB Network training performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 90.625   99.6845   96.6457 0.98864 0.1796  

Bladder Cancer 85.1852   88.8889   87.4074 0.9209 0.3117      

Statlog (Heart) 80.7229   92.4528   87.3016    0.92464 0.3320    

Contraceptive  93.2203   39.229   70.1261    0.74158 0.5229     

German Credit 59.799   93.4132   83.8571    0.88295 0.3515 

Australian Credit 87.037   90.6103   88.8112     0.94829 0.2951     

Ionosphere 88.2353   83.3333   86.4198     0.89336 0.3633 

 

Table 3.8: FFB Network testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 85.1351   98.4127   93.5 0.98952 0.2543  

Bladder Cancer 47.619   78.7879   66.6667 0.69118 0.6208     

Statlog (Heart) 62.1622   85.7143   74.6835     0.78808 0.4608     

Contraceptive  90.1575   34.4086   66.5909   0.67097 0.5607         

German Credit 41.5842   89.4472   73.3333    0.75541 0.4375      

Australian Credit 89.011   86.0215   87.5    0.92887 0.3151     

Ionosphere 78.8732   72.7273   76.9231    0.8169 0.4107 

 

Figures 3.28 to 3.34 are scatter plots representing the results that are shown in Tables 3.7 and 

3.8. Each of the 7 data sets have both trained and tested figures. These figures contain three 

plots: the actual predicted output, the rounded predicted output and Specificity vs. Sensitivity 

plots. According to these plots, the overall performance of the model will be compared to that 

of the other models to determine which one of them presents a better outcome. Relative to the 

results, the best prediction would yield a point in the upper left corner or coordinate (0,1) of 
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the ROC space, representing both 100% sensitivity (no false negatives) and 100% specificity 

(no false positives). In addition, the (0,1) point is considered a perfect classification. In the 

ROC plot, when the curve is nearly touching the left top corner coming closer to 1, that 

means that this ROC enjoys high accuracy and when it goes down that corresponds to low 

accuracy ROC. Therefore, the more higher and closer to the corner the curve is, the better 

results are obtained in terms of accuracy.  

 

Figure 3.28:  ROC training/testing of Breast cancer record 

 

Figure 3.29:  ROC training/testing of Bladder cancer record 
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Figure 3.30:  ROC training/testing of Statlog(Heart)  record 

 

Figure 3.31:  ROC training/testing of Contraceptive record 

 

Figure 3.32:  ROC training/testing of German  record 
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Figure 3.33:  ROC training/testing of Australian  record 

 

Figure 3.34:  ROC training/testing of Ionosphere record 

3.5.5 Radial Basis Function Network 

A radial basis function (RBF) network is defined as an ANN that applies radial basis 

functions as activation function. The network output is basically a linear combination of the 

inputs and neuron parameters in radial basis functions. These networks have many 

applications such as function approximation, classification, time-series prediction and system 

control. They were first introduced in a 1988 paper written by Broomhead and Lowe at the 

Royal Signals and Radar Establishment. Moreover, radial basis functions are a special kind of 

function. The main feature they possess is that the response of the function decreases or in 

some cases increases monotonically according to the distance from a certain centre point. The 

parameters of the model are the centre, the distance and the shape of the radial basis function. 

These parameters are fixed if the function is linear (Orr, 1996). 
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Basically, they can be applied in any model either linear or non-linear and any kind of 

network either single-layer or multi-layer. These networks have been used in association with 

radial basis functions in single-layer networks. This is illustrated in Figure 3.35. 

 

Figure 3.35: Radial Basis Function Network (Orr, 1996) 

This figure illustrates the typical radial basis function network. Each n component of the 

input vector x feeds forward to basis functions m where its outputs are combined linearly into 

the network output f(x) with weights       
  (Orr, 1996). 

Figure 3.35 further explains an RBF network. Its inputs are x1, x2, … xn and the output is   . 

The pointers in the figure represent the parameters in the networks. This network comprises 

of one hidden layer of neurons. At each neuron’s input, the distance between the input vector 

and the neuron centre is calculated. The neuron output is then formed by implementing the 

basis function to that distance. The output of the network is structured through a weighted 

sum of the neuron’s outputs and the unity bias is represented. This system is often matched 

with a linear part which is basically additional connections from the inputs to the neuron 

output (Wolfram, 2015). Single output RBN illustrated in Figure 3.36, this is one of the most 

used network models after the feedforward network.     
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Figure 3.36: Single Output RBN (Wolfram, 2015) 

Moreover, RBF networks can have multiple outputs, shown in Figure 3.37. 

 

Figure 3.37: Multiple Output Radial Bases Network (Wolfram, 2015) 

Tables 3.9 and 3.10 show the performance results of radial basis function network. The tables 

represents a summary of the data sets. Some criteria were taken in consideration when 

choosing the datasets. Binary, non-binary and multi-class datasets are included in addition to 

a variety in the number of attributes and data items. 

In each table, the row represents the 7 data sets. In addition, the column represents the 

analysis parameters. Each cell contains a number which refers to a percentage (for the first 

three columns) while the other two columns represent measurements of area under the curve 

and root mean square. The performance of this model is based on 80% network training and 

20% network testing. This division has been chosen as it delivers the best results. 
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Table 3.9:  RBF Network training performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 100 100 100 0.99054     0.1032    

Bladder Cancer 100 100 100 0.98765 0.0000 

Statlog (Heart) 100 100 100 0.99057 0.0000 

Contraceptive  99.8305   96.5986   98.4481     0.96921 0.1419 

German Credit 100 100 100 0.998 0.0000 

Australian Credit 100 100 100 0.99531 0.0000 

Ionosphere 100 100 100 0.98913 0.0000 

 

Table 3.10:  RBF Network testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 91.2821   100 62.2549 0.49349 0.6144 

Bladder Cancer 91.6667   14.7059   46.5517 0.54963 0.6251 

Statlog (Heart) 100 100 54.321     0.51351 0.6759 

Contraceptive  93.7931   88.2353   62.1739    0.4197 1.5247 

German Credit 100 100 66.3333     0.48522 0.5800 

Australian Credit 100 100 50.5435    0.024578 0.7065 

Ionosphere 97.1831   95.8824   67.619   0.092792 0.6603   

 

Figures 3.38 to 3.44 are basically scatter plots representing the results that are shown in 

Tables 3.9 and 3.10 above. Each of the 7 data sets have both trained and tested figures. These 

figures contain three plots: the actual predicted output, the rounded predicted output and 

Specificity vs. Sensitivity plots. According to these plots, the overall performance of the 

model will be compared to that of the other models to determine which one of them presents 

a better outcome. Relative to the results, the best prediction would yield a point in the upper 
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left corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 

coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  

 

 

Figure 3.38:  ROC training/testing of Breast cancer  record 

 

Figure 3.39:  ROC training/testing of Bladder cancer record  
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Figure 3.40:  ROC of Statlog (Heart)  record 

 

Figure 3.41:  ROC training/testing of Contraceptive record 

 

Figure 3.42:  ROC training/testing of German record 
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Figure 3.43:  ROC training/testing of Australian record 

 

 

Figure 3.44:  ROC training/testing of ionosphere record 

3.5.6 Layered-Recurrent Network 

Recurrent neural networks (RNNs) can be defined as a type of artificial neural network in 

which connections between units shape a direct cycle. This results in creating an internal state 

of the network allowing it to reveal dynamic temporal behaviour. RNNs have the ability to 

employ their internal memory for the sake of processing arbitrary sequences of inputs, 

making them practical in tasks such as recognition for connected handwriting achieving the 

best prediction results (Bullinaria, 2014). 

In recurrent networks, the weight matrix for its layers contains input weights coming from all 

the neurons in the network not just from the prior layer. Unlike feedforward networks, they 

have feedback elements allowing signals from one layer to be fed back from the previous 
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one. A typical recurrent network is shown in Figure 3.45. It contains three layers: the input, 

output and hidden layer. Additional units are provided to the input layer that receives input 

from the neurons in the hidden layer. In addition, the feedback paths from the hidden layer to 

the units have fixed unit weight, shown in Figure 3.45 (Bullinaria, 2014). 

 

Figure 3.45: Layered recurrent network (Bullinaria, 2014) 

The main thing about RNNs is that their networks contain at least one feedback connection, 

therefore, the activations can loop in the network. This allows the networks to perform 

temporal processing and sequence learning. RNNs can have many structures. One of the main 

structures comprises of a multi-layer perceptron or MLP in addition to the added loops. These 

can benefit the powerful non-linear mapping abilities of the MLP in addition to providing 

some kind of memory. Others possess a more uniform structure with each neuron connected 

to all other neurons in the network, or may have stochastic activation functions. Moreover, 

for conventional structures and deterministic activation functions, learning can be done by 

similar gradient descent processes to those that lead to the backpropagation algorithm to the 

feedforward neural networks. When the activations are stochastic, methods such as simulated 

annealing can be employed (Bullinaria, 2014). 

As discussed above, the simplest structure of an RNN is an MLP with its prior hidden unit 

activations being fed back into the network with the inputs. This is shown in Figure 3.46 

(Bullinaria, 2014). 
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Figure 3.46: Simple structure of a recurrent network (Bullinaria, 2014) 

According to the figure, time t must be discredited with the activations being updated at each 

time-step. The time scale may refer to the operation of the real neurons. Or, in artificial 

systems, any time step-size can be used for the problem provided. A delay unit requires 

introduction so as to hold activations until they are processed in the next time-step 

(Bullinaria, 2014). 

By truncating the unfolded network to just a single time-step, this will result in reducing it to 

a Simple Recurrent Network known as an Elman network as shown in Figure 3.47. 
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Figure 3.47:  Elman network (Bullinaria, 2014) 

According to the figure, each set of weights only appears once, therefore it is possible to 

apply the gradient descent technique using the conventional back-propagation algorithm. As a 

result, the error signal will not get back propagated very far, and thus it will be difficult for 

the network to learn how to use information from far time. Practically, this approximation is 

known to be very useful for many applications. An alternative structure contains a single 

input and a single output. There is also a delay line at the inputs and the outputs are fed back 

by a delay line to the input. This model is known as Non-Linear Auto-Regression with 

eXogenous inputs, or (NARX), shown in the Figure 3.48. It is effective for time-series 

prediction, where the target y(t+1) is x(t+1) as shown in Figure 3.48 (Bullinaria, 2014). 
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Figure 3.48:  NARX Model (Bullinaria, 2014) 

Unlike the feedforward networks, in the layered recurrent network each layer has a recurrent 

connection with a tap delay that it is associated with. This allows the network to have an 

infinite dynamic response to time series input data. It is similar to the time delay and 

distributed delay neural networks that are known to have infinite input responses. 

Tables 3.11 and 3.12 show the performance results of layered-recurrent (LR) networks 

respectively. The tables represents a summary of the data sets. Some criteria were taken in 

consideration when choosing the datasets. Binary, non-binary and multi-class datasets are 

included in addition to a variety in the number of attributes and data items. 

In each table, the row represents the 7 data sets. In addition, the column represents the 

analysis parameters. Each cell contains a number which refers to a percentage (for the first 

three columns) while the other two columns represent measurements of area under the curve 

and root mean square. The performance of this model is based on 80% network training and 

20% network testing. This division has been chosen as it delivers the best results. 
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Table 3.11:  LR network training performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 99.3789   98.7382   98.954 0.9975 0.0000 

Bladder Cancer 88.8889   87.6543   88.1481 0.93599 0.2846     

Statlog (Heart) 96.3855   100 98.4127    0.98352 0.1200     

Contraceptive  97.7966   39.229   72.7449    0.75893 0.5572 

German Credit 68.8442 91.2176   84.8571    0.89757 0.3428     

Australian Credit 95.3704   94.3662   94.8718    0.97068 0.2222      

Ionosphere 100 92.0455   97.0954    0.98757 0.1711     

Table 3.12:  LR network testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 94.8718   96.0317   95.5882 0.97884 0.2025     

Bladder Cancer 47.8261   81.25   67.2727 0.69792 0.6201     

Statlog (Heart) 52.9412   75.6098   65.3333 0.69963 0.6700       

Contraceptive  94.4882   38.7097   70.9091    0.69409 0.5769 

German Credit 53.4653   85.9296   75 0.77621 0.4324     

Australian Credit 75.8621   82.7586   79.3103    0.84308 1.8391     

Ionosphere 97.1831   72.7273   89.4231    0.94366 0.2684     

     

Figures from 3.49 to 3.55 are scatter plots representing the results that are shown in Tables 

3.11 and 3.12. Each of the 7 data sets mentioned above have both trained and tested figures. 

These figures contain three plots, the actual predicted output, the rounded predicted output 

and Specificity vs. Sensitivity plots. According to these plots, the overall performance of the 

model will be compared to that of the other models to determine which one of them presents 

a better outcome. Relative to the results, the best prediction would yield a point in the upper 

left corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 
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coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  

 

Figure 3.49:  ROC training/testing of Breast cancer record 

    

Figure 3.50:  ROC training/testing of Bladder cancer record 

 

Figure 3.51:  ROC training/testing of Statlog (Heart)  record 
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Figure 3:52:  ROC training/testing of Contraceptive record 

 

Figure 3.53:  training/testing of German  record 

 

Figure 3.54:  ROC training/testing of Australian record  
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Figure 3.55:  ROC training/testing of Ionosphere record 

So far, each of the 6 network models was presented with training performance and testing 

performance. This has been done in order to measure the overall performance of the model by 

applying 7 data sets which are: Breast cancer, Bladder cancer, Statlog (Heart), Contraceptive, 

German Credit, Australian Credit and Ionosphere. Each data set was analysed using 5 

different analysis parameters such as: Sensitivity, Specificity, Accuracy, AUC and RMS. To 

take a look at the testing performance values of these parameters and compare them with the 

training performance ones, they were embedded in two tables to further assist with the next 

step. The next step is to plot the tables in order to present graphs showing the performance of 

each data set training-wise and testing-wise.  

Based on the results obtained from the tables and figures in this thesis, it can be clearly seen 

that the six models Cascade-forward back propagation, Feedforward Input time-delay 

backdrop network ,Fitting network, Feedforward back propagation network, Radial basis 

network and Layered- recurrent network have been shown greater output for data sets in 

general.  

The results represented in tables 3.13 and 3.14 shows the comparison the results of the 6 

different models of artificial neural network based on AUC output results for all datasets 

using all training dataset sizes. The table clearly shows that each data set leads to different 

performance . 
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Table 3.13: AUC Comparison of six models of ANNs training performance  

Training  CFBP FFITBP FITT FFB RBF LR 

Breast Cancer 0.99197 0.98364 0.99422 0.98864 0.99054 0.9975 

Bladder Cancer 0.9337 0.67353 0.78624 0.9209 0.98765 0.93599 

Statlog (Heart) 0.94158 0.95044 0.3480      0.92464 0.99057 0.98352 

Contraceptive  0.69419 0.76149 0.70272 0.74158 0.96921 0.75893 

German Credit 0.91382 0.82838 0.75409 0.88295 0.998 0.89757 

Australian Credit 0.96488 0.2668     0.93762 0.94829 0.99531 0.97068 

Ionosphere 0.92654 0.78588 0.96839 0.89336 0.98913 0.98757 

 

Table 3.14: AUC Comparison of six models of ANNs testing performance 

Testing CFBP FFITBP FITT FFB RBF LR 

Breast Cancer 0.97894 0.96083 0.97029 0.98952 0.49349 0.97884 

Bladder Cancer 0.59926 0.72672 0.56863 0.69118 0.54963 0.69792 

Statlog (Heart) 0.82064 0.91032 0.81388 0.78808 0.51351 0.69963 

Contraceptive  0.65916 0.71596 0.66878 0.67097 0.4197 0.69409 

German Credit 0.75123 0.77236 0.6976 0.75541 0.48522 0.77621 

Australian Credit 0.9063 0.86683 0.90571 0.92887 0.024578 0.84308 

Ionosphere 0.86495 0.71582 0.84051 0.8169 0.092792 0.94366 
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3.6 Summary 

Neural Networks are generally an artificial simulation to the human brain in processing and 

analysing information. The more these networks are fed with information, the more they are 

efficient in methods such as pattern recognition and data classification. They possess many 

advantages such as learning and recognising patterns from previous data. In addition, they 

provide real time operation and error recovery systems to better process and handle 

information. Each neural network model conveys a method by which the input data is 

classified and analysed.  Some of these models depend on previous models with few to major 

additions to the model for better accuracy and performance.  

From the models discussed in this chapter, there is not even a proper definition of what 

ANNs really are or the possibilities of the applications in different fields. Though, in order 

for a model to be known as “neural”, they must possess certain points such as (Stergiou and 

Siganos, 2015): 

1. They must have a set of adaptive weights which are numerical factors  adjusted by a 

learning algorithm 

2. They must be able to approximate non-linear functions of their inputs. 

The experimental data mentioned in this chapter was for the purpose of clarifying the real-

world applications of machine learning and intelligent systems in harnessing the huge amount 

of data available for each data set and how it is handled. Neural networks are not meant to 

make miracles. But if used accurately and purposefully they can provide some amazing 

advanced results (Stergiou and Siganos, 2015). 

  

http://en.wikipedia.org/wiki/Adaptive_systems
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Chapter 4: Ensembles 

4.1 Introduction   

Ensemble learning can be defined as the method in which several models known as classifiers 

or experts are purposefully combined and produced for analysing and solving problems 

related to computational intelligence. Ensemble learning is mainly used to improve methods 

such as prediction, classification, and function approximation in addition to reducing the 

likelihood of a poor selection. Other applications include selecting the confidence level to the 

decision made by the model, choosing optimal features, incremental learning, non-stationary 

ensemble learning, data fusion and error correction (Navone, 2001). 

On the other hand, hybridization is basically a system that depends on combining different 

two or more techniques from various artificial intelligence systems (e.g. neuro-fuzzy systems, 

fuzzy expert systems, evolutionary neural networks, etc..). Furthermore, the hybridization 

technique combines two or more algorithms in order to improve the performance for 

problems concerning optimization. In order to make that happen, the hybridization embeds 

the most appropriate features of the algorithms combined to construct a new high-level 

algorithm (Corchado et al., 2009). 

An ensemble system is provided by combining different models known as “classifiers”. As a 

result, these systems are recognised as classifier systems or ensemble systems. For the sake of 

fully understanding the necessity of employing ensemble systems it is important to analyse 

the psychological approach. Simple examples include questioning different doctors in the 

same field before going through a certain surgery or treatment, or picking the best laptop by 

doing some research on product reviews or simply asking different experts in computer 

shops. Even this research was based on different resources on material concerning ensemble 

learning. As a result, this will assist in reducing poor and misguided decisions concerning 

performing a medical procedure, choosing the best electrical device, or producing a 

comprehensive research (Navone, 2001). 

The method of classifying various inputs into many classes is recognised by researchers to be 

the most popular method of pattern recognition tasks. Classification methods require 



 

78 

constructing statistical models that specify a mapping of the input data, which are different 

features, into the appropriate outputs. Hence, the goal for these models is to approximate the 

correct mapping of the inputs to the outputs providing the intention of constructing 

predictions based on the outputs for either the new or the previously analysed inputs. As a 

result, this method can have a variety of applications in many fields such as medicine, 

banking and accounting, sensor technology, weather forecasting and many other domains 

(Polikar, 2006). Furthermore, this chapter will discuss in detail the types of ensemble learning 

and the advantages of ensemble learning. Furthermore, some applications concerning the use 

of ensemble learning in the field of medicine will be discussed briefly. 

4.2 Ensemble Methods 

Types of ensemble learning, generally, there are two types of ensemble learning: supervised 

and unsupervised learning. Each one will be discussed in this section. In supervised learning, 

a set of training examples, with their outputs known, is employed by a learning algorithm to 

produce a classifier. A practical example is the classification method which is used to predict 

a legitimate or a fraudulent credit card operation. In this process, each pattern input represents 

a particular charge and consists of various features such as amount of transaction, time of 

transfer, credit card balance and location in addition to the output pattern which is the 

legitimacy of the operation (Polikar, 2009). 

A learning algorithm employs the provided examples to further generate a classifier that 

estimates the mapping of each transaction and its legitimacy. As a result, this classifier can be 

used to verify the legitimacy of a new transaction (Polikar, 2009). However, unsupervised 

learning comprises locating a class to a training example without the need to have a target 

class. Going back to the credit card system, various credit card operations are clustered 

together based on the basis of similarity. This data can be used to analyse transactions that 

require reviewing by another algorithm or a bank teller. This technique is recognised as 

“clustering”;this technique works by looking for similarities in large data groups in which 

class memberships are unknown for the training system and the observations of similar nature 

are clustered into one subset. (the data groups which are similar are clustered together 

(joined) in a technique called “clustering”). 
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Clustering is the assignment of a set of observations into subsets (called clusters) so that 

observations in the same cluster are similar in some sense. Clustering is a method of 

unsupervised learning, and a common technique for statistical data analysis used in many 

fields. 

Several learning algorithms produce a single classifier (it can be a decision-tree or a neural 

network) which can be utilized in making predictions for the new examples. On the other 

hand, several decisions such as settings for initial model parameter can have an impact on the 

performance of the particular classifier. One option is to assign the most suitable classifier. 

However, this technique does not offer  the optimum solution in several cases. In addition, 

due to the actuality that several classifiers are tested prior to assigning a single classifier, this 

technique also disregards significant information by ignoring the performance of all the other 

classifiers(Polikar, 2009). However, this method does not give the optimum solution in many 

cases. Moreover, due to the fact that several classifiers are tested prior to picking a single 

classifier, this method also ignores valuable information by ignoring all the other classifiers’ 

performance (Polikar, 2009). 

Classifier ensembles are collections of many classifiers in which each of their predictions are 

combined in particular methods in order to generate the final decision. Ensembles give not 

only better but more robust solutions in most of their applications due to the fact that they 

utilize all of the available classifier information. For example, when considering the case 

where neural networks having different structures of even different weights produced from a 

supplied training set. Therefore, an ensemble of these classifiers can be constructed by 

getting each classifier presenting a prediction for a certain pattern and providing feedback to 

the class that provides the maximum voters. Several learners and scientists have proved that 

ensembles’ performance is higher than that of their base models if the base models provide 

good performance on noticeable examples and outputs errors on different examples. (Polikar, 

2009). 

Supervised learning systems are specialised in seeking an appropriate hypothesis from the 

hypothesis space in order to make an appropriate prediction to a given problem. However, it 

is difficult to find a good hypothesis despite the fact that there exist appropriate hypotheses in 

the hypothesis space. In other words, an ensemble is a method of combining weak learners 

for the sake of producing strong learners (Polikar, 2006). 
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Evaluating an ensemble prediction basically requires more complexity in operation than 

single-mode prediction, so it can be considered that ensembles are a technique aiming to 

compensate for poor learning algorithms by performing many extra computations. Fast 

algorithms are commonly used with ensembles, although in some applications slower 

algorithms can be beneficial as well (Polikar, 2006). 

An ensemble is intrinsically a supervised learning algorithm because it is capable of being 

trained and is used to make predictions. The trained ensemble thus represents a single 

hypothesis, however, it is not compulsory for it to be included within the hypothesis space of 

the ensemble method. As a result, ensembles enjoy a significant amount of flexibility 

enabling functions to overfit training data more than single models in theory. However, 

practically some ensemble methods such as bagging can reduce the problems concerning 

overfitting the training data (Polikar, 2006). 

4.2.1 Why ensemble learning works 

There are three main reasons why ensembles can perform better than single classifiers. The 

reasons in general are statistical, computational and representational. According to Figure 

4.1, a learning algorithm can be analysed as seeking a space H of hypotheses in order to 

identify the best hypothesis. 

 

 

 

 

 

 

 

Figure 4.1 Statistical analysis 

 

Providing a finite amount of data, many hypotheses are basically equally good. By 

performing the average of the accurate classifiers, this can provide a significant 

approximation of f as shown in Figure 4.2. 
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Figure 4.2 Computational Analysis 

Since practical hypothesis spaces tend to be huge and infinite, a thorough search is therefore 

required, thus the learner might have a difficult time in local minimum. To fix the issue of 

local minima, repeating the research number of times each with random restarts can therefore 

be successful in constructing an ensemble as shown in Figure 4.3. 

 

Figure 4.3 Representational Analysis 

In addition, the target function might not be attained through individual classifiers, but it can 

be obtained through ensemble averaging (Dietterich, 2009). 

4.2.2 Selection of models 

Select of the model can be considered as one reason why ensemble systems are suitable 

model and practical. There are two parameters for picking the most appropriate classifiers. 

The first parameter is the type of classifier to be chosen among the many practical classifiers 

such as MLP, Naïve Bayes classifiers, support vector machines etc. The second parameter is 
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which form of the classifier to be chosen for the sake of providing different decision 

boundaries even if all the parameters are constant. However, the best-known technique, 

which is picking out the classifiers having the smallest error on the training data, is not a very 

practical method. Performance measured on a training data set even when being measure via 

a cross-validation technique is proven to be inaccurate according to the classification 

performance with previously analysed data. After that, all the classifiers may have the same 

training data or the same classifier performance “pseudo generalisation performance”, so the 

learner is encouraged to choose at random. However, this can lead to choosing a poor model. 

Using an ensemble of these models can decrease the risk of a poor performance classifier. 

There is no guarantee that combining multiple classifiers will deliver better results than the 

individual classifier with the best performance in an ensemble. Alternatively, it can reduce 

the risk of a poor decision as mentioned earlier (Polikar, 2006). 

To ensure the effectiveness of this process, the individual experts should present some level 

of diversity. Then, the level of diversity in the classifiers (which are obtained by using 

different training parameters for each classifier), permits individual classifiers to produce 

different decision boundaries. If suitable diversity is attained, a different error is generated by 

each classifier, a strategic combination that can result in reducing the total error (Polikar, 

2006). 

4.2.3 Data Size 

Ensemble systems are practical with both large volumes of data and not enough data. In the 

case of large data making it difficult to train single classifiers, the data can be divided into 

subsets. Each subset can be assigned to train a separate classifier and then combined using 

different combination rules which will be discussed later. On the other hand, when there is 

little data, a technique known as bootstrapping is used where bootstrap samples of the data 

can be used to train different classifiers and each sample is basically a random sample of the 

data generated with replacement and analysed as if it was independently generated from the 

underlying distribution (Polikar, 2006). 

4.2.4 Data Fusion 

In many applications concerning automated decision making, the information received from 

different sources do not necessarily give out complementary information. Data fusion is 

known to be suitable combination of the information. This technique can lead to enhanced 

accuracy of the classification decision in comparison to a decision based on any other data 
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source. As an example, when diagnosing a neurological disorder, a neurologist may use the 

following methods: 

- One dimensional time series data such as electroencephalogram 

- Two-dimensional spatial data such as positron emission tomography (PET) scan and 

magnetic resonance imaging (MRI). 

- Scalar and/or categorical data such as the amount of certain chemicals in the spinal fluid, 

age, gender, etc. 

These features cannot be all employed together in training a single classifier and even if it 

did, it would not be successful. In these cases, an ensemble of classifiers can be beneficial in 

which each classifier is trained independently on the feature sets. The decisions produced by 

each classifier are combined using the combination rules described later (Polikar, 2009). 

4.2.5 Confidence Estimation 

Ensemble systems enjoy a nature of assigning a confidence to the decisions made by these 

systems. For example, taking an ensemble of classifiers trained on a specific problem, if the 

majority of classifiers agree with their decisions, the system is said to have high confidence in 

its decision. However, if half of the classifiers make one decision and the other half makes 

another, this can result in an ensemble of low confidence in the decision. It is important to 

know that a high confidence ensemble system does not mean that the decision is correct, just 

as low confidence does not mean that the decision is incorrect (Polikar, 2006). 

4.2.6 Diversity 

The main reason behind the ensemble’s capability to correct the errors of its members is the 

diversity of the classifiers that constitute the ensemble. Moreover, if all classifiers would 

provide the same output, the correction of a certain mistake would be impossible. Therefore, 

individual classifiers need to make different errors at different times within an ensemble 

system. The goal here is that each classifier produces a different error, and then a proper 

combination of these classifiers can then reduce the total error, somewhat similar to low pass 

noise filters. 

In general, an ensemble of classifiers is said to be diverse if it has classifiers with decision 

boundaries which are different from one another. Classifier diversity can be attained through 

several methods. The most commonly used method is “using different training data sets to 

train individual classifiers”. These data sets can be attained through resembling techniques, 
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e.g. bagging and bootstrapping. In these methods, training data sets are drawn randomly from 

the entire training data. To certify that the individual boundaries are different despite the use 

of similar training data, weaker or unstable classifiers are used as base models due to the fact 

that they can generate different decision boundaries sufficiently even for small perturbations 

in their training standards. 

Another method to obtain diversity is to “use different training parameters for different 

classifiers”. To further understand how this method works, an example of a series of multi-

layer perception neural networks can be trained via different weight initialisations, number of 

nodes, error goals among other parameters. By adjusting these parameters, this can allow 

monitoring the instability of the individual classifiers and therefore assist in the diversity. On 

the other hand, to add more diversity, different classifiers such as MLP, nearest 

neighbourhood classifiers, decision trees and support vectors can be combined. Or, diversity 

can be achieved through using different features or subsets of existing features. Generally, 

producing different classifiers using random feature subsets is known to be the “random 

subspace method” (Polikar 2009). 

4.2.7 Applications 

In the field of ensemble learning, pattern recognition is widely used and has generally divided 

the applications into three subfields. These subfields are remote sensing, identification 

recognition (fingerprint, iris recognition, etc.), and one versus all classification (fault and 

intrusion detection and medicine) (Oza, 2008). 

Each of these fields projects some difficulties in statistics and amount of data (little or too 

much) that makes it hard and sometimes impossible for conventional pattern recognition 

algorithms to be practical in these applications. This section will mention in detail their 

applications in medicine (Oza, 2008). 

The general purpose of medical applications is to maintain the health of human beings and 

improve the quality of life. Ensemble learning problems in medicine possess several common 

characteristics. These characteristics are: 

- Limited training and testing samples: because of the nature of the problem and privacy 

issues. 

- Imbalanced data sets: few people have a particular disease or an abnormality. 
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- Too many attributes: sometimes more than the test examples. 

A few examples of ensemble methods are described below in different aspects of medicine 

(Oza, 2008). 

4.2.8 Analysis of ECGs 

Computer based electrocardiography (ECG) analysers are widely used in clinical practice. 

The current systems depend on mathematical and statistical algorithms to perform ECG 

signal analysis. There are several approaches that employ neural networks to enhance the 

accuracy in diagnosis in order to achieve a more systematic operation despite the 

complicating factors. Long-term ECG recording evaluation requires automated recognition of 

events occurring infrequently. Specifically, about 90000 ECG recordings a day which is a 

tiring and time-consuming operation. However, a proper practical neural network can 

recognise abnormalities with up to 99.9% accuracy (Papik, 1998). 

4.2.9 Oncology 

In the subject of cancer treatment, having a predictive model for cancer prognosis is very 

helpful, especially with the high level of current research on the subject. Cancer treatment is 

very serious and can be harmful to patients as it includes radiation and chemotherapy. For 

that reason, the treatment should be aggressive to an extent of necessity to guarantee the best 

outcome. If the prognosis of the patient is known beforehand, the treatment can be planned so 

that the patient will have the best survival rate and at the same time face less toxicity from the 

treatment as possible (Papik, 1998). 

Gene expression micro array data has offered a method to produce genetic profiles of 

malignant tissues through quantifying the expression of thousands parallel gene sequences in 

a single biological sample. Gathering genetic sample from patients and then calculating the 

time of recurrence of cancer can provide information about the link between the gene 

expression and the rate of progress of the disease. This type of information can then be 

utilised to construct a predictive model that has the ability to provide a prognosis for patients 

thus assisting physicians in working on the treatment resulting in more effective treatment 

and reducing the toxic effects of the treatment (Ford, 2012). 

There are several diagnostic systems and therapeutic strategies to tackle breast cancer. A 

neural network successfully judged the probable rate of recurrence of tumours with a success 

rate of 960 out of 1008 by using information from patients with lymphatic nodes such as 
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tumour size, status of tumour hormone receptor, number of palpable lymphatic nodules, etc 

(Ford, 2012). 

4.2.10 Radiology 

In the field of radiology, ensemble learning is very interesting and most powerful. Images 

contain so much data that they are too complex to be analysed by conventional systems. By 

selecting the right training set and learning process, neural network models can be very 

beneficial in noise filtering and recognising unusual imaging. Conventional imaging analysis 

processes information row by row. However, new systems use standards from the image by 

pro-processing. These standards are obtained from the feature of the images. For example, 

abdominal ultrasound and laboratory analysis do not often give out enough information for 

diagnosing liver diseases. However, using ultrasonographic and laboratory results, a trained 

neural network was generated to characterise five classes of liver diseases. Another 

prominent application employs a back propagation algorithm to detect 7 coronary artery 

disorders based on myocardial SPECT imaging. In addition, a neural network has 

successfully been applied to detect the microcalcification in digital mammograms. This 

algorithm was able to situate regions of concern and also to differentiate pathological changes 

from false-positive alterations (Papik, 1998). The other important application is multi-

modality fusion for example PET/CT computed tomography, projection CT/X-ray and X-

ray/ultrasound. 

4.2.11 Other Fields of Medicine 

 Treatment of speech and hearing impairment 

 Differentiating the diagnosis between Alzheimer’s diseases and vascular dementia 

 Diagnosing shape abnormalities of the cornea 

 Examining heart rate regulation and heart failure 

 Analysis of heart enzyme levels 

4.3 Experimental Results 

In order to generate classifier ensembles, data need to be divided into two sub data; training 

and testing. The testing data remains the same while the training data is chosen via a sliding 

window. The training data is then partitioned into 10 subsets, each of these sets is trained 10 

times, then the best result is selected. Thus, 10 models out of 100 are trained and the final 
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prediction will be the average taken for these models. As for the testing data, the best 10 

models are taken and fed to the training data to observe the prediction.  The ensemble is 

devised to model 7 datasets.  

Tables 4.1 to 4.7 show the performance results of the ensemble method. The tables represents 

a summary of the data sets. Some criteria were taken in consideration when choosing the 

datasets. Binary and multi-class datasets are included in addition to a variety in the number of 

attributes and data items. In each table, the row represents the performance results of the data 

sets. In addition, the column represents the analysis parameters which are: Sensitivity, 

Specificity, Accuracy, AUC and RMS. Each cell contains a number which refers to a 

percentage (for the first three columns) while the other two columns represent measurements 

of the area under the curve and the root mean square. The performance of this method is 

based on 80% on network training and 20% on network testing. 

Furthermore, for training and testing, different percentages for each proportion was made. 

For example, the ratio of 90% of training to 10% testing was made in addition to 70% 

training to 30% testing. However, the best performance was obtained from having 80% for 

training and 20% for testing, therefore we have utilized the 80 to 20 percentage as a default 

method throughout the research. 

Figures 4.4 to 4.10 are scatter plots representing the results that are shown in Tables 4.1 to 

4.7. Each of the 7 data sets mentioned above have both trained and tested figures 

respectively. These figures contain, Specificity versus Sensitivity plots. According to these 

plots, the overall performance of the model will be compared to the predicted results. 

Relative to the results, the best prediction would yield a point in the upper left corner or 

coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false negatives) 

and 100% specificity (no false positives). In addition, the (0,1) point is considered a perfect 

classification. In the ROC plot, when the curve is nearly touching the left top corner coming 

closer to 1, that means that this ROC enjoys high accuracy and when it goes down that 

corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner the 

curve is, the better results are obtained in terms of accuracy.  

4.3.1 Johns Hopkins University Ionosphere 

Table 4.1 shows the performance results of the Ionosphere data sets. Figure 4.4 shows the 

receiver operating characteristic (ROC) of the Ionosphere data sets.  
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Table 4.1: Ionosphere training/testing performance  

 Sensitivity Specificity Accuracy AUC RMS 

Training 100 90.7216   96.3115 0.96488 0.2132     

Testing 100 89.2857   97.1429 0.95918  0.1834     

 

Figure 4.4: ROC training/testing of Ionosphere records 

 

4.3.2 Contraceptive Method Choice 

Table 4.2 shows the performance results of the contraceptive data sets. Figure 4.5 shows the 

ROC of the contraceptive data sets.  

 

Table 4.2:  Contraceptive training/testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Training 97.8078   57.7626   80.7953 0.83893 0.4579 

Testing 97.2   58.6387   80.4989 0.83802 0.4596     
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Figure 4.5:  ROC training/testing of Contraceptive records 

 

4.3.3 Statlog (Heart) 

Table 4.3 shows the performance results of the Statlog data sets. Figure 4.6 shows the ROC 

of the Statlog data sets.  

Table 4.3: Statlog training/testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Training 90.8046   95.098   93.1217 0.95876     0.2711     

Testing 96.9697   97.9167   97.5309 0.97727     0.2219     

 

    

Figure 4.6: ROC training/testing of Statlog (Heart) records 
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4.3.4 German Credit 

Table 4.4 shows the performance results of the German data sets. Figure 4.7 shows the ROC 

of the German data sets.  

Table 4.4: German training/testing performance  

 Sensitivity Specificity Accuracy AUC RMS 

Training 50.6849   95.4262 81.4286 0.88451 0.3690 

Testing 55.5556   96.347   85.3333 0.89926     0.3443     

 

    

Figure 4.7: ROC training/testing of German records  

 

4.3.5 Australian Credit Approval 

Table 4.5 shows the performance results of the Australian data sets. Figure 4.8 shows the 

ROC of the Australian data sets.  

Table 4.5: Australian training/testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Training 94.4186   82.7103   88.5781 0.95399     0.2856     

Testing 91.3043   91.3043   91.3043 0.96467     0.2626     
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Figure 4.8:  ROC training/testing of Australian records  

 

4.3.6 Breast Cancer Wisconsin  

Table 4.6 shows the performance results of the Wisconsin data sets. Figure 4.9 shows the 

ROC of the Wisconsin data sets. 

Table 4.6:  Breast cancer training/testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Training 93.7888   99.3691   97.4895 0.99065 0.1712     

Testing 93.5897   98.4127   96.5686 0.98168 0.1869     

 

 

Figure 4.9:  ROC training/testing of Breast cancer records 
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4.3.7 Bladder Cancer 

Table 4.7 shows the performance results of the bladder data sets. Figure 4.10 shows the ROC 

of the bladder data sets. 

Table 4.7:  Bladder training/testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Training 72.2222   90.1235   82.963 0.89712 0.3698     

Testing 58.3333   79.4118   70.6897 0.79534 0.4094 

 

 

Figure 4.10: ROC training/testing of Bladder cancer records 

So far, the ensemble model has been presented with training performance and testing 

performance. This has been done in order to measure the overall performance of the 

ensemble model by applying 7 data sets which are: Breast cancer, Statlog (Heart), 

Contraceptive, German Credit, Australian Credit and Ionosphere. Each data set was analysed 

using 5 different analysis parameters such as: Sensitivity, Specificity, Accuracy, AUC and 

RMS in order to take a look at the testing performance values of these parameters and to 

compare them with the training performance ones. The next step is to plot the tables in order 

to present graphs showing the performance of each data set training wise and testing wise. 

The main objective of employing ensemble models is to reduce dataset error by taking the 

best result in ensemble. Through the combination of 10 different windows, this can result in 
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developing an ensemble model for datasets for the sake of improving the classification and 

prediction results.  

Generally, the main trend that is observed when performing these experiments is that the 

accuracy of any ensemble design is far better than the best individual base classifier.  

4.4 Summary 

Ensemble learning has been proven to operate significantly better than conventional models. 

They have shown to give better results when there is a significant amount of diversity in the 

models. Most ensemble methods tend to encourage diversity among the models they 

combine. However, more random algorithms can be employed to generate stronger ensemble 

than non-random algorithms (Polikar, 2009). 

Despite the fact that ensemble methods have not broken all of the barriers of applied science 

yet, it is known for a fact that the future of these techniques is very promising and will 

provide us with many benefits in all sorts of fields, especially scientific ones. The application 

of neural networks should be integrated with conventional mathematical operations in order 

to provide more success in pattern recognition and classification when it comes to comparing 

them to conventional methods. To become a strong and dependable field, researchers should 

always try to develop new models in order to manage and monitor the analysis of new 

complicated real-world problems (Papik, 1998). 

Keeping in mind that the most powerful and systematic learning machine is our brains,  

machine learning researchers are paying much interest to applying ensemble learning in 

neuroscience and medicine so as to treat diseases, coming up with new theories and ways of 

monitoring the different organs and systems in the human body (Navone, 2001). 
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Chapter 5: Classifiers 

Combination 

5.1 Introduction 

Combining classifiers is a shared field of research among machine learning and statistical 

pattern recognition. It is known in different forms such as committees of learners, mixing 

experts, multi-classifier systems, etc. It is only logical that with the availability of different 

classifiers, combining them would improve the accuracy of the prediction. In addition, it is 

encouraged that the classifiers ought to be diverse. If they were identical, no improvement 

would be obtained from combining them. For that reason, diversity among the committee of 

learners has been recognised as an important issue. In theory, when the majority vote is used, 

a group of independent classifiers improve according to the single best classifier. However, a 

dependent set of classifiers can either be better than the independent set or maybe worse than 

the single worse member of the team. Thus, diversity can be beneficial or not, depending on 

the problem(Shipp and Kuncheva, 2002). Many techniques exist that are capable of 

improving the efficiency of classifier ensembles through modifying the data set on which 

classifiers are trained. These techniques are bagging, boosting and arching. They are 

considered as guidelines when generating classifier ensembles. The advantage of the methods 

over a simple grouping of independently trained classifiers is increasing the classification 

margins while reducing the variance of error. It is possible that these methods modify the 

diversity of the classifiers resulting in their success or sometimes their failure (Shipp and 

Kuncheva, 2002). 

5.2 Combination Methods 

5.2.1 Score Combination and Decisions Combination 

Combination methods function on the outputs of each classifier and are classified into two 

categories. In the first type, the outputs are handled as inputs to a simple “generic” classifier 
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and the combination classifier algorithm is generated through training a “secondary” 

classifier. The main advantage behind using a generic combiner is that it is capable of 

learning the combination algorithm and thus automatically calculating the strengths and 

scores of each classifier. As for the second type, it depends on a function or a rule to combine 

the classifier score in a pre-defined approach. 

The most important rule of a classifier combination is to generate a classifier functioning on 

the same type of inputs as the base classifiers and also to separate the same types of class. By 

supposing the score assigned to a class   by base classifier   is denoted by   
 
, then the general 

combination rule is a function   and the final combined score is: 

        
 
 
       

                                                       

The sample belongs to the classification of           . Therefore, the combination rules can 

be seen as a classifier functioning on scores of base classifiers including a particular 

combination function   and the        decision. 

Conventional classifiers are not necessarily generated using the above method, however 

practically this is the method frequently used. For instance, in Multilayer Perceptron (MLP) 

classifiers, the last layer has nodes that contain each final score for a class. These scores are 

compared and the maximum will be chosen. In other words, a k-nearest neighbour classifier 

can generate scores for all classes in the form of the ratio of the number of representatives of 

a class in a particular neighbourhood to k. After that, the class containing the highest ratio 

will be assigned to a sample (Tulaykov and Jaeger, 2007). 

5.2.2 Fixed Classifiers and Ensemble of Classifiers Combinations 

One of the main parameter distinguishing a combination is to understand whether the 

combination uses a fixed set of classifiers (usually less than 10) compared to a large number 

of classifiers (probably infinite) where one assigns and thus generates new classifiers. The 

first type claims that classifiers are trained upon different features or sensor inputs. The main 

advantage is the diversity in the classifiers’ strengths on different input patterns. While the 

second one claims large number of classifiers or the capability of generating classifiers. In 

other words, the large numbers of classifiers are made available through selecting multiple 

subsets of training samples from a single large training set or through selecting multiple 
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subsets of features from the available feature set and then training the classifiers depending 

on the assigned training subset or the subset of features (Tulaykov and Jaeger, 2007). 

5.2.3 Classifiers Operation Level 

Another method of grouping combination methods is dependent on the level at which they 

function. The first group of combinations operates at the feature level. The features of each 

classifier are combined to generate a joint feature vector and the classification is therefore 

established in the new feature space. The good thing about this method is that using features 

from two sets simultaneously can provide extra information about the classes. For instance, if 

two digit recognisers are combined in this method, and one of the recognisers employs a 

feature conveying the enclosed area, while the other has a feature of for example, number of 

contours, then combining these two features in a single recogniser will result in allowing 

class “0” to be easily separated from the other classes. In addition, if they operate 

individually, the first recogniser might face difficulty in distinguishing “0” from “8” and the 

second recogniser would face the same difficulty in separating “0” from “6” or “9”. However, 

the downside of using this approach is that the large number of features requires a large 

training set in addition to a more complicated classification system. If the features used in 

different classifiers have no relevance to each other, then it is not necessary to perform a 

combination at the feature level. 

Combinations can also function on a decision level. In other words, they employ the classifier 

outputs for generating combinations. This is a common method because knowing the inside 

structure of classifiers in addition to their feature vectors is not required. Despite the 

possibility that representational information is lost in these combinations, this is often 

compensated for by the simplicity of the combination method in addition to the superior 

training of the final system (Tulaykov and Jaeger, 2007). 

As an application of utilising the feature level is handwriting recognition. Bertolami and 

Bunkei employed a handwriting recogniser that functions on a sliding window to obtain 

pixels and geometric features for the sake of hidden Markov model (HMM) matching 

(Tulaykov and Jaeger, 2007). At the feature level, the combination has a single HMM trained 

on the composite vector of these features. However, the combination at the decision level has 

two HMMs each solely trained on pixel and geometrical feature vectors and when word 

recognition occurs, the recognition results are combined along with the language model. The 

feature level combination has been shown to provide a better outcome. 
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5.2.4 Combined Classifiers Output Type 

Another practical way of categorising combinations of classifiers is by the outputs of these 

classifiers. These levels of classification are: 

- Abstract level: considered the lowest level due to the classifier providing the least amount 

of data in this level. As for the classifier output, it is a simple single class label or an 

unordered set of candidate classes. 

- Rank level: in this level, the classifier output is an ordered sequence of candidate classes. 

The one positioned first is the most likely type of class, while one positioned at the end is the 

most unlikely. In addition, there are no confidence values included in the class labels in the 

rank level. However, their position in the n-best list shows their relative likelihood. 

- Measurement level: in this level, the classifier output has confidence values appointed to 

each entry of the n-best list. These confidences can be arbitrary numbers according to the 

classification structure used. Therefore, the measurement level contains the most information 

compared to the other output levels (Tulaykov and Jaeger, 2007). 

Basically, a certain combination method can function on any of these levels. For 

combinations depending only on label sets or class rankings (abstract and rank level), many 

voting methods have been introduced and analysed. The good thing about abstract and rank 

level is that different confidence characteristics do not affect negativity of the final output due 

to the fact that confidence has no control on the decision process. However, the confidence of 

a classifier in a certain candidate class often provides beneficial information that a simple 

class ranking cannot provide. This results in employing combination methods which function 

on the measurement level, capable of benefiting from the confidence provided to each 

candidate class. Recently, most of the classifiers provide information on the measurement 

level, so when applying combination methods on the measurement level, it can be more 

convenient for practical applications. However, it should be noted that each classifier may 

give out different confidence values with different parameters such as range, scale, mean, etc. 

This is not a huge issue for Bagging and Boosting as all classifiers have the same structure 

with different training sets, with the result that each classifier output is similar. On the other 

hand, if the classifiers have different classification structures, this output will be different. 

If the combination includes classifiers with different outputs, then the output will have to be 

converted to one of the three levels of categorisation mentioned above, the abstract, rank and 
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measurement levels. As mentioned earlier as well, the most used classifier output level in 

combination research is the measurement level due to the availability of fixed-structure 

combinations such as sum of scores or the type of combinations that can be trained through 

the available training samples such as logistic regression, weighted sum, neural networks, etc. 

(Tulaykov and Jaeger, 2007). 

5.2.5 Ensemble Combination Rules 

Some of the algorithms have already built-in combination rules such as majority voting for 

bagging, separate classifiers for stacking etc. However, as mentioned earlier, ensembles can 

be trained by the following methods: 

- Different subsets of the training data 

- Different parameters of the classifiers 

- Different subsets of the features (as in random subspace models) 

The classifiers then go through combination using different combination rules. Some of them 

operate on only class labels while others require continuous outputs that can be considered as 

support given by the classifier to each class. There are three types of base model outputs for 

classifier combination which are: 

- Abstract-level output: each classifier generates a unique class label for each input 

- Rank-level output: each classifier generates a list of ranked class labels for each input 

- Measurement-level output: each classifier produces a vector of class-related confidence 

values corresponding to the support for the potential classification hypotheses or a continuous 

valued vector measures corresponding to the class posterior estimates. For the abstract-level 

outputs, the decision of the t
th

 classifier is represented as: 

                                                                         

where 

T: number of classifiers 

C: number of classes 
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If the t
th

 classifier picks class   ,  then        would equal 1 and 0 for the combination rules 

that require continuous outputs. The outputs of the classifiers are known as T and C. As for 

combination rules that require continuous outputs, then the output of the classifiers are 

represented as            . These outputs are often normalised so as to add up to 1, which 

can represent the normalised support given to class j by classifier t or the estimate of the 

posterior probability           (Polikar, 2006). 

5.2.6 Algebraic Combiners 

Algebraic combiners are defined as non-trainable combiners in which the classifiers’ 

continuous outputs are combined via an algebraic expression. These expressions range from 

sum, product, mean, minimum, maximum, etc. Generally, the final decision         is in the 

class j that receives the largest support       after applying the algebraic expression to each 

support obtained by each class or in equation form (Polikar, 2006): 

                                                                         

The arguments of the maxima (abbreviated     max or       ) are the points of the 

domain of some function at which the function values are maximized. In contrast to global 

maxima, referring to the largest outputs of a function,         refers to the inputs, 

or arguments, at which the function outputs are as large as possible. 

Note that         (argument of the maxima) was devised in the final decision in order to 

refer to the maximum input which is the final class supports       in the class of   and they 

are computed as follows (Planetmath, 2016): 

To find the mean: 

      
 

 
        

 

   

                                                        

For   number of classifiers ,the sum is calculated as follows: 

              

 

   

                                                       

this equation gives an identical final decision as in the mean equation 

https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Maxima_and_minima
https://en.wikipedia.org/wiki/Global_maximum
https://en.wikipedia.org/wiki/Global_maximum
https://en.wikipedia.org/wiki/Argument_of_a_function
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The weighted sum equation as follows: 

                

 

   

                                               

where    corresponds to the weight given to the tth classifier ht according to some 

performance criteria 

For finding the Product: 

              

 

   

                                                         

For a T number of classifiers, to know the maximum value of the inputs: 

                                                                   

As for the minimum inputs: 

                                                                     

For finding the median rule, this equation is used: 

                                                              

As for the generalisation mean rule, the equation used is shown below: 

         
 

 
         

 

   

 

 
 

                                           

where α is a scalar value range from 

- α  −∞  Minimum equation 

- α  ∞  Maximum equation 

- α = 0  Geometric mean equation 

- α =1⇒ Mean equation 
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5.3 Combination Methods Theory 

The proposed method is ensemble combination and is divided into 10 models. The results 

obtained are input in a committee machine, and by taking the best results in ensemble, the 

records are divided into 10 block window groups via ANN models for   times. Finally, the 

best results are found by taking the average of the 10. This method is done for each ensemble, 

then are combined into the committee machine by choosing the best results. All these steps 

are done through a classifier with   predictor.   

Moreover, the process of performing combination methods is done by combining the outputs 

for each classifier and the predictors are processed by summing each predicted point for each 

classifier then dividing the number of classifiers, in this case 3, and each of them is predicting 

an output point. After that, based on that method applied for example average method, an 

average of the three predictions is taken then compared to the actual output. 

5.3.1 Averaging Method 

Ensemble averaging is defined as the method of generating and combining multiple models 

in order to arrive at the desired output instead of just creating one model. Generally, the 

ensemble of models gives out better results than individual models due to the fact that the 

multiple errors of the models are averaged. Unlike the standard network design which 

depends on generating many networks and keeping just one, ensemble averaging tends to 

hold the poor performance networks and give them fewer weights. In ensemble averaging, 

there are two parameters which should be fulfilled. The first one is that the bias can be 

decreased on the count of increasing variance. The second parameter implies that in a group 

of networks, the variance can be deceased without affecting the bias. 

Generally, ensemble averaging generates a group of networks and each of these networks has 

low bias and high variance. Therefore, it resolves the issue of the bias-variance dilemma in 

machine learning. In detail, the idea is to create a set of experts with alternating parameters. 

These parameters are considered as initial synaptic weights, although some additional factors 

such as momentum, learning rate, etc., may also be altered. Furthermore, the steps of 

generating the average are as follows: 
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First of all, the researcher generates N experts, with each expert having their own initial value 

and these values are often picked from a distribution randomly. After that, each expert is 

trained solely and finally, the experts are combined and their values are averaged. 

A comprehensive model of ensemble averaging represents the final result, not as a good 

average of all the experts, but as a weighted sum (Naftaly, et al., 1997). 

Supposing each expert is   , the overall average    is: 

                

 

   

                                                   

where   represents a set of weights. 

The optimisation issue of knowing the value of   is resolved by neural networks. Therefore, a 

meta-network or a network that has neurons that are specifically trained neural networks is 

resolved. In addition, the synaptic weights are the weight that is applied to each expert. This 

method is known as linear combination of experts (Naftaly, et al., 1997). 

Most forms of neural networks are a kind of linear combination, for example, the standard 

neural network that uses a single expert is basically a linear combination with      and one 

    . Furthermore, a raw average has all    having constant values, basically one over the 

number of experts. 

Advantages: 

The resulting committee of learners is often simpler than a single network with the same 

preference level. 

The output can be easily trained on small set of inputs. 

The output often shows better performance compared to single networks. 

The problem of over fitting is decreased with less weights needed to be set. 

Now, the principle of ensemble averaging is based on the existing of independent statistical 

event. To further explain the principle, imagine a number of individuals flipping unbiased 

coins at the same time. If head was 1 and tail was 0, then the arithmetic average is: 
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where nth flip is    and   corresponds to the total number of flips. If all the coins were the 

same, it doesn’t matter if one coin is flipped N times or N coins flipped a single time. The 

main thing is that they must be independent events. In other words, the probability of a head 

or a tail in a flip must be independent of the other flips. By taking a random variable   

approach, the nth times of   is    and thus the ensemble average of   is   or     shown as: 

         
   

 

 
   

 

   

                                         

Accordingly, it is impossible to obtain the ensemble average in practice, due to the fact that 

an infinite number of independent trials is impossible. The closest thing achievable is the 

arithmetic mean for the number of trials available. For that reason, the arithmetic mean is 

known as the estimator in ensemble averaging. The idea of ensemble averaging is quite 

useful despite the fact that it cannot be obtained. Specifically, it can always be assured that 

ensemble average exists even if it is only estimated. However, that does not mean that it is 

practically easy to obtain (George, 2011). 

A well-known example of ensemble averaging is face recognition average. The human 

capability to acknowledge and recognise objects cannot be remotely matched with intelligent 

machines. For example, it takes a person a small glance to recognise someone else’s 

“familiar” face. Face recognition has recently gained interest among researchers with the aim 

of developing better recognition by machines. The current face recognition method depends 

on recognising current face features. 

Depending on the human’s glance and face familiarity, the glance effect is analysed using 

image pre-processing and pattern averaging. When humans glance at faces, they do not focus 

on the detailed features but instead obtain a general impression of the face. In machine 

training, this can be analysed by averaging the face image rather than looking for face 

features. The averaged models thus represent the face excluding the facial expressions and 

orientations. The glance effect is preceded by face familiarity, and thus is done by neural 

network training using different orientations of face images. Recently, an intelligent 

recognition system scored a rate of recognition accuracy of 98.99% using 90 face images of 
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30 individuals in multiple orientations. This system enjoyed a quick runtime of 0.21 seconds 

(Khashman, 2006). 

5.3.2 Weighted Average 

Ensemble methods add up the outputs of several neural networks and combine them. This 

output is a weighted average of network outputs. In addition, the ensemble weights are 

represented as a function of the relative error of each trained network and thus the resulting 

network provides better results than each of the combined networks. A lot of research has 

been done on ensemble methods in order to develop performance improvements, leading to 

training the networks to de-correlate with one another with respect to their errors. In weighted 

average, the ensemble weights are dynamically determined. In other words, the weights are 

determined in each propagation in the network, unlike in static determination. The weights 

are proportional to the certainty of the respective outputs. This certainty measures how the 

output is close to any of the target values (Jimenez, 1988). 

Supposing the function computed by the ith network is      . The networks are programmed 

to give out 0 or 1 for a negative or a positive classification with a threshold of 0.5 on the 

network output to determine the class for an instance of the problem. This approach is known 

as the naïve approach and it is often used as a cross-validation set            and for 

choosing the network        in which the MSE (mean square error) is minimised on CV. 

Therefore, the mean square error for each network is represented as: 

                         
 
                            

The purpose of this method is to exclude any knowledge within the other networks, despite 

the fact that        enjoys the best performance on the cross-validation set. However, some of 

the   ’s may result in correct classification while        does not (Jimenez, 1988). 

A conventional approach in output network combination is in averaging them, as discussed 

earlier. However, this approach does not take into consideration the fact that some networks 

might be more accurate than others. The generalisation method is aimed at finding the weight 

for each output that reduce the ensemble’s MSE. The generalised ensemble method (GEM) is 

represented as: 
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where    are picked to minimise MSE with respect to    or the target function estimated using 

the CV set and sum to 1. The error of the network    is: 

                                                            

as for the correlation matrix: 

                                                              

now, the    that minimises the MSE is determined through: 

                    

 

   

 

   

                             

from the previous work, the optimal choice for   : 

   
    

   
   

     
   

   
 
   

                                         

The GEM shows better performance than the conventional averaging approach in addition to 

giving better estimations when compared to the naïve classifier. However, GEM depends on 

a proper estimate of C and the chance that C is non-singular so as to be inverted. Practically, 

errors are highly correlated and as a result the rows of C are nearly linearly independent so 

when C is inverted, a significant round off of errors takes place. However, there are some 

methods which avoid this issue, including ignoring the networks with highly correlated 

errors, in other words, employing special methods for inverting near-singular matrices and 

then training the networks to correlate with one another. 

Basically, the output of a neural network in the form of         can be considered as the 

probability of an instance   within a class. As   approaches 1, it can be assured that the 

instance is present in the class, while if it approaches 0, it is not present in the class. Thus, the 

certainty     in the output of a neural network is represented as: 
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According to the above equation, the certainty increases for outputs   less than 0.5 as   falls 

and for outputs above or equal to 0.5 as   rises. In addition, one network output    is less 

certain than another output    if            . This leads to the idea that the certainty is 

symmetrical when it comes to positive and negative decisions. In other words, the certainty of 

0.1 is the same as of 0.9; only the decision that these outputs are certain about is different 

(Jimenez, 1988). 

Instead of using static weights from the input space performance of   , the weights are 

modified to become proportional to the output certainties leading to providing better 

performance. This weighted average network is defined as: 

              

 

   

                                

and    is defined as: 

   
        

          
   

                                 

According to the above equations, the   ’s add up to 1, that is why      is considered as the 

weighted average of the outputs. The difference here is that the weight vector is recomputed 

each time the output is evaluated. In this way, it provides the best decision in a certain 

instance instead of choosing weights statically by giving an optimal decision depending on a 

CV set. In addition, each contribution from the network to the sum is proportional to its 

certainty. This technique is similar to the principle of using agreement for a set of classifiers 

to ensure certainty in the decision, but the certainty of each classifier contributes to reaching 

the final decision (Jimenez, 1988). 

5.3.3 Optimised Weighted Average 

Optimised weighted average, or Multi-objective optimisation or Pareto optimisation is a 

method of multiple decisions making that is based on the principle of mathematical 

optimisation including multiple objective functions being simultaneously optimised. It is 



 

107 

concerned with applications requiring optimal decisions to be instated in addition to 

considering some trade-offs among two or more conflicting parameters. Maximising battery 

life and minimising the cost of a smart phone is a simple example of a multi-objective 

optimisation involving two objectives. However, in practice, more than three objectives are 

analysed. For a problem of non-trivial multi-objective nature, no single solution exists that 

will optimise each objective at the same time. The objective functions are thus conflicting 

and possibly an infinite number of Pareto-optimal solutions might exist. Therefore, a solution 

is known as Pareto-optimal if the objective functions cannot be improved in value without 

decreasing the value of the other objectives (Yaochu, 2008). 

Machine learning is considered as a multi-objective task. Either one objective is employed as 

a cost function or multiple objectives are combined to a scalar cost function. This can be 

related to the idea that most learning algorithms can deal with a scalar cost function only. 

Pareto-based multi-objective learning is proved to be more powerful and efficient in 

comparison to learning algorithms with scalar cost functions, with subjects such as clustering, 

knowledge extraction, ensemble generation, etc.. One advantage of this approach is that a 

more detailed insight into the problem itself can be obtained through the analysis of the 

Pareto front comprising multiple Pareto-optimal solutions. It is only recently, about a decade 

ago, that the Pareto approach to address multiple objectives was applied in machine learning. 

This was due to the fact that conventional learning algorithms and optimisation algorithms 

are relatively not so efficient when it comes to solving multi-objective problems. In this 

method, the objective function is a vector instead of a scalar. Consequently, a number of 

Pareto-optimal solutions are obtained instead of one solution (Yaochu, 2008). 

Learning is in general multi-objective. In supervised learning, although the objective of 

memorising the training data is the most significant one, it is still not the only objective. 

Many other objectives should be taken into account in supervised learning. One of the main 

objectives is that in order to prevent the model from the issue of overfitting of data, the 

model’s complexity should be monitored. In addition, objectives such as comprehensibility 

and interpretability should be taken into account, especially when supervised learning is 

targeting the knowledge discovery from data. Moreover, interpretability in models 

significantly depends upon the complexity of the model. In other words, the lower the 

complexity, the easier it is to comprehend the model. Therefore, controlling the complexity 

requires combining two objectives into a scalar objective function, represented as follows: 
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where, 

 : Common error function 

   Measurement of the complexity of the model (e.g. the number of parameters in the model) 

   A hyperparameter predefined by the user ( >0) 

In this way, the model is capable of optimising two objectives while taking in to 

consideration the operation of a scalar function. 

Pareto optimality is the most essential aspect in this method. Taking a look the m-objective 

minimisation problem: 

                                                                                     

                                                                                           

According to the above equation, a solution   can dominate a solution   if     

                           , and there exists                                   

        . Solution   is considered as Pareto-optimal if it is not dominated by another solution. 

As mentioned earlier, there is often more than a single Pareto-optimal solution when the 

objectives conflict one another. The surface containing the Pareto-optimal solutions is called 

the Pareto front. Practically, it is not known where this Pareto front resides in a certain 

problem. As a result, non-dominated solutions produced by a multi-objective ensemble 

averaging do not have to be considered as Pareto-optimal. On the other hand, non-dominated 

solutions produced by multi-objective optimisation algorithms are lightly considered as 

Pareto-optimal solutions. As mentioned above, Pareto-based multi-objective learning depends 

on the method of Pareto-based multi-objective optimisation to deal with learning problems. 

The scalar bio-objective of equation 5.24 can be modified as a Pareto-based multi-objective 

optimisation: 
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Thus, the most frequently utilised measure of error is the MSE. The parameter of complexity 

in a neural network can either be the sum of the squared weights or the sum of the absolute 

weights shown in the equations below: 

         
 

 

   

                                             

          
  

 

   

                                            

where                is the weight and   is the total number of weights. It is still 

necessary for the user to choose one or more than a solution from the obtained Pareto-optimal 

solutions depending on the user’s choice after learning (Yaochu, 2008). 

5.3.4 Voting 

Voting algorithms have been widely used in control systems, image processing, pattern 

recognition and human organisation systems in order to decide on redundant software 

versions and hardware models. Generally, voting methods can be classified to agreement 

based voters such as majority and plurality and to voters that generate output in spite of the 

existence of the agreement among the redundant variables results. Sometimes it is essential to 

employ the second type including the median and weighted average. Both of these voters are 

the most popular ones used in applications. However, the weighted average was proven to be 

more efficient than the median. While the median voter generally selects the mid-value of 

results, the weighted average operates systematically by appointing weight to each input 

depending on their pre-chosen priority. This is done for the sake of sharing more trustable 

inputs and excluding low inputs with lower probability of correctness (Zarafshan, et al., 

2010). 

Voting-based methods operate on labels only, where      is 1 or 0 depending on whether 

classifier   chooses    or not, respectively. The ensemble then chooses class J that receives the 

largest total vote (Rokash, 2010): 
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If the classifier outputs are independent, the majority voting combination will always result in 

performance enhancement. For a two-class problem, if there are a total of   classifiers, the 

decision will be correct only if at least         classifiers pick the correct class. Suppose 

each classifier has a probability   of producing a correct decision. The ensemble’s probability 

of a good decision will be a binomial distribution. In other words, if the probability of picking 

          correct classifiers from T is: 

 

        
 

 
           

 

         

                                      

 

Then, 

          

When   approches   if      , and  

       , 

In the case of   approaching   if      . 

Notice that the condition of       is integral and important for a two-class problem. It is 

also sufficient for multi-class problems however it is not that necessary (Rokash, 2010). 

Majority voting Generally, generating a neural network classifier suffers the lack of 

scalability. With the increase in dimension or complexity or both in a classification problem, 

the ability to generate a neural network decreases due to the tight coupling between the 

weights. This will lead to crosstalk and partial over-learning to under-learning, in addition to 

a decrease in the efficiency and speed in learning. However, neural networks architectures 

have been recently improved to solve this issue. The basic principle is to decompose complex 

classification tasks into simpler tasks and to solve each of these simple tasks using simpler 

modules. However, the overall performance of the classification depends on the success of 

integrating the “module decisions” into a global one representing the whole network. Module 

decision making is done by either a competitive or a cooperative method. “Voting” is known 

to be the most popular method for multi-module cooperation. Activating the output of each 

module representing a particular candidate decision is known as a “vote”. The final decision 

depends on all the activations through a voting technique (Russell and Rubin, 2009). 
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According to the voting system represented in figure 5.1, the main goal is to assume to 

correct an unknown sample group depending on the information provided in the output of the 

modules (voters). Some voting systems are considered and evaluated depending on the 

accuracy of the classification. The higher the accuracy, the better the representation of 

information in the bids. That in particular is the main goal of voting system used in real-life 

elections (Russell and Rubin, 2009). 

However, some criteria should be taken into consideration in networks such as: 

- The highest activation is the best guess of the network and if not, the second one is 

considered the second best guess and so on. Most importantly, the correctness probability is 

not dependent on the input values. From previous research, the probability of having the 

correct outcome as the fourth best guess is almost zero if their values are 0.2 to 1.0. 

Otherwise, the network would require further training. In conclusion, despite the fact that the 

“order” of the output carries information of the correct class, the lowest output values are 

seen as information noise. 

- Some voting systems cannot be applied in neural network systems due to the points 

mentioned above. In other words, in the negative voting system, each voter provides a single 

negative vote for a single candidate. The candidate having the lowest votes is considered the 

winner, while approval voting gives the opportunity to each module to give a positive vote 

for a number of alternatives and the highest number of votes is considered the winner. To 

focus on the preference, votes ought to be given to groups which are above the average point 

of the “bid’s intensities”. Disapproval voting is considered the opposite of this system and the 

two systems can be combined to provide another voting scheme. Despite their wide use in 

real-life applications, applying them in neural networks will be sensitive to the lowest value 

as they are proven to carry little to no information (Russell and Rubin, 2009). 
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Figure 5.1: The winner module is decided through a voting system prior to deciding upon the 

class (Russell and Rubin, 2009) 

5.4 Experimental Results 

In this section, the analysis of each method will be discussed, in addition to the basic 

parameters affecting each method. Basically, there are 4 combination methods in this section 

and each of these methods will be applied on the 7 data sets. Based on that data, the model(s) 

that deliver the best results will be concluded. 

Three methods were employed to obtain the results; 90% training to 10% testing, 80% to 

20% and 70% to 30%, respectively. As a result, the second method which is 80% training to 

20% testing was proven to be the best among the three methods for it provides the best 

results.  

Basically, the average method is the sum of the ANNs divided by the number of ANNs 

models, in this case are 3. Then each data is trained 10 times then the average of networks are 

taken.  as for weighted average and optimized average ANNs, optimizers are added. These 

optimizers play a role in tuning the weights of the weighted average and optimized weighted 

average.  
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5.4.1 Average Method  

Table 5.1 shows the performance results of the training experimental data sets of the average 

combination method, compared to the actual data. Table 5.2 shows the performance results of 

the testing set. The data in the testing set are there to predict the data sets’ output. In the 

experimental results, the data records have been divided into 80% for performance training 

and 20% for performance testing. This division has been chosen as it delivers the best results.  

Furthermore, for training and testing, different percentages for each proportion was made. 

For example, the ratio of 90% of training to 10% testing was made in addition to 70% 

training to 30% testing. However, the best performance was obtained from having 80% for 

training and 20% for testing, therefore we have utilized the 80 to 20 percentage as a default 

method throughout the research. 

In each table, the rows represent the 7 data sets which are: Breast Cancer Bladder Cancer, 

Statlog (Heart), Contraceptive, German Credit and Australian Credit. In addition, the 

columns represent the analysis parameters which are: Sensitivity, Specificity, Accuracy, 

AUC and RMS. Each cell contains a number which refers to a percentage (for the first three 

columns) while the other two columns represent measurements of the area under the curve 

and the root mean square.  

 

Table 5.1: Experimental data training performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 93.865 99.0476 97.2803 0.85605 0.1797 

Bladder Cancer 72.7273 88.75 82.2222 0.90443 0.3654 

Statlog (Heart) 92.9412 97.1154 95.2381 0.9664 0.2516 

German Credit 58.6047 96.701 85 0.92694 0.3461 

Australian Credit 100 90 96.3115 0.95993 0.2127 

Ionosphere 100 90 96.3115 0.9761 0.2131 

Contraceptive 99.6581 63.4703 84.1642 0.88259 0.4166 

 

 



 

114 

Table 5.2: Experimental data testing performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 93.3333   99.2248   97.0588 0.82786 0.1685 

Bladder Cancer 60.8696   80 72.4138 0.69006 0.4310 

Statlog (Heart) 94.2857   93.4783   93.8272 0.95248 0.2791 

German Credit 94.2857   93.4783   93.8272 0.79275 0.3991 

Australian Credit 100 91.4286   97.1429 0.97061 0.1843 

Ionosphere 100 91.4286   97.1429 0.97061  0.1754     

Contraceptive 93.1727   39.4737   69.9317 0.72402 0.5271 

 

Figures 5.2 to 5.8 show the ROC of the training experimental data sets and the ROC curve of 

the testing data set (predictors of output data records). Each of the 7 data sets mentioned 

above have both trained and tested figures and each figure represents a plot of Specificity vs. 

Sensitivity.  According to the results, the best prediction would yield a point in the upper left 

corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 

coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  

 

        

Figure 5.2:  ROC training/testing of Breast Cancer records 
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Figure 5.3:  ROC training/testing of Bladder Cancer records 

       

              Figure 5.4:  ROC training/testing of Statlog (Heart) records  

 

       

Figure 5.5:  ROC training/testing of Contraceptive records 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.90443

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.69006

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.9664

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.95248

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.92694

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.79275



 

116 

          

Figure 5.6:  ROC training/testing of German credit records  

         

  Figure 5.7:  ROC training/testing of Australian credit records 

       

Figure 5.8:  ROC training/testing of Ionosphere records 
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networks. The weighted average is similar to the conventional average, however instead of 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.9599

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.97061

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.88259

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Average Method Receiver operating characteristic Curve area =0.72402



 

117 

each data point contributes to the final average equally, some data points contribute more 

than others in the final output.  These weights are represented correspondingly as a function 

of relative error for each network and that is why the resulting network delivers better results 

when it is compared to each network combined in a certain problem. The weights are 

dynamically determined in each propagation. They are proportional to the certainty of the 

outputs, in which this certainty is basically a representation of how the output presented is 

close to any of the desired values. To measure the weights, the first process is to find the 

minimum squared error (MSE) of each network in which these weights are dependent on in 

representation. This MSE in turn filters any irrelevant knowledge of other networks.  

The main difference between the conventional generalised ensemble method      and the 

weighted average is, most importantly, that dynamic weights are used from the input space  . 

Moreover, the weight vector    is recomputed each time the output is evaluated. As a result, 

this ensures that the best decision is received in a given instance rather than a static choice of 

weights. This provides an optimal decision depending on a cross validation set (CV). 

Therefore, each contribution is proportional to the certainty so it behaves as an agreement to 

assure certainty and accuracy in decision making. The weights of the combiner are as 

follows: [0.39  0.33  0.27] 

Table 5.3 shows the performance results of the training experimental data sets of the 

weighted average combination method compared to the actual data, while Table 5.4 shows 

the performance results of the testing set. The data in the testing set are there to predict the 

data sets’ output. In the experimental results, the data records have been divided into 80% for 

performance training and 20% for performance testing. This division has been chosen as it 

delivers the best results.  

In each table represented below, the rows represent the 7 data sets which are: Breast Cancer 

Bladder Cancer, Statlog (Heart), Contraceptive, German Credit and Australian Credit. In 

addition, the columns represent the analysis parameters which are: Sensitivity, Specificity, 

Accuracy, AUC and RMS. Each cell contains a number which refers to a percentage (for the 

first three columns) while the other two columns represent measurements of the area under 

the curve and the root mean square.  
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Table 5.3: Experimental data training performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 93.865   99.0476   97.2803 0.8765 0.1792 

Bladder Cancer 72.7273   88.75   82.2222 0.90818 0.3605 

Statlog (Heart) 94.1176   97.1154   95.7672 0.96697 0.2462 

German Credit 58.1395   96.701   84.8571 0.92693 0.3461 

Australian Credit 93.1507   86.1905   89.7436 0.96941 0.2645 

Ionosphere 100 90 96.3115 0.96011 0.2126 

Contraceptive 99.4889   63.242   84 0.88482 0.4175 

 

Table 5.4: Experimental data testing performance 

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 93.3333   99.2248   97.0588 0.84284 0.1665 

Bladder Cancer 65.2174   80 74.1379 0.76708 0.4237 

Statlog (Heart) 94.2857   95.6522   95.0617 0.95466 0.2542 

German Credit 38.8235   92.093   77 0.79327 0.3970 

Australian Credit 94.3182   82.2917   88.0435 0.92525 0.3122 

Ionosphere 100 91.4286   97.1429 0.97122 0.1824 

Contraceptive 93.1174   40.9574   70.5747 0.7122 0.5580 

 

Figures 5.9 to 5.15 show the ROC of the training experimental data sets and the ROC curve 

of the testing data set (predictors of output data records). Each of the 7 data sets mentioned 

above have both trained and tested figures and each figure represents a plot of Specificity vs. 

Sensitivity.  According to the results, the best prediction would yield a point in the upper left 

corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 
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coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  

 

Figure 5.9:  ROC training/testing of Breast cancer records  

 

Figure 5.10:  ROC training/testing of Bladder cancer records  

   

Figure 5.11:  ROC training/testing of Statlog(Heart) records 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.8765

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.84284

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.90818

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.76708

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.96697

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.95466



 

120 

 

Figure 5.12:  ROC training/testing of Contraceptive records 

 

Figure 5.13:  ROC training/testing of German credit records  

 

Figure 5.14:  ROC training/testing of Australian credit records  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.92693

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.79327

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.96941

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.92525

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.96011

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 Specificity 

 S
e
n
s
it
iv

it
y
 

Weighted Average Method Receiver operating characteristic Curve area =0.97122



 

121 

 

Figure 5.15:  ROC training/testing of Ionosphere records  

5.4.3 Optimized Weighted Average 

In optimised weighted average or Pareto optimisation, multiple decision making occurs based 

on simultaneous mathematical optimisation. Since the learning in this method is multi-

objective, much has to be done to control these objectives. Some of these parameters are the 

error function  , the complexity   and interpretability. The Pareto optimal solution occurs if 

and only if it is not dominated by another solution obtained, as there are other Pareto optimal 

solutions in a model. In this model, the measurement used is the MSE. In the optimised 

weighted average, the Pareto optimality is the most significant aspect in this model. The 

parameter of complexity   can be represented in two main forms: either it is the sum of 

squared weights    
  or the sum of the absolute weights.  

After testing the model and comparing it to scalar multi-objective learning, the most 

significant aspect of practicality is that while there is no need to identify the positive 

predetermined hyperparameter (  ,  it is still very important to pick out one or more 

optimised Pareto solutions; this all depends on the user’s preference and the problem in 

question. The GA algorithm optimiser which is based on the Matlab toolbox was set with the 

following parameters:  

Population Size: 1000 

Cross Over Rate: 0.95 

Mutation rate: 0.15 

Table 5.5 shows the performance results of the training experimental data sets of the 

optimised weighted average combination method compared to the actual data, while Table 

5.6 shows the performance results of the testing set. The data in the testing set are there to 

predict the data sets’ output. In the experimental results, data records have been divided into 
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80% for performance training and 20% for performance testing. This division has been 

chosen as it delivers the best results.  

In each table represented below, the rows represent the 7 data sets which are: Breast Cancer 

Bladder Cancer, Statlog (Heart), Contraceptive, German Credit and Australian Credit. In 

addition, the columns represent the analysis parameters which are: Sensitivity, Specificity, 

Accuracy, AUC and RMS. Each cell contains a number which refers to a percentage (for the 

first three columns) while the other two columns represent measurements of the area under 

the curve and the root mean square.  

Table 5.5: Experimental data training performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 93.865   99.0476   97.2803 0.85605 0.1797 

Bladder Cancer 72.7273   88.75   82.2222 0.9042 0.3655 

Statlog (Heart) 92.9412   97.1154   95.2381 0.9664 0.2516 

German Credit 58.6047   96.701   85 0.92678 0.3456 

Australian Credit 93.1507   86.1905   89.7436 0.96931 0.2644 

Ionosphere 100 90 96.3115 0.95993 0.2127 

Contraceptive 99.6575   63.4703   84.1487 0.88259 0.4166 

Table 5.6: Experimental data testing performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 92 99.2248   96.5686 0.82522 0.1804 

Bladder Cancer 60.8696   80 72.4138 0.71863 0.4184 

Statlog (Heart) 94.2857   93.4783   93.8272 0.95248 0.2576 

German Credit 38.8235   92.093   77 0.79283 0.3971 

Australian Credit 94.3182   82.2917   88.0435 0.92543 0.3123 

Ionosphere 100 91.4286   97.1429 0.97061 0.1843 

Contraceptive 93.1727   39.4737   69.9317 0.72398 0.5485 
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Figures 5.16 to 5.22 show the ROC of the training experimental data sets and the ROC curve 

of the testing data set (predictors of output data records). Each of the 7 data sets mentioned 

above have both trained and tested figures and each figure represents a plot of Specificity vs. 

Sensitivity.  According to the results, the best prediction would yield a point in the upper left 

corner or coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false 

negatives) and 100% specificity (no false positives). In addition, the (0,1) point is considered 

a perfect classification. In the ROC plot, when the curve is nearly touching the left top corner 

coming closer to 1, that means that this ROC enjoys high accuracy and when it goes down 

that corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner 

the curve is, the better results are obtained in terms of accuracy.  

 

 

Figure 5.16:  ROC training/testing of Breast cancer records  

 

Figure 5.17:  ROC training/testing of Bladder cancer records 
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Figure 5.18:  ROC training/testing of Statlog(Heart) records 

 

Figure 5.19:  ROC training/testing of Contraceptive records  

 

Figure 5.20:  ROC training/testing of German credit records 
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Figure 5.21:  ROC training/testing of Australian credit records 

         

Figure 5.22:  ROC training/testing of Ionosphere records 
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probability is close to 0 when   approaches   at   less than 0.5.With the increase in 

complexity in classification problems, the method of generating a neural network will 

decrease the complexity due to the tight coupling between the weights that lead to 

overlapping and crosstalk, which will result in partial- and under-learning. To solve this 

issue, the complex classifications are decomposed into simpler tasks and each one is solved 

separately. The overall performance depends on the integration of these module decisions in a 

general global one.  

Table 5.7 shows the performance results of the training experimental data sets of the voting 

combination method compared to the actual data, while Table 5.8 shows the performance 

results of the testing set. The data in the testing set are there to predict the data sets’ output. In 

the experimental results, the data records have been divided into 80% for performance 

training and 20% for performance testing. This division has been chosen as it delivers the 

best results.  

In each table represented below, the rows represent the 7 data sets which are: Breast Cancer 

Bladder Cancer, Statlog (Heart), Contraceptive, German Credit and Australian Credit. In 

addition, the columns represent the analysis parameters which are: Sensitivity, Specificity, 

Accuracy, AUC and RMS. Each cell contains a number which refers to a percentage (for the 

first three columns) while the other two columns represent measurements of the area under 

the curve and the root mean square.  

 

Table 5.7: Experimental data training performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 93.865   99.0476   97.2803 0.8605 0.1783 

Bladder Cancer 70.9091   90 82.2222 0.90045 0.3648 

Statlog (Heart) 90.5882   96.1538   93.6508 0.96437 0.2565 

German Credit 57.2093   96.4948   84.4286 0.92443 0.3460 

Australian Credit 92.6941   85.7143   89.2774 0.9692 0.2662 

Ionosphere 100 90 96.3115 0.96004 0.2102 

Contraceptive 99.322   64.3836   84.4358 0.87863 0.4152 
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Table 5.8: Experimental data testing performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 92 99.2248   96.5686 0.82811 0.1789 

Bladder Cancer 56.5217   82.8571   72.4138 0.68323 0.4203 

Statlog (Heart) 88.5714   93.4783   91.358 0.94907 0.2640 

German Credit 38.8235   91.1628   76.3333 0.79554 0.3976 

Australian Credit 94.3182   81.25   87.5 0.92507 0.3129 

Ionosphere 100 91.4286   97.1429 0.97061 0.1828 

Contraceptive 91.6   40.2116   69.4761 0.69451 0.5657 

 

Figures 5.23 to 5.29 show the ROC of the training experimental data sets and the ROC curve 

of the testing data set (predictors of output data records). Each of the 7 data sets mentioned 

above have both trained and tested figures and each figure represents a plot of Specificity vs. 

Sensitivity.  

 According to the results, the best prediction would yield a point in the upper left corner or 

coordinate (0,1) of the ROC space, representing both 100% sensitivity (no false negatives) 

and 100% specificity (no false positives). In addition, the (0,1) point is considered a perfect 

classification. In the ROC plot, when the curve is nearly touching the left top corner coming 

closer to 1, that means that this ROC enjoys high accuracy and when it goes down that 

corresponds to low accuracy ROC. Therefore, the more higher and closer to the corner the 

curve is, the better results are obtained in terms of accuracy.  
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Figure 5.23:  ROC training/testing of Breast Cancer records 

 

Figure 5.24:  ROC training/testing of Bladder cancer records 

 

Figure 5.25:  ROC training/testing of Statlog (Heart) records 
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Figure 5.26:  ROC training/testing of Contraceptive records 

 

Figure 5.27:  ROC training/testing of German credit records 

 

Figure 5.28:  ROC training/testing of Australian credit records 
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Figure 5.29:  ROC training/testing of Ionosphere records 

Four methods of combination methods have been devised which are average, weighted 

average, optimized weighted average and voting. Though different ratios of training to testing 

have been employed, 80% training to 20% voting is proved to give out the best results. After 

the ensemble method is done, the models are all collected using committee machine. 

Committee machine is working side by side to solve a particular problem.  Therefore, the 

outputs from each level are combined via the next layer so as to generate the output of that 

layer. As for the input, it consists of a set of subspaces between the input level perceptrons. 

Many different networks are trained, then the best trained data are kept while the rest is 

discarded depending on their performance. To overcome these issues, the networks are 

combined together to generate a committee machine. The main advantage of this method is 

that it can result in prominent performance enhancements for new data, with a bit of effort in 

computations. Basically, the committee’s performance is proven to be better than the best 

single network (HAYKIN,1999) .  

The results represented in tables 5.9 and 5.10 shows the comparison the results of different  

combination methods average, weighted average, optimized weighted average and 

voting,based on AUC output results for all datasets using all training dataset sizes. The table 

clearly shows that weighted average method leads to greater output for data sets in general.  
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Table 5.9: AUC Comparison of Four combination methods training  performance   

Training  

Average Weighted 

Average 

Optimzed 

Weighted Average 

Voting 

Breast Cancer 0.85605 0.8765 0.85605 0.8605 

Bladder Cancer 0.90443 0.90818 0.9042 0.90045 

Statlog (Heart) 0.9664 0.96697 0.9664 0.96437 

Contraceptive  0.92694 0.92693 0.92678 0.92443 

German Credit 0.95993 0.96941 0.96931 0.9692 

Australian Credit 0.9761 0.96011 0.95993 0.96004 

Ionosphere 0.88259 0.88482 0.88259 0.87863 

 

Table 5.10: AUC Comparison of Four combination methods testing performance  

Training  

Average Weighted 

Average 

Optimzed 

Weighted Average 

Voting 

Breast Cancer 0.82786 0.84284 0.82522 0.82811 

Bladder Cancer 0.69006 0.76708 0.71863 0.68323 

Statlog (Heart) 0.95248 0.95466 0.95248 0.94907 

Contraceptive  0.79275 0.79327 0.79283 0.79554 

German Credit 0.97061 0.92525 0.92543 0.92507 

Australian Credit 0.97061 0.97122 0.97061 0.97061 

Ionosphere 0.72402 0.7122 0.72398 0.69451 
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5.5 Summary  

This research was done on one of the most popular topic of research in the field of machine 

learning which is classifier combination and combination methods. Combination methods are 

used in many applications in machine learning and pattern recognition and has shown some 

prominent performance compared to conventional methods. A brief comparison between 

fixed classifiers and ensemble of classifiers was discussed to further explain the advantage 

combination has over the fixed classification. Furthermore, the levels of operation and the 

types of output the combined classifiers operate is mentioned as well. Combination rules 

including algebraic combiners were mentioned so as to understand a general idea about the 

different mathematical approaches to how this method operates. Moving further in the 

research to discuss the main topic which are the different combination methods and the main 

points about each method in addition to the different equations which further assisted with 

understanding which method provides the best outcome in a particular application. The 

combination methods mentioned in this research were the averaging method in which both 

weighted average and optimized weighted average were discussed in details, in addition to 

voting methods of majority voting and weighted majority voting.   
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Chapter 6: Intelligent 

Combination Methods 

6.1 Introduction 

Combination methods have been shown to be very practical and effective techniques to 

improve the pattern recognition performance of various applications. The field of automating 

the combination of decisions has been studied and focused on by researchers since the 1950s. 

These studies have included various applications ranging from economics, forecasting natural 

disasters, medicine and technology. These combinations take either a mathematical or a 

behavioural approach. The mathematical approach depends upon logic and statistics to 

generate the models and derive the combination rules. However, the behavioural approach 

assumes discussions among experts in addition to direct human monitoring throughout the 

combination process. Generally, the mathematical approach has become more popular with 

the introduction of computer expert systems (Tulaykov and Jaeger, 2007). 

Moreover, pattern classification has been implemented in assigning input signals to two or 

more classes. The combined experts are classifiers and the combination of these classifiers is 

also a classifier. The classifiers’ outputs can be represented as vectors and the dimension of 

these vectors corresponds to the number of classes. Thus, the combination problem can be 

further explained as finding the combination function inputting N-dimension vectors from M 

number of classifiers and the output is N classification scores, as shown in Figure 6.1. 
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Accordingly, the classifier combination employs a set of   
 
 score for class   by classifier   in 

order to create combination scores    for each class   with initial condition. In addition, the 

function can be considered optimal since it successfully minimised the cost of 

misclassification (Tulaykov and Jaeger, 2007). With further research, more advanced 

combination methods have been introduced with the vast variety of current applications. Two 

of the most popular advanced combination methods will be discussed in this research in 

detail: genetic programming (GP) and the Coalition-based (CB) ensemble algorithm. 

Coalition formation is known as the technique is which groups are generated  and certain 

problems are solved with the employment of cooperation. 

6.2 Genetic Programming 

One of the most challenging issues in computer science is getting a computer to do a certain 

task without the need to tell it how to do it. GP takes this issue in consideration by proposing 

a method for generating computer programs automatically. It achieves this goal by breeding a 

population of computer programs by employing the “Darwinism natural selection” principle 

among other biological-based principles. These methods include reproduction, crossover, 

mutation and architecture-modifying techniques structured after gene deletion and 
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Figure 6.1: Combination method block diagram (Tulaykov and Jaeger, 2007) 
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duplication. In the field of artificial intelligence, genetic programming can be considered as 

an evolutionary algorithm type of method influenced mainly by biological evolution in order 

to obtain computer programs that perform user pre-defined tasks. Basically, a GP is a set of 

instructions and fitness functions both contributing to measuring how well a computer has 

performed a certain given task. It is a subfield of Genetic Algorithms (GA) in which each 

individual is a computer program. It is used to optimally fit a population of computer 

programs based on a fitness platform determined by the ability to execute a certain task 

(Koza, 2003). 

Out of a number of potential programs which are often small functions embedded in larger 

applications, the most efficient programs are the ones that survive, compete and/or cross 

breed with other programs for the sake of approaching towards the solution needed. Genetic 

programming is a method that enjoys practicality with problems that have a huge number of 

alternating variables, the same ones that are in artificial intelligence. GP models are often 

programmed and implemented in software such as (LISP) "LIST Processor" a family of 

computer programming languages.  in addition to Scheme programming languages and C 

language. However, the most challenging thing about genetic programming is evaluating the 

extent to which a program is helping to reach to the desired goal, or what is known as the 

“fitness function”. The simplest example to illustrate generally how genetic programming 

works is by generating a program to fire a gun in which the distance the bullet would miss its 

target is determined by the “fitness function” (Rouse, 2005). 

6.2.1 Preparatory Steps for Genetic Programming 

The user links the high-level statement of the problem to the GP system by employing some 

preparatory steps. These steps of genetic programming oblige the user to identify the 

following: 

- Set of terminals: some of these terminals include zero argument functions, 

independent variables and random constants. These are included for each branch of 

the potentially evolving program 

- Primate functions set: for each branch of the potentially evolving programs 

- Fitness parameter: to directly and indirectly measure the individuals’ fitness in the 

population 

- Few parameters needed to control the run 
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- The operation of assigning the result of the run in addition to the termination standard 

(Koza, 2003). 

6.2.2 Executional Steps of Genetic Programming 

Generally, GP begins its operation with a population of computer programs generated 

randomly consisting of the available programmatic elements. GP modifies a certain 

population iteratively into a new generation of programs population with the help of 

implementing natural occurrence genetic methods. These methods are applied to individuals 

chosen from the population. The individuals are chosen probabilistically to take part in the 

genetic methods according to their fitness (as discussed in the third preparatory step). The 

iterative population transformation is implemented inside what is known as “the main 

generational of the run of genetic programming” (Koza, 2003). Therefore, the executional 

steps of GP or in other words, the flowchart of Genetic programming is explained as follows: 

1. Generating a random initial population called generation “0” of individual programs 

consisting of the available functions and terminals. 

 

2. Performing the next sub-steps iteratively, known as a “generation” of the population until 

the termination standard is achieved. These generation sub-steps are: 

 

a. Implementing each program and verifying its fitness through using the fitness measure 

b. Choosing one or two programs from the population with a probability according to 

fitness for the sake of taking part in the genetic operations in the next step (reselection is 

allowed). 

c. Producing new individual programs for the population via employing the following 

genetic operations: 

 

i. Reproduction: copying the chosen individual program to the new population 

ii. Crossover: generating a new offspring program for the population. This is done by 

recombining randomly selected parts from two chosen programs 

iii. Mutation: generating a new offspring program for the new population via 

mutating randomly selected part of one chosen program randomly 

iv. Architecture-altering operations: picking an architecture-altering operation from 

the available collection of related operations and thus generating one new offspring 
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program for the new population through applying the selected architecture-altering 

operation to one chosen program. 

 

3. After the termination standard is achieved, the single best program in the population 

generated during the run is extracted and assigned as the result of the run. If the run was 

a success, the result might be a solution or an approximate to the problem. The steps 

mentioned are represented in the flowchart as shown in Figure 6.2. 
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Figure 6.2: Genetic Programming flowchart (Koza, 1992) 
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6.2.3 Fitness Function 

Fitness function is considered the most important principle in genetic programming. It 

determines the capability of a certain program to solve the problem. It is different from one 

type of program to another. If for example a genetic program was generated to set the time of 

a clock, then the fitness function would be the time by which the clock is wrong. Of course 

not all problems have such easy fitness functions. Mostly, they require a few alterations in the 

problem so as to find the fitness function (Koza, 1992). 

Gun Firing Program This example is slightly more complex and is basically training a 

genetic program to fire a gun at a moving target. In this program, the fitness function would 

be the distance the bullet `is away from the target. However, the program has to consider a 

number of variables, for example, wind velocity, gun type, target distance, target height and 

velocity and acceleration of target. This shows that genetic programming can handle this kind 

of problem by assigning a fitness function with large number of variables (Koza, 1992). 

Water Sprinkler System This program is concerned with controlling water-flow through a 

water sprinkler system. In this program, the fitness function would be how evenly the water is 

distributed over a surface. However, there is no variable for this measurement. Therefore, the 

problem must be modified to obtain a numerical fitness. One possibility is by installing 

water-collecting measuring equipment at some intervals on the surface. As a result, the 

fitness would be the standard deviation in water level obtained from all the measuring 

devices. Moreover, another fitness measure would be the difference between the ideal amount 

of water and the lowest measured level. Unfortunately, this value would not consider the 

watermarks at other measuring devices, which might not be the ideal mark (Koza, 1992). 

Maze Solving Program In order to construct a program to finding the way out of a maze, 

the program has to be trained with several known mazes. The solution to the maze would be 

represented by a path of dots. In this program, the fitness would be the number of dots the 

program is able to locate. In addition, a time limit is included in the fitness function to 

prevent the program from wandering in the maze for a long time (Koza, 1992). 

6.2.4 Functions and Terminals 

The function and terminal sets are considered an integral part of the program that is going to 

be created. The terminal set includes both the constants and the variables of a program. For 

the maze program, Terminal set has basically three commands ,one is left, one is right and 
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one is forward. The function set represents the program’s function. For example, the maze 

game will contain: “pseudo-code” (It has to be the same) would be something like: “if “dot” 

then do “X”, else do “Y” ”. While in the gun firing algorithm, the terminal set would be the 

set of different variables in the program such as the gun’s velocity and acceleration, the target 

and the bullet while the function set includes some mathematical operations such as addition, 

multiplication, division, etc. (Koza, 1992). 

6.2.5 Crossover Operation 

Basically, there are two operations for altering structures in GP. The first and most significant 

operation is known as the crossover operation. In this method, two solutions are combined for 

the sake of presenting two new solutions. The parents are picked out of the population via a 

fitness function. There exists three methods to pick the crossover operation solutions. The 

first one includes employing probability according to the fitness function. Basically  

         corresponds to the solution fitness    and the following function: 

         

 

   

                                             

corresponds to the sum of the population individuals. Therefore, the probability weather    is 

copied to the next generation is: 

        

         
 
   

                                       

The second technique for copying the solution to the next generation is known as tournament 

selection. Generally, the program randomly picks two solutions. The solution having the 

highest fitness will win. This method mimics biological mating systems where two 

individuals of the same gender create a competition in which the winner mates with a third 

party of different sex. The third method is rank selection. In this method, selection is made 

depending on the rank of the fitness values and not their numerical value (Koza, 1992). 
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6.3 Coalition-Based Ensemble Algorithm 

To understand the coalition-based (CB) algorithm in machine learning, one must first 

understand the basic unit of a coalition which is an intelligent agent (IA). An intelligent agent 

is an independent unit which uses sensors to observe and react with the environment by using 

actuators and focusing its activity on fulfilling goals. IAs also learn or use knowledge to fulfil 

their goals. They might be very simple or very complex. A basic example of an intelligent 

agent is a thermostat (Russell and Norvig, 2003). 

Intelligent agents are often represented as an abstract system quite similar to a computer 

program. Therefore, intelligent agents are sometimes known as abstract intelligent agents 

(AIA) in order to differentiate from their real-world applications such as computer systems, 

biological systems and even organisations. In computer science, intelligent agents can be 

used to define a software agent that enjoys intelligence even if it is not a rational agent 

(where intelligence means to have a goal-directed behaviour). The dependent programs that 

are used for both data mining and operation assistance are also referred to as intelligent 

agents. Intelligent agents need to have certain characteristics. First of all, they should be able 

to incrementally contain new problem solving techniques. They should also be able to 

evaluate themselves when it comes to behaviour, error and success. Learning and 

improvement should be done through interaction with the environment and from large 

amounts of data it should be done quickly. In addition, they should contain memory-

dependent exemplar storage and retrieval capacities, and for short and long-term memory, 

they should have specialised parameters (Russell and Norvig, 2003). 

6.3.1 Basic Architecture 

A conventional intelligent agent system can be represented mathematically as an “agent 

function”. The agent function plans every percept sequence to an action the agent can execute 

or to parameters that can affect the actions such as feedback, coefficient, function or constant. 

According to the equation: 

                                                       

where   represents an the agent function and it is an abstract principle decision making. This 

decision making includes utility of individual options, fuzzy logic, deduction over logic rules 

etc. (Russell and Norvig, 2003). 
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6.3.2 Coalition formation 

Coalition formation is known as the method to generate a group and solve a particular 

problem through cooperation. Thanks to the development of networks, each computing 

device can interact via networks. These resources can be clustered together and be utilised in 

coalition formation. In a multi-individual environment, an agent might require to work 

together with other agents to fulfil a task. In other words, an agent needs to negotiate with 

other agents to collect the required resources. Recently, coalition formation has been 

implemented in several applications. Based on that, some researchers have enhanced the 

coalition formation process depending on its environment. In addition, other researchers have 

analysed the agent’s features and thus made some adjustments to improve these features 

(Rahwan, 2007). 

Coalition formation is a basic form of action that is based on creating coherent groups of 

unique, self-operating intelligent agents for the sake of fulfilling their goals efficiently either 

individually or collectively. Generating efficient coalitions has been a major research interest 

in the field of multi-agent systems in machine learning. Within this achievement lies the main 

issue of deciding upon which of the probably coalitions are used to achieve the desired tasks. 

This includes finding a value for every possible coalition, known as the “coalition value”. 

This coalition value is a parameter of how beneficial a certain coalition would be if it were 

generated. Since there is an exponential relationship between the number of possible 

coalitions and the number of involved agents, it would be more beneficial to distribute the 

values over all the agents rather than a single agent to calculate all of the values. As a result, 

this will efficiently use up all available computational resources in the system which in turn 

eliminates all points and possibilities of failure. Another significant characteristic of coalition 

organisations is the idea that among each coalition, the agents tend to organise their activities 

in order to fulfil their goals. However, no coordination happens for agents belonging to 

different coalitions unless their goals are related. In addition, the organisational architecture 

in each coalition is mostly flat, however, in some cases there would be a coalition leader 

assigned as a representative for the whole group (Rahwan, 2007). 

Based on that, coalition formations have gained popularity in current research and have 

proven to be a very useful tool in many multi-agent systems. Some examples include: 

- e-commerce: where the customers form a group to buy products in quantities to take 

advantage of the discounts available 
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- e-business: where agents form a coalition in order to fulfil the market needs 

- Distributed sensor networks: where a group of sensors operate cooperatively to track 

specific targets 

- Distributed automotive routing: by sharing deliveries, transportation costs can be cut down 

when coalitions of delivery agents are formed 

- Information Acquisition: several information servers can form coalitions to answer queries 

making it easier to acquire information 

Based on the examples above, the process of coalition formation should include three main 

operations. These operations are: 

- Coalition value calculation: calculating the value of each coalition formed 

- Coalition structure generation: calculating the disjoint coalitions set that carry the maximum 

total value 

- Payoff distribution: assigning rewards to each agent in the coalition depending on the 

actions performed by the coalition as a whole (Rahwan, 2007) 

These operations will be mentioned in detail below. 

6.3.3 Coalition Value Calculation 

There have been several algorithms designed for coalition formation in order to determine 

which coalitions can be formed. In order to do that, they must calculate the “coalition value” 

which corresponds to the outcome assumed if that specific coalition were formed. After 

calculating all coalition values, the decision is made about forming the coalition. Calculating 

the coalition value depends on the nature of the problem and the complexity of the 

calculation varies accordingly from linear to exponential. In situations where the agent’s 

rationality is limited due to complexity, the coalition value may provide the optimum 

outcome with limited computational resources. However, one of the main issues in value 

calculation is with the number of values calculated. As mentioned earlier, the number of 

values is exponentially related to the number of agents. To solve this issue, they must 

distribute these calculated values among the agents instead of depending on a single agent. 
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As a result, the calculation process can be formed faster in addition to sharing the 

computation process among the agents (Rahwan, 2007). 

6.3.4 Coalition Structure Generation 

Another issue that is present in the coalition formation operation is the coalition structure 

generation (CSG). CSG means that by providing coalition values, the set of agents can be 

divided into comprehensive and disjoint coalitions. These divisions are known as coalition 

structures. For example: 

                                                    

is a set of agents, therefore, there are five possibilities for coalition structures: 

                                                                                           

It is usually presumed that every coalition performs equally well. In other words, the coalition 

value is not related to the actions of non-members. This principle is known as characteristic 

function games (CFGs). In such settings, the coalition value is provided by a characteristic 

function. However, not all settings are considered CFG. Sometimes, the coalition value 

depends on non-members’ actions because of the positive and negative externalities. The 

general case where coalition values depend on the non-members’ actions is known to be the 

normal form games (NFGs) and CFGs are considered as a strict subset of NFGs. On the other 

hand, many, though not all, real-world multi-agent issues are CFGs. This is due to the fact 

that in many real-world applications, a coalition’s possible actions and payoffs are not so 

affected by the non-members’ actions (Rahwan, 2007). 

Based on this setting CFG, the problem of coalition structure generation becomes a complete 

set partitioning problem. Specifically, by assuming a group of subsets of a ground set, and 

assigning a weight for each subset, the set partitioning problem becomes all about locating an 

optimal method to partition the ground set. This method is similar to CFG since in both cases 

it is necessary to find an optimal method of partitioning the set of agents by providing a 

number of coalitions and assigning a value to each coalition. In addition, in both cases every 

possible coalition should be taken into consideration. As a result, any algorithm designed to 

solve one of these problems is capable of solving the other. Moreover, the CFG problem is 

also similar to another problem in the aspect of combinatorial auctions, specifically in 

determining the winner in an auction. In this system, a number of subjects are being 
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auctioned at the same time and a number of bidders place bids on combinations of these 

subjects, a reason why this method was called by its name (combinatorial auctions). When 

the auction is closed, the auctioneer is required to partition the set of assets, thus providing 

the bids places (weights) on every combination (subset) of these subjects in a way that the 

resultant sum of bids, which is the revenue, is thus maximised. How this system is similar to 

the CFG problem is that the bids are allowed on every assets combination possible. (Rahwan, 

2007) 

6.3.5 Payoff Distribution 

When determining which coalition is to be formed, it is necessary to determine the rewards 

that should be assigned to each agent in order to stay in a coalition to an extent that the 

coalition is considered to be stable. In this situation, stability indicates the state where agents 

have no motivation to deviate from their assigned coalitions. This is efficient because it 

verifies that the agents will use their resources exclusively on their assigned coalitions instead 

of moving to other coalitions. This in turn assures that coalitions can last long enough to fulfil 

their goals. 

The analysis of the incentives has been studied along with cooperative game theory and many 

solutions have been introduced based on various stability concepts. In addition, transfer 

systems have been introduced to transfer non-stable payoff distributions to stable 

distributions while keeping the coalition structure intact. However, in the situation of 

cooperative environments, the agents’ goal is to maximise the outcome of the system and as a 

result, maximise the social welfare despite their coalition values. Generally, the payoff 

distribution is relatively less significant and the main thing to focus on is coalition structure 

generation in order to maximise social welfare (Rahwan, 2007). 

In all systems, groups of agents operate within a team to carry out certain tasks. In game 

theory, this is known as coalition formation. The output of this method is either known as the 

“grand coalition” which is the set containing all the agents, or a “coalition structure” which 

contains the disjoint coalitions (a part of the agents’ set). In a transferable utility, there are no 

limitations on how agents can distribute the total payoffs among each other. Particularly, 

agents from a particular coalition can make a payment to agents that are not in the coalition. 

However, there are many cases in which this is not practical and this is due to two particular 

reasons. The first one is that in many cases it can only be possible to provide the best output 

if agents can belong to more than a single coalition at the same time. Moreover, agents 
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always need to distribute their resources among the coalitions which they enrol. The 

overlapping coalition formation is a model that is implemented in environments where agents 

need to assign different shares of their resources to provide different tasks at different 

members in different coalitions” (Chalkiadakis, 2008). 

There are many subjects in the field of multi-agent systems, and coalition formation is an 

example in that field. The main issues are raised in questions such as: how to decompose a 

certain task? How to construct a coalition? How to find suitable agents for a coalition? etc. 

One method of answering these inquiries is by using an “organisation-based distributed 

system”. This system consists of a hierarchy where each “parent” has a set of “children”. 

Parents divide a task into subtasks and assign these subtasks to their children. After that, each 

child forms a coalition to fulfil the task given by the parents. The children also use 

reinforcement learning to optimise the agent’s local decision. Grid computing is a famous 

topic related to coalition formation. The principle behind it is quite simple, it can be thought 

of as a large virtual computing system that allows the user to enjoy many services. This 

system comprises a large number of computers all linked by network connections. In 

addition, another popular system is known as ubiquitous computing. It is a somewhat mobile 

computing system embedded in an intelligent platform. Its basic principle is the fact that it 

performs computing anywhere, anytime and in many devices, in other words, as if all mobile 

devices were to contribute or sell their computer capability at any time in any place. As a 

result, both the recipient and the provider can benefit from this. For grid computing, long-

term coalitions are needed to execute long-term tasks while for a mobile network (ubiquitous 

computing), stable coalitions are required to achieve tasks one at a time (Lee and Chen, 

2006). 

6.3 Experimental Results 

In this section, there are two combination methods in this research and each of these methods 

will be applied on 7 data sets. Based on that, the method(s) that generate the best results will 

be concluded and the results will be presented. The results will be represented in three 

different formats: tables, graphs and trees for genetic programming. The rows in the tables 

represent the 7 data sets which are: Breast Cancer, Bladder Cancer, Statlog (Heart), 

Contraceptive, German Credit, Australian Credit and Ionosphere. In addition, the columns 

represent 5 analysis parameters which are: Sensitivity, Specificity, Accuracy, AUC and RMS. 
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Each cell will contain a number which refers to a percentage of accuracy (for the first three 

columns) while the other two columns represent measurements of the area under the curve 

and the root mean square. The performance of each method will be based 80% on network 

training and 20% on network testing. Furthermore, for training and testing, different 

percentages for each proportion was made. For example, the ratio of 90% of training to 10% 

testing was made in addition to 70% training to 30% testing. However, the best performance 

was obtained from having 80% for training and 20% for testing, therefore we have utilized 

the 80 to 20 percentage as a default method throughout the research. The method representing 

higher accuracy in addition to higher AUC and RMS will be considered as the one 

representing the best result. 

The GP algorithm was set with the following parameters:  

Population Size: 1000 

Cross Over Rate: 0.95 

Mutation rate: 0.15 

Genetic programming methods having a set of instructions and fitness functions with initial 

conditions is known to present good results when compared to other classifiers, except for 

coalition method. 7 Data sets have been modeled based on GP. Three ANN models have been 

employed in addition to different fitness functions used in data sets having initial conditions 

so as to reach to the questions. Moreover, some of the fitness functions require more time to 

find the solution. GP combines the results by using best three classifiers  

Figures 6.3 to 6.9 show genetic programming of the experimental data, the generated 

program containing the basic functions (+,-,*,/), and the tree representing the equation 

solution of each data set. 
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Figure 6.3: Genetic programming Breast cancer  

 

                                     

 

Figure 6.4: Genetic programming Bladder cancer 

 

 

/ 

* + 

+ + 

/ 5 1 9 2 y * 

- + 

x 4 7 9 / / 9 2 

+ + + + 

* + - + 

+ 

x 6 6 z z y y 4 1 4 

/ 

+ + 

+ + 

z 7 y y 8 +

4 

* 

* + 

+ 8 4 6 5 7 3 7 

+ - + + 

- + + - 

+ 

x 1 y z z z 4 6 



 

149 

                                                       

 

Figure 6.5: Genetic programming Statlog (Heart) 

 

                                   

 

Figure 6.6: Genetic programming contraceptive 
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Figure 6.7: Genetic programming German credit 

 

                                                        

 

Figure 6.8: Genetic programming Australian credit 
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Figure 6.9: Genetic programming Ionosphere  

 

Tables 6.1 and 6.2 show the results of the network training and the network testing 

performance of genetic programming, respectively. 

 

Table 6.1:  Experimental data GP training performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 91.411   99.3651   96.6527 0.90499 0.0690 

Bladder Cancer 80 87.5   84.4444 0.89182 0.121 

Statlog (Heart) 94.1176   96.1538   95.2381 0.95831 0.057 

Contraceptive  96.3964   64.3021   82.2581 0.89244 0.264 

German Credit 74.8837   91.9588   86.7143 0.92667 0.105 

Australian Credit 94.0639   96.1905   95.1049 0.9824 0.074 

Ionosphere 100 90.1099   96.3265 0.96664 0.0452 
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Table 6.2:  Experimental data GP testing performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 94.6667   99.2248   97.549 0.98457 0.0615 

Bladder Cancer 69.5652   77.1429   74.1379 0.77391 0.115 

Statlog (Heart) 94.2857   95.6522   95.0617 0.95342 0.043 

Contraceptive  84.7107   38.2979   64.4186 0.66602 0.288 

German Credit 54.7619   84.6512   76.2542 0.78728 0.106 

Australian Credit 89.5349   85.4167   87.3626 0.91388 0.070 

Ionosphere 100 91.4286   97.1429 0.99531 0.0340 

 

Figures 6.10 to 6.16 represent a clear visualisation for the values presented in Tables 6.1 and 

6.2. Each of the 7 mentioned data sets have both trained and tested figures. These figures 

contain plots of representing Specificity vs. Sensitivity. According to the results, the best 

prediction would yield a point in the upper left corner or coordinate (0,1) of the ROC space, 

representing both 100% sensitivity (no false negatives) and 100% specificity (no false 

positives). In addition, the (0,1) point is considered a perfect classification. In the ROC plot, 

when the curve is nearly touching the left top corner coming closer to 1, that means that this 

ROC enjoys high accuracy and when it goes down that corresponds to low accuracy ROC. 

Therefore, the more higher and closer to the corner the curve is, the better results are obtained 

in terms of accuracy.  

 

Figure 6.10: ROC training/testing of Breast cancer records 
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Figure 6.11: ROC training/testing of Bladder cancer records 

 

Figure 6.12: ROC training/testing of Statlog (Heart) records 

 

 

Figure 6.13: ROC training/testing of contraceptive records 
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Figure 6.14 : ROC training/testing of German credit records 

 

Figure 6.15: ROC training/testing of Australian credit records 

 

 

Figure 6.16: ROC training/testing of Ionosphere records  
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Tables 6.3 and 6.4 show the results of the network training and the network testing 

performance of the Coalition-based ensemble algorithm, respectively. 

Table 6.3:  Experimental data CB training performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 93.7888   99.3691   97.4895 0.99042 0.0399 

Bladder Cancer 89.0909   96.25   93.3333 0.97182 0.075 

Statlog (Heart) 98.2353   98.913   94.5763 0.95831 0.0218 

Contraceptive  99.4932   65.2968   84.9515 0.89598 0.204 

German Credit 74.4186   98.9691   91.4286 0.95345 0.076 

Australian Credit 92.2018   91.9048   92.0561 0.96051 0.052 

Ionosphere 100 90.7216   96.3115 0.96501 0.0398 

 

 

Table 6.4:  Experimental data CB testing performance  

 Sensitivity Specificity Accuracy AUC RMS 

Breast Cancer 94.6667   100 98.0392 0.97853 0.0156 

Bladder Cancer 95.6522   100 98.2759 0.95093 0.072 

Statlog (Heart) 100   97.9167   98.7654 0.99057 0.0201 

Contraceptive  98.3936   57.3684   80.6378 0.80665 0.226 

German Credit 85.8824   99.0698   95.3333 0.95705 0.076 

Australian Credit 94.3182   92.7083   93.4783 0.95798 0.046 

Ionosphere 100 94.2857   98.0952 0.97122 0.0234 

 

Figures 6.17 to 6.23 represent a clear visualisation for the values presented in Tables 6.3 and 

6.4 above. Each of the 7 mentioned data sets have both trained and tested figures. These 

figures contain two scatter plots which are the actual predicted output and the rounded 

predicted output, and a line graph representing Specificity vs. Sensitivity. According to the 

results, the best prediction would yield a point in the upper left corner or coordinate (0,1) of 
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the ROC space, representing both 100% sensitivity (no false negatives) and 100% specificity 

(no false positives). In addition, the (0,1) point is considered a perfect classification. In the 

ROC plot, when the curve is nearly touching the left top corner coming closer to 1, that 

means that this ROC enjoys high accuracy and when it goes down that corresponds to low 

accuracy ROC. Therefore, the more higher and closer to the corner the curve is, the better 

results are obtained in terms of accuracy.  

 

 

Figure 6.17: ROC training/testing of Breast cancer records 

 

Figure 6.18: ROC training/testing of Bladder cancer records 
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Figure 6.19: ROC training/testing of Statlog (Heart) records 

 

Figure 6.20: ROC training/testing of contraceptive records 

 

Figure 6.21: ROC training/testing of German credit records 
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Coalition Method Receiver operating characteristic Curve area =0.95705
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Figure 6.22: ROC training/testing of Australian credit records 

 

Figure 6.23: ROC training/testing of Ionosphere records 

So far, each combination method was presented with training performance and testing 

performance. This has been done in order to measure the overall performance of the method 

by applying 7 data sets which are Breast cancer, Statlog (Heart), Contraceptive, German 

Credit, Australian Credit and Ionosphere. Each data set was analysed using 5 analysis 

parameters: Sensitivity, Specificity, Accuracy, AUC and RMS. To further understand the 

behaviour of the values presented in the tables, scatter plots and ling graphs were 

implemented in the next step. 

Based on the results obtained from the tables and figures in this thesis, it can be clearly seen 

that the Coalition-based ensemble algorithm has been shown to output a greater performance 

than genetic programming, showing better accuracy in the data sets presented and larger areas 

under the curve which means a better predicted output.  
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Genetic Programming [GP] Method Receiver operating characteristic Curve area =0.96051
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Coalition Method Receiver operating characteristic Curve area =0.95798
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Coalition Method - Train Records Receiver operating characteristic Curve area =0.96501
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The results represented in tables 6.5 and 6.6 shows the comparison the results of different  

combination methods conventional and advanced methods. Average, weighted average, 

optimized weighted average, voting, GP and coalition method based on AUC output results 

for all datasets using all training dataset sizes. The table clearly shows that coalition methods 

produces higher accuracy for all datasets when compared to other methods . A conclusion can 

be made from both Tables coalition method has shown to give out prominent results when 

compared to other methods.   

Table 6.5: AUC Comparison of six combination methods training performance 

Training  
Average Weighted 

Average 

Optimzed 

Weighted Average 

Voting GP Coalition 

Breast Cancer 0.85605 0.8765 0.85605 0.8605 0.90499 0.99042 

Bladder Cancer 0.90443 0.90818 0.9042 0.90045 0.89182 0.97182 

Statlog (Heart) 0.9664 0.96697 0.9664 0.96437 0.95831 0.95831 

Contraceptive  0.92694 0.92693 0.92678 0.92443 0.89244 0.89598 

German Credit 0.95993 0.96941 0.96931 0.9692 0.92667 0.95345 

Australian Credit 0.9761 0.96011 0.95993 0.96004 0.9824 0.96051 

Ionosphere 0.88259 0.88482 0.88259 0.87863 0.96664 0.96501 

 

Table 6.6: AUC Comparison of six combination methods testing performance  

Training  
Average Weighted 

Average 

Optimzed 

Weighted Average 

Voting GP Coalition 

Breast Cancer 0.82786 0.84284 0.82522 0.82811 0.98457 0.97853 

Bladder Cancer 0.69006 0.76708 0.71863 0.68323 0.77391 0.95093 

Statlog (Heart) 0.95248 0.95466 0.95248 0.94907 0.95342 0.99057 

Contraceptive  0.79275 0.79327 0.79283 0.79554 0.66602 0.80665 

German Credit 0.97061 0.92525 0.92543 0.92507 0.78728 0.95705 

Australian Credit 0.97061 0.97122 0.97061 0.97061 0.91388 0.95798 

Ionosphere 0.72402 0.7122 0.72398 0.69451 0.99531 0.97122 
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6.4 Summary 

One of the most established areas of research in machine learning and pattern recognition is 

combination methods. This research talked about two well-known advanced combination 

methods in machine learning which are Genetic Programming and Coalition-based ensemble 

algorithms. Genetic Programming is an autonomous program generator that depends on the 

principle of natural selection in order to breed computer programs. In multi-agent systems, 

coalition formation works by generating a group in order to cooperatively solve problems. 

The research began by mentioning a brief introduction to combination methods and its 

necessity and practicality in machine learning in which many applications have shown to 

provide a good outcome when combination methods are applied. It then moved to discussing 

genetic programming and the different processes for creating such algorithms and some 

examples were provided to further explain how this program operates. The final section 

talked about Coalition-based algorithms and started by mentioning the basic structure of a 

coalition and then talked about the different coalition methods and briefly mentioned the 

principle behind their operation. 
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Chapter 7: Conclusions and 

Future Work 

7.1 Conclusions 

The primary research aim of this thesis is to develop a methodology to improve classifier 

accuracy by designing a combiner methodology or techniques. This aim was achieved by 

developing a combiner method using an ensemble combination model and an advanced 

algorithms such as GP and coalition method based on three model of ANN and different 

factors such as the ration of training data size, classifier type, size and the type of the 

combination methods. 

In this thesis the introduction of coalition and genetic programming methods has proven that 

the prediction accuracy can be improved using a simple yet effective approach that is based 

on diversity to guide the process of creating the optimal combinations of classifiers. The use 

of a coallation of different classifiers can improve the accuracy by combining the strength  of 

the classifiers (and eliminating the weakness of some delete???) to arrive at an accurate 

prediction. 

The work presented in this thesis proved that the use of an advanced combination method 

such as GP and coalition methods can outperform the classic combiners such as voting and 

average methods with the use of the same individual classifiers. The proposed algorithms 

were compared to stand-alone classifiers and combined classifiers in terms of accuracy 

(accuracy, sensitivity, specificity, ROC and AUC). The results showed improvements over 

the other methods, coalition method produces higher accuracy for all datasets when compared 

to other methods.  

Neural network models can usually generate different types of models with different 

accuracies by just starting with different initial weights each time with the same data sets. 

This disadvantage can be eliminated with the use of a simple ensemble. The simple ensemble 

is based on many copies of the same model but with different learning initial conditions. 
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Despite the fact that all the models are based on the same data, the models are not exactly the 

same, however, such models are not diverse. In order to introduce diversity to the ensemble, 

different types of neural networks models are used which provide diversity. However, simple 

combination methods are not sufficient to extract all the models’ accuracy and discard the 

erroneous areas. Hence other combination methods were used to improve the model with 

diverse models and better accuracy. 

The last contribution of this thesis is the new ensemble combining method based on the 

consensus theory and another based on evolutionary algorithms. In order to demonstrate the 

merits of the proposed combination methods, extensive experimentations are carried out on 

different data bases and compared to the standard and single combiners such as voting, 

average, weighted average and optimised weighted average. The obtained results demonstrate 

the merits of the proposed methods. 

7.2 Future Work 

The research in this thesis has focused primarily on improving the performance of classifier 

ensembles by building the optimal combiner for a certain data set. However, the combiner 

method, being a customised algorithm, can be applied to any ensemble technique or method. 

One of the proposed future work avenues is the use of other ensemble methods and 

integrating into the current combiner. 

The combiner algorithms are tested extensively on several UCI repository data bases as well 

as other data bases such as the bladder cancer and the credit scoring databases. However, 

most of the data bases are fairly low-objects, binary class, having a few hundred entries. It is 

recommended that larger data bases be used with multi-class features. The scale of the data 

base should consist of tens of thousands of examples such as text categorisation data sets. It 

will be a more rigorous test of the algorithms in such domains. 

The ensembles used in this work are based on a combination of different types of neural 

networks. The work did not involve the use of other types of modelling tools, such as neuro-

fuzzy systems, support vector machines, conventional classifiers, and Bayes’ classifiers. An 

ensemble of a multi-type classifier would be more interesting. 
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Other data sets with bias and variance can also be used to test the algorithms in terms of the 

accuracy which will give more insights into the algorithms. 
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