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Deep Belief Networks for Quantitative Analysis of
A Gold Immunochromatographic Strip

Nianyin Zeng, Zidong Wang Hong Zhang, Weibo Liu and Fuad E. Alsaadi

Abstract

Gold immunochromatographic strip (GICS) has become a popnémbrane-based diagnostic tool in a variety
of settings due to its sensitivity, simplicity and rapidse$his paper aims to develop a framework of automatic
image inspection to further improve the sensitivity as vealthe quantitative performance of the GICS systems.
As one of the latest methodologies in machine learning, #epdoelief network (DBN) is applied, for the first
time, to quantitative analysis of GICS images with hope gmnsent the test and control lines with a high accuracy.
It is remarkable that the exploited DBN is capable of simnétausly learning three proposed features including
intensity, distance and difference to distinguish the &@st control lines from the region of interest that are olatdin
by pre-processing the GICS images. Several indices arepegito evaluate the proposed method. The experiment
results show the feasibility and effectiveness of the DBNhie sense that it provides a robust image processing
methodology for quantitative analysis of GICS.

Index Terms

Gold immunochromatographic strip; deep belief network8KB); restricted Boltzmann machine (RBM);
quantitative analysis; image segmentation.

. INTRODUCTION

Deep belief network (DBN), proposed by Hinton [8] in 2006,a8 extensively studied and widely
used deep learning model. It is remarkable that the deepifgamodel is a biologically inspired model
which mimics the layered structure of the cortex [30]. Esisdly, DBN is a greedy and multi-layer
formed learning model combined by a stack of restricted ZBo#tnn machines (RBMs). Unlike other
multi-layer and nonlinear models, the distinct merit of DBNits capability of obtaining the states of
hidden layers units by one forward pass. In the last few y&B& has drawn increasing research attention
in many application fields such as recognition, signal arfidrmation processing, image processing and
classification [6], [9], [19], [20], [26], [30], [33]. Thefere, we propose to use the DBN approach for
guantitative analysis of a gold immunochromatographiip str

Gold immunochromatographic strip (GICS), labeled with ¢b#oidal gold nanoparticle, is on the basis
of an immunochromatographic process that utilizes the bjggrificity of antigen-antibody reaction and
provides rapid determination of target analyte. In the pastade, the GICS has been extensively studied
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and widely applied to the biomedical and related areas ftardenation of analytes in specimens due to its
fascinating advantages including short assay time, eassefgood specificity and satisfactory stability
[21], [24], [32]. Up to now, a variety of material-selectidnmased approaches have been introduced by
biochemical researchers to enhance the quantificatioonpesihce of GICS, see e.g. [12], [14], [27]). On
the other hand, it should be highlighted that the researcmodeling the biochemical reactions of GICS
with aim to optimize assay performance has stirred conalderresearch interest, see e.g. [22], [23],
[371-[39], [41], [42], [44]. A focus of research in this aréas been on how to exploit the quantitative
instruments of GICS for more sensitive and quantitativéquarance, see [1], [5], [11], [13], [15], [16],
[25], [40], [43] and the references therein.

Among many available detection schemes for quantitatigguments developed throughout the years,
the most frequently used methods rely on the reflectanceopteiers to obtain the GICS signals, see
e.g. [5], [11], [16]. At the same time, there has been a grgwiesearch interest in the development
of image-basednstruments for GICS, see e.g. [1], [13], [15], [25], [40K3]. The critical design
specification for image-based system is the image proaggsithnology whose significance has now
been well recognized in the bioinformatics community. Irrtigalar, it is of vital importance to look
for an efficient image segmentation method to accuratelyindigish the test and control lines from
the GICS image. In recent years, a number of methods have ib@duced to achieve the goal of
segmenting the test and control lines of GICS images. Sopiealymethods include the Otsu threshold
segmentation approach, the fuzzy c-means (FCM) clustaniethod and the cellular neural network
(CNN) [1], [15], [25], [40], [43]. A common limitation yet a ajor challenge for these methods, however,
is that the acquired GICS image usually involves unavolaloises caused by various factors including
temperature, humidity, colloidal gold and non-uniformmeation of specimens. Also, it is often difficult
to ensure the accuracy for images of low concentration wttexenoises take a great proportion and the
signal-noise-ratio is therefore small (i.e. the inteesitof some background noises are much higher than
the signals) [43]. To address these issues, we propose ttheigecently developed deep belief network
(DBN) algorithm, a state-of-the-art machine learning teghe, for the GICS image segmentation in this
paper.

It should be mentioned that it is a challenging task to predee GICS images due to their inherent
features outlined as follows. First, in order to enhanceeffieiency, we just concentrate on the region
of interest with the test and control lines immobilized oe #irip. Therefore, the obtained GICS images
should be pre-processed to acquire the region of interestmne commonly used image segmentation
operators. Second, both lines in the reading window miglebime blurred, uncertain and mixed with
the background since they are generally made/smeared wiéeain a non-uniform manner. In addition,
when the sample to be detected (such as urine, blood, sermns) dver the membrane, some interference
noises are inevitable on the detection window of strip [43Jorder to overcome the challenges mentioned
above, we intend to establish a DBN-based framework for gpaéine analysis of the GICS by accurately
extracting the test and control lines from the acquired Gi@&ges.

The main novelty of our work is primarily twofoldl) A new framework of automatic image inspection
is established to solve the problems in the quantitativéuaten of gold immunochromatographic strip,
where the DBN algorithm is applied to accurately extract test and control lines. 2) By learning three
features including intensity, distance and difference,fghesented DBN can distinguish the test and control
lines from the region of interest that is obtained by pregassing the GICS images. It is shown from the
experiment results that the proposed method provides highiracy in terms of the performance of the
segmentation, the feature parameter, the fitting line ardgbak signal-to-noise ratio.

The remainder of this paper is organized as follows. In $acli, the gold immunochromatographic
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strip assay and the problem formulation are presentedioBeltt provides a detailed introduction on the
restricted Boltzmann machine, the deep belief networksyels as the applications in the segmentation
of GICS images. Section IV mainly discusses the performasfcemage segmentation via the deep
belief network and also evaluates its overall performamceeims of some well-defined criteria. Finally,
conclusions are drawn in Section V.

1. THE GOLD IMMUNOCHROMATOGRAPHIC STRIP IMAGE AND PROBLEM FORMULATION

Gold immunochromatographic strip, which is labeled witle ttolloidal gold nanoparticle, is on the
basis of an immunochromatographic process that utilizeshiph specificity of antigen-antibody reaction
and provides rapid determination of target analyte. TheS;I& shown in Fig. 1, is formed by a variety
of constituents including a sample pad, a conjugate padbsorbent pad, and a nitrocellulose membrane
on which the reaction occurs. There are generally two fasmaGICS, namely, sandwich and competitive
formats. Here, we only discuss the sandwich format whicls us® antibodies to bind the analyte in
between. With the presence of an antigen in the sample, aviantype compound is formed between
the labeled antibody and the antibody immobilized on the brame. After that, the red or purple red
color caused by the accumulation of gold nanoparticle atekieand the control lines would appear on the
membrane. Particularly, the signal intensity of the test lis directly related to the concentration of the
target analyte in the samples. Therefore, the concentratidhe target analyte can be assessed visually
or by a reader system fauantitativeanalysis by monitoring the signal of the sandwich-type coural
on the test line [37]—-[39].

Top view Reading window

Sample  Conjugate Nitrocellulose Test Control  Absorbent
pad pad membrane line line pad

| 1]

Fig. 1. The schematic structure of the gold immunochromatogragthiic

Cross section

In this paper, the human chorionic gonadotropin (hCG) isdel as the target analyte in experiments. It
is of great significance to quantitatively determine theasmration of hCG that can be used as indicators
of a number of diseases such as ectopic pregnancy diffatiemtiand fetal Down syndrome screening. In
particular, ten different concentrations of hCG have beduated into GICS strips in the experiments and,
therefore, we can capture GICS images at the fixed time pasmthown in Fig. 2.

Remark 1:As discussed in the introduction, there are essential diffes in processing the GICS image
because of 1) an additional step of pre-processing intedldo acquire the region of interest through
commonly used image segmentation operators; 2) the bassiof the test and control lines resulting
from their production process; and 3) the interference @mixisting on the detection window of strip.
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It is, therefore, the main objective of this paper to overedhe difficulties identified above by launching
a quantitative analysis on the GICS via accurately segmeititie test and control lines from the acquired
GICS images.

Control line

Test line

Fig. 2. Images of GICS with different concentrations(from the éte: 0, 10, 35, 75, 100, 150, 200, 300, 400, 500mIU/ml).

I1l. DEEPBELIEF NETWORKS FORQUANTITATIVE ANALYSIS OF THEGICS

In this section, we introduce the restricted Boltzmann nraehnd the deep belief networks (see e.g. [8],
[9], [20], [26], [33] for more details), which will be applikto the GICS image segmentation when learning
features to distinguish the test and control lines.

A. Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) [8], as shown in Bigis a bipartite graph in which visible
units v are linked to hidden unité through undirected weighted connections. In generalphasiinits
represent observations, and hidden units tend to représanires. A special characteristic of RBM is
that there are no connections in any two visible units and alsy two hidden units. Due to different
situations, there are two types of RBMs, namely, Berndddirnoulli RBM with binary visible and hidden
units, and Gaussian-Bernoulli RBM where hidden units arey but the visible units are linear with
Gaussian noise.

Fig. 3. Schematic diagram of RBM.

In an RBM, the joint probability distribution of visible ankidden unitsp(v, h|0) is defined by the
energy function. For a given state, /), the energy function of Bernoulli-Bernoulli RBM is [8]:

E(’U,h|9) = —Zzwi]"ljihj — szvz —Zajhj (1)
i=1 j=1 =1 j=1

wherefd = (w, b, a) denotes the unknown model parametey, is the connection weight between and
h;, andb; anda; are their biases, respectively. andn represent the numbers of visible and hidden units.
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As such, based on the energy function, the joint probabidisgributionp(v, h|0) is given as follows:
e—E(v,h]0)

Z(0)

whereZ(0) = Z e~ P19 represents the normalization factor or the partition fiomctThen, the marginal

p(v, hl) = 2)

probability Wlth which the model assigns to a visible vectofalso called likelihood function) is given
by:
S e Ewhlo)
__ h

Because there are no connections in any two visible unitsaatswdany two hidden units, the conditional
probabilitiesp(h|v, 8) and p(v|h, #) are factorial and can be calculated by:

p(h; = 1Jv,0) = U(Z wi;V; + a;) (4)
plvi = 1|h,0) = (> wijh; + by) (5)

whereo(z) = (1+e®)7!

The purpose of iteration in RBM is to find an appropriate paserd = (w, b, a) S0 as to fit the given
training data. Actually) = (w,b,a) can be computed via maximizing the log likelihood functiontie
given training data’l’ denotes the size of the training data):

0* = arg maxZInp 916) (6)

t=1

According to the contrastive divergence (CD) algorithmpmeed by Hinton [7], the update rules are
given as follows:

Awij = €(<Uihj>data_ <Uihj>recon) (7)
Abz’ = €(<Uz'>data_ <Ui>recon) (8)
Aa; = €({h;)data— (h;)recon) 9)

wheree is the learning rate(-)q4ata means the expectation of distribution defined by the trgimlata, and
()recon represents the expectation of distribution defined by tleenstruction model.
Similarly, the energy function of Gaussian-Bernoulli RBM i

E(v,h|0) = Z ZZU}”UZ Zaj (10)

i=1 i=1 j=1

and the corresponding conditional probabilities can bemded as foIIows.

p(hj = 1‘1), 8) = O'(Z WiV + CLj) (11)

i=1

p(vslh, 0) wah +b;, 1) (12)

where N (u, d) represents a Gaussian distribution with meaand variance.
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B. Deep Belief Network

Deep Belief Network (DBN) was proposed by Hinton [8] in 2006dasince then, DBN has been
extensively investigated and widely employed in both themnd applications of various deep learning
tasks. As shown in Fig. 4, the DBN is a neural network constaifrom multi-layer RBM and one-layer
Backpropagation (BP). DBN is actually a greedy and multelaformed learning model combined with a
stack of RBMs. A distinguishing feature of the DBN is its chiity of obtaining states of hidden layers
units by one forward pass. In the course of training a DBN fifs¢ step is the so-called pre-training that
stacks a lot of RBMs layer by layer in a bottom-up manner. Gheeparameters of the lower-layer RBM
are determined by learning, the vectors of hidden featuligadions can be utilized as the input of visible
units for the higher-layer RBM. Then, in the fine-tuning €athe error back propagation approach is
utilized to adjust the weights of whole network.

Expected Lables
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Fig. 4. Schematic diagram of a DBN.

For theith node of the output layer, we suppose that the actual oigpytand the expected output is
d;. The sensitivityd; can be calculated by:

For thelth hidden layer, letting; be the output ofth node, the sensitivity; can be conducted according

to
=yl —y) Zwméé“ (14)
and, finally, the weights of DBN are updated by:
wfg = w ; 1 Efine- tunlngyz(s 1 (15)

bé = bj —|- 5f|ne-tunln95j (16)
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C. Process of GICS Image via Deep Belief Networks

In this section, we introduce the process of GICS image \eadibep belief network. The flowchart of
the DBN-based GICS image segmentation is shown in Fig. 5 andim is to learn features to distinguish
the test and control lines from the acquired strip images.

Intensity

m — feature
E— >
—

ROI Distance
extraction feature
Difference
feature

Train the
network

Pre-
Training images  processing

TESTING

- e -
il processing
— 7 + DBN ——
—
- Feature —
M 2 extraction Classification
Test images Segmentation

resutlt

Fig. 5. Flowchart of the DBN-based GICS image segmentation.

The main objective of segmenting the GICS image is to detegmihether pixels in the image belong to
the test line or the control line and, therefore, it can bardgd as a classification problem. In general, the
size and pixel numbers of the images acquired from strip lagbtly different, and this is not conducive
to the image processing. Therefore, the acquired imagaddibe pre-processed at first so as to extract
region of interest (ROI) with the fixed size. The selectiorthed input feature is particularly important for
the DBN as it plays a key role in the performance of classificatin this paper, each pixel in the image
is treated as a sample, attitee factorshave been taken into account for selecting the input feattire
DBN.

First of all, the gray intensity of pixels in the neighborldoshould be considered since the intensity
of test and control lines are generally larger than the sundong areas. If the square window size is set
as winsize, a vector with sizewinsize x winsize can be obtained. For pixels near the image border,
we use the mirroring method [26] to obtain intensity valuégegions inside the window but beyond
the image border. However, as is well known, with the anatytiecentration increasing, the color in test
and control lines will deepen, while the correspondingnstty values of pixels will decrease. Based on
this observation, we introduce two input features, one ésdistance feature that represents the distance
to the center, and the other is the difference feature thatesents the difference of intensity values
between two lines and the background. By doing so, the DBNagmh can perform well even when
analyte concentration is at a low level. It should be notee tleat all input features of DBN should be
normalized.

In the training stage, three features are utilized as thetigp the visible layer of the first RBM.
After training layer by layer, the correlation of input datatime and space is mapped to hidden layers
successively. Particularly, the batch method is expldibagpdate the weights so as to speed up the training
rate. In the prediction process, the classification resdts be calculated by forward propagation of the
trained DBN.
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V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. DBN for GICS Image Segmentation Results

Considering the distinguished features of the GICS imagesiivide the extracted ROI into two parts
for segmenting in order to reduce the complexity of algonitand avoid unnecessary calculations. One
part consists of the control line and corresponding baakaplp while the other part consists of the test
line and its background. Based on the DBN approach mentiabege, all parameters of the DBN have
been fixed for all experiments. Firstly, we find that the perfance of segmentation is best when the
network has two RBM layers and each layer 88 hidden nodes. Next, we set the learning raté a&s
the pre-training stage as well as the fine-tuning state, hedrini-batch sizes for both stages are set as
100 and 50 respectively. Finally, the number of iteration is set2@sbecause the classification accuracy
tends to stable after that.

As for the training sample, we ud® images with different level of analyte concentrations rfirmw to
high). The window sizevinsize is 13 and the dimension of input data is thugl. The extracted region
of interest (ROI) is selected &8 = 90 in each image and, accordingly, the number of training sangpl
18 % 50 * 90.

For the purpose of showing the performance of segmentatomprehensively, we choose different
level of analyte concentrations as testing sample. Thrgiedl/simulation results by using DBN approach
for segmenting the GICS images are shown in Fig. 6 when theerdrations of the target analyte are,
respectively, 75ml, 200ml and 500ml. Furthermore, thest@stion accuracy of all testing images are
listed in Table. |
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Fig. 6. Three typical simulation results of DBN approach for segtimgnthe GICS images. Left column: Simulation results
of extracted ROI; Right column: Simulation results of DBNpapach for segmenting the GICS images.

From Fig. 6, we can see that the DBN approach provides a robeistod for accurately extracting both
lines from the GICS images with different concentrationtheftarget analyte. Especially, the concentration
of specimens in the GICS images can be low, middle or highantalso be verified from Table. | that the
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TABLE |
THE CLASSIFICATION ACCURACY OF ALL TESTING IMAGES

Concentration| Control line error ratio (%)| Test line error ratio (%)| Total accuracy ratio (%

35ml 3.18 3.69 96.565

75ml 0.56 2.00 98.720

100ml 0.29 4.80 97.455

150ml 0.76 1.73 98.755

200ml 3.47 1.93 97.300

300ml 1.62 4.96 96.710

400ml 2.00 2.62 97.690

500ml 1.22 0.27 99.255
Average 1.64 2.75 97.805

DBN method in this paper has a satisfactory performance agamsegmentation with high classification
accuracy. Therefore, the DBN has proven to be a novel apprfoacuantitative analysis of GICS systems.

B. Feature Calculation and Line Fitting

For the purpose of quantification, a feature parameter dhmeilexploited to interpret the concentration
of the specimens. According to the Lambert-Beer law, a fegbarameter named relative integral optical
density R/OD) [15] is presented to evaluate the concentration of targatyée. TheRIOD is given as
follows:

lg S

10D, _ " (17)
I0ODe M,
> lg &%
=1 ¢
where IOD is the abbreviation for integral optical density, ah@ D, and 10D denote thelOD of
the test and control lines, respectivelyy and G- describe the gray intensity of pixels on the test and
control lines, respectivelyz, represents the mean gray intensity of the reading windowa. are

As shown in Fig. 7, a straight line is fitted for describing te&ationship between the concentration and

the RIOD via the least square approach. Especially, the horizorislstands for the hCG concentrations,
while the y-coordinate denotes the corresponding value/@? D which is calculated according to Eq. (17).

RIOD =

It is obvious that theRIOD and the hCG concentration have good corresponding resdtips by
the presented DBN approach and the adaptive cellular neetalork (CNN) [40] from the Fig. 7. The
correlation coefficient of the presented DBN approach i§@&334, while the correlation coefficient of the
adaptive CNN is 0.9689. Therefore, the presented DBN approgpens up a new way of image-based
method for quantitative analysis of GICS system.

C. Quantitative Evaluation

In this part, a well-defined quality criterion called the kesignal-to-noise ratio (PSNR) [36] is
exploited to quantify the segmentation performance of DB&thuad for GICS images, and also verify the
effectiveness of the test and control lines in this studygeneral, the PSNR is viewed as a measurement
of peak error. In order to calculate the PSNR, the present&d Bpproach firstly generates a binary mask
which classifies the pixels of GICS image as two types, ondassified as the signal (test or control
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B Calculated by Adaptive CNN

4.0 5 ® Calculated by DBN in the paper
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2 Correlation Coefficient: 0.97681
4 3.0+
[0
@)
T 259
;o"i ]
-:—a 2.0 1
&
8
S 154
o
2 1
= 104
[0}
o~
0.5
0.0 T T T T T T T T T T
0 100 200 300 400 500

hCG Concentration of Standard Sample(mIU/mL)

Fig. 7. The fitted line between the concentration hCG specimensta®&fOD via the least square approach.

line, assigned to 1) and the other belongs to the backgroasgighed to 0). After that, the PSNR can be

calculated as follows: )

PSNR = 101og [ MRSE] (18)

where R stands for the maximum range of the image data type. For eeamfipequals to 1 when the
data type of input image is double-precision floating-poamd R equals to 255 when the data type is an
8-bit unsigned integer, etc. MSE denotes the cumulativarsglierror between the binary magkand
the normalized original imagé,, which can be obtained by:

> [Ii(m, n) = Iy(m, n)]?

M,N

MSE =

M x N (19)

where M and N represent the numbers of rows and columns in the input imagspectively.

As an important performance indicator, the PSNR describegdtio of the signal’'s peak value over
the magnitude of the background noise. Generally, we prefa@rger PSNR value since the binary spot
mask in this way fits better with the raw image surface [36§. d shows the PSNR values of DBN
method utilized for segmenting GICS images of 8 differemiaamtrations of hCG. It is obvious that the
DBN method possesses good performance of segmentatioch whavides higher accuracy than the other
existing methods for segmenting the GICS images shown 4B

V. CONCLUSIONS

In this paper, we have developed a novel approach to quaveitanalysis of a gold immunochromato-
graphic strip (GICS) using deep belief network (DBN) in artieenhance the robustness when accurately
segmenting the test and control lines from the GICS imagkeeélfeatures (including intensity, distance
and difference) have been proposed for the DBN method to leaorder to successfully distinguish the
test and control lines from the region of interest that isaot®d by pre-processing the GICS images.
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Fig. 8. The PSNR comparison of segmenting images.

Experiments have been carried out on different conceatratiof hCG images. Furthermore, several
indices have also been proposed to verify the presented DBdaod and demonstrate that the DBN
approach indeed gives high accuracy. Future researchtidimeavould include the modification of DBNs
via adopting adaptively control strategies (e.g. [2]-{20], [17], [18], [28], [29], [34], [35]) so as to further
improve the performance of DBNs, and also developing movaraked image segmentation methods (e.g.
[31], [45]) for quantitative analysis of a GICS.
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