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ABSTRACT 21 

Out-of-hospital cardiac arrest (OHCA) is a critical cardiac disorder. The OHCA survival rate is 22 

still relatively low. Cardiopulmonary resuscitation (CPR) is very essential with the cardiac arrest. 23 

This study evaluates a non-linear approximation of the CPR given to patients, especially asystole 24 

patients. In order to clean the electrocardiography (ECG) signal which is collected by the 25 
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automated external defibrillator (AED), the raw signal is filtered using ensemble empirical mode 26 

decomposition (EEMD), and the CPR-related IMFs are chosen to be evaluated. Sample entropy 27 

(SE), complexity index (CI), detrended fluctuation algorithm (DFA) and statistical analysis using 28 

Anova are utilized. The CPR evaluation compares the patient survival rates after two hours of the 29 

cardiac arrest. The CPR pattern of the 951 asystole patients are analyzed. In the CPR-related 30 

IMFs peak-to-peak interval analysis, for both classes, patient groups who are younger than or 31 

older than 60 years, does not have any significance. Furthermore, the amplitude difference 32 

evaluation, both classes do not have any significant difference for SE (p = 0.28) and DFA (p = 33 

0.92) except for the CI (p = 0.028). The results show that patients group aged younger than 60 34 

years have higher survival rate with high complexity of the CPR-IMFs amplitude differences. 35 

 36 

Keywords: Out-of-hospital cardiac arrest, cardiopulmonary resuscitation, ensemble empirical 37 

mode decomposition, sample entropy, complexity index, and detrended fluctuation analysis.  38 

 39 

  40 

1. Introduction 41 

Yearly, abundance of people over the world suffer out-of-hospital cardiac arrest (OHCA) [1, 42 

2]. OHCA can be categorized as a typical situation associated with tremendous mortality rate [3, 43 

4]. Its cause is noticed to be due to the acute coronary syndrome [5]. The main cause of OHCA, 44 

based on some studies, is due to severe coronary disorder, including the acute coronary occlusion 45 

[6-8]. According to Eisenberg et. al., the accomplishment of the patient resuscitation for OHCA 46 

is based on certain factors, such as the general condition of the patients, the type and vitality of 47 

the events, the distance to cardiac arrest to begin the bystander cardiopulmonary resuscitation 48 
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(CPR), and following with the advanced cardiac life support (ACLS) [9].  49 

CPR is one of the fundamental and chain survival parts for the treatment of the OHCA 50 

patients. When the connections between each other is well performed, the survival rate will 51 

increase significantly [10]. On the other hand, the unexpected cardiac rhythm can be escalated 52 

when one of these connections is postponed [11, 12]. An essential chest compression itself is an 53 

effective pressure, at sternum fabricating the stream of blood and oxygen to the myocardium and 54 

brain [13]. The chest compression condition is a dominant index of the CPR accomplishment 55 

[14-16]. CPR is crucial for the re-forming the spontaneous circulation [17, 18]. It also increases 56 

the percentage of the survival rate compare to the no-CPR cardiac arrest cases [19]. 57 

In order to evaluate the CPR data, the noise is an essential concern. The filtering method 58 

should be performed in advanced in order to extract the correct information from the continuous 59 

signal. Empirical mode decomposition (EMD) filtering algorithm, proposed by Huang, et. al., 60 

[20, 21], has been used for studies related to signal filtering problem. EMD based-filter also has 61 

been used broadly for the narrow-band signal such as ECG [22] and blood pressure [23]. 62 

In advanced, the filtered signal is extracted to achieve the information contained its 63 

characteristics. The entropy algorithm, one of those methods, was used in information theory [24] 64 

to face the nonlinearity problems. An entropy algorithm was also applied to the ECG signal 65 

studies [25, 26]. A study by Costa, et. al, applying the extended sample entropy, was applied to 66 

evaluate the feature extraction of ECG using the multi-scale entropy [27]. Another non-linear 67 

method, detrended fluctuation analysis (DFA), was originally utilized for the DNA sequence [28]. 68 

Studies related to the purifying the signal and extracting information for the cardiac arrest 69 

cases have been done for several years. For the filtering area, a study utilizing multi-channel 70 

Wiener filter and a matching pursuit-like way was done to remove CPR artifact from ECG [29]. 71 
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The least mean-square (LSM) filtering has also been utilized to remove the CPR problem [30]. A 72 

new method combining the noise-assisted multivariable EMD (N-A MEMD) and least square 73 

mean (LSM) filtering was implemented by Lo et. al., [31]. The application of the sample entropy 74 

for the shock outcome predictor [32]. The extended of the sample entropy, multiscale entropy, 75 

was also applied for the cardiac arrest problem [33]. Another non-linear method, detrended 76 

fluctuation analysis was utilized by Lin et. al., for the study of ventricular fibrillation in OHCA 77 

cases [34].  Therefore, the purpose of this study is to evaluate the CPR pattern by utilizing the 78 

EEMD to purify the CPR signal and the ECG data by applying the non-linear algorithms to see 79 

the survival rate.  80 

 81 

2. Data Acquisition and Algorithm 82 

2.1 Data acquisition 83 

The dataset is retrospectively collected from the New Taipei City fire-based of emergency 84 

medical service (EMS). All the staff have been trained for the basic life support, early 85 

defibrillation and advanced life support. All the ambulance units are equipped with a ForeRunner 86 

AED (Philips, Seattle, WA, USA). The ECG signal is logged into the AED card data, sampled for 87 

200 Hz. The logging lead was placed on the patient chest. 88 

This study utilizes data from the whole year of 2010. Originally, the total of 1207 patient 89 

ECGs, sampled for 200 Hz, is divided into two groups, trauma and non-trauma cardiac arrest. 90 

Focusing on the non-trauma patients only, the data is parted into another two groups, either 91 

patients have AED shock or non-shock-able signal. In order to evaluate the pure CPR without 92 

any help of the AED, all the 1001 non-shock-able patients, which eventually becomes 951 sets 93 

after filtering for the quality of the data, is divided according to their age with the threshold of 60 94 
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years, as shown in Fig. 1. After having the two different group signals, the outcome of the patient 95 

is evaluated after 2 hours based on their conditions. The evaluation is analyzed in MATLAB 96 

language (Mathwork Inc). 97 

2.2 Empirical Mode Decomposition-Based Filter 98 

2.2.1. Empirical Mode Decomposition (EMD) 99 

EMD is initially proposed by Huang et al. in 1998 [14]. EMD is a convincing algorithm to 100 

decompose the specific frequency range of the data into a finite number of intrinsic mode 101 

decompositions (IMFs). These decomposed IMFs illustrate certain characteristics. However, for 102 

the real-world signals, the mode-mixing disturbs the regularity of the IMFs.  Due to this reason, 103 

the ensemble empirical mode decomposition (EEMD) was proposed to deal the mode-mixing 104 

difficulties.   105 

 106 

2.2.2. Ensemble Empirical Mode Decomposition 107 

The intermittence corrupts the consistence of the IMFs. The subsequent mode function will 108 

be affected, hence the physical meaning of those IMFs that cannot be parted based on their 109 

characteristics. Wu and Huang [35] proposed EEMD using noise-assisted method to overcome 110 

this phenomenon. In EEMD, the white noise is added to the original signal to form a mixed 111 

combination of noise and signal in order to remove the intermittence and generate consistent 112 

IMFs. EEMD study was also conducted to an ECG noise filtering problem [36].  113 

 114 

2.3 Feature Extraction Algorithms 115 

2.3.1. Sample Entropy and Complexity Index 116 

The entropy is initially recognized in the thermodynamics property to evaluate the regularity. 117 
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The higher entropy means the less regular the pattern or the sequence to be recognized. For more 118 

detail can be referred to the previous study by Costa et. al., [37]. For the multiscale entropy, the 119 

coarse grained time series is based on the scale factor. The coarse grained time series will be 120 

evaluated by entropy algorithm. The result of the entropy corresponds to the each scale is called 121 

multiscale entropy. The complexity index (CI) is defined as measurement of the signal 122 

complexity. It is calculated by the evaluation of the area under curve of the multiscale entropy. 123 

The calculation from the recreated time series based on the coarse grained information will affect 124 

the area under the area of the curve. 125 

 126 

2.3.2. Detrended fluctuation analysis 127 

Fractal analysis is one of the most prosperous access to get those features. Detrended 128 

fluctuation analysis (DFA) is a non-stationary algorithm for statistical analysis. A considerably 129 

physiology-related problem is a non-stationary time series one. This method originally proposed 130 

by Peng et. al., [38].  131 

3. Results and Discussion 132 

In this study, the original ECG logged from the AED machine, sampling frequency of 200 Hz, 133 

is filtered by the EEMD algorithm, shown in Fig. 2 to Fig. 4. From those figures, it can be seen 134 

that IMF 2 to IMF 4 are relatively similar to the CPR pattern having the dominant frequency as 135 

described as previous study conducted by Lo et. al., [22]. Figs. 5 and 6 also show the time 136 

frequency evaluation shows the differences between the raw ECG and the reconstructed-CPR, by 137 

combining the CPR-related IMFs, signal after the EEMD filter. Figs. 5a and 6a give the 138 

information about the time-frequency information. For Fig. 5a, the dominant signal occurs 139 

mostly in below the CPR frequency ranges, lower than 0.5 Hz, indicated by the red area. 140 
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Meanwhile, for Fig. 6a, after the EEMD filter, the dominant frequency shifts to the range of 2 Hz 141 

to 4 Hz, indicated by the red aquare. This filter also automatically reduces the baseline noise of 142 

the signal that can be seen by the Figs. 5b and 6b. 143 

All the maxima points are detected from the reconstructed IMFs that have the CPR frequency,  144 

by evaluating the changing of the slopes from positive to negative as shown in Fig. 7,. 145 

Furthermore, the maxima points are evaluated to obtain the maxima interval (I) and maxima 146 

amplitude differences (dA) from the IMF-combined CPR, shown in Fig. 7. Furthermore, both 147 

signals, I and dA, are estimated by utilizing SE, CI and DFA.  148 

The evaluation results of the 951 patient ECGs of non-trauma and non-shock-able rhythm 149 

using a threshold of 60 years of age are shown in Table 1. For the interval analysis, it initiates 150 

with patients of age greater 60-year old. The total patients for this category is 579 patients who 151 

died and 116 patients who survived. In this category, died patients have SE mean value of 152 

1.91±0.58 and the survived patients have 1.87±0.56 (p > 0.05). For the CI evaluation, died 153 

patients have 13.26±4.46 and the survived have 13.48±4.67 (p > 0.05). The DFA evaluation 154 

produces 0.86±0.145 for died patients and 0.833±0.136 for the survival (p > 0.05).  155 

The next interval evaluation is for the patients having age less than 60 years. The total 156 

number of patients for this class is less than half as much as the greater than 60-year-old patients. 157 

The SE has 1.86±0.61 and 1.81±0.6 respectively for died and the survived, p-value is greater 158 

than 0.05. The CI has 13.12±4.9 and 12.03±4.26, respectively for died and survived, and has no 159 

significant differences. For the DFA, it has 0.839±0.15 and 0.845±0.12 respectively for died and 160 

NYM patients, and also not significantly different.   161 

From the amplitude difference point of view, for the patients’ age is greater than 60, died 162 

patients have SE mean value of 0.22±0.236 and for the survive patients have 0.226±0.244 (p > 163 
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0.05). For the CI evaluation, died patients have 1.23±1.24 and survived have 1.195±1.184 (p > 164 

0.05). The DFA produces 0.115±0.126 for died patient and 0.099±0.116 for survived (p > 0.05).  165 

For cases of the category of age of less than 60 years, the SE has 0.2±0.23 and 0.24±0.16, 166 

respectively of died and alive patients, and have no significant differences. The CI has 167 

0.983±1.03 and 1.378±1.173, respectively for died and survived, this case is significantly 168 

different (p < 0.05). The DFA case creates 0.105±0.168 and 0.107±0.098 (p > 0.05). 169 

Several studies were conducted earlier related to the age and the CPR to the outcome of the 170 

survival. A study by Longstreth et. al. evaluated the 5-year period about the relation of the age 171 

and the CPR. This study stated that the CPR can benefit the elderly as well as the younger 172 

patients [40]. Another study conducted by Wuerz et. al., also produced no significant different for 173 

younger and elderly patient for the return of spontaneous patients and survived to the hospital 174 

discharge [41].  175 

However, a study conducted by Herlitz et. al, for 23461 patients, concluded that age also is a 176 

serious factor in the cardiac arrest cases. The survival rate decreases by the age [42]. Another 177 

study of 503 cases conducted by Murphy at. al., carried out the information that the elderly 178 

having out-of-hospital cardiac without any witness or with the asystole made the CPR barely 179 

effective [43]. For the long-term-care population, even though the CPR is performed by the 180 

qualified and professional team, the elderly had a very small benefit [44]. 181 

  182 

4. Conclusions and Future Work 183 

This study evaluates a total of 951 of the non-shock-able patient ECGs, using the ensemble 184 

empirical mode decomposition filtering and utilizing non-linear approaches. The IMF-combined 185 

CPR maxima interval and the amplitude are evaluated. Even though most of all evaluations do 186 
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not have any significant different, the evaluation of CI for the maxima amplitude has difference 187 

significantly. According to the results, it can be concluded that the patients with age younger than 188 

60 years have higher survival rate by having more complexity in CPR amplitude differences. 189 

This result can be considered as the information of the automated CPR machine design with the 190 

force given by the machine may be dynamics.  191 

This study has several limitations. The first one is when the noise has the same frequency 192 

range of those CPR IMFs, affecting to the raw ECG signal, is still in the evaluation. This 193 

condition may affect the result, especially for the slope evaluation. Another limitation is the 194 

survival and died patient portion data are relatively not balance.  195 

For future study, the application of the advanced time-domain filter should be applied to 196 

purify the unfiltered noise on the frequency domain filter. 197 
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Figures and Tables 321 

 322 

Figure 1: The flowchart of the CPR evaluation. 323 

*Note: The original 1001 ECG signal have to be reduced due to the quality of the data. 324 
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 325 

Figure 2: EEMD-extracted CPR and the time-frequency information of IMF 2. 326 
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 327 

Figure 3: EEMD-extracted CPR and the time-frequency information of IMF 3. 328 
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 329 

Figure 4: EEMD-extracted CPR and the time-frequency information of IMF 4. 330 
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 331 

Figure 5: Raw signal from AED machine. a) Time-frequency result; b) The raw signal. 332 

 333 
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 334 

Figure 6: EEMD-reconstructed CPR signal. a) Time-frequency result; b) The reconstructed signal. 335 

 336 
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 337 

Figure 7: CPR IMFs maxima information evaluation 338 

 339 
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Table 1: The statistical evaluation of the CPR IMFs result. 340 

Evaluation Age Feature Status Mean 

Standard 

Deviatio

n 

p-value 

(p<0.05) 

INTERVAL 

> 60 (579,116) 

SE 

Died 1.91 0.58 

0.556 

Survival 1.87 0.56 

CI 

Died 13.26 4.46 

0.62 

Survival 13.48 4.67 

DFA 

Died 0.86 0.145 

0.06 

Survival 0.833 0.136 

< 60 (215,41) 

SE 

Died 1.86 0.61 

0.575 

Survival 1.81 0.6 

CI 

Died 13.12 4.9 

0.234 

Survival 12.03 4.26 

DFA 

Died 0.839 0.15 

0.825 

Survival 0.845 0.12 

AMPLITUDE 

> 60 (579,116) 

SE 

Died 0.22 0.236 

0.825 

Survival 0.226 0.244 

CI 

Died 1.23 1.24 

0.781 

Survival 1.195 1.184 

DFA 

Died 0.115 0.126 

0.215 

Survival 0.099 0.1165 

< 60 (215,41) 

SE 

Died 0.2 0.23 

0.28 

Survival 0.24 0.16 

CI 

Died 0.983 1.03 

*0.028 

Survival 1.378 1.173 

DFA 

Died 0.105 0.168 

0.912 

Survival 0.1077 0.0983 

*NOTE: SE means sample entropy, CI complexity index, DFA detrended fluctuation analysis, “*” 341 

significant different parameter. 342 


