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ABSTRACT 

We have used whole exome sequencing to identify biallelic missense mutations in the nuclear-

encoded mitochondrial inorganic pyrophosphatase (PPA2) in ten individuals from four unrelated 

pedigrees that are associated with mitochondrial disease. These individuals show a range of severity, 

indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe 

symptoms include seizures, lactic acidosis and cardiac arrhythmia and death within days of birth. In 

the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite 

sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. 

Comparison of normal and mutated PPA2 containing mitochondria from fibroblasts showed the 

activity of inorganic pyrophosphatase significantly reduced in affected individuals. Recombinant 

PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated 

with disease severity. These findings confirm the pathogenicity of PPA2 mutations, and suggest that 

PPA2 is a new cardiomyopathy-associated protein, which has a greater physiological importance in 

mitochondrial function than previously recognized. 
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Inorganic pyrophosphate (PPi, also termed diphosphate) is formed by several important nucleotide 

triphosphate dependent reactions necessary for DNA, RNA, protein, and lipid synthesis. 

Pyrophosphate has to be hydrolyzed to orthophosphate (Pi). An enzyme that catalyzes this reaction 

is termed inorganic pyrophosphatase (PPA, Enzyme Commission number EC 3.6.1.1) and provides Pi 

for biomolecules via synthesis of ATP, the terminal product of cellular energy metabolism. PPAs are 

found in all kingdoms of life. Type I enzymes present in Escherichia coli and eukaryotes depend on 

divalent ions, preferably Mg
2+

 ions 
1
. Humans, similar to the yeast Saccharomyces cerevisiae, have 

two PPAs that share sequence homology. These comprise a cytoplasmic soluble PPA1 and a 

mitochondrial-located PPA2. For the latter it has been proposed that the soluble catalytic part binds 

to a yet uncharacterized inner mitochondrial membrane protein 
2
. Knockout of the cytoplasmic PPA1 

(MIM 179030) orthologue IPP1 leads to a loss of viability in yeast 
3; 4

. Knockout of the mitochondrial 

PPA2 results in a growth defect on non-fermentable carbon sources and loss of mitochondrial DNA 

in S. cerevisiae 
3
.  

 

We have identified hypomorphic missense mutations in the human gene of the mitochondrial 

inorganic pyrophosphatase encoded by PPA2 (MIM 609988) in a multicenter study by exploring 

undiagnosed cases with presumed mitochondrial disease using whole exome sequencing (WES). In 

agreement with the Declaration of Helsinki, informed consent for genetic and biochemical studies 

was obtained from all study participants or their guardians. The study was approved by the Ethics 

Committee of the Technische Universität München and South Yorkshire Research Ethics Committee.  

 

Family 1 consists of four affected individuals (P1-P4) born to healthy unrelated parents of European 

descent from New Zealand (Figure 1). This family was identified following the sudden death of two 

children. The first child, P1, was well until age of 15 years when he collapsed and died following 

ingestion of a small volume of beer. He had no prior cardiac symptoms, but had exhibited exquisite 

sensitivity to alcohol in medicine and food, which was common to all four siblings in childhood. This 



4 

 

was manifest by pallor and severe chest and arm pain following consumption of small amounts of 

alcohol (<0.1 g ethanol). The only abnormalities observed post mortem were in the heart with both 

ventricles found to be slightly dilated. A diagnosis of myocarditis and sudden arrhythmic cardiac 

death was made. Individual P3 died suddenly at 20 years of age following ingestion of a small 

amount of alcohol (approx. 10 g ethanol). He was previously well, and had no prior cardiac 

symptoms, but had also been exquisitely sensitive to alcohol. At post mortem examination the heart 

weighed 395 g (normal 300 g). The left ventricle was dilated with a virtually circumferential lamina of 

scarring in mid-myocardium. Microscopic examination revealed very widespread, mostly mature 

scarring of mid-myocardium in all sectors (Figure 2). Two living siblings P2 and P4 (currently 38 and 

34 years of age, respectively) were assessed based on their family history and their sensitivity to 

alcohol. Cardiac MRI, showed marked mid-myocardial fibrosis in both siblings (P4 shown in Figure 2). 

They subsequently each received an implantable defibrillator for primary prophylaxis of sudden 

arrhythmic cardiac death, although no events have occurred to date. Despite extensive 

investigations into the cause of sudden death in this family over a period of >20 years, no definitive 

diagnosis was made (For more clinical details see Supplemental Data).  

 

Whole exome sequencing (see Table S1 for details) was performed on the two living siblings to 

elucidate the underlying molecular defect. Given that both parents appeared unaffected, we 

searched for rare non-synonymous variants common to the two affected children in a recessive 

disease model of inheritance. Four candidate genes were identified with compounding missense 

mutations, and with an association to cardiomyopathy and/or mitochondrial function: KCNJ12 (MIM 

602323), TTN (MIM 188840), AARS2 (MIM 612035) and PPA2. Of these four genes, variants in all but 

PPA2 were excluded based on non-segregation with disease (Table S2). Both affected children were 

compound heterozygous for PPA2 mutations c.[514G>A];[683C>T] causing the predicted coding 

changes p.[(Glu172Lys)];[(Pro228Leu)], with each parent carrying one mutation. Sanger sequencing 
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confirmed compound heterozygosity of PPA2 mutations in the two deceased individuals, 

establishing the same genotype for all four affected individuals (Figure S1).  

 

We considered that PPA2 dysfunction was the likely underlying cause of sudden cardiac death in our 

index family. We identified an additional three families with a further six affected individuals 

harbouring compound heterozygous or homozygous PPA2 mutations (Figure 1) in large exome 

datasets from individuals suspected of a disorder in mitochondrial energy metabolism. Family 2 

(c.[500C>T];[500C>T], p.[(Pro167Leu)];[(Pro167Leu)]) comprises three affected siblings born to 

consanguineous parents from Sri Lanka. Family 3 (c.[500C>T];[500C>T], 

p.[(Pro167Leu)];[(Pro167Leu)]) consists of two affected and two healthy siblings born to 

consanguineous parents of Pakistani origin. Family 4 (c.[380G>T];[514G>A], 

p.[(Arg127Leu)];[(Glu172Lys)]) has one affected and one healthy sibling born to unrelated healthy 

parents from the United Kingdom.  

 

Unlike the individuals from Family 1, all the affected individuals in these three families presented 

with classical mitochondrial disease symptoms and died within the first two years of life of cardiac 

failure (Table 1). The identification of these individuals suggests that a spectrum of severity is 

conferred by different biallelic PPA2 mutations. In affected individuals homozygous for 

p.(Pro167Leu), the clinical presentation involved lactic acidosis, seizures, hypotonia and cardiac 

arrhythmia within the first months of life. Myocyte loss, disarray or fibrosis was present in all 

individuals. Respiratory chain function varied from normal to moderate reduction in complex I and 

IV activities in cardiac tissue and was normal in fibroblasts and skeletal muscle tissue. The individual 

harbouring compound heterozygous c.[380G>T];[514G>A], p.[(Arg127Leu)];[(Glu172Lys)] mutations 

first presented with short seizures at 10 months and developed dilated cardiomyopathy and 

multiorgan failure at 1 year, necessitating intensive care for several weeks. All affected individuals 

died from cardiac failure after sudden deterioration. Interestingly, both individuals from Family 3 
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and the affected individual from Family 4 had viral infections at the time of hospital admission 

before their final heart failure (Figure S2). In the older siblings from Family 2 vomiting among other 

symptoms of metabolic decompensation prior to admission, was reported, one of them having loose 

stools once, yet viral infection was not confirmed (Table 1). Clinical case histories of all affected 

individuals are provided in the Supplemental Data.  

 

Western blotting showed normal amounts of PPA2 protein in fibroblast mitochondria from 

individuals P5, P6 and P7 but decreased amount in P9 (Figure S3). In autopsy muscle of P9 the 

amount of PPA2 protein was decreased, while it appeared to be normal in P6, who carried the same 

PPA2 mutation (Figure S4). In heart autopsy material from P10, we noted decreased PPA2 levels as 

well as decreased levels of a complex I structural protein (subunit NDUFS4), correlating with the 

observed decrease in complex I activity in this tissue (Figure S5). In the cardiac autopsy sample of P7, 

PPA2 and complex I subunit levels were decreased as was the expression of the mitochondrial 

marker proteins porin and citrate synthase, suggestive of a more general reduction of mitochondrial 

number possibly due to changes in tissue composition (Figure S5).  

 

All four missense variants involve residues of high evolutionary conservation (Figure 1) and are 

predicted to have a pathogenic effect on PPA2 function in silico (SIFT, PolyPhen-2 and 

MutationTaster) (Table S3). The high homology between the human and yeast (S. cerevisiae) PPA 

proteins facilitated predictive modelling of these human variants based on the known yeast 

structure of the cytosolic/nuclear pyrophosphatase IPP1 (MMDB ID: 21720; PDB ID: 1M38) (Figure 

1). Glutamine to lysine substitution at residue 172 is predicted to disrupt at least three hydrogen 

bonds between interacting protein chains near the surface of the enzyme’s active site. Any 

disruption of the active site may impair enzymatic function of PPA2. A substitution of proline to 

leucine at residue 228, located on the outside surface where dimer association occurs, is also 

predicted to disrupt the secondary structure of PPA2. Proline is a known peptide turning point amino 
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acid, and is likely to affect the orientation of the two helices between which it lies in this enzyme. 

We suggest disruption of the conformation of the outer surface may impair correct dimerization of 

PPA2 molecules.  

 

All four PPA2 mutations identified in our cohort are present in the Exome Aggregation Consortium 

(ExAC) database (Cambridge, MA [12/2015]) at a frequency <0.005, equating to 59/60,400 

individuals heterozygous for p.Glu172Lys, 30/60,134 individuals heterozygous for p.Pro228Leu, 

20/60,677 individuals heterozygous for p.Arg127Leu, and 3/60,457 individuals heterozygous for 

p.Pro167Leu (Table S1). None of these PPA2 variants is reported in a homozygous state in ExAC, the 

NHLBI Exome Sequencing Project (ESP6500) database or 7,000 control exomes of an in-house 

database (Munich). Due to the complete growth defect of yeast PPA2 knockouts on non-

fermentable carbon sources, it can be speculated that biallelic loss of function mutations of PPA2 are 

incompatible with life in humans. In total, 13 LOF variants (found in 18 alleles) are published in the 

ExAC database and furthermore ExAC contains 71 different missense mutations (in 237 alleles) with 

a SIFT score ≤0.05 (cut-off for mutations to be considered pathogenically relevant). The cumulative 

heterozygous carrier frequency of these likely pathogenic PPA2 mutations is 0.0024, which would 

result in a calculated prevalence for compound heterozygous or homozygous pathogenic PPA2 

mutations of 0.58 per 100,000 (1 in 170,000).  

 

In order to investigate effects of PPA2 deficiency on the cellular metabolism we measured oxygen 

consumption rate (OCR) by micro scale respirometry (XF96 Seahorse Biosciences) 
5
. Basal respiration 

and oligomycin-inhibited OCR was similar in affected individuals (P5, P6, and P7) but after the 

addition of the mitochondrial uncoupler FCCP a higher activity was observed in affected individuals 

compared to controls. The difference between basal and FCCP-stimulated OCR, termed reserve 

respiratory capacity (RRC), was twice as high in PPA2 deficient fibroblasts compared to controls 

(Figure S6 A-B). High RRC observed in PPA2 deficient cells might be due to a limitation in ATP 
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synthesis because of insufficient Pi supply within mitochondria (Figure S7). Actually, the investigation 

of cells with proven ATP synthase deficiency due to either mutations in TMEM70 
6
 (MIM 612418) or 

ATP5E 
7
 (MIM 606153) revealed a similar OCR-profile with high RRC. Since high RRC is not a specific 

finding, further investigations were required to demonstrate decreased ATP synthesis in PPA2 

deficiency. 

 

We next determined pyrophosphatase activity in isolated mitochondria from fibroblasts of controls 

and affected individuals, which were prepared from 540 ccm of confluent primary fibroblasts. After 

harvesting by trypsinization and washing twice with phosphate buffered saline cells the weight of 

the cell pellet was determined. Cells were suspended in the 10-fold amount (e.g. 500 µl per 50 mg of 

cell pellet) of ice-cold, hypotonic homogenization buffer (10 mmol/l Tris pH 7.4) and homogenized 

by the use of a tight fitting Potter Elvehjem homogenizer. Immediately after homogenization 1.5 

mmol/l sucrose (20% of the homogenization volume) was added to preserve mitochondria. After 

centrifugation at 600 g the mitochondria containing supernatant was centrifuged at 10.000 g and the 

mitochondria containing pellet was washed twice with SEKT buffer (250 mmol/l sucrose, 2 mmol/l 

EGTA, 40 mmol/l KCl, 20 mmol/l KCl pH 7.4). The mitochondrial pellet was finally suspended in the 

equal amount (50 µl/per 50 mg cell pellet) of SEKT buffer and stored at -80°C prior to further 

investigations 
7; 8

. The hydrolysis of PPi and quantification of orthophosphate (Pi) formed was 

determined according to previously published methods 
9; 10

 with minor modifications. The incubation 

buffer contained 50 mmol/l Tris pH 8.0, 0.1 mmol/l EGTA and the indicated concentrations of MgCl2 

and PPi. The reaction was started by the addition of enzyme in a final volume of 100 µl, incubated at 

37 °C and stopped by the addition of 100 µl reagent A (0.70% (w/v) ammonium heptamolybdate 

tetrahydrate, 1.26 mol/l H2SO4), developed by the addition of 40 µl reagent B (0.35% (w/v) 

polyvinylalcohol, 0.035% (w/v) malachite green oxalate at room temperature for 20 minutes. The 

activity of PPA was significantly decreased in isolated fibroblast mitochondria from affected 

individuals P5, P7 and P9 at each PPi (0.001 - 0.1 μmol/l) and MgCl2 (0.5 or 3.0 mmol/l) 
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concentration investigated (Figure 3A-B). Inactivation by CaCl2 was similar in affected individuals 

compared to controls (Figure 3C). Fibroblasts from affected individuals P6 and P10 did not grow 

sufficiently to collect enough cells for the isolation of mitochondria and from individuals P1-4 and P8 

no fibroblasts were available. 

 

For the expression of recombinant human PPA2, wild-type PPA2 cDNA was cloned into the 

expression vector pRSET B (Invitrogen) using the cloning sites BamHI and BglII 
11

. The first 96 

nucleotides corresponding to the cleavable N-terminal mitochondrial targeting sequence were 

omitted from the construct. The c.500C>T (p.Pro167Leu), c.514G>A (p.Glu172Lys), and c.683C>T 

(p.Pro228Leu) variants were introduced into the wild-type PPA2 sequence by site-directed 

mutagenesis using Gibson assembly (New England Biolabs) with appropriate primers for PCR 

amplification (Phusion, New England Biolabs) and the correct coding regions of all four constructs 

was confirmed by Sanger sequencing. Recombinant protein was expressed in the Escherichia coli 

strain BL21(DE3)pLysS at 37 °C starting at OD600 of 0.2 and using 1 mmol/l IPTG for two hours. The 

bacterial suspension was harvested, sonified in homogenization buffer and the supernatant was 

bound to HisPur cobalt spin columns (Thermo) 
11

. The amount of the recombinant proteins was 

determined by western blotting with a human PPA2 antibody (Abcam, ab177935). Equal amounts of 

either wild-type or mutant recombinant PPA2 proteins were used for the pyrophosphatase activity 

assay. Compared to wild-type the p.Pro167Leu and p.Glu172Lys variants showed 5-10% residual 

activity at PPi substrate concentrations 18-500 µmol/l. The p.Pro228Leu variant had a residual 

activity of 24-28% in this concentration range compared to wild-type (Figure 3D). The activities of 

wild-type and mutants were similarly sensitive to inhibition by Ca
2+

 (data not shown).  

 

As previously reported, PPA2 knockout strain from S. cereviseae is unable to grow on aerobic media 

3
. We also detected a growth defect of PPA2 knockout yeast on diamide-containing media, which 

lowers antioxidant concentrations (Figure S8) 
12

. These antioxidants protect the cell against reactive 
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oxygen species which are also natural by-products of mitochondrial respiratory chain function. The 

increased diamide-sensitivity of PPA2-deficient yeast therefore suggests reduced levels of 

antioxidants. 

 

In the case of Family 1, our data suggests that p.Pro228Leu is a relatively mild variant, given that 

PPA2 function is only moderately reduced. This hypothesis is supported by investigation of the 

activity of recombinant PPA2 enzyme activity. The p.Pro228Leu substitution resulted in a reduction 

of PPA activity to approximately 25% of wild-type (Figure 4). These individuals show chronic 

accumulation of cardiac fibrosis, and death occurred after ingestion of alcohol to which they were 

already known to have acute sensitivity. We propose that alcohol acted as a trigger in these cases, 

whose PPA2 dysfunction created chronic mitochondrial sensitivity, and whose hearts were 

consistently deprived of adequate ATP resulting in fibrosis. Ingestion of alcohol appears to have 

increased the stress on the already sensitive mitochondria/fibrotic heart causing cardiac arrhythmia 

and death. There is a link between alcohol metabolism and inorganic pyrophosphatase function that 

might underlie the pathology of affected individuals. Ethanol is oxidized to acetaldehyde and further 

to acetic acid 
13

. Resulting acetic acid has to be activated to acetyl-coenzyme A, which is 

accompanied by the formation of equimolar amounts of PPi (Figure S6). This esterification reaction is 

catalyzed by short-chain acyl-CoA synthetases encoded, for example, by ACSS1 (MIM 614355), an 

enzyme with high expression in heart mitochondria 
14

. In cases of severe PPA2 dysfunction, ATP 

depletion has an acute effect and lactic acidosis and cardiomyopathy occurs prior to chronic damage 

developing, which could lead to acute symptoms in the presence of secondary triggers. It is 

interesting to note, however, that both affected individuals in Family 3 had a history of vomiting, 

diarrhoea and seizures prior to admission to hospital, and viral infection (rotavirus [1
st

] and norovirus 

[2
nd

]) was confirmed in stool samples taken at time of admission. A norovirus infection was also 

found in P10 from the United Kingdom. This may indicate that a viral stressor was responsible for 

adversely affecting mitochondrial metabolism in families 3 and 4, in the same way that alcohol was a 
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trigger for arrhythmia in the index family. In the oldest sibling of family 2 there was also some 

vomiting prior to hospital admission but viral illness was not confirmed. In the two younger siblings 

vomiting occurred among other initial symptoms of metabolic compensation, in the youngest sibling 

who was hospitalized from birth already on the third day of life. Of note, symptoms like vomiting 15
, 

diarrhoea 16
, and seizures 

17
 are also typical for other disorders of the mitochondrial energy 

metabolism.  

 

All affected individuals died from cardiac failure. Sudden, unexpected cardiac death was especially 

observed in P1, P3, P5, P6, and P8. As clearly seen in cardiac MRIs from the two living individuals 

from Family 1 midmyocardial fibrosis is a pre-existing condition (Figure 2) even though no cardiac 

symptoms were experienced by these individuals. Using late gadolinium enhancement (LGE) 

myocardial fibrosis can be clearly determined and is also a common finding in other disorders of the 

mitochondrial energy metabolism such as MELAS (MIM #540000) due to the common m.3243A>G 

mutation of the mitochondrial DNA 
18

.  

 

In conclusion, we have identified biallelic missense mutations in PPA2 as cause of mitochondrial 

cardiomyopathy and sudden cardiac death. This finding highlights a critical role of PPA2 in 

mitochondrial function, and warrants further functional investigation. Importantly, mild mutations in 

PPA2 may not have an immediate life threatening effect until triggered by a stressor such as viral 

illness or alcohol metabolism, predisposing otherwise healthy individuals to sudden cardiac death. 

Considering the relatively high frequency of PPA2 mutations present in the ExAC database, it is 

important that clinically suspicious individuals are screened for PPA2 mutations, in addition to 

evidence of heart fibrosis by cardiac MRI. Moreover, application of an implantable cardioverter 

defibrillator may prevent sudden cardiac death in at-risk individuals who harbour biallelic PPA2 

mutations.  
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Supplemental Data  

Supplemental Data include detailed case reports of individuals P1-P10, 9 figures and 3 tables. 
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Figure Legends 

 

Figure 1. Pedigrees Structure, PPA2 Genomic Organisation Conservation and Family 1 Variants 

Modelling. 

(A) Pedigrees of four families identified with mutations in PPA2 (GenBank NM_176869.2) encoding 

the mitochondrial inorganic pyrophosphatase. Individuals with a question mark have not been 

tested. Mutations found in more than one family are coloured. (B) Location of mutations within the 

gene, and phylogenetic conservation of the predicted missense mutations. (C) Space fill model 

showing position of p.Pro228 at boundary of dimers and p.Glu172 in the active site produced in 

CN3D with reference PDB: 1M38. (D) Left: Structural model of one molecule of PPA2 showing the 

position of 4 mutations in folded structure (red). Residues that are known to be critical to PPA2 

function in S. cerevisiae are highlighted in yellow 
19

. Right: Space fill of the PPA2 active site showing 

three substitutions are located at the surface of the active site. Models produced using Swiss-

PdbViewer 
20

 (with reference PDB: 1M38). 

 

Figure 2. Cardiac Fibrosis in PPA2 Deficiency. 

(A) Affected individual P3, post mortem section through left ventricle showing a virtually 

circumferential lamina of scarring in midmyocardium with focal subendocardial involvement. 

Fibrosis is marked by arrows. (B) Low (bar equals 1 mm) and (C) high (bar equals 25 µm) power 

microscopy of the posterior freewall of the left ventricle showing prominent midmyocardial loose 

fibrosis in P3 (hematoxylin and eosin staining). (D) Cardiac MRI showing prominent midmyocardial 

fibrosis in affected individual P4 (at 25 years of age), marked by arrows. 

 

Figure 3. Inorganic Pyrophosphatase Activity in Fibroblast Mitochondria and Recombinant 

Enzymes. 

(A, B) Activity of inorganic pyrophosphatase in different fibroblast mitochondria isolations from 

affected individuals (P) P5, P7 and P9 compared to 14 controls (C) at different PPi concentrations and 

either (A) 0.5 mmol/l MgCl2 or (B) 3.0 mmol/l MgCl2. (C) Inhibition of inorganic pyrophosphatase in 

fibroblast mitochondria from affected individual P5 (red squares) and 3 controls (black circles) 

incubated at 0.5 mmol/l MgCl2 and different CaCl2 concentrations and either 0.1 mmol/l PPi or 0.01 

mmol/l PPi (small insert). (D) Pyrophosphatase activity of equal amounts of recombinant proteins at 

different PPi concentrations. (E) Protein amount of recombinant PPA2 protein was adjusted by 

western blot analysis and silver staining (Figure S9). *P<0.01, **P<0.0001 in Student’s unpaired t-

test. 
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Table 1. Genetic and Clinical Findings in Individuals with PPA2 Variants 

ID Sex PPA2 variants  OXPHOS activities  Clinical features   

 m/f cDNA (NM_176869.2) 

protein (NP_789845.1) 

 (normal ranges in brackets)  AO Age of 

death 

Cardiac phenotype Other findings 

F1, 

II:1, 

P1 

m c.[514G>A];[683C>T] 

p.[(Glu172Lys)];[(Pro228Leu)] 

  n.d.   4 y 15 y Autopsy: slight dilation of both ventricles. Small pale 

area in the epicardium of the left ventricle, evidence 

of focal inflammation with neutrophils, lymphocytes 

and eosinophils. 

Sensitive to small amounts of alcohol. 

F1, 

II:2, 

P2 

m c.[514G>A];[683C>T] 

p.[(Glu172Lys)];[(Pro228Leu)] 

  n.d.   14 

y 

Alive 

38 y 

Cardiac MRI: myocardial fibrosis; received implantable 

defibrillator. 

Sensitive to small amounts of alcohol. 

F1, 

II:3, 

P3 

m c.[514G>A];[683C>T] 

p.[(Glu172Lys)];[(Pro228Leu)] 

 n.d.  10 

y 

20 y Autopsy: dilation of the left ventricle, circumferential 

lamina of scarring in midmyocardium with focal 

subendocardial involvement. Very widespread mostly 

mature scarring of midmyocardium in all sectors. 

Sensitive to small amounts of alcohol. 

F1, 

II:4, 

P4 

f c.[514G>A];[683C>T] 

p.[(Glu172Lys)];[(Pro228Leu)] 

  normal in skeletal muscle   9 y Alive 

33 y 

Cardiac MRI: myocardial fibrosis; received implantable 

defibrillator. 

Sensitive to small amounts of alcohol. Immuno-

histochemical studies of skeletal muscle showed 

changes suggestive of a mild chronic myopathy. 

F2, 

II:, 

P5 

m c.[500C>T];[500C>T] 

p.[(Pro167Leu)];[(Pro167Leu)] 

 n.d.  10 

d 

11 d Autopsy: herds of fresh necrosis mainly of the right 

heart and interstitial lymphocyte infiltration. Electron 

microscopy: myocard showed mitochondria with  

degeneration of cristae. 

Elevated plasma lactate levels; tachypnoea and 

tachycardia; tonic-clonic seizures; death after severe 

bradycardia. 

F2, 

II:2, 

P6 

f c.[500C>T];[500C>T] 

p.[(Pro167Leu)];[(Pro167Leu)] 

  normal in skeletal muscle and 

fibroblasts 

  14 

d 

14 d Autopsy: acute and subacute necrosis more 

pronounced in the right heart more severe than in the 

left heart. Electron microscopy: myocardium showed 

mitochondria with degeneration of cristae like in P5. 

Metabolic acidosis with elevated plasma lactate levels; 

tachypneoa; vomiting, generalized seizure; cardio-

respiratory decompensation; death 6.5 hours after 

onset of symptoms. Multiple subacute necroses in the 

semioval center of both cerebral hemispheres. 

F2, 

II:3, 

P7 

m c.[500C>T];[500C>T] 

p.[(Pro167Leu)];[(Pro167Leu)] 

 normal in skeletal muscle and 

fibroblasts; heart muscle: LV: CI 4.1 

(5.5-51.5) and CIV 64 (73.2-516.6) 

decreased, RV: CI not detectable, CII 

9.0 (25.8-40.7), CIV 42 (73.2-516.6) 

 3 d 32 d Cardiac tachyarrhythmia. ECG showed hypodynamic 

right ventricle. Autopsy: myocardium without necrosis 

and inflammatory infiltrations. Myocytes with 

reduced amount of myofibrils. Region of fibrosis, 

partially fat tissue in the right heart.  

Elevated plasma lactate, transaminases, lactate 

dehydrogenase, creatine kinase (CK), CK-MB and 

troponin levels. 

F3, 

II:1, 

P8 

f c.[500C>T];[500C>T] 

p.[(Pro167Leu)];[(Pro167Leu)] 

  n.d.   5.5 

mo 

5.5 mo Autopsy: evidence for longstanding myocyte loss, 

increased interstitial myocyte loss, increased 

interstitial collagen, focal myocyte fibre disarray in the 

left ventricle and interventricular septum. 

24 hour history of vomiting and diarrhoea, 1x seizures; 

multiple cardiac arrests. Hypoxic injury of the brain. The 

liver showed mild fatty change. 

F3, 

II:3, 

P9 

f c.[500C>T];[500C>T] 

p.[(Pro167Leu)];[(Pro167Leu)] 

 normal in skeletal muscle  8 

mo 

11 mo Autopsy: extensive fibrosis of the heart muscle. Plasma lactate elevated, diarrhoea, vomiting; focal 

seizure then generalized seizure; cardiac arrest. 

F4, 

II:1, 

P10 

m c.[380G>T];[514G>A] 

p.[(Arg127Leu)];[(Glu172Lys)] 

  normal in skeletal muscle; CI decreased 

heart muscle 0.026 (0.125±0.048) 

  10 

mo 

2 y Echocardiography: ejection fraction of 74%, mild left 

ventricular hypertrophy; Autopsy: extensive 

transmural fibrosis of the left ventricle, acute 

myocardial ischemia. 

Seizures, urinary organic acids: increased 3-

hydroxybutyrate, acetoacetate, and C14:1, C14, C16:1 

acylcarnitine elevation in blood.  

Abbreviations: AO, age at onset; f, female; m, male; d, days; mo, months; y, years; n.d. not determined 
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Supplemental	Case	Reports	of	Four	Families	with	PPA2	mutations	

	

Family	1	(P1-P4)	

The	family	are	of	Caucasian	origin,	living	in	New	Zealand.	In	the	extended	family	there	are	no	cases	

with	the	features	seen	in	the	family.	The	parents	are	unrelated,	well	and	exhibit	none	of	the	features	

seen	in	their	children.	All	4	children	are	affected	by	the	condition.	

	

P1	(PPA2:	c.[514G>A];[683C>T];	p.[(Glu172Lys)];[(Pro228Leu)])	

Sibling	1;	a	male	born	in	1975	who	collapsed	and	died	suddenly	in	1991	aged	15	years	after	drinking	a	

small	amount	of	beer.	

He	 was	 previously	 well,	 and	 had	 no	 prior	 cardiac	 symptoms,	 but	 like	 all	 his	 siblings	 had	 been	

exquisitely	sensitive	to	alcohol.	This	was	manifest	by	severe	chest	and	arm	pain,	and	pallor	following	

consumption	of	small	amounts	of	alcohol	(<0.1	g)	noticed	for	the	first	time	at	the	age	of	4	years	after	

ingestion	 of	 an	 alcohol-containing	 cough	 medicine.	 At	 post	 mortem	 examination	 the	 only	

abnormalities	observed	were	in	the	heart	with	both	ventricles	being	slightly	dilated.	A	small	pale	area	

was	observed	on	the	epicardium	of	the	left	ventricle.	Microscopic	examination	revealed	evidence	of	

focal	 inflammation	 with	 neutrophils,	 lymphocytes	 and	 eosinophils.	 The	 coronary	 arteries	 were	

normal.	A	diagnosis	of	myocarditis	and	sudden	arrhythmic	cardiac	death	was	made.		

	

P2	(PPA2:	c.[514G>A];[683C>T];	p.[(Glu172Lys)];[(Pro228Leu)])	

Sibling	 3;	 a	 male	 born	 in	 1977,	 was	 well	 with	 no	 cardiac	 symptoms,	 but	 exhibited	 the	 family	

sensitivity	to	alcohol.	At	the	age	of	14	years,	a	medical	alcohol	challenge	resulted	in	marked	pain.	He	

was	 assessed	 because	 of	 his	 family	 history.	 Physical	 examination	 was	 normal	 as	 was	 ECG,	

echocardiogram,	 exercise	 test	 and	 Holter	 monitor.	 However	 an	 MRI	 scan	 showed	 marked	

midmyocardial	 fibrosis.	 He	 subsequently	 received	 an	 implantable	 defibrillator	 for	 primary	

prophylaxis	of	sudden	arrhythmic	cardiac	death.	No	events	have	occurred	to	date.	

	

P3	(PPA2:	c.[514G>A];[683C>T];	p.[(Glu172Lys)];[(Pro228Leu)])	

A	male	was	born	in	1978	died	suddenly	in	1999	aged	20	years	following	drinking	10	g	of	alcohol	(one	

standard	 drink).	 He	 was	 previously	 well,	 and	 had	 no	 prior	 cardiac	 symptoms,	 but	 had	 also	 been	

exquisitely	 sensitive	 to	 alcohol	 noticed	 for	 the	 first	 time	 at	 the	 age	 of	 10	 years	 after	 accidental	

ingestion	of	a	small	amount	of	wine.	At	post	mortem	examination	the	only	abnormalities	observed	

were	 in	 the	 heart.	 The	 heart	weighed	 395	 g	 (normal	 300	 g).	 The	 left	 ventricle	was	 dilated	with	 a	

virtually	 circumferential	 lamina	 of	 scarring	 in	 the	 midmyocardium	 with	 focal	 sub-endocardial	

involvement.	 Microscopic	 examination	 revealed	 very	 widespread	 mostly	 mature	 scarring	 of	



 
 

midmyocardium	 in	 all	 sectors.	 No	 ischaemic	 changes	were	 observed,	 nor	microscopic	 evidence	 to	

suggest	acute	hypersensitivity	or	interstitial	acute	myocarditis	(Figure	2).	The	coronary	arteries	were	

normal.		

	

P4	(PPA2:	c.[514G>A];[683C>T];	p.[(Glu172Lys)];[(Pro228Leu)])	

A	 female	born	 in	1982,	was	well	with	no	 cardiac	 symptoms,	but	exhibited	 the	 family	 sensitivity	 to	

alcohol.	At	the	age	of	9	years,	a	medical	alcohol	challenge	resulted	in	marked	pain.	She	was	assessed	

because	 of	 her	 family	 history.	 Physical	 examination	 was	 normal	 as	 was	 ECG,	 echocardiogram,	

exercise	test	and	Holter	monitor.	However	an	MRI	showed	marked	midmyocardial	fibrosis	Figure	2).	

She	subsequently	received	an	implantable	defibrillator	for	primary	prophylaxis	of	sudden	arrhythmic	

cardiac	death.	No	events	have	occurred	to	date.	

	

Further	investigations	were	undertaken	on	the	surviving	siblings	to	try	and	elucidate	a	shared	genetic	

and	metabolic	basis	for	this	apparently	unique	constellation	of	clinical	features.		Investigations	have	

focused	on	possible	mitochondrial	genetic	disorder	and	abnormalities	of	muscle	structural	proteins	

and	in	particular,	laminopathies.	

	

Histopathology	of	 skeletal	muscle	 (from	P4)	showed	no	obvious	abnormality,	although	a	muscular	

dystrophy	 or	 metabolic	 disorder	 could	 not	 be	 excluded.	 Stains	 for	 fat	 and	 glycogen	 were	 within	

normal	 limits.	 A	 panel	 of	 enzyme	 stains	 (including	 myophosphorylase,	 nicotinamide	 adenine	

dinucleotide	 (NADH),	 cytochrome	 oxidase	 (COX),	 succinate	 dehydrogenase	 (SDH),	 myoadenylate	

deaminase	 (MADA),	 aldolase	 and	 phosphofructokinase	 (PFK)	 was	 normal.	 Immuno-histochemical	

studies	of	skeletal	muscle	showed	changes	suggestive	of	a	mild	chronic	myopathy.	Immunostaining	

for	dystrophin,	dysferlin,	emerin	and	laminin,	however	showed	no	obvious	abnormality.	

	

Mitochondrial	 gene	 sequencing	was	 undertaken	on	whole	 blood,	 buccal	 cells	 and	 skeletal	muscle	

biopsy	from	P4.	She	was	found	to	be	homoplasmic	for	several	known	mitochondrial	polymorphisms	

and	 in	addition,	 she	was	 found	 to	be	homoplasmic	 for	a	novel	 sequence	variant	m.9751T>C	 in	 the	

MT-CO3	gene	which	would	result	 in	the	substitution	of	 the	normal	phenylalanine	residue	at	amino	

acid	position	182	of	the	protein	for	a	serine,	predicted	to	be	a	benign	substitution.	The	findings	do	

not	unequivocally	exclude	a	mitochondrial	disorder	since	mutations	in	nuclear	genes	associated	with	

mitochondrial	disorders	have	not	been	excluded.	

	

Lamin	gene	sequencing	was	undertaken	on	all	12	exons	of	the	lamin	A/C	gene	(LMNA)	and	also	all	

coding	regions	of	 the	 lamin-associated	protein	2	gene	TMPO	 (LAP2)	 together	with	 flanking	 intronic	



 
 

sequences.	 No	 mutations	 were	 detected.	 Both	 surviving	 children	 appear	 to	 have	 inherited	 the	

paternal	LMNA	allele	(by	SNP	analysis).	Of	the	two	deceased	children,	one	also	has	the	paternal	allele	

(determined	by	analysis	of	DNA	extracted	from	FFPE	tissue)	and	the	other	may	also	have	this	allele,	

although	sequencing	was	inconclusive.	This	is	relevant	if	the	disorder	is	postulated	to	be	transmitted	

from	the	mother.	

	

Urine	organic	and	amino	acids	on	P4	showed	no	abnormality.	Blood	spot	acylcarnitine	profiling	also	

showed	no	 abnormality.	Whole	 blood	 carnitine	 also	 on	P4	was	within	 normal	 limits	 at	 23	µmol/L	

(normal	 11-58).	 Amino	 acid	 profile	 was	 normal.	 It	 was	 cautioned,	 however	 that	 a	 normal	

acylcarnitine	 profile	 does	 not	 unequivocally	 exclude	 a	 fatty	 acid	 oxidation	 defect,	 particularly	 if	 a	

sample	has	been	taken	during	a	period	when	the	she	is	well.	

	

Acetaldehyde	dehydrogenase	ALDH2:c.1510G>A	(p.Glu504Lys),	the	alcohol	“flushing”	polymorphism	

common	 in	 Asian	 populations,	 as	 a	 possible	 trigger	 with	 the	 observed	 alcohol	 sensitivity	 –	 not	

detected	in	father,	mother	or	both	surviving	siblings.	

	

Family	2	(P5-P7)	

The	family	are	Tamil	people	 from	Sri	Lanka	 living	 in	Switzerland,	 the	parents	are	 first	cousins.	All	3	

children	of	this	family	were	affected	by	the	same	neonatal	lethal	condition.	

	

P5	(PPA2:	c.[500C>T];[500C>T],	p.[(Pro167Leu)];[(Pro167Leu)])	

The	boy	was	born	 spontaneously	 in	1996	after	an	uneventful	pregnancy.	Birth	weight	was	2820	g,	

length	 49	 cm,	 head	 circumference	 33.5	 cm	 and	 Apgar	 scores	 9/10/10.	 The	 first	 days	 of	 life	 were	

uneventful,	mother	and	child	left	the	hospital	on	day	6.	The	baby	was	breast-fed	without	problems.	

On	 the	10th	day	of	 life	he	vomited	once	and	 loose	stools	were	observed.	On	 the	next	morning	 the	

child	vomited	once	more	but	otherwise	his	clinical	status	was	unremarkable.	On	the	same	afternoon	

(11th	day	of	life)	the	child	was	readmitted	with	signs	of	tonic	clonic	seizures.	The	muscular	hypotonic	

boy	was	somnolent	and	pale.	Heart	and	lung	function	seemed	normal	initially.	Lactate	was	elevated	

at	10.5	mmol/l	(normal	0.4-2.8	mmol/l).	In	the	following	hours	he	showed	again	tonic-clonic	seizures,	

which	could	be	suspended	just	for	a	while	by	treatment	with	Diazepam	and	Phenobarbital.	Oxygen	

saturation	was	persistently	low	necessitating	intubation,	but	even	under	artificial	respiration	this	did	

not	 improve	and	generalised	 tonic	clonic	seizures	persisted.	ECG	 investigation	showed	a	convex	ST	

segment	elevation.	Few	hours	later	the	child	died	with	severe	bradycardia.		

Investigation	 of	 plasma	 amino	 acids	 showed	 elevated	 alanine.	 Investigation	 of	 organic	 acids	 was	

normal.	Acute	myocarditis	was	suspected.	



 
 

Investigation	of	heart	autopsy	revealed	areas	of	fresh	myocardium	necrosis	mainly	of	the	right	heart	

and	interstitial	 lymphocyte	infiltration.	Electron	microscopy	of	the	heart	showed	mitochondria	with	

degeneration	of	cristae	but	no	evidence	of	viral	 infection.	Microbiological	 investigations	of	all	body	

fluids	revealed	no	abnormalities.	

	

P6	(PPA2:	c.[500C>T];[500C>T],	p.[Pro167Leu];[Pro167Leu])	

The	girl	was	born	in	1997	after	normal	gestation	and	birth	with	good	postnatal	adaptation.	At	the	age	

of	 14	 days,	 2	 hours	 after	 an	 uneventful	 routine	 check	 by	 a	 paediatrician,	 the	 child	 suddenly	

deteriorated.	 She	 was	 admitted	 to	 the	 intensive	 care	 unit	 with	 marked	 tachypnoea	 after	 having	

vomited	 twice	 and	 having	 suffered	 from	 two	 generalized	 seizures.	 Muscle	 tone	 was	 slightly	

hypotonic	 and	 a	marked	metabolic	 acidosis	with	 a	 blood	 pH	 of	 6.9	 (normal	 7.35-7.45),	 HCO3	 at	 4	

mmol/l	 (21-26	mmol/l),	 lactate	 22	 mmol/l	 and	 pyruvate	 253	mmol/l	 (normal	 84-784)	 was	 found.	

There	was	 slight	 improvement	with	 intravenous	bicarbonate	and	glucose	 treatment.	Additionally	a	

vitamin	cocktail	was	given	but	 subsequently	 there	was	 cardio-respiratory	decompensation	and	 the	

girl	died	6	hours	after	admission.	

Autopsy	 revealed	 bilateral	 acute	 and	 subacute	 necrosis	 of	 the	 myocardium,	 which	 was	 more	

prominent	 in	 the	 right	 heart.	 Electron	 microscopy	 of	 the	 heart	 showed	 mitochondria	 with	

degeneration	 of	 cristae	 as	 seen	 in	 the	 brother	 (P5).	 Skeletal	 muscle	 was	 normal.	 Furthermore	

multiple	 subacute	 necroses	 in	 both	 cerebral	 hemispheres	 were	 found.	 Investigation	 of	 the	

respiratory	 chain	 enzymes	 and	 pyruvate	 dehydrogenase	 were	 normal	 in	 skeletal	 muscle	 and	

fibroblasts.	 Organic	 acids	 and	 amino	 acids	 in	 urine	 and	 plasma	 were	 normal.	 Screening	 of	

mitochondrial	DNA	from	heart	and	liver	did	not	reveal	any	pathological	findings.		

	

P7	(PPA2:	c.[500C>T];[500C>T],	p.[(Pro167Leu)];[(Pro167Leu)])	

This	boy	was	born	 in	2000	at	term	after	an	uncomplicated	pregnancy.	Birth	weight	was	3240	g.	He	

was	hospitalized	in	intensive	care	from	the	first	minute	of	life	and	carefully	observed.	During	the	first	

two	 days	 he	 was	 well,	 similar	 to	 his	 siblings.	 Then	 he	 started	 to	 show	 progressive	 sweating,	

occasional	vomiting	and	elevation	of	some	metabolic	parameters	as	 lactate,	transaminases,	 lactate	

dehydrogenase,	 creatine	 kinase,	 and	 creatine	 kinase-MB	 levels.	 Assuming	 that	 the	 siblings	 might	

have	 suffered	 from	 a	 defect	 in	 the	 respiratory	 chain	 isolated	 to	 the	 cardiac	 muscle	 this	 boy	 was	

treated	 with	 a	 cocktail	 supplement	 of	 vitamins	 usually	 given	 in	 defects	 of	 the	 respiratory	 chain	

(coenzyme	Q10,	riboflavin,	vitamins	C,	E,	carnitine,	biotin,	beta-carotene).	Over	the	next	few	days	he	

became	exhausted	during	 feeding	and	developed	signs	of	 slight	 cardiac	 failure.	Selective	 screening	

for	inborn	errors	did	not	reveal	any	pathological	findings.	Plasma	lactate	remained	within	the	normal	

range.	



 
 

On	 day	 9,	 the	 boy	was	 additionally	 treated	with	 thiamine	 hydrochloride	 i.v.,	 20	mg/d	 since	 some	

symptoms	resembled	Beri-Beri	and	marked	improvement	of	his	condition	was	noted.	Thiamine	was	

unfortunately	discontinued	on	day	11	since	he	seemed	to	be	perfectly	well.	However,	his	condition	

worsened	again	and	heart	failure	became	evident	with	occasional	arrhythmia.	Levels	of	troponin	and	

transaminases	 increased.	 Echocardiography	 showed	 impaired	 function	 of	 the	 enlarged	 right	

ventricle.	On	day	15	 it	was	decided	to	supplement	him	with	thiamine	3	x	100	mg/day	orally.	Heart	

function	 improved,	 and	 the	 troponin	 and	 transaminase	 level	 normalized.	 However,	 on	 day	 17	

recurring	 tachycardia	 occurred,	 which	 responded	 temporarily	 to	 adenosine	 and	 then	 to	

electroconversion,	but	it	recurred	over	the	following	days.	A	regular	sinus	rhythm	could	be	obtained	

after	 treatment	 with	 boli	 of	 5-20	 mg	 i.v.	 thiamine	 and	 the	 boy	 clinically	 improved	 dramatically.	

However,	 in	 spite	of	 thiamine	30-80	mg	 i.v.	 daily	 and	propafenone,	 severe	 arrhythmia	 (Hf	 approx.	

140	 bpm),	 which	 turned	 out	 to	 be	 ventricular,	 became	 a	 serious	 problem	 while	 cardiac	 function	

remained	 stable	 and	 troponin	 and	 transaminase	 levels	 were	 normal.	 On	 day	 30,	 ventricular	

arrhythmia	 persisted	 and	 did	 not	 respond	 to	 lidocaine	 and	 electroconversion.	 The	 child	 was	

neurologically	normal	for	his	age,	alert	and	fine.	He	died	in	the	early	morning	of	the	32nd	day	of	life	

from	untreatable	arrhythmia.	A	final	echocardiography	showed	a	hypodynamic	right	ventricle,	while	

the	 left	 ventricle	 was	 still	 in	 a	 sufficient	 status	 (SF	 about	 28-30%).	 A	 defect	 of	 thiamine	

metabolism/transport	 was	 considered,	 however,	 later	 studies	 with	 fibroblasts	 (by	 Ellis	 Neufeld,	

Boston)	revealed	normal	thiamine	uptake	and	conversion	to	thiamine	pyrophosphate.		

Autopsy	 revealed	 a	 myocardium	 without	 necrosis	 and	 inflammatory	 infiltrations.	 Myocytes	 with	

reduced	amount	of	myofibrils	were	found.	In	the	myocardium	of	the	right	heart	there	was	a	herd	of	

fibrosis.	 Investigation	of	 the	 respiratory	chain	 in	autopsy	samples	of	 the	heart	 showed	a	moderate	

decrease	 of	 complex	 I	 4.1	 mU/mg	 protein	 (normal	 5.5-51.5	 mU/mg	 protein)	 and	 complex	 IV	 64	

mU/mg	protein	(normal	73.2-516.6)	in	the	left	ventricle.	In	the	right	ventricle	the	activity	of	complex	

I	was	not	detectable,	complex	II,	9.0	mU/mg	protein	(normal	73.2-516.6),	and	complex	IV,	42	mU/mg	

protein	were	reduced.	Normal	activities	were	found	in	skeletal	muscle	and	fibroblasts.	Investigation	

of	the	mitochondrial	DNA	did	not	reveal	pathogenic	mutations.	

	

Family	3	(P8-P9)	

This	 is	 a	multiply	 consanguineous	 family	 of	 Pakistani	 origin,	 living	 in	 the	UK.	 The	 parents	 are	 first	

cousins.		

	

P8	(PPA2:	c.[500C>T];[500C>T],	p.[(Pro167Leu)];[(Pro167Leu)])	

Their	first	child	(II:1)	was	seemingly	well	with	normal	growth	and	development	until	the	age	of	5	½	

months.	She	was	then	admitted	to	hospital	following	a	24	hour	history	of	vomiting	and	diarrhoea	and	



 
 

had	suffered	a	seizure	at	home.	She	had	further	seizures	on	arrival	at	A&E	and	a	poor	response	to	

treatment,	 so	was	 intubated	 and	 ventilated.	 A	 CT	 head	 scan	was	 normal.	 Cardiac	 echocardiogram	

showed	 poor	 contractility	 and	 a	 small	 amount	 of	 tricuspid	 regurgitation.	 She	 was	 transferred	 to	

Sheffield	Children’s	Hospital	 and	had	 a	 cardiac	 arrest	 on	 route.	 She	 then	 suffered	 further	multiple	

cardiac	arrests	and	despite	maximal	attempts	at	resuscitation	she	eventually	died	during	the	course	

of	these.		

On	 post	 mortem	 examination	 there	 were	 no	 specific	 macroscopic	 abnormalities.	 Infection	 screen	

identified	rotavirus	in	the	stool.	The	brain	showed	hypoxic	injury.	The	liver	showed	mild	fatty	change.	

Skeletal	 survey,	 metabolic	 and	 toxicology	 screens	 were	 normal.	 Fatty	 acid	 oxidation	 levels	 were	

carried	 out	 on	 skin	 fibroblasts	 and	 were	 normal.	 The	 heart	 appeared	 normal	 in	 size,	 shape	 and	

structure.	Histology	of	the	heart	showed	areas	of	recent	necrosis,	thought	to	be	related	to	the	recent	

cardiac	 arrests.	 There	 was	 also	 evidence	 of	 long-standing	 myocyte	 loss	 with	 increased	 interstitial	

collagen	 and	 focal	 myocyte	 fibre	 disarray	 in	 the	 left	 ventricle	 and	 interventricular	 septum.	 The	

disarray	 was	 considered	 insufficient	 for	 a	 diagnosis	 of	 Hypertrophic	 Cardiomyopathy.	 Tests	 for	

myocarditis	were	normal.	CSF	glucose	was	low,	but	this	was	performed	on	a	post	mortem	sample.	

	

Their	 second	 child	 (II:2)	 is	 fit	 and	 well	 and	 is	 now	 4	 years	 of	 age.	 A	 recent	 echocardiogram	 was	

normal,	as	were	lactate,	acylcarnitine	and	CK.	

	

P9	(PPA2:	c.[500C>T];[500C>T],	p.[(Pro167Leu)];[(Pro167Leu)])	

Their	 third	 child	 (II:3)	 suffered	 a	 viral	 illness	 at	 the	 age	 of	 8	 months	 and	 then	 suffered	 a	 week’s	

history	 of	 increasing	hypotonia	 and	weakness.	 CK	was	 15,000	 at	 this	 time	 and	plasma	 lactate	was	

raised	 at	 5.	 Free	 carnitine	was	 normal	 at	 43.6,	 but	 propionylcarnitine	 raised	 at	 2.38	 (<1.5).	 Urine	

organic	 acids	were	 normal.	 There	was	 no	 involvement	 of	 respiratory	muscles.	 Renal	 function	was	

normal.	 Over	 a	 period	 of	 two	weeks	 her	weakness	 and	 hypotonia	 improved	 and	 her	 CK	 reduced.	

Echocardiogram	at	this	time	was	normal.	

	

She	presented	again	at	the	age	of	11	months	to	hospital	with	diarrhoea	and	vomiting,	her	oral	intake	

was	 poor	 and	 she	was	 not	 passing	 urine.	 She	 became	 increasingly	 drowsy	 and	 capillary	 refill	 was	

prolonged	 at	 3	 seconds.	 An	 initial	 blood	 gas	 showed	 pH	 6.9,	 bicarbonate	 13.8,	 base	 excess	 -13.1,	

lactate	8.7	and	glucose	6.18.	She	then	suffered	a	 focal	seizure	with	 lateral	gaze	to	the	 left	and	 left	

sided	upper	limb	jerks,	which	subsequently	generalized	and	lasted	for	12	minutes.	She	was	given	IV	

Lorazepam,	a	fluid	bolus,	 IV	antibiotics	and	acyclovir.	Further	seizures	followed	which	were	treated	

with	IV	Lorazepam,	Phenytoin	and	PR	Paraldehyde.	At	three	hours	following	admission	seizures	had	

settled	 but	 she	 was	 still	 drowsy.	 CT	 head	 scan	 at	 this	 time	 was	 normal.	 Not	 long	 after	 this	 she	



 
 

suffered	a	further	focal	seizure	involving	the	left	upper	limb.	She	then	suffered	a	cardiac	arrest	and	

was	intubated	and	ventilated.	Maximal	CPR	was	continued	for	20	minutes	but	was	not	successful.		

Post	 mortem	 examination	 showed	 very	 extensive	 fibrosis	 of	 the	 heart	 muscle	 and	 normal	

appearance	of	the	skeletal	muscle.	The	brain	looked	normal	at	post	mortem.	Norovirus	infection	was	

confirmed	on	stool	samples	from	admission.		

Respiratory	 chain	 analysis	 on	 peripheral	 muscle	 tissue	 was	 normal,	 and	 histological	 and	

histochemical	assessment	of	muscle	biopsy	did	not	reveal	any	major	mitochondrial	abnormalities.	

	

Family	4	(P10)	

This	 family	 lives	 in	 Northern	 Ireland,	 the	 parents	 are	 non-consanguineous.	 The	 first	 of	 their	 two	

children	was	affected	by	fatal	childhood	disease.	

	

P10	(PPA2:	c.[380G>T];[514G>A],	p.[(Arg127Leu)];[(Glu172Lys)])	

Individual	P10	is	a	male	and	was	the	first	child	born	to	non-consanguineous	parents.	He	was	born	by	

emergency	caesarean	section	for	 failure	to	progress	but	was	not	admitted	to	the	special	care	baby	

unit.	 His	 birth	 weight	 was	 4.59	 kg.	 He	 had	 some	 feeding	 difficulties	 in	 his	 first	 year	 and	 was	 on	

Nutramigen	 for	 possible	 allergies.	 His	 feeding	 settled	 and	 he	 was	 changed	 onto	 normal	milk	 at	 6	

months	of	age.	He	had	an	admission	at	10	months	with	a	short	seizure.	This	settled	spontaneously	

and	he	was	observed	overnight.	

	

He	had	a	prolonged	admission	to	PICU	at	1	year	of	age	following	a	coryzal	illness	when	he	developed	

cardiomyopathy,	multiorgan	failure	and	rhabdomyolysis	requiring	inotropic	support	and	dialysis.	He	

was	 intubated	 and	 ventilated	 for	 over	 3	 weeks.	 Initial	 metabolic	 investigations	 suggested	 an	

underlying	 VLCAD	 deficiency	 (his	 acylcarnitine	 profile	was	 abnormal	with	 elevated	 C14:1,	 C14	 and	

C16:1	 suggestive	 of	 VLCAD,	 MIM:	 609575),	 but	 excluded	 on	 fatty	 acid	 oxidation	 studies	 from	

Sheffield.	CT	brain	was	normal.	ECHO	showed	markedly	dilated	left	ventricle	with	moderate	decrease	

in	 left	ventricular	 function.	Viral	myocarditis	was	considered,	but	no	virus	was	 isolated.	His	urinary	

organic	 acids	 showed	 large	 increase	 in	 3	 hydroxybutyrate	 and	 acetoacetate.	 Plasma	 amino	 acids	

were	essentially	normal.	

Exome	 sequencing	 revealed	 a	 heterozygous	 mutation	 in	 ACADVL	 (NM_000018.3):	 c.1844G>A,	

p.(Arg615Gln),	which	is	a	variant	of	unclear	clinical	relevance.	In	the	ExAC	consortium	this	mutation	is	

found	in	345	of	121088	alleles	(allele	frequency	0.002849)	in	heterozygous	state	and	two	individuals	

are	homozygous	in	this	collective.	Minimal	coverage	of	ACADVL	was	11-fold	in	exome	analysis.	

	



 
 

On	 transfer	 to	 the	wards	 they	had	 concerns	 about	his	 neurocognitive	 state.	MRI	brain	 showed	no	

structural	 abnormality	but	mild	enlargement	of	 the	ventricular	 system	 in	keeping	with	an	atrophic	

process.	 MR	 spectroscopy	 was	 normal.	 He	 had	 a	 normal	 eye	 examination.	 Brain	 stem	 auditory	

evoked	responses	were	normal.	He	had	intensive	physiotherapy	and	made	a	good	recovery,	but	had	

some	central	weakness.		He	was	discharged	from	hospital	at	14.5	months	(admitted	for	2.5	months).	

Repeat	 ECHO	 prior	 to	 discharge	 showed	 normal	 left	 ventricular	 function	with	 a	 degree	 of	muscle	

thickening.		

	

His	health	was	reasonably	good	and	he	attended	the	Child	developmental	clinic	and	he	appeared	to	

show	 some	 regression	 in	 terms	 of	 communication	 and	 social	 interaction,	 and	 had	 bilateral	

alternating	 squint.	 Paediatric	 cardiology	 review	 and	 echocardiogram	 at	 18	 months	 showed	 good	

systolic	function	with	an	ejection	fraction	of	74%	and	mild	left	ventricular	hypertrophy.	

	

At	2	years	of	age,	he	was	admitted	with	vomiting	and	diarrhoea	secondary	to	Norovirus	infection.	He	

deteriorated	over	the	course	of	a	day	and	developed	a	mixed	metabolic	and	respiratory	acidosis	and	

afebrile	 seizures.	 He	was	 transferred	 to	 PICU	 and	 unfortunately	 had	 an	 asystolic	 cardiorespiratory	

arrest	with	no	response	to	resuscitation.	

	

Respiratory	 chain	 analysis	 on	 peripheral	 skeletal	 muscle	 showed	 no	 evidence	 of	 a	 mitochondrial	

respiratory	chain	defect;	muscle	biopsy	showed	no	evidence	of	myopathic	or	neurogenic	disorder,	no	

fibre	variation,	necrosis,	inclusions,	ragged-red	or	cytochrome	c	oxidase-deficient	fibres.		

	

A	 metabolic	 post-mortem	 was	 performed	 (Figure	 S1).	 Cause	 of	 death	 was	 due	 to	 cardiac	 failure	

secondary	 to	myocardial	 fibrosis	 and	 acute	myocardial	 ischaemia	 due	 to	mitochondrial	myopathy.	

The	post-mortem	heart	was	enlarged	(86	g	in	weight)	with	evidence	of	mild	hypertrophy	of	the	left	

ventricular	wall	which	was	1.0	cm	in	thickness.	There	was	transmural	irregular	pallor	and	fibrosis	on	

sectioning	and	the	myocardium	was	stiff	and	dense	in	texture	although	no	evidence	of	endocardial	

fibroelastosis	on	naked	eye	examination.	Routine	histology	revealed	bilateral	pleural	effusions	and	a	

pericardial	 effusion	 with	 pulmonary	 oedema.	 There	 was	 extensive	 transmural	 fibrosis	 of	 the	 left	

ventricle	and	the	septum	of	the	heart	with	board	swathes	of	fibrotic	tissues	replacing	the	myocytes.	

Considerable	myocyte	nuclear	pleomorphism	and	hyperchromasia	with	variation	in	myocyte	size	was	

noted,	 consistent	 with	 transmural	 fibrosis	 secondary	 to	 ischaemic	 injury.	 Endocarditis	 was	 not	

observed,	whilst	 the	 coronary	 arteries	 showed	 no	 vasculitis	 or	 thrombosis.	 As	 documented	 in	 the	

main	manuscript	text,	assessment	of	respiratory	chain	enzyme	activities	in	a	cardiac	muscle	sample	



 
 

revealed	 a	 significant	 and	 isolated	 mitochondrial	 respiratory	 chain	 defect	 involving	 complex	 I	 in	

isolation.		



 

Figure S1. Sanger sequencing in Family 1 revealed compound heterozygous mutations in PPA2 in all 

affected individuals.  

 



 

Figure S2. Post-mortem findings in the cardiac muscle from Patient 10. (A, B) Gross examination 

revealed an enlarged heart with evidence of left ventricular hypertrophy. The myocardium was stiff 

and firm, with extensive areas of pallor noted in this tissue. (C) Low and (D, E) higher power 

haematoxylin and eosin (H&E) staining revealed areas of acute inflammatory infiltrate between and 

around cardiac muscle cells, with evidence of acute myocyte necrosis (panels C and D) as well as 

evidence of older degenerative changes including fibrosis and nuclear pleomorphism (E). Masson 

trichrome staining confirms extensive fibrosis, with areas of cardiac muscle (staining red-purple 

color) replaced by collagenous fibrotic tissue (green-teal color) (F). Additional pathological findings 

include areas of early ischaemic necrosis that can be easily differentiated from the less-visibly 

damaged cardiac muscle cells around it (G) and severe fibrosis of a papillary muscle (Masson 

trichrome stain) which might be implicated in the observed valvular dysfunction (H). 



 

Figure S3. Western blot analysis from mitochondria isolated from fibroblasts. Isolated mitochondria 

form fibroblasts were available from affected individuals P5, P6, P7 and P9. Antibodies against PPA2 

and citrate synthase (CS) were used (A-B). Antibodies against citrate synthase and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), cytosolic housekeeping protein, were used (C-D). The 

supernatant (S) of mitochondria (M) isolation was investigated in individual P9, which showed only 

small amounts of cross contaminations of mitochondria with cytosolic protein (C-D). Statistical 

analysis was performed by Student’s unpaired t-test. Abbreviation: n.s., not significant.  
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Figure S4. Western blot analysis from 600 g supernatants of skeletal muscle. Frozen skeletal muscle 

autopsy samples were available from affected individuals P6 and from P9. Antibodies against PPA2, 

citrate synthase (CS), mitochondrial matrix protein, and glucose-6-phosphate isomerise (GPI), 

cytosolic housekeeping protein, were used (A). Relative ratios of PPA2/GPI (B) and PPA2/CS (C) were 

quantified.  
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Figure S5. Western blot analysis from 600 g supernatants of heart homogenates. Frozen heart 

autopsy samples were available from affected individuals P7, left (LV) and right ventricle (RV), and 

from P10. Antibodies against PPA2, NDUFS4, subunit of complex I, citrate synthase (CS), 

mitochondrial matrix protein, porin, mitochondrial outer membrane protein, glucose-6-phosphate 

isomerise (GPI), cytosolic housekeeping protein, were used (A). Relative ratios of PPA2/CS (B), 

NDUFS4/CS (C), PPA2/porin (D), and NDUFS4/porin (E) were quantified.  
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Figure S6. Oxygen consumption rates of PPA2 deficient fibroblasts. (A) Oxygen consumption rates (OCR) 
have been determined in three control (C-1 to C-3) and three affected with PPA2 mutations (P5, P6, and P7) 
and revealed increased maximal respiration as well as reserve respiratory capacity (B, C). Fibroblasts from 
individuals with proven ATP synthase deficiency and mutations in either TMEM70 and ATP5E showed a 
similar result with increased reserve respiratory capacity (D, E). Oligomycin (O, 1.0 µmol/l), carbonyl 
cyanide-4-(trifluoromethoxy)-phenylhydrazone (F, 0.4 µmol/l) and rotenone (R, 2.0 µmol/l) were added 
during the experiment. *P<0.01, **P<0.0001 in Student’s unpaired t-test.



 

Figure S7. Reactions in Mitochondria Upstream and Downstream of Inorganic Pyrophosphate (PPi). 

Abbreviations: Deoxynucleotide triphosphate (dNTP), deoxynucleotide monophosphate (dAMP), 

nucleotide triphosphate (NTP), nucleotide monophosphate (NMP), adenosine triphosphate (ATP), 

adenosine diphosphate (ADP), adenosine monophosphate (AMP), cytidine triphosphate (CTP), 

cytidine monophosphate (CMP), Coenzyme A (CoA), deoxyguanosine triphosphate (dGTP), 

deoxyguanosine monophosphate (dGMP), orthophosphate (Pi), mitochondrial pyrophosphatase 

(PPA2). 
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Figure S8. Investigation of yeast PPA2 knock-out cells. Growth defect of a wild type (WT BY4742) and 

a PPA2 knock-out (ppa2 Δ BY4742) S. cerevisiae strain on aerobic medium showing that PPA2 is 

critical for mitochondrial respiration (A). Oxidative stress sensitivity of PPA2 knock-out S. cerevisiae 

as measured by growth defect of diamide, which oxidises intracellular thiols and mimics oxidative 

stress in yeast (B). 
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Figure S9. Silver staining  of recombinant His-tagged purified PPA2 protein. The same volumes of 

recombinant protein as used for western blotting in Figure 3G were loaded on a 10% SDS 

polyacrylamide gel. 
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Table S1. Information on exome sequencing performed in three different centers. 

Sequencing 
Centre: 

Christchurch, 
NZ 

        

Individual ID Instrument Library Prep Exome Capture Reads Mapped % Mapped Mean cov Cov 30x Variant annotation method 

F1, 1.1 Illumina 
HiSeq® 2000 

Illumina TruSeq® 
DNA LT 

Illumina TruSeq® 
Exome Enrichment 

158461290 51814344 87,15 50.15 95,15 Illumina HiSeq® analysis software enrichment 
pipeline v.0.9, followed by ANNOVAR and 
ENCODE Gencode v.12 (GRCh37). Variants 
were sequentially filtered against the 1000 
Genomes (Apr 2012 release) and dbSNP137 
databases. Variants with a minor allele 
frequency >0.01 were removed. 

F1, 1.2 Illumina 
HiSeq® 2000 

Illumina TruSeq® 
DNA LT 

Illumina TruSeq® 
Exome Enrichment 

125910016 42782905 86,58 39.75 95,33 

P2 Illumina 
HiSeq® 2000 

Illumina TruSeq® 
DNA LT 

Illumina TruSeq® 
Exome Enrichment 

177926998 63271018 87,43 59,27 95,11 

P4 Illumina 
HiSeq® 2000 

Illumina TruSeq® 
DNA LT 

Illumina TruSeq® 
Exome Enrichment 

147463447 43937929 87,95 42,45 94,95 

          

Sequencing 
Centre: 

Munich, GER         

Individual ID Instrument Library Prep Exome Capture Reads Mapped % Mapped Avg cov Cov 20x Variant annotation method 

P6, 85154 Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 113371747 112668276 99.38 144.71 97.40 Reads were aligned to genome assembly 
hg19 with Burrows-Wheeler Aligner (BWA, 
V.0.5.87.5) and genetic variation was 
detected using SAMtools (V.0.1.18), PINDEL 
(V.0.2.4t) and ExomeDepth (V.1.0.0). 
Candidate genes were prioritzed by 
searching for homozyogus or potentially 
compound heterozygous variants with a 
minor allele frequency < 1% in 7,000 in-
house control exomes, dbSNP, 1000 
Genomes and ExAC.  

P5, 85155 Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 120884660 120092778 99.34 151.17 97.74 

P7, 85152 Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 121393141 120644253 99.38 152.67 97.79 

P10, 68551 Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 103709389 102998478 99.31 129.11 97.19 

         

Sequencing 
Centre: 

Leeds, UK         

Individual ID Instrument Library Prep Exome Capture Reads Mapped % Mapped Mean cov Cov 20x Variant annotation method 

P8 (JT609) Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 72844614 71182311 97.71 73.41 90.8 In house pipeline: Alignment carried out 
using Novoalign. Variants were called using 
the HaplotypeCaller (GATK, Broad Institute) 
.vcf files were annotated using Ensembl’s 
Variant Effect Predictor (VEP). Local Perl 
scrips were used to remove variants present 
at >1% minor allele frequency in the 
following databases: dbSNP 138 and 
previous, NHLBI Exome Sequencing Project 

P9 (JT579) Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 74044360 72332089 97.68 72.14 90.6 

I:1 (JT576) Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 73769160 72104134 97.74 76.35 90.2 



I:2 (JT577) Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 66440752 64892409 97.67 62.66 88.7 (ESP) Exome Variant Server, the Exome 
Aggregation Consortium (ExAC), and over 
3000 ethnically-matched control samples.  
Variants were retained if predicted 
‘pathogenic’ by any one of Polyphen2, SIFT 
or condel. Variants were ordered by CADD 
score and those with CADD score >15 were 
retained. 

II:2 (JT578) Illumina 
HiSeq® 2500 

SureSelect XT Target 
Enrichment system 
for Illumina 

SureSelectAllExon v5 59183468 57848931 97.75 62.23 87.7 

         

         

 



Table S2. Compounding missense mutations in cardiomyopathy/mitochondrial associated genes, excluded from further analysis due to non-segregation 

within Family 1.  

 

GENE  VARIANT  EXAC FREQUENCY   SEGREGATION 

WITH 

PHENOTYPE?  

KCNJ12  rs1657740  NM_021012.4(KCNJ12):c.353G>A  p.Arg118Gln  0.4994 (60403/120958)  NO  

 rs77048459  NM_021012.4(KCNJ12):c.715G>A  p.Glu239Lys  0.2807 (27048/96360)  NO  

TTN  rs56341835  NM_001267550.1(TTN):c.10213G>A  p.Glu3405Lys  0.0007518 (90/119710)  NO  

 rs142094090  NM_001267550.1(TTN):c.50515G>A  p.Glu16839Lys  0.0007932 (96/121024)  NO 

AARS2  rs79962181  NM_020745.3(AARS2):c.1649G>C  p.Gly550Ala  0.0007925 (96/121138)  NO 

 rs142094090  NM_020745.3(AARS2):c.1621G>A  p.Glu541Lys  0.0007932 (96/121024) NO 

 



Table S3. Prediction Tools - Estimation of pathogenic relevance 

1. Prediction for PPA2 mutations identified by exome sequencing 
Mutation c.380G>T c.500C>T c.514G>A c.683C>T 
Protein p.Arg127Leu p.Pro167Leu p.Glu172Lys p.Pro228Leu 

Family F4 F2, F3 F1 F1, F4 
ExAC, heterozygotes (total 
alleles) 

20 (121354) 3 (120914) 59 (120800) 30 (120268) 

SIFT Prediction DAMAGING DAMAGING DAMAGING DAMAGING 
SIFT Score (deleterous when 
<0.05) 

0.00 0.01 0.00 0.00 

PolyPhen-2 Prediction PROBABLY DAMAGING PROBABLY DAMAGING PROBABLY DAMAGING PROBABLY DAMAGING 
PolyPhen-2 (score) 0.993 (sensitivity: 0.70; 

specificity: 0.97) 
1.000 (sensitivity: 0.00; 
specificity: 1.00) 

0.996 (sensitivity: 0.55; 
specificity: 0.98) 

1.000 (sensitivity: 0.00; 
specificity: 1.00) 

Mutation Taster Prediction disease causing disease causing disease causing disease causing 
Mutation Taster (probability) 0.99999999999608 0.999999999999996 0.99999999999269  0.999999999999993 
Mutation Taster (predicted 
change) 

1-amino acid sequence 
changed, 2-protein features 
(might be) affected, 3-splice 
site changes 

1-amino acid sequence 
changed 

1-amino acid sequence 
changed 

1-amino acid sequence 
changed 

     2. Results for homozygous missense mutation in PPA2 from the ExAC database 
Mutation c.251G>A c.727G>T c.846G>C 

 Protein p.Arg84Gln p.Val243Leu p.Lys282Asn  

ExAC, homozygotes (total 
alleles) 

1 (116414) 
6 (120536) 

13349 (121124) 
 

ExAC, heterozygotes (total 
alleles) 

34 (116414) 
280 (120536) 

55039 (121124) 

 SIFT Prediction TOLERATED TOLERATED TOLERATED  
SIFT Score (deleterous when 
<0.05) 0.18 0.15 0.14 

 

PolyPhen-2 Prediction benign benign benign  
PolyPhen-2 (score) 0.005 (sensitivity: 0.97; 

specificity: 0.74) 
0.170 (sensitivity: 0.92; 
specificity: 0.87) 

0.038 (sensitivity: 0.94; 
specificity: 0.82) 

 

Mutation Taster Prediction polymorphism disease causing polymorphism  
Mutation Taster (probability) 0.997195759241821 0.999989907773341 0.999999999971653  
Mutation Taster (predicted 
change) 

1-amino acid sequence 
changed, 2-protein features 
(might be) affected, 3-splice 
site changes 

1-amino acid sequence 
changed, 2-protein features 
(might be) affected, 3-splice 
site changes 

1-amino acid sequence 
changed, 2-protein features 
(might be) affected, 3-splice 
site changes 

 

Human PPA2 sequence IDs: GenBank transcript  NM_176869.2; GenBank Protein NP_789845.1; UniProt Q9H2U2; Ensembl transcript ENST00000341695; Ensembl protein 

ENSP00000343885 
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