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ABSTRACT

Friedreich ataxia (FRDA) is a progressive neurodegenerative disease with primary
sites of pathology in the large sensory neurons of the dorsal root ganglia (DRG) and
dentate nucleus of the cerebellum. FRDA is also often accompanied by severe
cardiomyopathy and diabetes mellitus. FRDA is caused by loss of frataxin (FXN)
expression, which is due to GAA repeat expansion in intron 1 of the FXN gene.
Frataxin is a mitochondrial protein important in iron-sulphur cluster (ISC) biogenesis
and in the electron transport chain (ETC). As a consequence of impaired mitochondrial
energy metabolism, FRDA cells show increased levels of and sensitivity to oxidative
stress, which is known to be associated with genome instability. In this study, we
investigated DNA damage/repair in relation to FXN expression via immunostaining of
y-H2AX, a nuclear protein that is recruited to DNA double strand breaks (DSBs). We
found FRDA patient and YG8sR FRDA mouse model fibroblasts to have inherently
elevated DNA DSBs (1.8 and 0.9 foci/nucleus) compared to normal fibroblasts (0.6
and 0.2 foci/nucleus, in each case P <0.001). By delivering the FXN gene to these
cells with a lentivirus vector (LV) at a copy number of ~1/cell, FXN mRNA levels
reached 48 fold (patient cells) and 42 fold (YG8sR cells) and protein levels reached
20 fold (patient cells) and 3.5 fold (YG8sR cells) that of untreated fibroblasts, without
observable cytotoxicity. This resulted in a reduction in DNA DSB foci to 0.7 and 0.43
(in each case P <0.001) in human and YG8sR fibroblasts, respectively and an increase
in cell survival to that found for normal fibroblasts. We next irradiated the FRDA
fibroblasts (2Gy) and measured their DSB repair profiles. Both human and mouse
FRDA fibroblasts were unable to repair damaged DNA. However, repair returned to
near normal levels following LV FXN gene transfer. Our data suggest frataxin may be
important for genome stability and cell survival by ensuring ISC for DNA damage repair
enzymes or may be required directly for DNA DSB repair.
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immunocytochemistry after 0.5, 5, 24 and 48hours post irradiation at 2 Gy in mouse primary

L]0 0] o] F= ] £ TP PURRPR 220
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Chapterl- Literature Review

1.1 Ataxia

The ataxias are a group of progressive neurodegenerative disorders with ataxia as the
leading symptom (Klockgether, 2007, Harding, 1984). Ataxia comes from a Greek
word a- taxia, meaning lack of order. Ataxia involves dysfunction of the parts of the
nervous system that coordinate movement, such as the cerebellum (Nardin and
Johns, 2001). Ataxias are classified into two groups of hereditary and non-hereditary
(sporadic). The hereditary ataxias are further divided into two subgroups of autosomal
recessive ataxias that include Friedreich ataxia and autosomal dominant
spinocerebellar ataxias. In addition, the non-hereditary ataxias are categorized into

acquired ataxias and sporadic degenerative ataxias (Table 1.1) (Klockgether, 2007).
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1. Hereditary ataxias
e Autosomal recessive ataxias

Friedreich ataxia (FRDA) [Most common type of this group]

Ataxia telangiectasia (AT)

Autosomal recessive ataxia with oculomotor apraxia type 1 (AOA1)
Autosomal recessive ataxia with oculomotor apraxia type 2 (AOA2)
Spinocerebellar ataxia with axonal neuropathy (SCAN1)
Abetalipoproteinemia

Ataxia with isolated vitamin E deficiency (AVED)

Refsum’s disease

Cerebrotendinous xanthomatosis

Other autosomal recessive ataxias

e Autosomal dominant ataxias

Spinocerebellar ataxias (SCA)

2. Non-hereditary degenerative ataxias
e Sporadic degenerative ataxias

Multiple system atrophy, cerebellar type (MSA-C)
Sporadic adult-onset ataxia of unknown origin (SAOA)

e Acquired ataxias

Alcoholic cerebellar degeneration

Ataxia due to other toxins

Table 1.1: Classification of progressive ataxias.
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1.2 Friedreich ataxia

Friedreich ataxia (FRDA) (OMIM 2290300), was first reported in 1863 by Nikolaus
Friedreich (1825-1882) in Heidelberg Germany (Alper and Narayanan, 2003). This
German pathologist wrote five long articles on a seemingly new spinal disease
(Friedreich, 1863, Friedreich, 1876), but the relatively short postscript on the fourth
paper (Friedreich, 1877) pointed out his first insights into what is now known as
‘Friedreich's ataxia’ and articulated the hereditary nature of the disorder (Koeppen,
2013). 120 years after these reports Campuzano et al. in 1996 discovered the genetic
defect underlying FRDA (Campuzano et al., 1996). Identification of this mutation within
the gene encoding frataxin (FXN) led to considerable interest in FRDA as a model
disorder. Being the most common autosomally recessive neurodegenerative disorder,
FRDA represents a fascinating example of so-called ‘triplet-repeat’ diseases. The vast
majority of FRDA cases are linked to an expansion mutation of (GAA)n repeats within
the intron 1 of FXN gene, leading to a largely reduced expression of the mitochondrial

protein frataxin.

1.2.1 Clinical Features

Symptoms of FRDA normally becomes an evident feature around puberty (Harding,
1981), but age at onset may vary significantly. The earliest onset may be around the
age of 2 years, while late-onset FRDA is defined as having onset after the age of 25
years. (De Michele et al., 1994, Moschner et al., 1994). The first symptom is usually
gait instability and in rare cases, hypertrophic cardiomyopathy is diagnosed before the
onset of ataxia. Ataxia of mixed cerebellar and sensory type is the cardinal symptom.

Other clinical features include degenerative atrophy of the posterior columns of the
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spinal cord contributing to progressive ataxia, sensory loss and muscle weakness,

scoliosis, foot deformity and cardiac symptoms. (Table 1.2)

» Progressive ataxia (legs, arms, and speech)
» Dysarthria

» Atrophy of the spinal cord (MRI)

» Heart disease (abnormalities on ECG)

» Eye movements

» Areflexia (fixation instability)

» Extensor plantar responses

» Foot deformity

» Diabetes

» Vision loss

Table 1.2: Clinical features of Friedreich ataxia.

With progression, gait becomes broad-based, with frequent losses of balance, fine
motor skills deteriorate and evident feature of advanced FRDA is limb weakness. On
average, 10 to 15 years after onset, patients lose the ability to walk, stand, and sit
without support (Harding, 1981) In any case, because of substantial physical
disability, FRDA often has a substantial effect on academic, professional, and personal

development (Pandolfo, 2008).




Chapterl- Literature Review

1.2.2 Pathophysiology

FRDA neuropathology involves peripheral nerves, the spinal cord and the cerebellum
(Pandolfo, 2009). The first site of neurodegeneration is at the dorsal root ganglia
(DRG) (Figure 1.1), with loss of large sensory neurons and cells in the posterior
columns, followed by degeneration of the corticospinal and spinocerebellar tracts of
the spinal cord. Frataxin deficiency also leads to axonal neuropathy with a progressive

reduction of large myelinated fibers (Morral et al., 2010).

Figure 1.1: Thoracic spinal cord size comparison in a normal control and FRDA
patients. (A) Normal control. (B&C) FRDA. Great reduction of the spinal cord areas in
FRDA, irrespective of age of FRDA onset. Bars, 1mm picture modified from (Koeppen
et al., 2011).

Hypertrophic cardiomyopathy with thickening of the left ventricular wall and the septum
can be detected by heart ultrasonography in most patients, and the electrocardiogram
is almost always abnormal in the repolarization phase, indicating that subclinical heart
disease is almost universal in FRDA. Iron deposits in the myocardium have also been

reported (Figure 1.2).
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Figure 1.2: Gross pathology of an FRDA heart and light microscopy of iron-reactive
granules in sarcoplasm and endomysium. (A) Gross specimen. Left and right
ventricular walls are greatly thickened. (B—E) Iron histochemistry. The stain shows
finely granular reaction product that lie parallel to the long axis of cardiomyocytes
(arrow in B). A cluster of much larger iron-positive granules lies adjacent to or within a
necrotic muscle fibre (arrow in C). (D—E) Iron histochemistry of an endocardial biopsy
of an FRDA patient at the age of 9 years (D) and a section of the autopsy specimens
at the age of 26 years (E). Both sections display iron-positive granules in cardiac
muscle fibers, and the frequency of iron-reactive fibers among all cardiomyocytes is
similar. Markers: A, 1 cm; B-C, 100 um; D—E, 50 pym. Picture modified from (Michael
et al., 2006).
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Diabetes mellitus is much more frequent in patients with FRDA than in the general
population. A combination of insulin resistance and inadequate insulin response
contributes to diabetes in FRDA,; both forms are likely to be a direct consequence of

the mitochondrial dysfunction that occurs in this disease (Schoenle et al., 1989).

1.2.3 Prevalence

This disease is rare in sub-Saharan African and Far East populations (Hirayama et al.,
1994) and mainly occurs in Caucasians (Labuda et al., 2000, Vankan, 2013) The age
of the FRDA founding mutation in Western Europe was estimated at least 682 + 203
generations ago, suggesting a Palaeolithic origin. The prevalence of FRDA in
Caucasians is usually quoted as being 1 in 20 000 to 1 in 50 000 (Vankan, 2013). One
study assessing the prevalence of FRDA in the United Kingdom proposed a
prevalence 1 in 54 000 with approximately 1100 patients in the UK today (Figure 1.3)

(Winter et al., 1981, Vankan, 2013).

Brunel 3
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1case in

< 20'000
20'000 - 30'000
30'000 - 40'000
40'000 - 50'000
50'000 - 60'000
60'000 - 70'000
70'000 - 80'000
80'000 - 90'000
90'000 - 100'000

100'000 - 150000

>150'000

- No data

Figure 1.3: Prevalence of FRDA in the UK and Ireland. Numbers of FRDA patients
per region of the UK were provided by Ataxia UK. Prevalence ranges from low levels
along the North Sea coast to higher prevalence in the remaining regions. Picture
modified from (Vankan, 2013).
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1.2.4 Friedreich ataxia gene structure

The FRDA gene (FXN) was mapped to the long arm of chromosome 9 in 1988 by

linkage analysis in families suffering from FRDA (Chamberlain et al., 1988), and later

it was localized at position 9913-21.1(Ensembl 2010) (Figure 1.4A). Initially, the

expressed region of FXN gene was identified as X25 using complementary DNA

(cDNA) selection and sequence analysis, and intensive studies for a mutation in X25

led to detection of an expanded trinucleotide repeat GAA within the first intron

(Campuzano et al., 1996). The FXN gene is composed of seven exons (1-5a, 5b, 6)

(Figure 1.4B), in which the 6™ exon is non-coding and spans 95 kb of genomic DNA.

The main functional messenger RNA has the size of 1.3 kb, arising from the first five

exons (1-5a), which encodes a 210 amino acid protein named frataxin. In addition by

alternative splicing a 171 amino acid protein can be transcribed from exon 5b The

FXN gene is transcribed in the centromere to telomere direction; (Campuzano et al.,

1996, Hanauer et al., 1990) (Figure 1.4B).

[A]

Chromosome 9

(GAA)n
[B]
1 2 3 4 5a 5b 6
Centromere 95 kb Telomere

Figure 1.4: A) Schematic representation of human chromosome
9. The FXN gene is located in the long arm of chromosome 9, at
position 9913-21. B) Schematic representation of exons of the
FXN gene. The gene extends from centromere to telomere and
spans 95 kb.
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Two major transcription start sites (TSS) were identified in the frataxin gene. Using &'
rapid amplification of cDNA ends experiments Campuzano et al., located a TSS
(TSS1) 221bp upstream of the ATG translation start site (Campuzano et al., 1996) and
Kumari et. al., located another TSS (TSS2) 62bp upstream of the ATG by primer
extension (Kumari et al., 2011). It is not clear which TSS is more dominant, however,
Kumari et al. suggested that TSS2 could be the primary transcription start site in
Epstein-Barr virus-transformed lymphoblastoid cell lines (Kumari et al., 2011). The
region between TSS1 and the first exon is thought to be a TATA-less downstream

promoter, which contains Inr/downstream promoter element-like elements.

5" end of FXN gene

promoter exonl intron1
R | T e i o o= sneennns S e
CpGisland ! !
(GAA)N
TSS1  TSS2 v
iInr/DPE
1
A3 ATG
SRF i CTCF EGR3 E-box
TFAP2
Healthy: 10<n<66
FRDA: 66<n<1700 0.2 kb

Figure 1.5: Regulatory elements at the 5’ end of FXN.

Moreover, binding sequences were identified for transcription factors serum response
factor, TFAP2 and EGR3 (Tourtellotte and Milbrandt, 1998) as well as for the insulator
protein CCCTC-binding factor (CTCF) (De Biase et al., 2009). An E-box is present in
the vicinity of (GAA)n repeats and this element was shown to be crucial
for FXN expression via reporter assays (Greene et al., 2007). Interestingly, apart from
(GAA)N repeats, a number of repetitive DNA elements have been identified at the FXN

locus. These include L2 (LINE) (Greene et al., 2005) and Alu (SINE) elements as well

Brunel 11
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as MIRb and mariner DNA transposon (Campuzano et al., 1996, Cossée et al., 1997).
Although the deletion of these elements significantly impaired a reporter FXN
construct, their exact function on FXN regulation is not known (Greene et al., 2005)

(Figure 1.5).

1.2.5 Friedreich ataxia gene expression

The FXN gene is expressed in all cells but at variable levels in different tissues and
during development (Koutnikova et al., 1997). In adult human, FXN gene expression
is slightly higher in dorsal root ganglia and the granular layer of the cerebellum as well
as in tissues with high metabolic rate such as heart, and relatively lower levels in liver,
skeletal muscle and pancreas (Rotig et al., 1997, Koutnikova et al., 1997, Al-Mahdawi
et al., 2006). In mouse embryos the developing brain is rich in frataxin mRNA, and the
highest levels are found in spinal cord and in the dorsal root ganglia (DRG). The level
of frataxin mRNA is reduced in the adult mouse brain, but remains high in spinal cord
and DRG (Jiralerspong et al., 1997, Koutnikova et al., 1997). Cells such as neurons
and cardiac muscle that are heavily dependent on oxidative respiration contain high
numbers of mitochondria and generally have higher frataxin expression. Protein levels
remain high in the adult human, and mouse brain and cerebellum (Koutnikova et al.,
1997). It is reported that over-expression of frataxin was shown to be toxic for cells,
perhaps implying that a fine balance is needed for the regulation of its expression

(Fleming et al., 2005, Navarro et al., 2011).
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1.2.6 Frataxin protein structure

Frataxin is a mitochondrial protein and highly conserved in most organisms from
bacteria to mammals (Gibson et al., 1996, Adinolfi et al., 2002). The precursor form of
frataxin is a 210 amino acid protein containing an N-terminal mitochondrial import
sequence that conducts its transport into the mitochondria, where two cleavages
occur. These two proteolytic steps convert the precursor protein to a 19 kDa
intermediate and a 17 kDa mature form of frataxin, respectively. The final protein in
mitochondria is recognised as the mature form of frataxin which is a compact, globular
protein containing an N-terminal a helix, a middle 3 sheet region composed of seven
B strands, a second a helix, and a C-terminal coil (Figure 1.6). The a helices are folded
upon the B sheet, with the C-terminal coil filling a groove between the two a helices.
The size and nature of the conserved surface regions suggest that they interact with

a large ligand, probably a protein (Condo et al., 2007).

Figure 1.6: Structure of frataxin. Crystal structure of human frataxin shows the fold
of human frataxin, a compact af sandwich, with a helices and 3 sheets. Strands
B1 — B5 formed a flat antiparallel construct that interact with the two helices, a1
and a2.

13
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1.2.7 Cellular function of frataxin

The function of frataxin is not completely understood and clues to the function of
frataxin protein comes from identification of its interacting partners. A bioinformatics
study have demonstrated a link between frataxin and the proteins from the iron sulphur
cluster machinery. (Huynen et al., 2001) In S. cerevisiae (Ayfh1) cells, yeast frataxin
(Yfhl) deficiency will lead to reduction of the activity of Fe-S-containing enzymes such
as aconitase, succinate dehydrogenase and cluster incorporation into apo-ferredoxin
(Duby et al., 2002, Muhlenhoff et al., 2002). In addition it was found that yeast and
human frataxin bind to the central Fe-S cluster assembly complex, which is composed
of the Nfsl enzyme and the scaffold protein Isu, (Gerber et al., 2003, Ramazzotti et
al., 2004).

Studies involving FRDA patients, conditional knockout mouse models, and yeast
mutants containing a disruption of the frataxin gene have shown intramitochondrial
iron accumulation, oxidative stress, and reduced activity of iron-sulphur (FeS) cluster-
containing subunits of the mitochondrial ETC (complexes I-Ill) and of aconitase
(Koutnikova et al., 1997, Cavadini et al., 2000, Puccio et al., 2001). Although the
physiological function of frataxin is still unknown but it may be involved in mitochondrial
iron homeostasis and/or the assembly of FeS proteins (Bradley et al. 2000) (Figure

1.7).
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| FRATAXIN
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MtDNA
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APOPTOSIS/NECROSIS

Figure 1.7: Schematic representation of events leading to cell death in FRDA.
Although the exact sequence of events in FRDA pathogenesis is uncertain. It is
proposed that impaired intramitochondrial iron metabolism results in defective Fe-S
formation resulting in decreased complex |-l and mitochondrial aconitase activities
and iron overload. Increased free iron levels and a defective mitochondrial respiratory
chain will result in increased free radical generation, which will cause oxidative
damage including further inhibition of aconitase activity. Impaired respiratory chain
activity and decreased aconitase activity will impair ATP synthesis, which, together
with oxidative damage to cellular components, will compromise cell viability. Figure
modified from (Bradley et al. 2000).
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1.3 GAA repeat mutation

Molecular studies of FRDA have led to identification of several mutations in the FXN
gene. Almost 95% of FRDA cases are caused by hyperexpansion of the GAA triplet
repeat sequence, in the first intron of the FXN gene. This mutation is known to reduce
the frataxin expression (Campuzano et al., 1996) (Figure 1.8). Affected individuals
generally have GAA expansion on both alleles of FXN gene due to the recessive
nature of this disease; whereas heterozygous carriers show no sign of disease and
are clinically normal. Normally alleles contain less than 30 triplets, whereas in FRDA
patients alleles contain more than 60 triplets and in some cases up to 1700 triplets
(Cossée et al.,, 1997). There is a direct correlation between the size of the GAA
expansion and the severity of the disease (Filla et al., 1996). Evidence shows that
about 5% of FRDA individuals are heterozygous for the GAA expansion and in some
cases a missense or a honsense point mutation may lead to disrupting the frataxin
coding sequence. In addition, there has been no report of FRDA patients carrying a
point mutation in both copies of FXN gene so far. FRDA is the only known disease to
be result of an expansion of GAA triplets (Cossée et al., 1997) (Grabczyk and Usdin,
2000b) (Montermini et al., 1997a). The most common point mutations known to date

include 1154F, M1l and G130V. The I154F mutation exhibits a typical FRDA

Gl (GAA20 Frataxin
v | | |
l [Exon 1 [Intron 1] Exon 2 | —_ O O
FRDA O
Friedreich ataxia (GAA)500
I_> v Frataxin
[ [ Exon 1 [Iintron 1 [Exon 2 | e = O
FRDA

Figure 1.8: GAA repeat mutation results in decrease frataxin production.
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phenotype, whereas the other mutations demonstrate early-onset FRDA features

(Alper and Narayanan, 2003).

1.3.1 Instability of the GAA repeat:

Trinucleotide repeat expansion is one of the mutational mechanisms that contributes
to several inherited disorders, including myotonic dystrophy, Huntington disease and
Friedreich ataxia (Cossée et al., 1997). Trinucleotide repeat instability contributes to
more than 40 neurodegenerative disorders, and repeat mutation is a process that may
increase within tissues and across generations (Kovtun and McMurray, 2008).
Normally positions of trinucleotide repeats are divided into coding and non-coding
regions. Non-coding trinucleotide repeat expansion disorders typically result in loss of
gene function or toxic effects at the mRNA level; while coding trinucleotide repeat
expansions usually cause either a polyglutamine or polyalanine tract in the protein
products resulting in protein malfunction (Pizzi et al., 2007). Approximately 30% of the
human genome consists of repetitive nucleotide sequences which may undergo
insertion, deletion, contraction and expansion (Potaman et al., 2004). The FRDA GAA
expansion instability can be categorised into two main groups: somatic and meiotic

instability.
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1.3.2 Somatic instability is tissue and age dependent

Somatic instability, identified in many repeat disorders carries variable lengths of
trinucleotide repeats in different tissues from the same patient (Pearson et al., 2005).
Heterogeneity occurs at a variable degree among cells in different tissues, for example
cultured fibroblasts show very little heterogeneity in expansion sizes among cells,
whereas lymphocytes are more heterogeneous, and the majority of brain regions show
a complex pattern of allele sizes, indicating extensive cellular heterogeneity
(Montermini et al., 1997b). Recent investigation of six autopsies of FRDA patients
showed that DRGs had a significantly greater frequency of large expansions and
relative paucity of large contractions compared with other tissues (De Biase et al.,

2007a) (Figure 1.9).

A ~"Cerebellum
_//’ ;,/ erebrum

_+~~ Brain Stem
Splnal Cord

Frequency

10% 2’0% 30% 40% S50% 60% T0%

Figure 1.9: Small pool-PCR analysis demonstrating greater occurrence of large
expansions in DRG. Frequency distribution (plotted on the Y-axis) of expansions (magnitude
plotted on the X-axis as increase in size (%) over the constitutional allele) seen in various
tissues derived from the patient. All data points to the right of the bold line, plotted at 20%,
represent large expansions (De Biase et al., 2007a).
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Using small-pool PCR analysis from tissue of an 18 week fetus homozygous for

expanded GAA alleles revealed very low levels of instability compared with adult

derived tissues (De Biase et al., 2007b). Furthermore, mutation load in blood samples

from FRDA patients increased significantly with age ranging from 7.5% at 18 weeks

gestation to 78.7% at 49 years of age (R=0.91; P <0.0001). Hence somatic instability

in FRDA occurs mainly after early embryonic development and progresses throughout

life supporting the role of postnatal somatic instability in disease pathogenesis (De

Biase et al., 2007b) (Figure 1.10). Studies of transgenic mouse models shows the

GAA triplet repeat is unstable in the context of the human FXN locus and displays age-

dependent expansions in the cerebellum and the DRG (Clark et al., 2007).

40%
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20%

Mutation load >
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0%

P<0.0001 l
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[
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Figure 1.10: Small-pool PCR analysis showing different GAA mutation load in fetus
versus adults. A) Mutation load of fetal versus adult tissues analyzed by SP-PCR
showing highly significant, 7.3 fold lower level of somatic instability in fetal tissues
compared with adult tissues. Error bars -/+ 2 SEM. B) Bar graph of mutation load in the
blood of fetus versus both parents combined showing a highly significant, seven fold
lower levels of somatic instability in fetal tissues compared with adult tissue. Error bar -
/+ 2 SEM (De Biase et al., 2007a).
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1.3.3 Meiotic (intergenerational) instability of GAA repeats

Both contraction and expansion could be observed when transmitted from parent to
child (Campuzano et al., 1996). It is suggested that expanded alleles are likely to
further expand or contract during maternal transmission, but in most cases contract
during paternal transmission. Parental age and the intergenerational change in
expansion are directly correlated in maternal transmission and inversely correlated in

paternal transmission (Kaytor et al., 1997).

1.4 Mechanisms reducing FXN transcription

Frataxin deficiency is the main cause of FRDA. Reduction in FXN mRNA is caused at
the transcriptional level, and not at post-transcriptional RNA processing (Delatycki et
al., 2000). It is suggested that expansion of long GAA repeats in intron 1 results in
transcriptional silencing by the formation of non-B DNA structures such as triplexes
or sticky DNA (Wells, 2008). In addition, other studies have linked silencing
mechanisms with FRDA including histone modification and DNA methylation (Herman

et al., 2006, Al-Mahdawi et al., 2008).

. | Brunel 20

=22 | University

%' London



Chapterl- Literature Review

1.4.1 Triplex formation

The GAA expansion in the FXN primary transcript is not part of the spliced message,
so reduction in frataxin expression must result from an effect on transcription initiation.
This deficiency may be induced by a block to transcription elongation or/and

interference with proper splicing (Grabczyk and Usdin, 2000b) (Figure 1.11).

R.R.Y LA N N N N N N N N N N N N J
3! S'
3
YeReY 5 (::+::+::+::+::3‘
.‘.........‘.5‘

Figure 1.11: Schematic representation of intramolecular R.R.Y and Y.R.Y triplexes.
The purine (R) strand is black, the pyrimidine (Y) strand is grey. The single black dots
indicate normal Watson-Crick base pairs and the smaller double dots indicate
alternative hydrogen bonding interactions that are pH independent (Grabczyk and
Usdin, 2000b).

The GAA.TTC tract is a purine.pyrimidine (or R.Y) polymer and may adopt a number
of unusual nucleic acid structures including triple helices (Wells et al., 1988).
Generally, the triplex formation is seen in two forms R.R.Y or Y.R.Y, and depending
on whether the third strand is purine rich or pyrimidine rich it can be formed as either
intermolecular structures or as folded intramolecular structures (Wells et al., 1988).
Some models have previously been proposed for triplex formation (Grabczyk and
Fishman, 1995, Reaban and Griffin, 1990), but recent investigations led to the
construction of a new model, which proposes that a transient intramolecular R.R.Y
triple helix is formed behind the RNA polymerase during transcription pausing the
polymerase within the GAA.TTC tract (Grabczyk and Usdin, 2000b). The conditions

favouring the triplex formation comes from the movement of RNA polymerase along
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the template, locally unpairing the DNA duplex and generating a wave of negative
supercoil in its wake (Figure 1.12A).

At the transcription bubble the polymerase covers the Y (TTC) template strand but
the single-stranded portion of the GAA non-template strand is available to initiate
triplex formation promoting the formation of the R.R.Y structure (Figure 1.12B). The
initial folding may be analogous to the formation of the folded R.R.Y structure by an
oligodeoxyribonucleotide (Figure 1.12) The spread of triplex formation (Figure 1.12C)
is driven by the release of the standing wave of negative super helical energy that had
formed behind the polymerase. This model illustrates that the polymerase has trouble
negotiating the junction between the triplex and the duplex in the distal end of the
repeat tract (indicated by the black arrow in Figure 1.12C). This can result in truncation
of a transcript at the 3' end of the structure; an outcome not predicted by previously
proposed models for GAA.TTC mediated transcription inhibition (Grabczyk and Usdin,
2000b). Further investigations by Grabczyk et al., demonstrated the formation of a
persistent RNA-DNA hybrid by transcription of the FXN GAA_TTC repeat sequence in
E. coli and by T7 RNA polymerase in vitro. During transcription of the longer repeats,
T7 RNA polymerase arrested at the promoter distal end of the GAA_TTC tracts and
an extensive RNA_DNA hybrid was tightly linked to this arrest (Figure 1.12D). This
indicates that the RNA_DNA hybrid formation appears to be an intrinsic property of
transcription through long GAA _TTC repeats. Initially, the repeating DNA d(TTC)n
strand serves as the template for synthesis of r(GAA)n to form a moderate length of
DNA_RNA hybrid. Due to the stability of this hybrid, the DNA triplex is dislodged
behind the growing transcription complex to give an even longer RNA-DNA hybrid.
The waves of negative supercoiling behind the translocating RNA polymerase

facilitates these processes from a topological standpoint (Grabczyk et al., 2007).
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Figure 1.12: Transcription-coupled
RNA-DNA hybrid formation in a GAA-TTC
repeat. A model for transient transcription-
dependent triplex formation leading to an
Transeription,.  RNA polymerase pause and RNA:-DNA
hybrid formation. The purine (GAA or R)
strand of the repeat is red, the pyrimidine
(TTC orY) strand is yellow and the flanking
DNA is grey.

(A) A standing wave of negative
supercoiling follows RNA polymerase. At
the transcription bubble, the non-template
(GAA) strand is available to fold back in an
R-R-Y interaction; the template strand is
covered by RNA polymerase.

(B) Rotation of the helix (curved arrow) as
it winds in the third strand relaxes the
negative supercoils caused by
transcription and leaves a length of the
template single-stranded.

(C) RNAP is impeded at the distal
template—triplex junction and the nascent
transcript can anneal to the single-
stranded stretch of template.

mbma (D) The RNA-DNA hybrid displaces the
ap much less stable triplex structure
(Grabczyk et al., 2007).

1.4.2 Sticky DNA

Recent investigations have focused on the types of triplexes that are adopted by the
long GAA_TTC repeats, both in vitro and in vivo, to determine the effects of triplexes
on other DNA metabolic events, and their involvement in replication, repair, and
recombination-mediated genetic instabilities. A new type of DNA structure, is
described for lengths of (GAA.TTC)n found in intron 1 of the FXN gene of FRDA
patients called sticky DNA (Sakamoto et al.,, 1999). Sticky DNA is a long
GAA_GAA_TTC triplex that is formed intramolecularly in vivo and in vitro (Son et al.,

2006). Sticky DNA is formed by the association of two long GAA-TTC repeat
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sequences that are distal to each other (two R.R.Y triplexes). Studies demonstrated
that the two long repeat sequences must be within the same topologically closed
plasmid and in a direct repeat orientation with each other in order for the two tracts to
associate (Vetcher et al., 2002). A correlation was also established between the length
of repeat and sticky DNA formation. Repeat lengths of greater than 60 are required for
sticky DNA formation and repeat lengths shorter than 60 repeats failed to demonstrate
the formation of this non- B structure (Figure 1.13) (Sakamoto et al., 1999).

It has been suggested that the disruption of GAA.TTC sequence may destabilize sticky
DNA structure and promote transcription. Analysis of the effects of introducing
interruptions into a (GAA.TTC)iso repeat by substituting an increased number of As
with Gs has confirmed that sticky DNA structure is progressively destabilized and is
unable to form when the sequence becomes (GAAGAA.TCCTTC)7s (Ohshima et al.,
1999). Furthermore, inhibition of transcription is reduced as the tendency to form a

sticky DNA structure is decreased in vivo and in vitro (Ohshima et al., 1999).
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Figure 1.13: A model of the association of two triplexes formed by long GAA.TTC
tracts. A) Schematic representation of the strand exchange model. The two triplexes
are represented as thin and thick lines. The short vertical lines between the bases
represent Watson-Crick pairs, and the stars represent the reversed Hoogsteen base
pairs. B) Two dimensional picture of the strand exchange model. Different colours
represent different strands. In the left molecule, blue shows the purine strand, while
yellow shows the pyrimidine strand. In the right molecule, green shows the purine
strand and red shows the pyrimidine strand (Sakamoto et al., 1999).
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1.4.3 Histone modifications

Recent findings have recognized a link between chromatin modifications and FRDA.
Initial investigation of the acetylation state of the FXN gene in a FRDA lymphoblastoid
cell line demonstrated significantly low levels of histone acetylation in H3K9, H3K14,
H4K5, H4K8, H4K12 and H4K16 surrounding the GAA repeat compared to a normal
cell line (Herman et al., 2006) (Figure 1.14a). Moreover, the levels of H3K9 mono-, di-
and trimethylation, upstream of the GAA repeat was shown to be higher in the FRDA

cell line in particular those of H3K9 trimethylation (Herman et al., 2006) (Figure 1.14b).
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Figure 1.14: Investigation of histone modification in the FXN gene by ChIP analysis on
a FRDA (GM15850) versus a normal lympholastoid cell line (GM15851). In FRDA, a)
histone acetylation levels at specified lysine resi