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ABSTRACT 

This paper presents a highly efficient small-scale, detailed finite-element modelling method for 

flexible risers which can be effectively implemented in a fully-nested (FE2) multiscale analysis 

based on computational homogenization. By exploiting cyclic symmetry and applying periodic 

boundary conditions, only a small fraction of a flexible pipe is used for a detailed nonlinear finite-

element analysis at the small scale. In this model, using three-dimensional elements, all layer 

components are individually modelled and a surface-to-surface frictional contact model is used to 

simulate their interaction. The approach is applied on a 5-layered pipe made of inner, outer and 

intermediate polymer layers and two intermediate armour layers, each made of 40 steel tendons. 

The capability of the method in capturing the detailed nonlinear effects and the great advantage in 

terms of significant CPU time saving are demonstrated by comparing the results obtained on 

elements of pipe of different lengths, equal to one pitch length 𝐿𝑝 as well as 𝐿𝑝/5, 𝐿𝑝/20 and 

𝐿𝑝/40.  

1. INTRODUCTION 

 Unbonded flexible risers have become the main means for transporting oil and gas between the 

seabed and surface in ultra-deep waters. They consist of several polymer and steel layers that can 

move internally relative to each other. This gives them low bending stiffness and makes them highly 

valuable tools for subsea oil and gas companies. Their ability of withstanding large displacements 

and rotations makes them ideal for floating platforms. Due to the complex internal dynamics of 

flexible risers related to the possible interlayer slip, however, the conventional stress prediction and 

fatigue analysis tools based on simplified analytical formulations and linear methods have a limited 
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degree of accuracy. In many problems of very significant industrial interest, including but not 

limited to fatigue-life prediction and life extension for existing risers or forensic analyses after 

major accidents, sufficient accuracy can only be obtained by the use of models that properly take 

into account contact and friction between layers and how these are related to internal and external 

pressure, bending and torsion of individual tendons, large displacements and rotations [1].  

Major established industries in the field rely on computational mechanics software to analyze 

and design flexible pipes. In few cases the finite difference method (FDM) is used to discretize the 

model in space [2]. Here, the focus will be on the finite element method (FEM), which is the most 

widely used approach as it is capable of handling geometrically complicated domains, a variety of 

boundary conditions, nonlinearities, and coupled phenomena that are common in flexible risers.  

A number of authors have developed various finite-element (FE) modelling approaches for 

flexible pipes. de Sousa et al. [3] and Merino et al. [4] describe a model using a commercial FE 

package with concentric solid layers discretised with thin-walled 4-noded shells. The carcass and 

pressure armour layers are modelled as equivalent cylindrical layers with orthotropic properties, for 

which analytical derivations are presented. Tendons are modelled as three-dimensional Euler-

Bernoulli beams, with principal axes (for moment calculations) in the pipe radial direction, and a 

penalty method for contact constraint enforcement is used. A similar approach using a general 

purpose FE program is adopted by Le Corre and Probyn [5]. In this model of a single-core 

umbilical, three concentric sheaths are modelled as cylindrical shells. The annulus between each 

pair of sheaths contains helically wound tubes and cables modelled as circular-section beams. 

Simulations are carried out using an explicit-dynamics solution procedure, with a general contact 

algorithm to include all parts with a friction coefficient derived from tests. Although FE models can 

account for the complex internal structure of flexible risers, their computational requirements limit 

their applicability to just a few meters in length at most. So, a more efficient methodology with 

lower computational cost is required to bridge the gap between nonlinear dynamic simulations at 

the large scale and detailed finite element models at the small scale. 

One approach to reduce computational cost of the analysis of flexible risers is to develop 

constitutive laws for large-scale beam models, which link generalised stresses and strains to model 

the hysteresis loops occurring for flexible pipes subjected to cyclic loading, as shown by Tan et al. 

[6]. Using these constitutive laws a nonlinear bending stiffness of the pipe, which captures the 

transition from no-slipping to slipping between layers, can be included in the analysis. Due to the 

close analogy between the aforementioned hysteretic response and the elasto-plastic behaviour of 

metal beams, this hysteretic response can be modelled as a rate-independent elasto-plastic 

relationship between generalised strains and stresses. Following this approach, Sævik [7, 8] presents 

a FE model for predicting stresses due to axisymmetric loads and bending loads in flexible pipes. 
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The interlayer stick-slip behaviour due to friction is taken into account by formulating a constitutive 

relation based on a plastic beam model, with nonlinear stiffness derived from an analytical 

formulation in terms of the moment resultants and the wire slips. Experimental studies on the model 

using strain measurements showed that the numerical distribution of the longitudinal stress 

predicted by the method is in reasonable agreement with the measured data.  A similar approach is 

used by Alfano et al. [9], building on the analogy between frictional slipping between different 

layers of a flexible riser and frictional slipping between micro-planes of a continuum medium in 

non-associative elasto-plasticity. In this way, a linear elastic relationship was used for the initial 

response, in which no slip occurs, and a non-associative rule with linear kinematic hardening was 

then introduced to model the full-slip phase. Using this approach, the above authors conducted 

several analyses using a detailed FE model at the small scale to estimate the input parameters of the 

beam-constitutive model at the large scale.  

Key to accurate solution of the small scale FE problem is the use of suitable boundary 

conditions.  Various boundary conditions can be used, including zero fluctuations over the whole 

model, uniform displacement, uniform traction and periodic boundary conditions [10]. The periodic 

boundary conditions are the most effective and accurate for most cases involving a periodic 

microstructure or when the microstructure is not periodic but the small scale model is sufficiently 

statistically representative [11, 12]. Leroy et al. [13], in their FE model of a flexible pipe, assume 

periodic solutions (given constant curvature in the pipe) and determine an analytical solution of 

equilibrium of wires on a torus (the bent pipe). The 3D periodic model consisted of a single layer of 

helical wires, with all internal and external layers represented by rigid kernels. They also developed 

a detailed FE model of a full pitch length of the pipe, solved using explicit dynamics. Cross-

validation between the models was carried out for cyclic bending and a comparison of the axial 

stress distributions showed good correlation for the inner armour layer.  

In their analysis of one-pitch long segment of a flexible riser using a detailed FE model, which 

includes all layers in frictional contact between each other, Edmans et al. [14, 15] studied the 

influence of boundary conditions by considering two cases. In one case fixed in-plane boundary 

conditions are used, whereby the displacements of the nodes of two end-cross sections are 

prescribed so that the two cross sections undergo a rigid relative displacement and rotation. In a 

second case, periodic boundary conditions are used, whereby, in addition to the relative 

displacement and rotation between the two end cross sections, additional displacement 

(fluctuations) are allowed for all nodes of the cross section, with the constraint that the fluctuations 

must be the same for two nodes of either end cross section with the same position in the cross 

section. The comparison between the two types of boundary conditions, in a case in which the one-

pitch long riser segment is subject to prescribed bending, shows that fixed in-plane boundary 
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conditions result in a much stiffer response [14] and significant spurious edge effects, with stress 

concentrations building close to the two end sections [15], whereas periodic boundary conditions 

lead to a much more realistic stress distribution that is uniform across the longitudinal direction.        

One major challenge in using the constitutive law based on the non-associative elasto-plasticity 

analogy is the determination of the parameters of the constitutive law to bridge the small scale of 

the detailed FE simulations with the large scale of the model accurately. An alternative approach 

which does not have this limitation is a fully-nested multi-scale procedure [16], currently in 

widespread use for the modelling of composite materials. With this method, at each integration 

point (i.e. cross section) of the large-scale beam model, the stress resultants corresponding to 

assigned generalised strains are determined through the solution of the small-scale FE problem.  

This requires recasting the computational homogenisation problem in a more general theory which 

can link different structural models at different scales [17, 18].  

When FE models are used at both scales, the fully nested procedure is also known as the FE2 

method. This name very clearly highlights the significant computational cost associated with fully 

nested computational homogenisation, because, in an implicit incremental solution strategy, the 

nonlinear small-scale FE model is to be solved at each integration point of the large-scale model, at 

each equilibrium iteration conducted within each increment of the analysis. For this reason, a fully 

nested approach is often used only for ‘hot-spots’, i.e. critical areas of the structure where 

significant accuracy is needed [16].  

On the other hand, even a long riser can be modelled at the large scale with reasonably good 

accuracy using hundreds or few thousands nodes and integration points. Therefore, the solution of 

the linear system at each equilibrium equation is normally not an issue. The assembly of the 

residual vector and tangent stiffness matrix is where the small-scale detailed FE models have to be 

solved at each integration point, but this is the ‘perfectly scalable’ part of the process if parallel 

computing is used, because there is no need for any exchange of information between small-scale 

analyses at different integration points. Therefore, a fully nested procedure can be feasible if the 

computational cost of the small-scale model is made sufficiently small so that it can be effectively 

run within one single node of a cluster in a limited amount of time.  

Hence, building on some preliminary work done for an extremely simplified riser made of only 

two polymer layers and one armour layer [19], this paper describes an efficient modelling approach 

for the small-scale analysis of a more realistic flexible riser made of 3 polymer layers and 2 armour 

layers. It also explains how cyclic symmetry of the riser can be exploited by writing periodic 

boundary conditions based on the multiscale theory derived by Edmans et al. [18] for the case when 

different structural models are used at different scales.  This results in periodic boundary conditions, 
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written in terms of dummy nodes, which are different from those used in the aforementioned work 

by Leroy et al. [13].  

We consider a riser for which the pitch length of the tendons is the same in both the inner and 

the outer armour layers, which is a condition very close to the real design of risers. This means that, 

apart from the carcass and the pressure armour layer, if the latter is present, denoting by 𝐿𝑝 the pitch 

length of each tendon and by 𝑁 the number of tendons, the geometries of two cross sections at a 

distance 𝐿𝑝/𝑁, or multiple of it, is the same. The carcass and the pressure armour layer are typically 

made of a single tendon wound at a small pitch with an interlocking mechanism that prevents 

unwinding. In general, these layers do not present the same cyclic symmetry. However, while their 

radial stiffness is significant, their extensional and bending stiffness can be normally considered 

negligible. Furthermore, it is widely accepted that they can be effectively modelled as a continuum 

pipe made of orthotropic material, with the longitudinal axis as one of the material directions. 

Therefore, with this assumption, by definition they do not violate the cyclic symmetry of the riser.  

On the other hand, one problem that has not been considered in previous work is that 

uniqueness of the solution cannot guaranteed in the presence of friction [20]. The probability of 

bifurcations is expected to increase with the number of layers because of the increase in the surfaces 

where frictional slips occur. To address this issue, various riser models with different lengths 

starting from the smallest repeat of unit of length equal to 𝐿𝑝/𝑁 to a model pitch length 𝐿𝑝 are used. 

The results have been compared and discussed.  

The structure of the paper is as follows. Section 2 describes how the fully-nested (FE2) 

computational homogenization method can be applied to flexible risers using the extended theory 

presented by Edmans et al. [18]. The FE models for the small-scale analysis of risers of different 

lengths are described in Section 3; in particular, the implementation of periodic boundary conditions 

is discussed in detail in Section 3.1. In Section 4, the differences in numerical results and CPU time 

obtained by using models of different lengths are reported and discussed to evaluate the accuracy 

and the computational saving entailed by the use of the smaller and smaller ‘slices’ of repeating 

units of riser. The effectiveness of the use of periodic boundary conditions is also assessed further, 

by comparing results obtained with periodic and fixed in-plane boundary conditions. Finally, 

conclusive remarks are made and future work discussed in Section 5. 

 

2. FULLY NESTED MULTISCALE ANALYSIS OF RISERS 

A fully-nested computational homogenization scheme is essentially based on the construction of 

a micro-scale (or more generally small-scale) boundary-value problem (BVP) at each integration 
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point of a macro (or large-scale) model. In particular, this ‘micro’ problem is defined for a suitably 

defined representative volume element (RVE) of the micro scale and is solved numerically to 

determine the constitutive response of the material at each integration point.  

For the flexible risers considered in this paper, a 3D continuum model is used at the small scale, 

which is to be linked to a large-scale beam model, where generalised strains and stress resultants are 

employed. This means that different structural models are used at different scales, which makes 

classical computational homogenisation, e.g. [16], not directly applicable as shown in detail by 

Edmans et al. [18], where an extension of that theory has been formulated.  Referring to the original 

paper for the details of the derivation, a geometrically non-linear formulation is assumed at the large 

scale: in particular, it is assumed that displacements and rotations are large, while macro strains are 

small enough so that a geometrically linear formulation can be adopted at the small scale. The 

small-scale problem is then written in its general form as follows: 

{
𝑄𝑏𝑐𝑢𝑚 = 𝑄𝑏𝑐𝑃 ̅𝜀𝑀

〈 𝜎𝑚(𝐵𝑚𝑢𝑚), 𝐵𝑚𝛿𝑢𝑚 〉 = 0
        

∀𝛿𝑢𝑚 : 𝑄𝑏𝑐𝛿𝑢𝑚 = 0
 (1) 

In this equation, 𝑃 ̅is a linear operator that translates the large-scale strain 𝜀𝑀  at the integration point 

into a corresponding small-scale displacement field 𝑣𝑚, 𝑄𝑏𝑐 is a suitably defined operator that 

extracts the appropriate boundary values of a small-scale displacement field, so that Equation (1)1 

represents the boundary conditions on the RVE; 𝐵𝑚 is the linear operator mapping the micro strains 

to the micro displacement field; 𝜎𝑚 is the micro stress field and 𝜎𝑚(𝜀𝑚) denotes the constitutive 

equation at the small scale, that in the case of a flexible riser is in general nonlinear because of the 

unilateral frictional contact between the different components of the flexible riser; finally, symbol 

〈 𝑥, 𝑦〉 in Equation (1)2 represents the virtual work computed by a stress field 𝑥 for a virtual strain 

field 𝑦. Therefore, Equation (1)2 is the variational enforcement of equilibrium in the RVE, which is 

done approximately here because a FE model is used at the small scale.  

Given a large-scale strain 𝜀𝑀, the small-scale problem consists of finding a small-scale 

displacement field 𝑢𝑚 solution of the variational problem (1). In practice, for each RVE a dummy 

reference node R is introduced, whose degrees of freedom are collected in a vector 𝜂𝑀𝑅 = 𝜀𝑀, 

which therefore represents the components of the macro strain. Therefore Equation (1) becomes: 

{
𝑄𝑏𝑐𝑢𝑚 = 𝑄𝑏𝑐𝑃 ̅𝜂𝑀𝑅

〈 𝜎𝑚(𝐵𝑚𝑢𝑚), 𝐵𝑚𝛿𝑢𝑚 〉 = 0
        

∀𝛿𝑢𝑚 : 𝑄𝑏𝑐𝛿𝑢𝑚 = 0
 (2) 

Once the micro-stresses 𝜎𝑚 are computed in (2), by using a ‘generalised Hill condition’ (GHC) 

enforcing the equality of the virtual works at the two scales [18], the macro-stress 𝜎𝑀 is computed 

via the following variational equation: 
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〈𝜎𝑀, 𝛿𝜂𝑀𝑅〉 = 〈𝜎𝑚, 𝐵𝑚𝛿𝑢𝑚 〉        ∀ 𝛿𝜂𝑀𝑅𝜖 𝐷𝑀   ∀ 𝛿𝑢𝑚 : 𝑄𝑏𝑐𝛿𝑢𝑚 = 𝑄𝑏𝑐𝑃 ̅𝛿𝜂𝑀𝑅 (3) 

which, in practice, means that 𝜎𝑀 is simply obtained as the nodal reaction vector at the dummy 

reference node.  

The practical implementation of Equation (2) in the small-scale FE model of a segment of riser 

is described in the next section.  

3. SMALL-SCALE FINITE-ELEMENT MODELS OF SEGMENTS OF RISER 

A simplified 5-layer flexible pipe, made of three polymer layers and two armour layers, was 

considered. Both the inner and the outer armour layers are made of 40 steel tendons, with 

rectangular cross section, which are wound with the same pitch length 𝐿𝑝 equal to 320mm. The 

model is created using the FE package ABAQUS, version 6.13.1. All components are modelled with 

fully-integrated 8-noded 3D solid elements with incompatible strains [21], with surface-to-surface 

frictional contact between all components.  

As previously discussed, it is widely accepted that the use of periodic boundary conditions in 

multiscale computational homogenization provides the most accurate results, at least at sufficient 

distance from the real boundary of the structure. On the other hand, the solution for a segment of 

riser whose length is any multiple of  𝐿𝑝/𝑁 should be characterized by the same cyclic symmetry if 

periodic boundary conditions are applied and if such solution is unique. Therefore a small ‘slice’ of 

riser with the minimum length 𝐿𝑝/𝑁 could be used in the analysis, instead of using, for example 

one entire pitch length 𝐿𝑝, as was done in [14, 15].   

However, uniqueness of the solution in problems involving frictional contact is still an open 

issue [20]. Bifurcations can potentially occur and some mathematical studies have related the 

possible non-uniqueness of the solution to the size of the mesh and to the values of the friction 

coefficient [20, 22]. While a rigorous mathematical analysis aiming to investigate the existence of 

bifurcations and, if they do exist, their nature, is outside the scope of this paper, potential non-

uniqueness can result in different solutions when segments of pipes whose lengths are different 

multiples of 𝐿𝑝/𝑁 are considered. This issue is addressed here by conducting different analyses 

with segments of risers of length equal to  𝐿𝑝/𝑁 , with 𝑁 = 1, 5, 20, 40, as shown in Figure 1 and 

comparing the results. By considering different lengths, it is also possible to quantify the decrease 

in CPU time associated with the reduction of the length of riser analyzed.   

For each model, Table 1 reports the length and the number of nodes. In Table 2, for each layer of 

the smallest model, the number of elements in the axial and circumferential directions and the total 

number of elements are given. For each layer, the inner and outer radii, 𝑟0 and 𝑟1, the material, the 

Young’s modulus and Poisson’s ratio, are reported in Table 2. The cross section of the model is 
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shown in Figure 2(a) and tendon layers arrangements for the smallest model are shown in Figure 

2(b).  

 

Table 1: Length, number of nodes and elements of the models. 

Model Model length 𝐿 (mm) No.  of Nodes No. of Elements 

a 8 12660 4744 

b 16 24521 9168 

c 64 87209 36672 

d 320 419334 183200 

 

The smallest model has a length equal to 1/40 of the pitch length of the tendons. For this small 

slice of pipe the position of each tendon on one end cross section is the same as the position of the 

adjacent tendon on the other end cross section. As discussed in the previous section, this makes this 

slice of 1/40 of length the smallest repeating unit of the pipe. Furthermore, as typical in first-order 

computational homogenisation, the assumption is made that the variations of the internal stress 

resultant (i.e. large-scale stress) and of the generalised strain (i.e. large-scale strain) are small 

enough that, for the element of pipe under consideration, they can be neglected. Therefore, to within 

a rigid motion, the assumption of periodic kinematics is made, resulting in the enforcement of 

periodic boundary conditions.  

Table 2: Number of elements in each layer (circumferentially and axially) 

Layer Type Axial/helical 

direction 

Circumferential 

direction 

Total No. of 

elements 

1 Polymer 4 156 624 

2 Armour  8 160 1280 

3 Polymer 4 169 676 

4 Armour 9 160 1440 

5 Polymer 4 181 724 

 

 

The study in this paper focuses on cases in which the segments of pipes are subject to bending, 

as well as internal and external pressure, the latter being balanced to produce a relatively small and 

outward radial displacement of the inner surface of the inner polymer layer (inner liner). While a 

carcass layer is present in most designs of flexible risers, it is typically not a leak proof layer, 

whereby the internal pressure is applied to the inner liner. As a result, the carcass would remain 

undeformed under the load cases considered in our analysis and for this reason it has been not 



9 

considered in the models. Furthermore, we did not consider the presence of a pressure armour layer 

because this is not present in all risers and we wanted to limit the complexity of the analysis, by 

focusing on proof-of-concept, yet realistic case studies.  

A fully-implicit nonlinear static analysis based on the Newton-Raphson method is used to solve 

the models. The analyses were carried out in parallel on a computer cluster with two dual-core 1.8 

GHz processors (32 processors in total) using 8MB of RAM. Whilst the run time for the smallest 

model is only few minutes, it takes over 26 hours to complete the analysis of a model with one pitch 

length.  

 

                                            (a)                (b)                            (c)             

 

 

(d)  

Figure 1: FE models with lengths equal to (a) 𝐿𝑝/40, (b) 𝐿𝑝/20, (c) 𝐿𝑝/5 and (d) 𝐿𝑝, 𝐿𝑝 being the 

pitch length of the steel tendons. 
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(a) Cross section of the model. 

 

 

(b) Tendon layers arrangement in the model. 

 

Figure 2: The smallest FE model. 
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Table 3: Dimensions and material properties of components in the model. 

Layer  𝑟0, 𝑟1 (mm) Material 𝐸 (MPa) 𝜐 

1 48, 50 Polyethylene 0.35 0.4 

2 50, 52 Carbon Steel 210 0.3 

3 52, 54 Polyethylene 0.35 0.4 

4 54, 56 Carbon Steel 210 0.3 

5 56, 58 Polyethylene 0.35 0.4 

 

 

 

The contact model used is a surface-to-surface finite-sliding formulation where separation and 

sliding of finite amplitude and arbitrary rotation of the surfaces may arise. Based on the data 

associated with the specified contact pairs, a contact element is generated. At each integration point 

these elements determine a measure of over-closure (penetration of the point on the surface of the 

deforming body into the rigid surface) and of relative shear sliding. These kinematic measures are 

then used, together with appropriate Lagrange multiplier techniques, to introduce surface contact 

and friction.  

The contact pressure, 𝑝, between two surfaces at a point is the sum of two components, 𝑝𝑐 and  

𝑝𝑑  [22]: 

𝑝 = 𝑝𝑐 + 𝑝𝑑  (4) 

where 𝑝𝑐 is a function of the ‘over closure’, ℎ, of the surfaces (the interpenetration of the surfaces) 

and 𝑝𝑑  is regularization term.  
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Figure 3: Contact modelling. 

A ‘hard’ contact model in the normal direction was used whereby, if ℎ < 0, there is no contact 

between the surfaces 𝑝𝑐 = 0. If ℎ ≥ 0, the surfaces are in contact, see Figure 3 and 𝑝𝑐 is then 

calculated as a Lagrange multiplier, using a penalty method [22]. A Coulomb friction model is used, 

assuming for the friction coefficient a value of 0.16.  

The regularization term, 𝑝𝑑 , is used to avoid convergence difficulties arising due to the sudden 

violation of contact constraints. It is obtained as a ‘viscous’ pressure that is a function of the normal 

relative velocity, ℎ̇ , at which the surfaces approach or separate from each other, and of a damping 

coefficient 𝛾, which in turn is a function of ℎ: 

𝑝𝑑 = 𝑝𝑑(ℎ, ℎ̇) = 𝛾(ℎ)ℎ̇ (5) 

The damping coefficient, 𝛾, was generated automatically by the program and then scaled down by a 

factor ranging between 1 and 10. It was checked that varying this scaling factor does not influence 

the results. 

4 IMPLEMENTATION OF PERIODIC BOUNDARY CONDITIONS 

Due to cyclic symmetry and since the length of each model is a multiple of 𝐿𝑝/𝑁, for each one 

of the considered models there is a one-to-one correspondence between the nodes of the two end 

cross sections that have the same position in the plane of the un-deformed cross-section. Therefore, 

denoting by 𝑁𝑐 the number of nodes on either end cross section, 𝑁𝑐 pairs of nodes are defined by 

this correspondence. Following [17, 18], for each one of these pairs of nodes, a new ‘dummy’ 

projected node is introduced on a plane which is parallel to the end cross section in their un-

deformed configuration. This is shown in Figure 4, where, for the generic pair of nodes, 𝑛𝐿 and 𝑛𝑅 

indicate the corresponding nodes on the left-hand and right-hand end cross section, respectively, 

and 𝑛𝑃 denotes the corresponding projected node.    
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A set of linear constraint equations was then generated, relating the degrees of freedom of each 

pair of nodes on the two end cross section to those of the corresponding projected node. The link is 

enforced for all displacement components 𝑈𝑛
𝑖  and rotation components 𝜙𝑛

𝑖  of a node 𝑛, as follows: 

 

 

𝜙𝑛𝐿
𝑖 − 𝜙𝑛𝑅

𝑖 = 𝜙𝑛𝑃
𝑖    𝑖 = 1,2,3 (7)     

 

It is worth noting that, in ABAQUS, a linear constraint equations between three degrees of 

freedom, 𝑑1, 𝑑2 and 𝑑3, are written in the form: 

 𝛼1𝑑1 + 𝛼2𝑑2 + 𝛼3𝑑3 = 0  (8)     

where 𝛼1, 𝛼2 and 𝛼3 are real coefficients. Therefore, for example, Equations (6) are implemented 

by choosing 𝑑1 = 𝑈𝑛𝐿
𝑖 , 𝑑2 = 𝑈𝑛𝑅

𝑖  and 𝑑3 = 𝑈𝑛𝑃
𝑖 , and by setting 𝛼1 = 1, 𝛼2 = −1 and 𝛼3 = −1, for 

 𝑖 = 1,2,3. An analogous procedure is used for Equations (7).  

The displacement and rotation vectors, 𝑼𝑛𝑃
 and 𝝓𝑛𝑃

 of each dummy projected node 𝑛𝑃 are 

rigidly constrained to the displacement and rotation vectors, 𝑼𝑅𝑃
 and 𝝓𝑅𝑃

, of  a projected reference 

point 𝑅𝑃 at their center, using the following rigid-body constraint equations: 

 

𝑼𝑛𝑃
= 𝑼𝑅𝑃

+  𝝓𝑅𝑃
× 𝑿𝑛𝑃

 (9) 

 

 𝝓𝑛𝑃
= 𝝓𝑅𝑃

 (10) 

 

where 𝑿𝑛𝑃
 indicates the position vector of the projected node 𝑛𝑃 with respect to the reference point 

and × denotes the standard cross product of two vectors.   

In this way, displacements and rotations of the reference point correspond to generalised strain 

components in the model [17, 18]. For example, prescribing a rotation 𝜙𝑅𝑃
 of the reference point 

about one axis in the cross section is equivalent to prescribing periodic boundary conditions 

corresponding to a bending curvature equal to 𝜙𝑅𝑃
/𝐿, 𝐿 being the length of the model.  

In other words, the vector 𝜂𝑀𝑅 appearing in Equation (2) and, in its variation, in Equation (3), is 

here given by: 

  𝑈𝑛𝐿
𝑖 − 𝑈𝑛𝑅

𝑖 = 𝑈𝑛𝑃
𝑖   𝑖 = 1,2,3 (6) 



14 

𝜂𝑀𝑅 = [
𝑼𝑅𝑃

𝝓𝑅𝑃

] =

[
 
 
 
 
 
 
𝑈𝑅𝑃𝑥

𝑈𝑅𝑃𝑦

𝑈𝑅𝑃𝑧

𝜙𝑅𝑃𝑥

𝜙𝑅𝑃𝑥

𝜙𝑅𝑃𝑥]
 
 
 
 
 
 

 (11) 

 

 

 

Figure 4: Correspondence between a pair of nodes 𝑛𝐿 and 𝑛𝑅 on the two end-cross sections and the 

dummy projected node 𝑛𝑃, which is constrained to the reference node 𝑅𝑃. 
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Figure 5: Flowchart of the implementation of periodic boundary conditions. 

The flowchart describing the implementation of periodic boundary conditions is shown in 

Figure 5.  

 

 

5. NUMERICAL RESULTS  

The analyses were conducted by applying internal and external pressure in a first step, after 

which one symmetric cyclic history of bending curvature was prescribed, the maximum and 

minimum curvatures being 0.125 and -0.125 m-1. In a first case the internal and external pressure 

were equal to 2 and 2.25 MPa, respectively. In a second case both values were doubled to 4 and 4.5 

MPa, respectively.   The curves in Figures 6 and 7 show the bending moment against the 

(prescribed) bending curvature for all models. It can be appreciated that the difference in the results 

of the models with different lengths is very small for both considered cases. The very small 

deviations can be attributed to bifurcations in the equilibrium paths, which in reality would not be 

found because of the inevitable imperfections within a real riser. These results confirm that use of 

the smallest repeating unit at the small scale of a multi-scale analysis is a valid choice.  

 

Figure 6: Bending moment vs prescribed bending curvature (internal pressure 2MPa, external pressure 

2.25MPa). 
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Figure 7: Bending moment vs prescribed bending curvature (internal pressure 4MPa, external pressure 

4.5MPa). 

Figure 8 shows that higher values of the pressure result in a stiffer response and a more marked 

hysteresis, as expected.   

 

 

Figure 8: Bending moment vs prescribed curvature for the smallest length and three different values 

of the internal and external pressures.  

The key role played by the periodic boundary conditions is shown in the results reported in 

Figures 9-11, which show the contour plots of the stress for the armour layer and for the outer and 
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inner layers, respectively. With fixed in-plane boundary conditions, tendons cannot slip or rotate 

with respect to the polymer layers at the two ends of the model. This produces reactive bending 

moments on the tendons resulting in spurious stress concentrations close to the end sections, which 

make the stress profile vary between the end sections and the mid-section of the riser segment, as 

can be appreciate in Figures 9(a), 10(a) and 11(a). Instead, with periodic boundary conditions, the 

stress profiles in Figures 9(b), 10(b) and 11(b) is practically the same at each cross section.    

Figures 12 show the difference in the bending moment vs bending curvatures for the longest 

model. In Figure 13, it can be seen that fixed in-plane boundary conditions result in a much stiffer 

response and significant spurious edge effects, with stress concentrations building close to the two 

end sections.  The reason is that, since the tendons cannot slip or rotate with respect to the polymer 

layers at the two ends of the model, they do not have enough length between the two fixed ends to 

deform in the way they do in reality. Since edge effects are felt in a volume whose size is 

independent on the model length, the shorter the model the higher is the stiffness when fixed in-

plane boundary conditions are used. Instead, the models with periodic boundary condition capture 

the hysteretic response even with the smallest unit.  

Figure 14 highlights the huge saving in CPU time, from 1600 minutes for the longest model of 

one pitch length (considered in the past in [14, 15]) to only few minutes for the smallest model. This 

confirms that the latter should be used in a nested multi-scale strategy. 

 

 

                                                  (a) 
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                                    (b) 

Figure 9: Von Mises stress on helical armour wires using (a) fixed in-plane boundary conditions and 

(b) periodic boundary conditions. 

 

 

                              (a) 

 

 

                                     (b) 

Figure 10: Axial stress on the outer layer using (a) fixed in-plane boundary conditions and 

(b) periodic boundary conditions.  
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                                                   (a) 

 

 

 

                              (b) 

Figure 11: Axial stress on the inner layer using (a) fixed in-plane boundary conditions and (b) 

periodic boundary conditions.  
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Figure 12: Bending moment hysteresis, 5 layers (internal pressure 4MPa, external pressure 

4.5MPa). 

 

 

Figure 13: Comparison of bending moment hysteresis for models with various length (internal 

pressure 4MPa, external pressure 4.5MPa). 
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Figure 14: Computational cost for models with various lengths. 

6. CONCLUSIONS 

This paper has presented an approach to minimize the computational cost of a detailed nonlinear 

FE analysis of a segment of flexible riser, which includes all layers and accounting for frictional 

contact between them, so that it can be effectively used as the small-scale model a nested multi-

scale analysis.  

The key ideas behind the proposed approach are (a) the observation that flexible risers can be 

represented, with very good approximation, with a model having cyclic symmetry, (b) the use of 

such cyclic symmetry to reduce the length of the model to the smallest repeating unit and (c) the use 

of periodic boundary conditions.  

Because of the possible non-uniqueness of the solution due to frictional contact, four models 

with lengths equal to 1, 2, 5 and 40 times the length of the repeating unit were considered, subjected 

to two set of values for the internal and external pressure and to prescribed cyclic variation of 

bending curvature. The difference in results across the four models is very small and can be 

attributed to small bifurcations in the numerical solution, not found in real life because of 

imperfections. On the other hand, the enormous saving in computational cost entailed by the use of 

the smallest repeating unit makes this the optimal model to be used in a nested (FE2) multiscale 

analysis. 

Further analyses reported confirm the importance of using periodic boundary conditions, 

particularly for the shorter length.  
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It is worth noting that precise cyclic symmetry implies lay angles which are almost but not 

precisely equal and opposite in the two armour layers, because, for the two armour layers, the pitch 

lengths are the same but their radii are different. More generally, this issue is related to the necessity 

to balance the torsional response of the two armour layers to avoid, or at least minimise, coupling 

between torsion and axial tension. The axial-torsional balance is normally obtained with a suitable 

combined choice of the lay angles, that often (but not always) are assumed to be equal and opposite, 

as well as the average radii of the armour layers, the cross sectional area of the tendons and their 

number. The cyclic symmetry considered in our work requires the same pitch length and the same 

number of tendons. Assuming the radii are dictated by the thickness of the anti-wear polymer layer, 

torsional balance can be still achieved by proper sizing of the tendon cross sections. For these cases, 

exact cyclic symmetry can be achieved in the design and the methodology presented in this paper 

can be applied.  

On the other hand, some designs used in the industry do not perfectly satisfy cyclic symmetry to 

achieve axial-torsional decoupling. Therefore, future work will include the study of how to best 

approximate the small-scale problem with the assumption of cyclic symmetry in cases where cyclic 

symmetry is not exact in the real geometry. 

Furthermore, while some successful experimental validation of a modelling approach that is 

similar to the one used in this paper has been presented by Leroy et al. [13], further experimental 

validation of our proposed numerical model will be an important part of the future developments of 

this research. 
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