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Abstract: This paper reports the current status of Mg melt protection in view to identify near-future
challenges, but also opportunities, for Mg melt protection of Mg-Al based alloys. The goal is to
design and manufacture sustainable Mg alloys for resource efficiency, recycling and minimising
waste. Among alternative cover gas technologies for Mg melt protection other than SF6: commercially
available technologies containing—HFC-134a, fluorinated ketone and dilute SO2—and developed
technologies containing solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive
by-products. On the other hand, additions of alkaline earth metal oxides to Mg and its alloys have
developed a strong comparative advantage in the field of Mg melt protection. The near-future
challenges and opportunities for Mg-Al based alloys include optimising and using CO2 gas as
feedstock for both melt protection and grain refinement and TiO2 additions for melt protection.

Keywords: magnesium alloys; oxidation; high temperature; liquid state; reactive element effect;
CO2 gas

1. Introduction

The design and manufacturer [1] of sustainable Mg alloys and the need to reduce environmental
impacts are the main factors that advance the development of new processes such as the replacement
of SF6 gas [2–5]; and industrial furnace design, including lid design, addressing energy efficiency
and metal losses in new and existing furnaces. In comparison to structural materials such as Al and
steel, Mg components for automotive applications have better greenhouse gas emission performance
(GHGEP) based on regular lifecycle assessments. However, this GHGEP advantage of Mg components
can be significantly reduced depending on the production technology adopted, i.e., electrolytic versus
thermal process, in both cases assuming replacement of SF6 cover gas [6].

Since SF6 has been identified as a GHG [5,7,8], the protective films formed on molten magnesium
and its alloys under gas protection have been an active subject of research, with the aim of finding
suitable industrial alternatives to SF6 gas for melt protection [7–21]. The use of SF6 gas will be banned
from the European Union from 2018 [22] (as cited in Reference [23]), in which case, replacement of
SF6 as a cover gas in the Mg industry would no longer be eligible as Clean Development Mechanism
(CDM) project or Joint Implementation (JI) project, nor sell the reduced emission as ‘carbon credits’ [24].
The International Magnesium Association (IMA) has recognised the need to identify melt protection
alternatives with both low toxicity and GHG emissions [25,26]. In this paper, taking as a starting point
a brief overview of the work on Mg melt protection, the near-future challenges, but also opportunities,
for melt protection of Mg-Al based alloys are identified.

2. Reactive Element Effect

It has been seventy-nine years since the ‘rare earth element effect’ was first proposed [27].
The original premise was that it was possible to obtain Ni-20Cr alloys in order to improve resistance to
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high temperature oxidation by additions of rare earth elements. A few years later the original concept
of rare earth element effect was adapted and extended to other elements with high affinity to oxygen,
to increase the corrosion resistance of refractory alloys without impairing their creep resistance. At this
time, the ‘active elements’ suggested by Pfeil’s patent were Sc, Y, La, Ti, Zr, Hf, Nb, Ta, Al, Si, Ce, Pr,
Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Th [28] (as cited in Reference [29]). The topic
became more commonly known as the ‘Reactive Element Effect’ (REE). A detailed review of the REE
on high temperature oxidation of Mg was recently published by Czerwinski [27], including Ca, Be, Sr
and Ti, which readily oxidise when exposed to oxygen, give the magnesium alloy improved resistance
to oxidation during melting. The high affinity to oxygen of those and all other rare earth elements
are the basis of the REE [30–32]. Some examples of Ca, Be, Sr and Ti additions to molten Mg are
given below. An Ellingham diagram [33,34] for their oxides including Al and Mg oxides is depicted in
Figure 1, from which it can be seen that their affinity to oxygen until ~1000 K (726.85 ˝C) decreases in
the following order Ca > Be > Mg > Sr > Al > Ti.
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Figure 1. Schematic of the Ellingham diagram for selected oxides [33,34]. Mg oxidation is marked with
a dashed line. Adapted from [34], copyright (2006), reprinted with permission of Stanley M. Howard.

2.1. Ca Additions

Sakamoto et al. [35] reported that the thin oxide layer formed on the surface of molten Mg—1.5Ca
alloy was protective and consisted of an outer layer of CaO and an inner layer composed of a mixture
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of CaO and MgO. In a subsequent study by Wiese et al. [23] at higher additions of Ca, it was found
that the thin oxide layer formed on the surface of molten Mg—7.2%CaO alloy was also protective after
exposure at 720 ˝C for 5 min in both air and SF6/Ar and by using SEM and TEM techniques, identified
the formation of Mg/Mg2Ca eutectic phase at the inner surface layer and of a mixture of MgO/CaO
at the outer surface layer, but also Mg/Mg2Ca eutectic phase at the outer surface layer, suggesting
that Mg2Ca phase was protective. It is interesting to note that Mg2F was not found at the surface layer
despite using an SF6/Ar gas mixture in the latter case. This was attributed to be due to the possible
protective character of the MgO/CaO mixture, preventing the reaction of SF6 gas at the surface of
the Mg melt.

In practice, additions of CaO to Mg and Mg-Al based alloys can lead to the formation of Mg2Ca
according to reactions (1) and (2), respectively [4]. Note the solubility of Ca in liquid Mg. According
to the Mg-rich region of the equilibrium phase diagram of eutectic type for the Mg-Ca system [36],
the invariant point is 10.5 at.% Ca at 516.5 ˝C. Therefore, the presence of Mg2Ca phase is to be expected
for example at 700 ˝C in high Ca-containing Mg alloys only.

10Mg(l) ` 4CaO(s) “ 4Mg2Ca(s) ` rO2 ` 2MgO pdrossqs (1)

Mg rAl, other alloying elementss(l) ` CaO(s) “ Mg2Ca(s) ` Al2Ca(s)`

rpMg, Al, other alloying elementsq2Ca(s)s ` rO2 ` MgO pdrossqs
(2)

Indeed, recent work by Wiese et al. [37,38] confirms the reaction of CaO and the formation of
Mg2Ca laves phase in the bulk of Mg-16Ca + 6CaO and Mg-10CaO (in wt.%) by in situ synchrotron
measurements of the reaction between molten Mg and CaO. Mg2Ca and Al2Ca are Laves phases
with crystal structures and melting points of: hexagonal, 714 ˝C (Mg2Ca) and cubic, 1079 ˝C (Al2Ca),
respectively [39]. The additions of alkaline earth metal oxides to Mg and its alloys have developed a
strong comparative advantage in the field of Mg melt protection.

2.2. Be Additions

Be has a higher affinity to oxygen than Mg. Trace additions of beryllium in the range between
5 and 30 ppm are made to Mg alloys [40], in particular AZ91D, AM60, AM50 and AZ31 Mg alloys may
contain 5–10 ppm Be [27].

2.3. Sr Additions

Rare or alkaline earth metals additions are commonly made to Mg-Al based alloys for
creep-resistance applications, e.g., Mg-Al-RE and Mg-Al-Sr alloys [41]. The presence of SrO/MgO in
AJ62 alloy would be initially expected according to reaction (3) [42]. Note the solubility of Sr in liquid
Mg. At high concentrations of Sr, it could react with molten Mg to form intermetallics such as Mg17Sr2,
Mg38Sr9, Mg23Sr6 and Mg2Sr phases [43], but also SrO could react according to reaction (4) [4].

2Mg(l) ` 2Sr(l) ` 4{3Al2O3(s) “ 2MgO(s) ` 2SrO(s) ` 8{3Al (3)

at 690 ˝C, ∆G˝
3 = ´ 947,620 J/mol.

Mg rAl, other alloying elementss(l) ` SrO(s) “ Mg2Sr(s) ` Al2Sr(s)`

rpMg, Al, other alloying elementsq2Sr(s)s ` rO2 ` MgO pdrossqs
(4)

From previous studies [42,44], Sr-bearing AJ62 alloy held at 690 for 10 s exhibited higher resistance
to oxidation than that of Sr-free AZ91D alloy held at 650 for 10 s, as shown from macroscopic
observations of the reaction products formed on the surface in Figure 2, from which it can be seen two
distinctive regions of non-nodular growth (in a layer manner) and of nodular growth, indicating two
different stages of the surface reaction. Samples from these regions are outlined by the white squares
marked 1—non-nodular growth—and 2—nodular growth—in Figure 2. FEG-SEM revealed that all the
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morphologies, i.e., sponge-like, nodular and layer, were porous and hence non-protective with respect
to the evaporation and oxidation of Mg, Zn and Sr from the corresponding surface of the AZ91D and
AJ62 alloy melt, as shown in Figure 3. XRD results from the surface of AZ91D, AZ31, AM60 and AJ61
alloys indicated that, in all these regions, MgO was the main oxidation product along with traces of
AlN. Additionally, traces of ZnO reflected the Zn levels of the Mg magnesium alloys and the oxidation
conditions investigated.
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Figure 2. Macroscopic view of surface of Mg alloys exposed to air under two oxidation conditions:
(a) AJ62 alloy held at 690 ˝C for 10 s, reprinted with permission from Reference [42], copyright 2014,
Taylor & Francis Ltd., www.tandfonline.com; (b) AZ91D alloy held at 650 ˝C for 10 s, reprinted with
permission from Reference [44], copyright 2014, Taylor & Francis Ltd., www.tandfonline.com. Marked
regions indicate following reaction stages: (1) non-nodular growth in layer manner and (2) nodular
growth. AJ62 alloy exhibited higher resistance to high temperature oxidation than that of AZ91D alloy.
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Figure 3. Secondary electron images from region marked 1 (macroscopic non-nodular growth)
in Figure 2b, from surface of AZ91D alloy held at 650 ˝C for 10 s [44] showing (a) oxide layer;
(b) magnification of region outlined by black rectangle in (a); detail of predominantly granular MgO
nanoparticles (inset).
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2.4. Ti Additions

Some notable successes in Mg and Mg-9Al alloy have been an increase of over 30% in strength
and elongation with the introduction of O interstitial atoms, 50% increase in formability, double creep
resistance and a 10-fold increase in corrosion resistance [45].

First TiO2 nano-particles having high chemical potential energy are introduced into the Mg melt,
and then they decompose to O, Ti and TiO. Subsequently, Ti and TiO having high specific gravity sink
down to the bottom of the crucible. Finally, oxygen atoms in the Mg melt will remain interstitial after
solidification. This was due to an increase in the activation energy for the formation of MgO.

Ti has been found to inhibit Mg corrosion in aqueous solutions [27], and might also impact greatly
on the field of high temperature oxidation of Mg alloys. TiO2 particles could react at the surface of
Mg-Al based alloys. Thermodynamic analysis in conjunction with experimental evidence showed
that the formation of TiAl can be favoured at the expense of other TixAly compounds [46]. This is
because Mg has a higher affinity to oxygen than Ti and Ti reacts preferentially with Al to form TiAl
(reaction (7)). TiAl has a high oxidation limit of 900 ˝C and a low density of 4.1–4.7 gr/cm3 [46,47].
In contrast, the oxidation resistance of Al3Ti is much better than those of TiAl and Ti3Al [47].

3TiO2(s) ` 7Al(l) “ 2Al2O3(s) ` 3TiAl (5)

at 700 ˝C, ∆G˝
5 = ´648,733 J/mol [46]

3Mg(l) ` Al2O3(s) “ 3MgO(s) ` 2Al(l) (6)

∆G˝
6 = ´145,810 + 26.32T [48], where ∆G˝ is in J/mol and T is in K.
Reactions (5) and (6) can be combined to obtain the standard Gibbs energy change of reaction (7)

at 700 ˝C.
3TiO2(s) ` 3Al(l) ` 6Mg(l) “ 6MgO(s) ` 3TiAl(s) (7)

∆G˝
7 = ∆G˝

5 + 2∆G˝
6. At 700 ˝C, ∆G˝

7 = ´889,126 J/mol, hence, reaction (7) is shifted to the right to
form MgO and TiAl.

3. Flux Additions

Typical salt fluxes are chloride KCl, NaCl and MgCl2 and fluoride CaF2. MgCl2 can be used
in Mg alloys containing Al, Zn and Mn alloying elements such as AZ91D, AM60, AM50 and AZ31
representing the majority of commercial Mg alloys. Flux entrapment, release of corrosive gas and melt
losses are the major causes for the shift from flux to gas protective atmospheres [49].

4. Alternatives to SF6 for Mg Melt Protection

Fruehling, investigated protective atmospheres for molten magnesium [50]. Mirak et al. [16]
summarised the significant findings on protective gases in stagnant melts held isothermally under a
mixture of a protective gas (e.g., SF6, SO2 or 1,1,1,2-tetrafluoroethane (HFC-134a)) and a carrier gas
(e.g., dry air or N2), based on characterisation of the reaction layer formed on the melt surface by the use
of various techniques, including SEM, TEM, X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS) and thermogravimetric analysis (TGA) and assessment of the corresponding oxidation behaviour.
Mg melt protection in the context of the nature, origin and control of inclusions with regard to reactions
with air, fluxes and protective gases during melt treatment, casting and alloying was later reviewed by
Lun et al. [49].

Melt protection alternatives to both flux-based and SF6, consisting of active gases: fluorine-based
blended gas (HFC-134a), fluorinated ketones (FK) and dilute SO2 (1.5%) mixed with a carrier gas,
generally N2, CO2 or dry air, are commercially available [20,25,26]. The work of Ha and Kim [18]
showed that hydrofluorocarbon CF3CH2F (HFC-134a) possessed better protection properties than do
SF6 and SO2, using air as a carrier gas. However, since HF can form in a mixture of HFC-134a/air and
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is highly corrosive, it was recommended the use of N2 or CO2 carrier gases instead of air. The reaction
products between Mg melt and SF6, HFC-134a and FK are MgO and MgF2. Mg melt can react with
SO2 to form MgSO4, MgO or MgS [49].

On the other hand, several alternative melt protection technologies that are not currently
commercialized or readily available have been developed [20,25,26]. Those alternative techniques
generate solid CO2, a small amount of BF3 gas and SO2F2 gas for Mg melt protection. The use of solid
CO2 can generate toxic CO [51]. BF3 is not a GHG, however, is highly toxic, expensive and require
the use of special storage conditions [49]. It should be noted that nowadays the use of SO2 gas for Mg
melt protection might require a SO2 scrubber system (i.e., flue gas desulfurization (FGD) technology
to comply with the environmental legislation) as well as additional costs associated with corrosion
of equipment handling dilute SO2. On the other hand, the Global Warming Potential (100 years) and
atmospheric lifetime (years) values are 23,900, 3200 (SF6); 1300, 14.6 (HFC-134a); ~1, 0.014 (Novec™ 612)
and ~1,—(SO2F2) compared with the value of 1, 100–150 for CO2, respectively [25]. As concerns about
global climate change grow, search for alternatives exist to reduce GHG emissions including HFCs.

Aarstad [9] tested a mixture of 1% SF6 in air, N2, Ar and CO2 and 1% SO2 in air, N2 and CO2 to
determine whether a protective effect was also achieved with other carried gases than air. It was found
that when using inert gases N2 and Ar as carrier gases, no protective film was formed on the surface of
the Mg melt. Furthermore, SF6 in CO2 was not a successful combination, conversely when air was
added to a mixture of SF6 and CO2, a protective film was formed on the melt surface. This is because
air is necessary for the development of a protective film on the surface of the Mg melt [9]. In a parallel
effort, the authors determined the solubility of fluorine in molten Mg in the range between 700 ˝C and
950 ˝C [52] and found that it did not appear to be sufficient for direct dissolution of fluorine into the
melt to be an alternative to SF6.

Small amounts of spinel phase can form on the surface oxide layer of molten AZ91 alloy after
exposure to air [53] and two plausible mechanisms for its formation were suggested by the authors.
The first mechanism [53] was based on a kinetic study of the surface oxidation of liquid Al—3%Mg and
Al—3%Mg—3%Si alloys by Salas et al. [54], who proposed that oxidation of Mg to MgO reaction (8),
can directly expose MgO to subsurface melt regions enriched in Al, depleted in Mg compared to
the bulk of the melt. This coupled with the exothermic reaction (8) at a rate sufficient to cause
local superheating of the melt may result in the formation of Al2O3 and MgAl2O4 through the
endothermic reactions (6) (shifted to the left) and (9), respectively. Spinel would hence form at the
alloy/MgO interface.

Mg(g) ` 1{2O2(g) “ MgO(s) (8)

∆G˝
MgO = ´612,955 + 128.08T [14,15,19]

4MgO(s) ` 2Al(l) “ MgAl2O4(s) ` 3Mg(l) (9)

∆G˝
7 = 110,210 ´ 28.41T [48], where ∆G˝ is in J/mol and T is in K.
The second mechanism [53] was based on an immediate oxidation to Al2O3 and MgO and their

solid state reaction [55–57] (reaction (10)) to form spinel through-thickness.

MgO(s) ` Al2O3(s) “ MgAl2O4(s) (10)

at 800 ˝C, ∆G˝
MgAl2O4 = ´46,700 J/mol [58].

Recent work is also indicating that there may be approaches to Mg alloy process routes without
protective gas other than SF6 gas. Mg alloy melting can be carried out lowering the oxygen content
inside the enclosed area [3] to prevent catastrophic oxidation, ignition and burning of the melt [35,59].
Kim et al. [2] demonstrated successfully the development of AZ31 Mg alloy wrought process route
without protective gas, instead, by the addition of 0.42 wt.% CaO to AZ31 alloy melt being protected
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by N2 gas in the temperature range from 640 ˝C to 660 ˝C. This reveals alternative approaches to Mg
melting and demonstrates the need for further research into the entire topic.

Elimination [60] or reduction [61] of protective SF6 gas has been achieved in the development of
innovative processes such as semi-solid injection moulding. However, just as important to process
considerations are the addition of inoculants such as MgO [62] and Al4C3 [63,64] to produce a
grain-refined microstructure. AZ91D chips were mixed with carbon black using a semi-solid injection
moulding technique at 630 ˝C, the in situ reaction between aluminium and carbon occurred to form
Al4C3 particles [64]. The authors found an optimal carbon black addition of 0.23 wt.% to produce a
grain-refined microstructure giving improved properties. Carbon’s reaction kinetics are critical to the
conversion efficiency, which in turn can affect the effectiveness of corrosion resistance.

Pure CO2 [50] and mixtures up to 20 vol.% air/CO2 can protect molten magnesium [9,65,66].
Equally important, however, are carbon’s reaction kinetics. A thermodynamic analysis by Aarstad [9]
predicted that traces of CO (1.0 ˆ 10´7 moles) and O2 (5.1 ˆ 10´8 moles) were the decomposition
products of 1 mole of CO2 at 700 ˝C and 1 bar pressure, and that MgO and C were the reaction products
between CO2 and molten Mg. In parallel, Shih et al. [67,68] reported the possible reactions that can
occur between Mg and, O2, CO2 and CO (reactions (8), (11)–(13)). A diagram of the standard Gibbs
energy change versus temperature for the reactions (11)–(13) is given in Reference [67], from which
it can be seen that, reactions (9)–(11) can proceed spontaniously until about 3725 ˝C, 2475 ˝C and
1975 ˝C, respectively. In particular, at 720 ˝C, ∆G˝

12 = ´592,700 J/mol [66].

Mg(g) ` CO2(g) “ MgO(s) ` CO(g) (11)

Mg(l), (g) ` 1{2CO2(g) “ MgO(s) ` 1{2C(s) (12)

Mg(l), (g) ` CO(g) “ MgO(s) ` C(s) (13)

Thermo-oxidative experiments of pure Mg in the liquid state [65,66] have been performed by
isothermal TGA in pure CO2 and mixtures up to 20 vol.% air/CO2 to monitor the surface oxidation
kinetics at high temperatures (670 ˝C, 720 ˝C and 770 ˝C) and to relate those to their morphological
and structural characteristics at different oxidation stages (2, 3 and 7 min) as determined by SEM.
The TGA and SEM results by Emami and Sohn [65,66] indicated that the surface had a double-layer
structure. The external layer consisted of non-protective MgO, whereas the internal layer was dense
and protective, and composed of a mixture of MgO/C.

Note the solubility of C in liquid Mg. According to the Mg-C equilibrium phase diagram which
was proposed in Reference [69], the value of the solubility of C in Mg is approximately 10 at ppm
(5 wt. ppm) at 700 ˝C. The solubility of C in liquid Mg increases with increasing temperature up to
1093.6 ˝C at 1 bar pressure. All of these results suggest that both melt protection and grain refinement
should be considered in developing practical applications for using CO2 in Mg-Al based alloys.

5. Conclusions

This paper has examined the topic of Mg melt protection. Among alternative cover
gas technologies for Mg melt protection other than SF6: Commercially available technologies
containing—HFC-134a, fluorinated ketone and dilute SO2—and developed technologies containing
solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive by-products. Additions of
alkaline earth metal oxides to Mg and its alloys have developed a strong comparative advantage in the
field of Mg melt protection.

The near-future challenges and opportunities for Mg-Al based alloys include, optimising and
using CO2 gas as feedstock for both melt protection and grain refinement, and TiO2 additions for melt
protection, in order to design and manufacture sustainable Mg alloys for resource efficiency, recycling
and minimising waste.
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