

Trusted Cloud Computing

Modelling with Distributed End-

User Attestable Multilayer

Security

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy (PhD)

in

Department of Electronic and Computer Engineering

College of Engineering, Design and Physical Sciences

Brunel University London

by

Sule Mary-Jane

April 2016

 ii

Abstract

As cloud computing continues to gain popularity and its economies of scale continue

to improve, stakeholders want to minimise the security risk, protect their data and

other resources while maximising the gains of using any cloud resources and its

application. It is predicted that by the end of 2017, bulk of spending on any IT

infrastructure would be on cloud infrastructure and services as many critical

applications – power, medical, finance among others continue to be migrated onto

cloud platforms. For these sectors, the security challenges of cloud adoption

continue to be of a great concern even with its benefits.

The ability to trust and measure security levels of any cloud platform is paramount in

the complete adoption and use of cloud computing in many mission critical sectors.

In-depth study and analysis of the trustworthiness of various cloud based

platforms/systems are often limited by the complex and dynamic nature of cloud and

often do not correctly foresee or practically determine the varying trust relationship

between and across the cloud layers, components (schedulers), algorithms and

applications especially at a large scale.

Tradition security and privacy controls continue to be implemented on cloud but due

to its fluid and dynamic nature, research work in the area of end-user attestable trust

evaluation of the cloud platform is limited. Most of the current simulation tools do not

cater for modelling of Trust on scalable multi-layer cloud deployments (including

workflow and infrastructure).Even as these tools continue to be implemented none

has been used to cater for all the layers of the cloud platform.

This research presents a deployment of trusted computing applied in cloud

computing suited for mission critical applications. It attempts to simplify the

integration of trusted platform module based integrity measurement into cloud

infrastructure. Using Eucalyptus cloud software on server-grade hardware, a trusted

community cloud platform was deployed on the Brunel Network as presented in

Chapter 3. Security is enhanced by the integration of an end-user accessible TPM

integrity measurement and verification process; this guarantees trusted ownership

 iii

and integrity of the uploaded data and provides additional level of trust for the cloud

platform.

This research further presents a technique which allows data owners to first secure

their data offline by inserting colour drops into the data using steganography. The

colour drops are used to detect unauthorised modifications, verify data owner in the

event the copyright of the data is in dispute and identify the path through which it

was tampered with. This process ensures integrity and confidentiality of the

resources.

This thesis also presents a trust model using fuzzy logic which was simulated using

Simulink in Matlab and subsequently evaluated on an experimental platform

deployed on the Brunel network. Using this model, end-users can determine the trust

values for a cloud platform or service, as well as, classify and compare various cloud

platforms. The results obtained suggest that the outputs of this research work can

improve end-user confidence when selecting or consuming cloud resources with

enhanced data integrity and protection.

 iv

Dedication

To my beautiful and selfless family – this is for you!!!

 v

Declaration of Authorship

The work detailed in this thesis has not been previously submitted for a degree in

this University or at any other and unless otherwise referenced, it is the author’s own

work.

 vi

Acknowledgements

I would like to give all praise, glory and honour to our Lord and saviour Jesus Christ

for His faithfulness all through my life and studies, He made everything possible!

I would like to express my gratitude to my Supervisor Prof Maozhen Li, who with

great dedication and high standards for research he has painstakingly supervised

this work, indeed I am very grateful for all your dedication and support throughout the

years. I say thank you to Prof Gareth A. Taylor for his support and guidance during

my research.

To my parents and my siblings – I am highly indebted! I could not have done it

without you all. Thank you for all the prayers, support, encouragement and sacrifices

to give me the best, God bless you all indeed.

To Sr. Mary Kenefick SMG, Fr Nicholas Schofield, Fr Stephen Wang, Richard

Parker, Simon Furber, Clement, James, Christy, Titi and the Vice Chancellor

University of Jos I say Thank you.

 vii

List of Figures

Figure 1.1: Visual Model of NIST working definition of Cloud Computing (Source: [7]) 2

Figure 1.2: NIST Cloud Computing Reference Architecture (Source: [6]) 4

Figure 2.1 : TPM components (source [23]) .. 14

Figure 2.2: Cloud Layers and Possible Security Measures ... 20

Figure 3.1: Deployed system on Brunel University Network .. 33

Figure 3.2: Logical overview of cloud environment secured by TC 34

Figure 3.3: Architecture of the secure trusted cloud .. 35

Figure 3.5: OpenPTS verification on the collector ... 46

Figure 3.6: OpenPTS verification on the verifier .. 47

Figure 3.7: Boot time representation ... 50

Figure 4.1: Data Colouring Process .. 57

Figure 4.2: Forward Colour Generator Scripts (fcg.sh) ... 60

Figure 4.3: Backward Colour Generator Scripts (bcg.sh) .. 62

Figure 4.4: CloudSim Architecture (source [89]) .. 67

Figure 4.5: NetworkCloudSim architecture (source [93]) ... 68

Figure 4.6: Generating colour drops (fcg.sh running) .. 70

Figure 4.7: Extracting colour drops with bcg.sh ... 70

Figure 4.8: Verifying colour drops with bcg.sh ... 71

Figure 5.1: Cloud service delivery models and trust interaction ... 74

Figure 5.2: Linear and tree based on trusted computing of a single host 79

Figure 5.3: Multi Layer Security Trust Modell (MLSTM) Concept .. 84

Figure 5.4: Functional / Block Diagram of a Fuzzy Logic Control (FLC) System (Source:

[122]) .. 88

Figure 5.5: Membership Function graph for the input variable TC 93

Figure 5.6: Membership Function graph for the input variable ID .. 94

Figure 5.7: Membership Function graph for the input variable DCP 94

Figure 5.8: Membership function graph for the output variable IaaS 95

Figure 5.9: Membership function graph for the output variable PaaS 95

Figure 5.10: Membership function graph for the input variable ssh...................................... 96

Figure 5.11: Membership function graph for the input variable IDE 96

Figure 5.12: Membership Function graph for the input variable vTPM 97

Figure 5.14: Membership Function graph for the input variable ssl 98

Figure 5.15: Membership Function graph for the input variable Dcol 98

Figure 5.16: Membership Function graph for the input variable IaaS 99

Figure 5.17: Membership Function graph for the input variable PaaS 99

Figure 5.18: Membership Function graph for the input variable SaaS 100

Figure 5.19: Membership Function graph for the output variable Security 100

Figure 5.20: Matlab implementation of Multi-Layer Security Trust Modell (MLSTM) 101

Figure 5.21: Multi-Layer Security Trust for 4 identified categories 104

Figure 5.22: Multi-Layer Security for dynamic real world simulation 106

Figure 5.23: MLSTM Peak Trust Values.. 107

Figure 5.24: MLSTM matlab simulation with dynamic input transactions period of 30s 107

Figure 5.25: MLSTM success interaction rate in comparison with MDMTC and TMFM

models .. 107

Figure 5.26: MLSTM trust accuracy rate comparison with DMTC and TMFM models 108

 viii

Figure 5.27: MLSTM average overhead for transactions ... 109

Figure 5.28: MLSTM average overhead for 1 transaction cycle ... 110

Figure 5.29: MLSTM average overhead for 100 transaction cycles 110

Figure 5.30: MLSTM cumulative overhead for 100 transaction cycle 111

 ix

List of Tables

Table 2.1: Services provided by each delivery model .. 18

Table 3.1: Configuration of the deployed Cloud Platform .. 42

Table 3.2: Instances Boot-time .. 49

Table 4.1: Comparison of various data security techniques .. 54

Table 4.2: Data Sources for Colour Drops Generation .. 59

Table 4.3: Theft / Loss Responsibilities ... 63

Table 5.1: Binary Logic Representation of Intersection and Union 85

Table 5.2: Fuzzy Rule base Table for all the Layers .. 90

Table 5.3: Fuzzy Rule base Table for the IaaS Layer .. 91

Table 5.4: Fuzzy Rule base Table for the PaaS Layer .. 92

Table 5.5: Fuzzy Rule base Table for the SaaS Layer .. 92

Table 5.6: FLC System Analysis Table ... 93

Table 5.7: MLSTM Categories .. 102

Table 5.8 : MLSTM Combinations ... 102

Table 5.9: MLSTM Trust Values by Sequence and Categories ... 103

Table 5.10: MLSTM Trust Values for Various Security Mechanisms Combinations 104

Table 5.11: MLSTM Trust Values for Real World Simulation ... 105

 x

List of Nomenclature

AIDE Advanced Intrusion Detection Environment
API Application Program Interface
BCG Backward Colour Generator
CC Cluster Controller
CCTV Closed Circuit Television
CI Cloud Infrastructure
CLC Cloud Controller
CoT Chain of Trust
CSA Cloud Security Alliance
DC Data Colouring
DCP Data Centre Policy
DNO Distribution Network Operators
EBS Elastic Block Store
EC2 Elastic Compute Cloud
ELB Elastic Load Balancing
FCG Forward Colour Generator
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
HTTPD Apache Hypertext Transfer Protocol
HTTPS Secure Hypertext Transfer Protocol
IaaS Infrastructure as a Service
IAM Identity and Access Management
IDE Intrusion Detection Environment
IDS Intrusion Detection System
IP Internet Protocol
IPS Intrusion Prevention System
M2M Machine to Machine
MIME Multi-Purpose Internet Mail Extensions
MLSTM Multi-Layer Security Trust Model
NC Node Controller
NG National Grid
NIST National Institute of Standards and Technology
NTP Network Time Protocol
OGS Open Grid Systems
OpenPTS Open Platform Trust Services
PaaS Platform as a Service
PKI Public Key Infrastructure
QoS Quality of Service
RSA Rivest-Shamir-Adleman (Cryptosystem)
S3 Simple Storage Service
SaaS/AaaS Software as a Service / Application as a Service
SC Storage Controller
SLA Service Level Agreement
ssh Secure Shell
SSL Secure Socket Layer
TC Trusted Computing
TCP/IP Transmission Control Protocol / Internet Protocol
TPM Trusted Platform Module
TSO Transmission System Operators
UFS User Facing Services
UTC Coordinated Universal Time
VM Virtual Machine

 xi

vTPM Virtual Trusted Platform Module

 xii

List of Publications

 M.-J. Sule, M. Li, G. A. Taylor, and S. Furber, “Deploying trusted cloud

computing for data intensive power system applications,” in 2015 50th

International Universities Power Engineering Conference (UPEC 2015), 2015,

pp. 1–5.

 M.-J. Sule, M. Li and G. A. Taylor, “Modeling Trust in Cloud Computing”, 10th

IEEE Intl Symposium on Service Oriented Systems Engineering, 29th March –

1st April 2016.

 M.-J. Sule, M. Li and G. A. Taylor, “Modeling Trust in Cloud Computing based

on Fuzzy Logic ”, (Submitted to IEEE Cloud Computing in March 2016)

 xiii

Table of Contents

Abstract ... ii

Dedication .. iv

Declaration of Authorship .. v

Acknowledgements ... vi

List of Figures .. vii

List of Tables .. ix

List of Nomenclature .. x

List of Publications .. xii

Chapter 1 ... 1

Introduction ... 1

1.1 Motivations... 4

1.2 Methodology ... 5

1.3 Major Contributions to Knowledge .. 6

1.4 Structure of the Thesis .. 7

Chapter 2 ... 8

Literature Review .. 8

2.1 Computing Security ... 8

2.1.1 Physical Security and Trusted Platform Module ... 12

2.1.2 Intrusion Detection and Prevention .. 15

2.2 Cloud Computing .. 17

2.3 Cloud Security .. 20

2.3.1 Cloud Models and Security .. 22

2.3.2 Fuzzy logic in Cloud Computing Security and Trust 23

2.3.3 Existing and Related Works in Cloud Computing Security and Trust 25

2.5 Summary .. 26

Chapter 3 ... 28

Deploying Trusted Cloud Computing for Data Intensive System Applications 28

 xiv

3.1 Introduction ... 29

3.2 Integration of Trust and Security ... 33

3.2.1 Securing Cloud Platforms with TC and Intrusion Detection 37

3.3 Prototype Design .. 38

3.3.1 Eucalyptus Cloud Software .. 38

3.3.2 Infrastructure Setup and Configuration... 42

3.3.3 TC Verification Process ... 46

3.3.4 Hierarchical Security Model ... 47

3.4 Evaluation and Results ... 48

3.5 Summary .. 50

Chapter 4 ... 52

Securing Resources in the Cloud with Data Colouring .. 52

4.1 Introduction ... 52

4.2 Watermarking and Data Colouring .. 54

4.3 Implementation ... 58

4.3.1 Forward Colour Generator ... 60

4.3.2 Backward Colour Generator ... 61

4.3.3 Theft and Loss Responsibilities ... 63

4.3.4 Mathematical Representation .. 64

4.4 Cloud Platform and Testing ... 66

4.5 Summary .. 71

Chapter 5 ... 72

Modelling Trust in Cloud Computing based on Fuzzy Logic ... 72

5.1 Introduction ... 72

5.2 Related Work .. 76

5.3 Trusted Computing and Fuzzy Logic Theory ... 78

5.4 Proposed Model .. 83

5.5 Implementation and Testing .. 100

 xv

5.6 Results and Evaluation ... 103

5.7 Summary .. 111

Chapter 6 ... 113

Conclusions and Future Work ... 113

6.1 Conclusions .. 113

6.3 Future Work .. 116

References .. 118

Appendices ... 128

A1: Adding pre-built Ubuntu Cloud image to Eucalyptus .. 128

A2: Creating a cloud image from an Ubuntu 13.10 CD/ISO disk-image: 130

A3: Creating an EBS backed image for Eucalyptus: .. 135

A4: Adding HADOOP to pre-built Ubuntu (Eucalyptus) cloud image 138

 1

Chapter 1

Introduction

Cloud computing while achieving economies of scale, have made scalable

computing resources widely available; however, as noted in [1]–[4] a global

challenge to its full deployment and adaptation are the security and integrity of

various components on the Cloud Infrastructure (CI), such as the deployed

instances/virtual machines, and the hosted data among others. The National Institute

of Standards and Technology (NIST) [5] defines CI as the combination of both the

hardware and software that enable cloud computing.

With cloud computing, there are three fundamental service models known as the

delivery models [1], [2], [5], [6] , which are Infrastructure as a Service (IaaS),

Platform as a Service (PaaS) and Software/Application as a Service (SaaS/AaaS).

Infrastructure as a Service (IaaS) which provides access to virtualised hardware

services like servers, disk space and memory to clients for software

deployment/development. The IaaS service enables the deployment of the

instances/virtual machines that are the “work-horses” in cloud computing.

Platform as a Service (PaaS) – provides a platform for clients to deploy/develop

application but clients have no control of the underlying cloud infrastructure.

Software/Application as a Service (SaaS/AaaS) – provides client access to software

applications running on the cloud infrastructure.

The above service models are quite distinct from the following deployment models

[1], [2], [5], [6]:

Private Cloud – this deployment model allows only users of a single organisation

access to resources on privately owned and dedicated cloud infrastructure.

Public Cloud – this deployment model provides the general public with access to

resources on shared (common) cloud infrastructure.

Community Cloud – this deployment model allows users from different organisations

with the same mission to share and access cloud infrastructure resources.

 2

Hybrid Cloud – this deployment model combines two or more cloud models together

in a manner that allows users of both models to seamlessly scale resources between

the combined models.

Figure 1.1 by [7] provides a visual overview of Cloud Computing and shows

hierarchical relationship between cloud service modes and deployment models.

Figure 1.1: Visual Model of NIST working definition of Cloud Computing (Source: [7])

Cloud Computing allows remote processing using multiple varied instances and

multiple computers running at the same time. The large, multi-tenant and distributed

nature of cloud systems means they are relatively easy targets for intruders and

security can easily be compromised if care is not taken [4], [6]. With the centralised

nature of most cloud resources, data owners and end-users lack direct control on

cloud remote resources and the cloud provider’s perceived complete control over

hosted data on its infrastructure is beginning to make data owners and end-users

care about how the cloud provider handles and uses their hosted data or other

resources while on the CI.

As shown in Figure 1.2 from [6], a cloud deployment should have five distinct roles,

these are the cloud provider, cloud consumer, cloud auditor, cloud broker and cloud

carrier. For the purpose of this research work, the cloud consumer and cloud

provider roles have been further subdivided as follows:

End-User: usually the end-user is the ultimate consumer of the reliable and

available cloud services and only pays for consumed services.

 3

Data Owner: a data owner is one who has the legal rights over the data and

is usually also accountable for it. In some cases, the end-user is distinct from

the data-owner or the data owner could also be an end-user.

 Cloud Service Provider: is usually a provider of one or more cloud services

to any cloud consumer. The cloud service provider acquires, manages and

maintains the cloud infrastructure and services over the network and provides

these services through virtualisation, resource pooling.

Cloud Application Vendor: usually sells the on-demand cloud applications

to end-user. It could also be distinct from a service provider or a service

provider could also be an application vendor.

Cloud Tool Provider: provides cloud support and manageability tools to do

accounting, monitoring and usage reporting.

While, the roles of end-user and data-owner are associated with cloud consumer, the

latter three (service provider, application vendor and tool provider) are associated

with the cloud provider. The cloud auditor whose role includes security audit is

expected to be independent for transparency purposes.

From Figure 1.2, it is clear that within the architecture, cloud consumers (end-users

and data owners) only have an “indirect” way (via the cloud auditor) of knowing the

security status of the cloud infrastructure and how their data is processed. Basically,

some commercial cloud auditors are listed via initiatives such as the CSA Security

Trust and Assurance Registry (STAR)[8]. The open certification framework used by

STAR recommends three distinct levels of certification, which are self-assessment,

3rd – party assessment and continuous monitoring based certification [9]. Most of the

security information available from STAR seems to be out-dated self-assessments

(by cloud providers) and provide little or no useful information about wire-level

security of individual services.

A cloud user or data owner wants to be confident and trust that the cloud resources

they are accessing is secured, and would be available, while its data integrity is

tamper proof and not compromised [4], [5], [10]. In addition, a data owner wants to

know that the originality of his or her data can be ascertained in the case of any

misunderstanding, theft or tampering.

 4

Figure 1.2: NIST Cloud Computing Reference Architecture (Source: [6])

Improving the trust relationship between cloud users, data owners and the cloud

providers for wider adaption of cloud services is a global challenge not adequately

addressed by existing approaches where end-users have very limited ability to

directly measure or attest the security and integrity of any single cloud service. This

research work addresses this challenge through the investigation of multiple security

mechanisms across the cloud layers. The results obtained allows a data owner /

cloud user to measure the security of the cloud infrastructure at each layer

(Infrastructure, Platform and Software), while also protecting their data through data-

colouring, which ensures that a data owner can highlight or trace data-loss-path in

the case of theft or data compromise and can also prove ownership, copyright or

originality of owned data.

1.1 Motivations

Even as cloud computing improves computing and economies of scale, its security

plays a critical part in its full deployment and adoption by the end-users [11]–[14].

Therefore, the overall motivation of this research has been to provide a means for

users to attest to and verify the security status and integrity of a cloud infrastructure

thereby deciding whether to trust the platform with sensitive information and

processes. This would improve the trust relationship between cloud users, data

owners and cloud providers. Three specific motivations that drove the research

were:

 5

1. To provide enhanced distributed Virtual Machine (VM) security against man-

in-the-middle attack and Denial of Service (DoS)

2. To improve end-user's ability to measure / attest cloud security and data

integrity

3. To improve trust relationship between end-users and cloud providers

1.2 Methodology

The research method has been experimental with modelling and simulation. The

approach demonstrated the feasibility of using the solution to solve a global

challenge in cloud computing security as it relates to cloud user’s ability to attest and

verify CI security status while also checking the integrity of its hosted data.

An experimental Eucalyptus cloud in a box community platform was deployed on the

Brunel Network on an Intel server which was used to evaluate the research work

presented in this thesis. The specifications of the platform and the instances that

were deployed on it are presented in Chapter 3.

The research answers the following questions:

 How can “end-user” multilayer security on cloud infrastructure be achieved

using Trusted Computing (TC), file integrity checking/Intrusion Detection

System (IDS) and Data Coloring (DC)?

 How can TC, IDS and DC be combined to enhance distributed CI security

(against man-in-the-middle attacks and denial of service)? How can TC, IDS

and DC be combined to establish the trust status of the CI?

 What is the performance impact on real world applications of a multilayer

security based on TC, IDS and Data Coloring?

The research work includes a detailed literature review to provide a clear

understanding of the security and trust challenges encountered by end-users and

cloud providers and also the deployment of a cloud platform that will be used to

represent readily available resource allocation and utilisation within a community

cloud system. This also helps in understanding potential security issues and how

they could be addressed.

 6

1.3 Major Contributions to Knowledge

The major contributions of this research work are summarised as follows:

 The thesis presents a “patch-free” trusted cloud deployment integrated with

end-user accessible Trusted Platform Module (TPM) integrity measurement

and verification suited for mission critical applications. This deployment

enhances overall security by the inclusion of an instance-level file or directory

integrity checker for selected files and directories. This combined approach

guarantees confidentiality and integrity at instance-level while at the same

time providing end-users with the ability to attest/verify on-demand, the

integrity and state of the underlying platform/service. A working prototype

based on the Eucalyptus cloud software was deployed on the Brunel network

and made available to industry partners in the energy sector to test power

system application like Cimphony during mission critical usage, in a context

that guarantees ownership and integrity of the uploaded data as each

operator is provided with a diversified model based on the data sharing

needs.

 Implements a shell-script for data colouring which secures the data that is

being processed or stored on the cloud platforms. The implementation is

based on establishing and using concatenated fingerprints for watermarking

through steganography. Using this technique, cloud and data owners are able

to secure their data offline before uploading it onto any cloud platform. The

fingerprint based “colours” are used to detect unauthorised modifications and

suggest or highlight possible path of data loss or theft. The implementation

was evaluated on the deployed experimental cloud platform.

 This thesis presents a multi-layer security model based on fuzzy logic that

combines the application of multiple traditional security and privacy

mechanisms/controls across the different layers of the cloud platform in the

determination of trust values. This model is resilient to failures of individual

security mechanisms and allows continuous discrete testing/probing of cloud

platforms. Unlike other models that converge to allow secure, the model from

 7

this research shows that a cloud platform always include some inherent risk. It

provides the end-user with a tool to check service reliability, accountability

and non-repudiation.

1.4 Structure of the Thesis

The description below outlines the overall structure of the thesis and the purpose of

each chapter.

Chapter 2 presents aspects of Cloud Computing Security, discusses the

implementations of security mechanisms at various cloud layers, and other relevant

studies in the context of cloud security research.

Chapter 3 provides further details about trusted computing as a security mechanism

for the IaaS layer, where integrity measurements are taken and stored on a trusted

platform module (TPM) with the aim of verifying the measurements. This chapter

also, discusses the use of an independent intrusion detection system (IDS) for

instances at the PaaS layer. It also presents a Eucalyptus community cloud

deployment test-bed on the Brunel network.

Chapter 4 discusses the implementation of data colouring based on steganography

for data-protection. This is shown to provide a traceable path in the case of data

theft, tamper or proof of data originality for the SaaS layer.

Chapter 5 provides details about the matlab based simulation and testing of the

Multi-Layer Security Trust Model (MLSTM) that uses Fuzzy-Logic Maths to provide

users with information about the state of the cloud infrastructure. This chapter also

presents results of MLSTM test carried out on the deployed eucalyptus test-bed.

Chapter 6 concludes the research and proposes some future work for further

research improvement in the field of cloud computing security and trust.

 8

Chapter 2

Literature Review

As cloud computing deployment continues to provide savings on IT investment, its

popularity is rising even among sensitive mission-critical sectors like the health and

energy sectors. Cloud computing can provide timely, cost effective scalable

deployment of ICT services and infrastructure to these sectors. However, the

availability, confidentiality and integrity of data are paramount and are of great

concern to these sectors and other cloud users. This chapter provides an overview

of cloud computing security; it introduces the techniques employed presently in

securing the cloud and then introduces some security mechanisms that can used to

enforce data integrity for cloud processing.

2.1 Computing Security

Every automated system needs to be protected to preserve its integrity, availability

and confidentiality [7] . In any field of IT and computing, computer security involves

the protection and fortification of computing resources, data integrity, limiting

unauthorised activities, keeping malicious users out, and of paramount importance

also maintaining and enforcing data confidentiality. For any system to satisfy the

security requirement its resources have to be available, timely, consistent, not

exposed to malicious destruction and would not be disclosed or accessed by

unauthorised users.

As reliance on computer technology globally continues to increase, measures to

secure these resources remain of utmost importance. Various measures to maintain

confidentiality minimise failure or loss continues to be put in place by researchers

and industries. Implementing security has never been an easy task and most times

security of these resources are sometimes an afterthought which makes

implementation even more difficult.

Some of the common threats to security in computing and information systems may

be categorised into the following [7]:

 Operator’s error: this error which may be caused by any user who has the

privilege of creating or modifying data. Errors affect the fundamental integrity

 9

of the data and compromise any processing that may depend on the data.

Depending on the severity of these errors, they could be a threat or may

cause the system to be vulnerable [15].

 Social engineering: Mitnick and Simon explained in [16] why even the

strongest enforced firewalls and encryption protocols may not be sufficient

enough to stop a would-be attacker from having unauthorised access to a

computer system. Social engineering involves determining (sometimes

through blackmail, bribery, deceit) the needed or authorised information such

as passwords or technical “workings” of the system from an insider or getting

it through their social interactions including trash items.

 Malicious Hackers: Some people have a sophisticated knowledge of the

computer systems and may exploit these errors or privileged know-how of

these systems to gain unauthorised access to the systems [15]. Even though

initially their expert knowledge of the computer systems was to positively use

or maintain the system beyond other ordinary users, it becomes malicious

when used negatively to the detriment of the systems and other users.

Though the group of people who are called hackers are further divided into

two – white hats and black hats. White hats use their expertise to assist

developers while the black hats use their expertise to inflict harm to a targeted

system.

 Fire and Natural Disasters: Fire and natural disasters such as earthquakes

can highly affect the availability of computing resources even when the

probability of such occurrence is low. While, it is impossible to predict or

control such events, they can be catered for through adequate contingency

planning [7].

 Espionage: In computing, espionage involves the collection and acquisition of

privileged or confidential information by an authorised privilege user. The

collected data or information may be sold or bought, circulated or used to

directly aid a competitor or another organisation. Espionage may be

impossible to control especially when it is perpetuated by government

agencies in response to terrorism or with the collaboration of a compromised

insider with privileged access [17].

 10

 Physical: there could be an act of sabotage by physically attacking or

damaging computer systems or resources. A physical attack for instance on

data storage would render the data completely or partly unreadable.

These treats can be broadly categorised as accidental disclosures where any

component of the computer systems may fail thereby exposing it to attacks,

deliberate penetration where there is deliberate effort to acquire information about or

contained in the system and physical attack where there is an attack on the physical

system or the environment where these systems are placed or hosted physically.

Cloud computing security is not different from traditional IT and computing security

as previously described, instead security in cloud computing is more complex as

processing on cloud platforms involves virtualisation, multi-tenancy and almost every

interaction is carried out over the network. From the end-user’s perspective, clouds

are not confined to a single or exact physical location and many-a-times, it is

impossible to specify the exact location of where one’s data is stored or processed

[18]. Many of the security threats and/or vulnerabilities affecting cloud computing are

in reality linked to the described computing security categories/topics of user

(operator) error, malicious (ordinary) hackers, social engineering, natural disasters,

terrorism and in recent times even espionage as in the case of the US government

and Edward Snowden [19].

The risk of computing resources being compromised due to security threats are

minimised through the enforcements of adequate defence mechanisms or having

security measures put in place to protect computing resources and ensure they

remain safe even when accessed by nefarious or malicious users. Some examples

of these computing security measures include:

 Access control: These are the measures put in place to safe guard against

theft and deny unauthorised access to the computer systems and data

resources. Techniques involve in limiting or granting access include

passwords, user authentication, access control, intruder alarms, physical

barriers among others. Users are encouraged to have strong passwords that

meet the password requirement and it’s hard to guess by malicious attackers.

Due to advances in computing technology, the resources are more vulnerable

to attacks now more than ever.

 11

 Physical security involves limiting physical access to computing resources.

This may take the form of providing special access for privileged users.

 Organisational control: This could include security clearance and operating

procedures for employees of an organisation.

 Network and Internet security: The inception of the Internet and now cloud

computing has broadened the scope of computing security. Firewall which

regulates remote network communication of computer systems is one of the

most effective forms of protection on the Internet, network or cloud. Antivirus

software is another form of protection for computer systems that connect to

any form of network, internet or the cloud. Users are also encouraged to have

strong password which meets the password requirement and it’s hard to

guess by malicious attackers.

 Natural Disasters: While disasters may be impossible to avoid, their impact

may be mitigated through effective planning in order to avoid the unavailability

or loss of data and other computing resources. A disaster recovery plan

should include keeping regular back-up or copies of critical data/systems as

well as the physical replication or duplication of resources/data both on-site

and at a remote safe location.

 Policies and legislation: Due to the changing nature of security attacks, it is

usually necessary to have suitable or specific policies that ensure computing

resources are regularly validated for security holes, security mechanisms are

adequately patched or updated to address new threats or variations of

existing ones. For example, a Data Centre Policy is typically used to safe-

guard physical access to computing resources, high-availability of critical

resources (including energy) as well as multiple levels of backups of critical

databases. In many countries, the handling of data about persons is

governed by suitable legislation aimed at protecting the privacy and rights of

individuals against abuse while allowing the correct use of such data.

Sometimes, legislation may go further to include items such as mandatory

logging of access, mandatory periodic changing of access credentials and

specifying limitations on storage or transfer of data outside determined

boundaries often with penalties.

 12

2.1.1 Physical Security and Trusted Platform Module

Physical security is a measure that is designed to deny unauthorised access to the

data centre environment, equipment and resources. Physical security in computing is

the foundation of all other security policies. As such, the improper physical security

of any computing system carries grave consequences for its overall security

regardless of the comprehensiveness of all other security mechanisms that were put

in place. For example, regardless of how much is spent on other part of security like

intrusion detection, anti-virus and others, the confidentiality of resources are in doubt

as long as the critical (physical) infrastructure is not adequately protected even

though physical security measures vary according to organisational structure and

needs.

Beginning with the site or premises on which these resources are kept or processed

some measures need to be enforced. In the UK, the storage or usage of government

resources classified above “Restricted” is only possible at locations that are listed as

satisfying security requirements; they are called the “list X” facility [6]. Workers are

not permitted to use their personal computers or other IT equipment that are located

in a “list X” facility as these are thought to be less secure than on a “list X” site [20].

Other physical measures include protection of the server room, laptops and

desktops. While the systems maybe located and secure in a room there must be

measures put in place to make sure only authorised users access the room or

resources. These include [21]:

 Biometrics: This involves the use of matching physical characteristic(s) of the

individual such as retina, fingerprint or facial recognition to provide access to

the secured room or resources.

 Access Cards: an access card is linked to a specific user and is expected to

be in the possession of that user at all times. Access cards are non-

transferable, are not to be shared and the loss of an access card is expected

to be reported immediately.

 User Awareness: Being aware of who is authorised to access certain

locations allow users to confront any unauthorised user that may be in a

restricted area.

 13

 Locks: Special cables and locks (for example Kensington locks) are used to

physically connect a system to a desk, this makes it impossible to move

devices or steal them.

 OS Hardening: Refers to the process of disabling unused services, de-

installation of un-needed application/software and sometimes disabling of

USB ports and CD drives to discourage copying of the resources off the

system.

Physical security is further enhanced when access to resources by users is based on

a ring approach.

It is clear that all the measures discussed above are aimed at limiting un-authorised

access or theft of computing resources, but they provide little or no information about

the overall integrity of a system, that is, if it has been tampered with by possibly an

insider with malicious intent. An alliance formed by several industry partners namely:

Microsoft, Intel, IBM, HP and AMD developed the TC industry standard for a more

secure computing platform.

In TC, the goal is to provide a seemingly tamper proof computing platform with the

ability to manage digital rights, detect/fight software piracy and even facilitate the

rental access to software (and/data). The design of TC provides for all computing

platforms to have a monitoring and reporting component (with some storage), known

as TPM, implemented directly on the motherboard, that coordinates with TC enabled

operating system kernel and other TC applications for protection enforcement and

possibly direct access to a registry of online security servers maintained by hardware

and software vendors

Since 2006, new computers were sold with a built-in TPM chip, that independently

secures computing hardware using integrated cryptographic key(s) that may be

integrated into various computing operations such as firmware (BIOS) loader,

system boot-loading, O.S. kernel and application start-up to monitor and store

cryptographic (almost unforgeable) hash data about the integrity and trustworthy

state of the computing chain and/or computer platform.

That is the data stored in the TPM may be used to determine if individual

components of a platform behave as intended. The TC process of attestation

(verification) involves comparing the TPM data against a prior set of hash key

 14

summary for certifying the tamper-proof state of hardware and software

configuration. The prior set of hash keys may be stored off-line and periodically used

even by third-parties and over suitable remote connections to verify that the software

has not been tampered with or changed [22]. The TPM device may also be used to

securely store third-party artifacts such as passwords, certificates and encryption

keys designed to uniquely identify/authenticate individual computer platform(s) even

for remote attestation and/or authentication by authorised third-parties.

The use of a TPM backed TC authentication and attestation process provides a safer

computing environment that may be used to enhance the level of protection offered

to mission critical applications [23].

Figure 2.1 shows the functional block components of a TPM device. The TPM device

may also be used in other devices like mobile phones and other network equipment

as it would ensure that the critical information (stored on the device) is better

protected from external software attack and tampering.

It is important to note that the current implementation of TPM devices cannot control

the software running on the computer system, as it only stores the cryptographic

hash measurements taken during a chained start-up (pre-run time configurations).

Figure 2.1 : TPM components (source [23])

For hashing, TPM uses a form of asymmetric key cryptography called RSA that

makes it infeasible to modify data without changing the hash key; this guarantees

integrity and provides a form of protection for the stored data. The TPM provides a

secure root of trust (starting from the BIOS/firmware) for both reporting and storage

 15

and each separate measurement of a component sub-system (of the computing

platform) is a single/independent transaction that generates a separate hash key.

It is note-worthy that, in a context of machine-to-machine (M2M) communication,

trust could be based on confirmed identity as well as the verified expected

(predictable) reliability of each party.

2.1.2 Intrusion Detection and Prevention

The rise in the number of security issues experienced by users has been attributed

to the explosive deployment and processing of computing resources over network

[24]. NIST in [25] describes intrusion as an attempt to compromise confidentiality,

integrity and availability. Intrusion detection is the process of monitoring the events

and/or changes on a computing platform and analysing them for any sign of

intrusion. Software or hardware systems that automate the process of monitoring

occurring events and/or changes in a computer system and analysing these systems

for any security problems are called intrusion detection systems and they are vital in

computing systems security as network based attacks have greatly increased in

number in recent times [25].

Intrusion detection systems can detect attacks and other security violations that

result from breaches or failures by other security measures. In large enterprises,

intrusion detection systems serve as quality control for security implementation and

of course these systems provide information about intrusions and attack that may

have taken place.

Sometimes once a system has been installed, the administrators rarely go back to

update patches and other improvements either due to lack of time or knowledge, the

IDS detects when an attacker exploits these flaws and penetrates the systems.

Security attacks on a computer system may occur in some predictable manner- for

example, at first the attacker may use probes to examine (or scan) the system [25]

exhaustively and choose an attack vector capable of inflicting the highest possible

damage or threat. A monitoring IDS analysing traffic in near real-time would trigger

alerts to the necessary entity for further action, while, an intelligent IDS capable of

operating in prevention mode would identify the probes as suspicious and

appropriate actions taken to limit further probes/attacks by introducing evasive

 16

behaviours (time-limited blacklisting of all passwords from the offender, during the

time period even the right password is rejected), or outright firewalling (blocking or

preventing total communication with) the offending parties.

There are two main strategic approaches to implementing intrusion detection as

reported in [25] , the host target co-location approach was used in the early days of

mainframes, where most IDS were installed on the target system, this was done then

as having another computing system to run IDS was expensive. The other, host

target separation approach was introduced with the advent of personal computers

and as mainframe systems became cheaper. In host target separation, the IDS were

now installed on separate systems from the target host and this approach also

improved security of the systems as the existence of the IDS is hidden from the

attackers. IDS may also be classified as network based, where the IDS detect

attacks by capturing and analysing network packets arriving at the target system or

host based, where the IDS detects attacks by information collected within the target

system.

An intrusion detection system is composed of the following fundamental

components: Information source(s): which is used to determine if any intrusion has

taken place. The analysis/decision engine: that analyses the events and extracts

security related information from it and the response engine: which is the set of

action(s) the system takes once it detects any intrusion. The IDS components are

coordinated to provide security related to accountability, response and control.

Accountability is provided by associating the intrusion activity or event to the entities

responsible for initiating such activity, however, the accuracy of such association

may be severely limited when the attacker uses a distributed network of

compromised hosts for scanning or possibly uses forged identities. It is important

that the system enforces a strong identification and authentication mechanism to

further make it more difficult for the attacker to use a forged identity.

Once a malicious probe, scan or attack is identified and classified by the IDS,

appropriate response action is taken even when it originates from an authorised

user, typically through some mechanism to control several elements of the

computing system such as the authentication modules or ip firewall.

 17

2.2 Cloud Computing

Cloud computing has made scalable computing resources more widely available and

has also achieved economies of scale; however, as noted in [2], [3], [5], [26] a global

challenge to its full deployment and adaptation are the security and integrity of

various components such as the CI and the deployed instances/virtual machines.

Virtual machines (VMs) are software machines created to emulate or imitate a

computer hardware system; they operate based on the function and capabilities of

real computer hardware which also host the VMs. Instances are virtual machines or

servers that are created from the cloud infrastructure.

Cloud computing is an integration of different computing technologies; therefore its

security challenges are not entirely “new.” Cloud computing security and trust

challenges are only more noticeable because transactions are most times carried out

with clients or providers whom the end-users have never met or do not see them

physically [27] [26] [28].

There are three popular layers in cloud computing which are called the delivery

models IaaS, PaaS and SaaS. IaaS provides the cloud user with virtualised shared

storage and computing resources, which include CPU, disk space and memory. The

IaaS delivery model enables the deployment of the instances/virtual machines that

are the “work-horses” in Cloud computing [2], [26] and [5]. PaaS provides the cloud

user with a platform for testing any application. While, SaaS provides the user with

software and applications without the user having to worry about licenses and

installation, this usually runs on the cloud provider’s infrastructure [29].

Conceptually, one can refer to a cloud stack as similar to a TCP/IP stack [30], which

can then be represented thus: Physical Virtualization IaaS PaaS SaaS.

Based on the user’s perspective, IaaS would require low-level hardware to be

virtualized and as shown in Figure 2.2, each layer requires the structure and

standards of the layer below it. In the cloud service delivery model, IaaS is at the

lowest level and is usually the foundation of all cloud computing. It may be stated

that all cloud services fundamentally require an underlying cloud infrastructure that is

the IaaS layer even when it is not directly offered as a service. The SaaS layer relies

completely on the security configurations put in place by the provider. At the PaaS

 18

layer, the developer can configure further restrictions on the application or platform

while at the IaaS layer the tenant can further customise the security configurations

but there is no doubt that all these configurations still would have to rely on the

underlying mechanisms to be completely secure [31].

Different cloud services provide different core services; Table 2.1 presents a

summary of the services provided by each delivery model.

Table 2.1: Services provided by each delivery model

Services IaaS PaaS SaaS

Networking Yes No No

Storage / Disk

Space

Yes No No

Server

Hardware

Resources

Yes No No

Application

Layer

No No Yes

Integration Yes Yes Yes

Infrastructure

Management

Yes No No

Payment Per

Utility

Yes Yes Yes

Resource

Elasticity

Yes Yes Yes

Application

Development

No Yes No

Multi-tenancy

Architecture

Yes Yes Yes

Depending on the need of the users, cloud services may be deployed in a number of

ways - Private, Public, Community or Hybrid cloud deployments with varying security

considerations even for major issues like confidentiality, integrity (of data) and

availability [5], [32], [33].

 19

When resources are deployed within a single organisation for only that organisation

even when the offices are physically at different geographic locations or data-

centres, it is referred to as a private cloud. Private cloud when compared to other

cloud models present the least security concern as they are only accessible via

internal network and sensitive and mission critical application are being protected

behind the enterprise firewall [34].

Community cloud deployment on the other hand is when organisations or

communities with similar mission, needs and requirements come together to share

resources. It made be managed by one or more of the organisations or by a third

party, though allowing a third party manage it comes with its inherent security risk as

that also means accessing it over the internet [35], [36].

The resources deployed on a public cloud are usually accessed and shared by the

general public and it’s usually managed by a commercial provider. It also goes

without saying that of all these deployments mentioned, public cloud is the most

vulnerable to attack.

Another cloud deployment model that combines any two or more deployment models

and techniques mentioned above is the hybrid cloud. Even when the deployments

are combined each deployment still maintains its uniqueness.

NIST [5] defines Cloud Infrastructure (CI) as the combination of the hardware and

software that enable cloud computing.

Many challenges are apparent when sharing the same platform; these include denial

of service, data integrity, operating system, applications piracy and copyright issues

among others. Considering that the IaaS layer involves the sharing of common

computing hardware resources, common security challenges obvious on this layer

would include denial of service and man in the middle attack, among others.

Generally, clouds enforce security across infrastructure including the network and

the platform layer through tools such as firewalls, Intrusion Detection Systems (IDS),

Intrusion Prevention Systems (IPS) or encrypting and securing data in transit (for

example DNSSec) among others; and may involve the sharing of a common storage

where data is either hosted on the platform or processed without any form of

 20

protection. Figure 2.2 also shows some of the possible security measures commonly

adopted for the different cloud layers.

Figure 2.2: Cloud Layers and Possible Security Measures

Mission critical services require on-time availability and reliability of scalable

computing resources, which is only possible through the deployment of Cloud

computing. However, more needs to be done with regard to the security and integrity

of the cloud infrastructure and the virtual machines (instances) running on the

“cloud”. There is also a need for the secured processing of data whether on the

“cloud” or in the traditional computing environment. The security of the data and

applications can never be over-emphasised as mission critical sectors rely heavily on

efficient and secured data [2], [3], [5], [26].

2.3 Cloud Security

For any security mechanism to be effective, it must be tailored to complement the

target platform. Therefore, for any platform to be considered secure and trusted, the

security mechanisms across every layer must be enforced and configured as it is the

individual security mechanism on each layer that make up the overall security status

of the cloud platform and therefore each layer must be properly secure as there is no

“one fit all” security solution that would be applied on the platform but all the layers

contribute to the security of the whole platform. Cloud computing relies heavily on

remote access and the virtualization of servers and network connectivity among

 21

others. Cloud security is also of paramount importance for the full adoption of cloud

by mission critical sectors and other end-users [4] [37].

In cloud computing, the trust relationship between the users and the providers is

important as the deployment and control of some security mechanisms such as

firewalls, installation of software patches, and appropriate use of security

groups/zones among others are completely managed by providers. Within, the Open

Security Framework by CSA, Cloud Auditors (not end-users) are expected to ensure

adequate security compliance by providers.

Security groups or zones directly address multi-tenancy issues that may create more

opportunities of misconfigurations, malicious conduct or data compromise. Securing

the multi-tenancy environment also requires the proper isolation of identity

verification as well as enforcing limits access to resources and locations. For cloud

users they could be group based on their activity where privilege users may be

grouped according to roles like administrator, ordinary user and so on and the

provided with a single standard-based user login capability to allow easy, quick and

authenticated cloud service.

Network or IP firewalls are used to block access to computing services/resources

from untrusted persons and other nefarious computer based attacks. The

deployment of firewalls follows several different concepts that influence the

deployment and usage of cloud computing services. In the Closed/ Walled garden

concept, end-users are restricted only to approved applications and services.

Additionally, there is usually some form of security to the allowed services from

unwanted users. The key disadvantage of the closed/walled garden concept is that it

limits end-users from seamlessly deploying or implementing public or community

clouds. The Open garden concept on the other hand allows unrestricted access to

services and applications by all end-users, this concept is not suitable for storing

sensitive data and can lead to the data integrity been tempered with. In the end it

best to keep sensitive data behind the closed/walled garden firewalls. Additionally,

some regular monitoring is required to ensure adequate safety of the sensitive data

even when clouds are also deployed on the network.

The way data is stored, accessed or processed on a platform also plays a massive

role in the integrity and availability of such data. Various mechanisms can be applied

 22

on a cloud platform to enforce security as applying only a particular traditional

security mechanism is unsuitable for the cloud platform [38] . Data information needs

to be properly segregated on the cloud platform. Encryption is one way of protecting

data while it is transit or during storage. Encryption maintains data confidentiality and

integrity at the expense of accessibility as only authorised users with the necessary

keys can decrypt data for processing. Encryption requirement is also different from

one user to another. While some may require very high restrictions, others may

require only for specific data and delegate the key management to a third party.

Data colouring is another mechanism for securing cloud data which, in contrast to

encryption, maintains accessibility and integrity at the expense of confidentiality.

For data, it is important that both users and providers are aware of national

legislation, policies or other intellectual property or privacy laws that could govern the

ability to store or process data in geographical locations outside national boundaries.

In the medical fields, the high fidelity processing of images is also important in order

to preserve the integrity of sensitive information.

2.3.1 Cloud Models and Security

Researchers in [39] carried out an analysis where they presented a variety of

security issues across the different cloud computing models. These researchers also

suggested counter measures though the counter measures seem to be more for

implementation from the provider’s side they none the less acknowledged that

outsourcing resources to third party in the cloud environment makes it harder to

secure the resources.

In the SaaS model, which is the most popular deployment model, the deployment,

control and enforcement of security mechanisms is mainly the responsibility of the

provider. End-users access to the service is mainly via a web interface controlled by

the provider, who may choose to restricted access based on IP address or

geographical location.

In the PaaS model, users have more responsibility in managing their configuration

and security mechanisms than in the SaaS model. Although, choices of security

mechanisms are limited to configurations selected by the provider, the user may be

 23

able change or expand on the configurations even by deploying additional

mechanisms.

In the IaaS mode, majority of the responsibility for the correct deployment, control

and enforcement of security mechanism is on the end-users. In the multi-tenancy

situation, the end-user’s choices and decisions are limited only to the virtualized

infrastructure (images, network and storage). For example, it is possible that a

different tenant would not pay as much attention to security or engage in activities

that adversely affect overall security or the security of physical infrastructure is not

adequate. As noted by researchers in [40], some attacks include the existence of

cross-virtual machine attacks among VMs that co-locate with others. These attacks

can be minimised by checking the logs of the VMs and also enabling a trigger alarm

based on the IDS.

Many users with mission critical applications choose to deploy private clouds where

they can also maintain adequate control over every aspect with clearer visibility and

less concerns, while other users choose to only deploy non-critical application and

resources on the community clouds.

Another area of concern for a cloud user is the case of denial of service (DoS) or

distributed denial of service (DDoS) attacks [41]–[43]. Availability requirement vary

also from user to user so also the time requirement needed to recover from failure is

greatly determined by the security compliance checks to be performed. It is

important that the service provider extends the clients’ security capability as at when

needed.

2.3.2 Fuzzy logic in Cloud Computing Security and Trust

Boolean Logic, which modern computing is based on, cannot be replicated in the

case of cloud computing security; rather the fuzzy logic approach is applied. Fuzzy

logic as described by Zadeh in [44] is a class of object that has degrees of truth

characterised by membership function raging between zero and one rather than the

Boolean zero or one. It is difficult to describe trust with accurate probability based on

only true or false, Zadeh advanced the idea of fuzzy logic understanding of normal

language to represent some measurement of vagueness.

 24

Furthermore, fuzzy logic which is based on fuzzy set allows operations of inclusion,

union intersection and complement on its sets. Fuzzy logic allows all things to

represent a degree of some form. It is descriptive instead of just black and white, it

allows something to be represented with a bit of black and white a bit of grey, it

allows one to represent an item as to what degree it is black and to what degree it

white at the same time.

Now to fully represent any item using fuzzy logic, some basic processes must be

employed, these are

 Fuzzy Rule: This allows the representation of items in linguistic form assigns

linguistic values to them. This is usually a conditional statement which allows

one to be able to represent the item with some degree of membership. The

difference between classical rules and fuzzy rules are that classical rules is

binary logic 1 or 0 which with fuzzy they are represented based on

“membership degree”. For example if a man is short, it can also be

represented in fuzzy as “to what degree is the man tall?” but for classical

representation, the man can never be tall (0). Fuzzy rule have various parts

that when put together provide a crisp solution to a problem.

 Fuzzy Inference Type: this maps a given input to an output. There are

various inference techniques but two popular types are the Mamdani and

Sugeno types[45]. Mamdani method [46] is commonly used method and it

was chosen over the Sugeno method because it is intuitive, has widespread

acceptance and well suited for human input.

 Defuzzification: This allows the final output to be a crisp number as it takes

as input the various aggregate to produce a final single/crisp number.

No cloud platform is completely secured or completely trusted instead it should be

“to what degree is this platform secure or trusted?” Systems that may be presently

may not be secure later as it may need to update or upgrade some patches but that

doesn’t now mean it is totally unsecure.

This therefore means that in terms of security and trust of a cloud platform, fuzzy

logic would allow the representation of “to what degree is the cloud platform secure

across all the layers and so therefore to what degree can I trust this platform?

 25

2.3.3 Existing and Related Works in Cloud Computing Security and Trust

As the security and trust concerns continue to be more pronounced in cloud, various

researchers continue to provide solution in this area but these works seem to be

limited to the IaaS layer and nothing seem to have being develop for the whole

infrastructure and no tool seem to be available to provide the user with the ability to

check and probe continuously the security status of the cloud platform therefore the

user is not able to completely trust the cloud platform.

Researchers in [47] only considered security on the IaaS layer with emphasis on

TPM and the contract documents but how can a user probe and attest to the quality

of service provided by the provider only by just what is written and signed in the

contract?

Gonzales et al in [48] considered the IaaS infrastructure and provided alternative

cloud security controls for defence called the cloud-trust model, the model provided

by the researchers strengthens cloud service providers and minimises discovery of

live virtual machines but this also doesn’t consider the end-user or the different

layers that make up the cloud platform.

In [49], Saadat and Shahriari proposed a framework that would analyse and

categorise customer’s security and trust concerns, it further considers a cycle that

would continuously monitor and solve any problem on the cloud environment but

this was just a framework and was not evaluated using any technology.

Sirohi and Agarwal in [50] considered a security framework that would provide

protection to the data resources on the cloud and providing transparency between

the cloud provider and cloud user. The real time monitoring of the resources is a

very important and worthy but the use of only encryption technique to protect the

data may attract unnecessary attention from the unwanted intruders to want to probe

further why that data is encrypted.

In [51], the researchers considered a trusted model to verify and evaluate the

security controls claimed by a cloud service provider to meet the customer’s

requirement. In carrying out the evaluation and verification, the model considers

trusted third parties and user’s past experience but these options do not provide an

unbiased judgement so the judgment maybe inconsistent/flawed.

 26

In the same vain, CSA STAR[8] created the self-assessment framework for cloud

providers to make public their platform’s security and control capabilities but these

are sometimes outdated and no way for the end-user to verify before subscribing

and even after subscribing there is no way to continuously probe the platform, so

how can an end user trust the platform?

Wallom et al in [52] seem to make an effort in deploying trusted computing for

mission critical applications in the cloud but the work had used a lot software

patches and this automatically means the cloud platform software cannot be upgrade

or updated and this is a great security flaw that must be tackled else the platform is

never up to date and no matter the security controls and mechanisms it would

always be prone to attacks.

Hwang and Li [53] also proposed a method of securing data on the cloud based on

data colouring which generates unique colour drops from three different

characteristics but this method has not been implemented or evaluated.

Researchers in [54] deployed a fuzzy based trust model but this model assumes all

cloud platform are secure and after continuous probing user’s trust level begins to

drop when the necessary mechanisms have not been applied.

Even as Cloud computing provides virtualised, metered real time, on demand

computing resources, the cloud user wants a secure trusted platform with its

resources available anytime it is needed and an assurance that its data integrity is

not tampered with.

The research reported in this thesis intends to address the following:

 Improve user’s ability to measure and attest to a cloud platform security status

 Improve the trust relationship between end-users and providers

 Provide a technique for users to protect their data integrity and claim right to

ownership.

2.5 Summary

Due to the need for mobility and improved access, users are gradually embracing

cloud technology and its security cannot be over emphasized. Cloud computing

 27

security like any computing technology must also be examined based on security

principles of confidentiality, integrity and availability and the individual associated

contributions by the deployed security mechanism some of which are examined in

this chapter.

The cloud infrastructure needs to be physically secure. Mechanisms that may be put

in place to enforce physical security include monitoring of physical access,

biometrics, CCTV among others. While accessing the cloud platform remotely, it is

important to make sure that only authorised users have access to the platform and

every authorised user has access to only the resources which they are authorised to

access.

In the different cloud models, responsibility for security is shared between the

provider and users. In the IaaS model, the user has a major responsibility while in

the SaaS model, they have the least responsibility.

Due to the multi-tenancy nature of clouds, the security of the shared environment

including network and other physical infrastructure are the sole responsibility of the

providers as it is important to ensure that adequate leak proof separation (security

zones or domains) is maintained between users.

As users take advantage of the operational and financial benefit of cloud, they are

concerned that their information is kept safe and not disclosed to unauthorised

persons, processes or devices. It is also important users are able to evaluate and

attest to the platform and services they would be accessing even after signing the

agreed contract which is usually referred to as Service Level Agreement (SLA), the

SLA defines the level of service quality the end-user is entitled to from the provider

[55]. Any security negligence leaves a gap and a wide door open to cloud threats

and data breaches. Just signing an SLA doesn’t prove that appropriate security has

been put in place.

 28

Chapter 3

Deploying Trusted Cloud Computing for Data Intensive

System Applications

Trusted cloud computing is a form of trusted computing applied in cloud computing

to improve the confidentiality and integrity of the platform. As providers are making

substantial effort to secure their platforms, there is a clear need among cloud end-

users for a solution that guarantees confidentiality and integrity while at the same

time providing users with the ability to verify the state of this solution or service.

Presently existing virtual machines running on various cloud platforms have

limitations that prevent end-users from verifying their security states and also lack

adequate protection from unauthorised access by privileged users such as the cloud

providers. Trusted cloud computing provide cloud end-users with a possible tool to

assess the cloud provider, the trustworthy state of the cloud platform, enable on-

demand monitoring and application of industry standard based security solution in

the field of cloud computing.

This chapter presents the deployment of trusted cloud computing for mission critical

applications in the energy sector. The research presented in this chapter simplifies

the integration of trusted platform module based integrity measurement into

commodity cloud infrastructure by eliminating the need for “custom” software and

patches; it also enhances instance-level security by including a distributed file and

directory integrity checker for added security. The deployment of trusted cloud

computing using the Eucalyptus Cloud software on server-grade hardware is

presented, as well as the results of a comparative evaluation of the additional

overhead in the instance creation/start-up based on a simulation of low, medium and

high security settings. The trusted cloud computing infrastructure was made

available to the power system application developers and users for deployment and

testing.

 29

3.1 Introduction

Mission critical services such as the electrical power grid require on-time availability

and reliability of scalable computing resources, which is only possible through the

deployment of cloud computing. However, more needs to be done with regard to the

security and integrity of the cloud infrastructure and the virtual machines (instances)

running on the “cloud” [56]–[59]. There is also a need for the secured processing of

data whether in the “cloud” or in the traditional computing environment. The security

of the data and applications can never be over-emphasised as the energy sector

relies heavily on efficient and secured data.

This chapter presents a modified use-case secured platform for the use by UK power

industry (which includes the Distribution Network Operators (DNOs), the

Transmission System Operators (TSOs) and the UK National Grid (NG)). Cloud

computing can facilitate and simplify the exchange of data between the Distribution

Network Operators (DNOs) and the Transmission System Operators (TSOs) as

required in the UK by National Grid (NG) [6]. The NG plays a vital role in the daily

capacity planning and distribution of electricity in the U.K and makes extensive use

of models based on real-data from DNOs and TSOs conforming to a strict standard

and format as defined by the NG [60]. For example, data from a DNO would include

the state of its electrical network; connectivity arrangements; electrical loads; sub-

transient/transient currents, power injection values such as power, average voltage

and power factor and reactance/resistance ratio at each grid connection point [61].

In a cloud-based environment, the integrity of the entire UK power system would

depend on the ability of DNOs/TSOs to update and maintain only sections of data

related to their equipment/network. The exchange of data between DNOs and TSOs

is greatly facilitated by the adoption and use of a common file exchange format.

However, the data is of great value (potentially highly sensitive to national security)

as they describe the state of portions of the national transmission and distribution

networks. The energy sector requires a trusted cloud computing infrastructure that

can guarantee secure ownership and integrity of the uploaded data even when it is

decrypted for processing. The research presented in this chapter focuses on

intrusion detection (integrity / trust) and security of the virtual infrastructure

 30

(architecture) as a possible approach to addressing security when deploying cloud

computing in mission critical sectors [62].

A group of DNO or TSOs (end-users) carried out the up-load, validation and storage

of data in the secure storage locations (Elastic Block Store (EBS) storage volumes).

Typically, the end-users operate exclusively over the secure interface of applications

such as an SSL-enabled web-interface. Direct attestation and verification of the

cloud Infrastructure’s security and integrity by end-users (DNO/TSOs) is possible if

enabled by both the CI provider and the application providers (NGs).

The Open Grid Systems (OGS), as a SaaS provider (and PaaS user), are

responsible for creating the instances from the supplied images, installing and

configuring additional or needed applications for use by end-users. As PaaS users,

OGS have secure shell (SSH) access to their running instances complimented with

SSH access to the CI, the latter is useful for conducting security / integrity testing

and verification. Brunel University London as the IaaS provider is responsible for

setting up the secured images and volumes from which the instances are created.

The use case adopts the OGS Cimphony application as the key interface between

the end-users and others power-users such as the National Grid (NG). The

Cimphony software application is network-model data visualization and analysis tool

that can validate different network models present in the CIM format, merge these

data models and transform them from one format to another.

The network models uploaded by the DNOs/TSOs are stored into individual EBS

volumes which are tagged with the name of the DSO/TSO and a time-stamp of the

upload. Each DNO/TSO has read/write access only to its volumes, while an NG

would have read-only access to all volumes managed by the DNOs/TSOs.

In this use case, it is assumed that:

 Each user (DNS/TSO/NG) has a private public key pair.

 The NG and DNO/TSO exchange their public keys

 NG and DNO/TSO have read-only access to a pre-seeded IDS database for

verifying the applications, data and configuration of the instances.

 31

 NG and DNO/TSO have read-only access to pre-seeded manifest/database of

measurements for the TC verification (openPTS) of the cloud-infrastructure.

 The Eucalyptus cloud infrastructure is integrated with the Trusted Computing

technology described in Section 3.2. In this way, NGs (and DNO/TSO) can

run/interrogate openPTS to obtain the TC measurements of the cloud-

infrastructure.

Each SaaS provider workflow is as follows:

 Instantiate a VM from the stored image

 Verify that the cloud infrastructure can be trusted using openPTS

 Verify that the VM can be trusted using the Advanced Intrusion Detection

Environment (AIDE) command.

 Mount the necessary Elastic Block Store volumes

 Install and configure the end-user application (Cimphony).

 Create the necessary access credential for the DNOs/TSOs

 Inform DNOs/TSOs about access credentials

 Wait for DNOs/TSOs to complete workflow

 Decrypt and verify the signature of the models/data uploaded by DNOs/TSOs

 Merge all the DNO models

 Convert and process the resulting models

 Elaborate or download the model over a secure channel

 Destroy the VM

 32

The DNS/TSO (cloud end-users) workflow is as follows:

 Obtain the access credentials from NG

 Verify that the access credentials work correctly

 Verify that the application can be trusted

 Verify that the cloud-infrastructure can be trusted

 Verify that the instance can be trusted

 Upload the data/network model to the correct EBS storage device.

 Validate the network model using the Cimphony application

 Encrypt/sign the uploaded data using the NG public-key and DSO/TSO

private-key.

 Inform NG on completion of task.

The integrity of the instance itself is established by the Advanced Intrusion Detection

Environment (AIDE) which is an intrusion detection programme specifically referred

to as file and directory integrity detection checker, while the integrity of the cloud-

infrastructure is based on TC. The independent security verification of both

instances and cloud-infrastructure ensures an overall stronger security when both

instance and infrastructure have not been altered or modified.

Figure 3.1 shows a prototype implementation of a trusted cloud computing

deployment on the Brunel University computer network where both TC integrity

measurement and verification based on the TPM [22] and intrusion detection using

AIDE [63] were integrated into a Eucalyptus based cloud platform. The prototype

demonstrates the levels of containment used to provide infrastructure security, while

also providing a form of integrity and trust for the clients using the platform.

 33

Figure 3.1: Deployed system on Brunel University Network

This research is in collaboration with industry partners Open Grid Systems [10] and

NG [6]. The prototype was made available to the industry partners for application

deployment and testing. The result suggests little or no overhead from the added

security mechanisms.

3.2 Integration of Trust and Security

As reflected in [64] and [65], security in cloud computing is a well-researched area

although most work do not adequately address security across the layered nature of

cloud infrastructure (physical and the virtual machines running on the “cloud”) and in

many cases, also do not extend integrity verifications to the applications or services

running on the cloud platform.

In the community cloud model (see Figure 3.1), individual partners may be provided

with a diversified access model based on resource sharing needs as this creates a

secured environment that guarantees trusted ownership and integrity of the cloud

resources. Individual actors are responsible for the upload of owned data into

dedicated storage locations that is subsequently shared (with diverse privileges) to a

restricted set of partners, with the ability to verify the integrity and secure-storage of

all accessible resources (owned or coming from partners) and the integrity of the

cloud-infrastructure including hardware, boot-process, middleware and instances

that process their own data.

 34

Figure 3.2: Logical overview of cloud environment secured by TC

Figure 3.2 shows the unique chain of trust that is used to secure the physical, virtual

and IaaS layers. At the physical layer, a TPM [22] chain of trust extends from the

hardware device through the firmware (BIOS), boot loader (kernel), operating system

of the cloud middleware and virtualization layer (Hypervisor). This chain may also be

extended to cover IaaS storage devices (virtual disks) as shown in Figure 3.2

However, for the use-case application, this particular chain is not automatically

extended to cover instances running above the Hypervisor (Virtualization layer)

because a virtual machine or instance, once created, is treated as completely

different/independent computer. For these instances, the inclusion of a software

based virtual-TPM (vTPM) device within them allows a different and unique chain of

trust to be built for the kernel, operating system and software components of the

instance.

Attestation of the Cloud infrastructure: The overall integrity of an instance or VM

would also depend on that of the underlying cloud infrastructure, that is, it is

important for a VM to verify that it was created by the right process (cloud-controller),

it is running on the correct hardware (node-controller) and accessing/using the

proper data storage devices (storage-controller). Such an attestation process thus

implies some interaction between a VM and one or more component parts of its host

cloud platform and infrastructure. It is noted that in cloud platform implementations

such as Eucalyptus cloud-in-a-box[66], the cloud-middleware may be protected by

additional security measures such as firewalls that limit/minimize exposure of the

critical internal cloud structure to the hosted VMs, services and/or end-users.

 35

In our implementation of a secure trusted community cloud (see Figure. 3.3), the TC

attestation of the cloud-infrastructure (based on the TPM hardware chain-of-trust)

from a hosted/running VM is carried out as a transaction (TC operation) targeted at

its local controller over a secure-shell connection with reduced privileges. The use of

a local/reduced-privilege secure-shell connection reduces the possibilities for

network based man-in-the-middle attacks and also limits exposure of internal cloud

structure.

Figure 3.3: Architecture of the secure trusted cloud

The process of securing the physical and virtual resources that combine to make up

the IaaS layer using TC was implemented thus, TPM support is enabled in the BIOS

to measure the initial state of the physical system. In prior work by other researchers

[52], trusted grub or grub-ima was used to secure the bootstrap layer. However,

these are no longer supported on modern versions of operating systems such as

Ubuntu 14.04 and have been superseded by the newer UEFI secure-boot process.

Secure-boot is also enabled from BIOS and is already supported by modern

operating systems including Microsoft Windows and Ubuntu 14.04. During secure

boot, another option for enhanced security is to use TPM for measured boot. The

Eucalyptus cloud platform is based on the CentOS Linux, where secure-boot is

expected to be fully supported in a future release. The standard Linux kernel already

includes the IBM Integrity Measurement Architecture for measuring all the

applications, kernel modules and configuration files loaded at boot time. Enabling

 36

this requires passing the option “ima” to the booting kernel and mounting a

corresponding securityfs virtual file-system during boot.

The above steps were used to build a chain-of-trust from the hardware/BIOS where

the TC measurements of critical operating system and software components of the

cloud-platform are stored and used for verification. The process of measuring,

storing and verifying TC integrity of operating-systems and software components is

covered extensively in other work including [52] and [67]. In the Linux operating

system, a Trusted Core Service Daemon (TCSD) is used to export trusted services

from the physical TPM into the operating system of the cloud-infrastructure.

A software application, the Open Platform Trust Services (OpenPTS) [67] application

is used to implement the TC attestation procedure. OpenPTS runs in either collector

or verification modes and can carry out remote attestations using the standard

secure-shell application for transportation and protection against man-in-the-middle

attacks.

In the collector mode, openPTS collects and maintains a private manifest/database

of trusted-measurements to be examined during the verification process.

In our implementation, the private manifest/database of trusted-measurements is

integrated into the immutable images (see Figure 3.1) from which VMs are created.

When running, each VM/instance uses this private manifest/database for the on-

demand TC attestation of the cloud-infrastructure.

Attestation of Instance/Virtual Machine: The inclusion of a software based virtual

TPM (vTPM) device within the instances allows a new and unique chain of trust to be

built for its kernel, operating system and software components of the instance.

However, for our purpose, an instance/VM is always a TC verifier and the virtual

TPM (vTPM) installed within the VM is only required to satisfy a dependency

requirement of the openPTS application (installed in the VM) used for the attestation

of the cloud infrastructure.

In our implementation, end-users of services provided by the secured/trusted

community cloud can immediately verify service integrity based on a mandatory use

of authenticated Secure Sockets Layers (SSL) certificates for all connections.

However, this does not guarantee internal integrity of an instance (VM) providing the

 37

service, that is, the service is being provided by the expected software application

using the expected configuration files and data. This additional assurance is

provided during the attestation process by a file/directory level intrusion detection

system (IDS), for which the hash of its pre-seeded database may be protected using

a suitable TPM based chain-of-trust such as that of the host cloud

platform/infrastructure.

3.2.1 Securing Cloud Platforms with TC and Intrusion Detection

Currently, security in most Cloud computing platforms is limited to the ability to

partition/group instances by owners, or hierarchical levels of administration. They do

not include or enable support for Trusted Computing integrity

measurements/verifications based on TPM, an industry standard for computing

hardware integrity measurement and testing, that depends on special hardware

storage of cryptographic keys. Cloud platforms also do not include adequate

intrusion detection mechanisms for certifying that the instances/virtual machines

have not been tampered with.

TC provides an added level of trust related to the cloud-infrastructure as it allows

measuring the collective integrity of the hardware platform, firmware and operating

systems components responsible for booting.

Integrating TC into cloud implementations would allow cloud administrators to

measure and verify infrastructure integrity; however, the end-user integrity

measurement/testing of the underlying infrastructure require some additional

mechanism such as a secure channel for end-users to access the cloud platform.

TC based on TPM is useful for measuring system integrity; it typically cannot detect

exactly what was changed or locate the changes to exact file, the addition of a file

and directory intrusion detection system allows fine-grain

examination/characterisation of the changes that occurred.

Intrusion detection software such as AIDE provides file level integrity verifications

(including permissions and attributes) based on stored hashes. A relatively small

Linux system could easily have hundreds of thousands of files. A full scan and

verification tend to be both processing-intensive and time-consuming as the hash

must be recalculated for each file and compared to the stored value. The ability to

 38

limit the scan to certain selected files is quite useful and can significantly reduce the

amount of time needed during verification.

The methodology used in securing the underlying cloud-infrastructure and instances

for end-user verification involves the following steps:

- Enabling TPM hardware from BIOS/firmware: The cloud hardware is expected

to include suitable TPM hardware.

- Enabling TC measurement related options on the Kernel layer. For Linux, this

is by modifying the boot-loader options (adding IMA) and configuring a virtual

file system (securityfs).

- Installing and configuring the operating system TPM related applications

(trousers and openpts).

- Creating an SSH-only account for remote attestation by instances.

- Integrating TPM tools into the virtualised image.

- Pre-seeding the OpenPTS verification database in the image with the keys

from the Cloud-infrastructure.

3.3 Prototype Design

3.3.1 Eucalyptus Cloud Software

Eucalyptus which is an acronym for Elastic Utility Computing Architecture for Linking

Your Programs To Useful Systems is a Linux based cloud software. This is the

software that was used for the experimental platform. It enables the cloud service

know as IaaS to be deployed on existing IT infrastructure either as a private, public,

community or hybrid cloud. It is portable, modular and simple software which was

initially developed to support High Performance Computing (HPC). The API offered

by Eucalyptus is compatible with Amazon’s EC2, S3, IAM, ELB, Auto Scaling and

CloudWatch services thereby offering the capability of a hybrid cloud [66].

Most exiting cloud computing software are either proprietary or depend on software

that cannot be extended for experimental purposes and studies.

Eucalyptus was chosen for this research based on the following features: it is open

source which allows for further customisation and configurations, it provides a

 39

user/management web interface with custom credentials, allows for re-write of the

scheduling controller and provides strong internal security settings[2], [63], [67], [68].

Eucalyptus allows for easy installation and as nonintrusive as possible unlike most

cloud software that locks up or exposes the interfaces and platform to proprietary

and closed software and resources. The framework implementation was carried out

according to industry standards and thus allows and encourages third party

extensions.

The Eucalyptus Cloud Software also allows the entire cloud infrastructure to be

configured and deployed on a single computer (box). This “Cloud-in-a-box”

technology is basically a CIaaS that provides basic functions like provision storage,

network and security resources. Furthermore, it also includes auto scaling, cloud-

watch and elastic load balancing, which are typically found in a fully functional

“cloud”.

Eucalyptus provides some basic cloud computing security on its platform such as ssl

certificate, user password management among others that were activated on the

platform. It provides a network overlay that isolates the network traffic of different

users.

The Eucalyptus framework comprises of various components but there are four high

level components among them and each with its own web-service interface. These

components are the cloud controller, the node controller, the cluster controller and

storage controller [68], [69]. These are represented in Figure 3.4.

Cloud Controller: This is the entry point for all users (administrators, developers

and end-users) of any eucalyptus platform installation. Cloud controller (CLC)

queries the node manager for information about resources, The CLC manages all

the underlying virtualised resources of any Eucalyptus cloud and makes visible to the

users.

Node Controller: On each node or host is a node controller (NC) which in response

to queries and control request from the cluster controller, the node controller queries

and controls among others the system software, the host operating system and

hypervisor. It is the node controller that discovers the node’s (or host’s) physical

resources, size of memory, available disk space and even the state of other VMs or

 40

instances running on the node/host. Even though the node controller seems to be

maintaining records of the instances or VMs on the host, there may be a situation

where instances are started and stopped with mechanisms that are beyond the node

controller. In respect of this and for best resources management and resource

availability, it’s important that the node controller sends its information to the cluster

controller.

Cluster Controller: The cluster controller (CC) acts the link between the node

controller and the cloud controller. The CC has three main functions which are

 Schedules incoming instance run requests to the specific NC : when there is a

request to run an instance, the CC contacts each NC of a host and sends the

instance run request to the first available NC that meets and has the required

resources to host the instance.

 Controls the instance virtual network overlay which is further discussed in a

later section

 Gathers and reports information about a set of NCs : the CC can receive a list

of resource characterises describing a resource requirement needed by an

instance like memory, disk and can use these information to calculate how

many instance of a specific type can be executed on the its NCs, this

information is sent to the CLC.

Storage Controller: The storage controller is a data storage service that supports

standard web service technologies and its interface is compatible with Amazon’s S3.

SC acts as storage service for VM images and users can also use SC to stream data

from instances that have been started on the nodes. It supports concurrent and

serial data transfer and to aid scalability on the eucalyptus platform it does not

provide locking for object writes.

Other components of the Eucalyptus software like the User Facing Services (UFS)

serves as the endpoint for any Amazon web compatible services offered by

Eucalyptus (e.g S3). The management console allows the user to manage the

eucalyptus cloud.

 41

Figure 3.4: Major components of a Eucalyptus software(source [70])

Eucalyptus has been designed in such a way that it allows easy deployment into

existing enterprise network topology. The instance network solution has also been

designed to provide connectivity between various instances and interfaces, isolation

from other instances or groups and also provides high performance.

In other to create and enforce security across the platform, Eucalyptus has what is

referred to as security groups. A security group allows specific network rules to be

applied on an instance or group of instances running on the cloud platform. It allows

you control the network access to the instances. This specifies the kinds of traffic

that are allowed in or out of the instances. Basically the security groups are set of

firewalls that are applied to any VM associated with the group. The eucalyptus cloud

software has a default security group and any instance created takes up that security

though an administrator can change the rules for the default security, the

administrator can also delete, create, authorise and revoke security groups[71].

In other to assign the resources of a node appropriately, the virtual machine capacity

is limited to the size and number of node controllers available. Eucalyptus relies on

the xen hypervisor [72] to create and run the virtual machines. Eucalyptus allows you

to bundle describe, run, terminate and reboot a variety of Linux and Windows VMs

[71].

 42

TC measurements/verification based on the OpenPTS (Open Platform Trust

Services) implementation and Intrusion detection based on AIDE (Advanced

Intrusion Detection Environment) software were installed / configured on the images

to further enhance security and trust of the images that would subsequently be used

to deploy the instances.

3.3.2 Infrastructure Setup and Configuration

The cloud platform was deployed on a high performance Intel server with 4 Intel

processors running at 2.27 GHz with 64 GB of memory/RAM. Each processor had

10 cores.

The specific hardware and software details are displayed in Table 3.1.

Table 3.1: Configuration of the deployed Cloud Platform

Hardware HDD 1 TB

Processor 40 Cores

CPU 2.27 GHz

LAN Connectivity Gigabit Ethernet

Software Cloud Software Eucalyptus

CI Operating System CentOS

Images Operating System Ubuntu 14.01 (Trusty)

Installation of Eucalyptus was performed using a CD image of Cloud-in-a-Box

version 3.4 downloaded from Eucalyptus website. In cloud in a box, all components

(shown in Figure 3.4) are installed to a single physical host. It represents an optimal

choice for research as the hardware requirements are limited even in production

mode and it is also possible to install additional software packages on the cloud

server using the RedHat yum package manager.

 43

The Eucalyptus installer installed a customized version of RedHat 6.2 to the entire

harddisk. During the installation process, the server network card (eth0) was

assigned a public IP address of 193.62.138.225, netmask of 255.255.255.0. The IP

gateway was set to 193.62.138.254 and DNS was set to 134.83.127.81. The

following IP address range was assigned as “the public ip for use by the virtual

machines“: 193.62.138.226 – 193.62.138.249.

In a Eucalyptus cloud-in-a-box installation, all instances (virtual machines) are

attached to an internal network bridge named br0 that exists only inside the server

machine, however all instance are usually isolated from each other on this internal

bridge. The network connectivity over br0 is used to push configuration information

to running instances (virtual machines).

The server uses 1 public IP address for itself. The end-users including those outside

Brunel University and connect to the server using a web browser (on port 8443) in

order to start their applications on demand. This is the cloud self-service model. All

15 other public addresses are placed in a pool to be used by instances (virtual

machines).

Once an instance (virtual machine) is started and running, it gets an external IP

address assigned to it from the pool. The physical server will use iptables/proxy-arp

to also place the IP address of the instance on eth0: X (physical NIC eth0) alongside

its own public IP. Once the instance (virtual machine) is destroyed, the

iptables/proxy-arp/eth0: X entries are removed and the IP is returned to the pool.

With the self-service cloud model, the web interface of the server informs the end-

user what exact IP address is assigned to their instance (virtual machine) from the

pool once it is created. The end user now connects directly with his instance through

the external IP using one of the approved protocols (ssh or http/httpd) and can use

his power application.

Overall the installation was fairly straightforward and during the process, the system

clock was set to UTC and a secure password was set on the root account. The

installer reported that over 1000 packages were installed before requesting a reboot.

The first boot process was lengthy and additional configurations were automatically

performed before showing the welcome wizard GUI, which aided with creating the

 44

normal user account and performing NTP settings. The GUI then reported the

automatic creation of two Eucalyptus accounts. The first was a demo account, with a

user named admin and password of password, while the second was the eucalyptus

account with a user named admin and password of admin before requesting a new

reboot.

Activating the TPM hardware started from the server BIOS, once the Eucalyptus

hypervisor was started The bootloader configuration file (/boot/grub/enu.lst) modified

to pass the option ima to the kernel on boot and subsequently an entry for the virtual

file system (securityfs) was added to the file /etc/fstab. Finally, the operating

system TPM related applications (trousers and openpts) were installed and

configured as specified in the OpenPTS quick start manual.

The installation comes with a basic (default) CentOS image that can be used to

create an instance (virtual machine) for testing. It is also possible to install new

images from the public Eucaytus store (eustore). However, such images contain

limited functionality, old versions of software and are difficult to update.

An alternative method is obtaining generic pre-built cloud images of an O.S. from on-

line site such as the Ubuntu Cloud service (http://cloud-images.ubuntu.com). Given

the difference in boot kernels, it is necessary to use a generic boot-loader (known as

kexec) for starting the specific O.S kernel contained within the image. The kexec

utility for Eucalyptus is available from

https://github.com/eucalyptus/eucalyptus/wiki/Kexec-Images/. A step-by-step

procedure for adding and running pre-built Ubuntu images in Eucalyptus is

documented in Appendix A1.

As earlier stated, a more secure approach is to create a cloud image from an

installation disk. This process requires considerable more effort but provides the

benefit of ensuring that only relevant applications are included within the image. The

process of creating and testing a cloud image from an Ubuntu 13.10 CD-ROM/ISO

disk-image is documented in Appendix A2. Similar to the use of pre-built images,

these images may be started using the kexec boot-loader or alternative the installed

kernel and ram-disk combination may be extracted from the image and used directly

as an Eucalyptus boot-kernel. This procedure was used to build a highly trusted

https://github.com/eucalyptus/eucalyptus/wiki/Kexec-Images/

 45

cloud image which also included the installation of additional software such as vTPM

and OpenPTS which are required for TC attestation.

For other less mission critical applications, it is also possible to create a reasonably

secure cloud image by modifying an existing one. Here, the process requires a

review/audit of all installed components followed by removal of unwanted

applications/files and the addition of required applications. For example, creating a

custom image that includes a specific version of the hadoop map-reduce java

application started with expanding an existing pre-built cloud image. First, a raw disk-

image of adequate size was created and the contents of an existing cloud image

transferred into it. The added space is required for installing the hadoop application.

Next, the newly created image was mounted at a temporary location and its contents

modified by installing a java development kit from the Ubuntu repository. Then a

version of hadoop was downloaded as a TaR file and installed within the image.

Finally, the installed hadoop was then configured to start-up at boot-time

automatically by adding suitable entries into the system start-up file located at

/etc/rc.local. Subsequently the kernel and ramdisk were extracted and bundled along

with the image for use in Eucalyptus. Appendix A4 contains the procedure used to

modify a pre-built image with the installation of hadoop and subsequent testing on

the Eucalyptus server.

By default, all instances are created with a temporary file-system that is destroyed as

soon as the instance is deleted. This implies that all changes made within an

instance are lost as soon as it is closed. In Eucalyptus, the alternative EBS-backed

images allow the creation of instances with addition of an external storage location

that can be used for storing persistent or changed data. The procedure to create an

EBS backed image is documented in Appendix A3.

Depending on the VM’s configuration, the platform could run up to 80 VMs. The

images running on the deployed system are based on 64-bit Ubuntu Linux operating

system version 14.01/trusty, which have been further customised in the current

research.

 46

3.3.3 TC Verification Process

The OpenPTS technology operates with one of the systems, that is, the cloud-in-a-

box host system taking the role of the collector and the other system(s) (the

instances) taking the role of the verifier

The integrity measurements/verification provided by OpenPTS allows an end-user to

verify that the cloud-in-a-box server, where the image is hosted (called the collector)

is actually the right and secured one (Figure 3.5). The verification process is

performed over a secure shell (SSH) connection based on pre-seeded keys at the

verifier side.

Figure 3.5: OpenPTS verification on the collector

The cloud-in-a-box server performs a trusted boot based on data contained within its

TPM hardware. TPM is a microprocessor chip built into a machine to enhance its

security by integrating cryptographic keys into the machine; these keys provide

authentication (proves the platform is what it claims to be) and attestation (platform is

trustworthy and has not been breached). These keys are checked for consistency by

the verifier.

With a suitable OpenPTS command syntax (–v option), the PaaS layer user can

compare the current values against a pre-seeded set (Figure 3.5). The result, which

means the keys tally (success) or does not (failure), is reported immediately. On

failure, it is also possible to automate more drastic action such as the immediate shut

down of the instance/virtual machine.

A verification failure (reported by OpenPTS) is an indication of a variety of issues,

including the possibility that the verifier is communicating with a different or rogue

machine, booting from the wrong machine or even that the image has been

tampered with or modified. TC verification can be used to verify the security and trust

of a cloud-computing infrastructure.

 47

Figure 3.6: OpenPTS verification on the verifier

Within an instance, file level Intrusion detection is provided by AIDE, an integrity

checker for files and directories, based on a variety of digest algorithms (md5, sha1,

rmd160, tiger, whirlpool, sha512, etc). AIDE has the ability to check for

inconsistencies in the file/directory attributes. Based on the required

speed/performance, the scan/verification may be limited to specific files and

directories.

3.3.4 Hierarchical Security Model

Apart from the built-in security groups features in Eucalyptus, a hierarchical

security model was also used to provide secure Cloud computing services to a group

of researchers both within and outside the University. These researchers are

categorized according to the following access levels:

a. Power Systems Cloud Infrastructure administrators – This category of users

is responsible for providing secured images to be used by other users for their

application /software. They have control of the underlying cloud infrastructure and

can access the system on both ports 8443 and 8888 using the address

https://powersystemscloud.brunel.ac.uk:8888/ or

https://powersystemscloud.brunel.ac.uk:8443/

b. Power Systems Cloud Application Developer: The second category of users

on this platform is responsible for creating instances (VMs) from the provided images

and subsequently installs desired applications; these applications are in turn used by

the end-users. They have no access to or control over the underlying cloud

infrastructure and can only access the system using the address

https://powersystemscloud.brunel.ac.uk:8888/

c. Power Systems Cloud Application Users: The third category of users on this

platform is the end-users. Users in this category have only HTTP/HTTPS access to

instances / applications running on the platform.

https://powersystemscloud.brunel.ac.uk:8443/
https://powersystemscloud.brunel.ac.uk:8888/

 48

3.4 Evaluation and Results

The integration of either TC or intrusion detection with Cloud computing introduces

performance overhead especially during boot up or in the process of setting up

attestation or verification [10]. The goal of the research experiment was to determine

the overhead that could result from the introduction of either TC integrity

measurement/verification or AIDE based intrusion detection/verification into an

instance.

Cloud images which are preinstalled disk images with various operating systems

which include CentOS and Ubuntu were configured on the platform. The different

images had different security configurations and were thus classified as “low

security” if the images had only the operating system basic security configuration,

“medium security” if trusted computing using TPM was configured and “high security”

if both TPM and AIDE were configured. Instances were then deployed from these

images.

The improved security appears to have limited and negligible overhead for single

instances and it can therefore be concluded that it is not going to be noticeable until

thousands of instances are started. Table 3.2 shows the average boot-time recorded

for each security level and Figure 3.7 shows a graphical representation of the 21

instances deployed from each of the 3 categories of images during the research

experiment. These instances were deployed from the images classified into three

broad security levels: low, medium and high as explained above. Where the low

security group do not include TPM or AIDE and serve as an experimental control or

baseline group. The medium group include only TPM based integrity

measurements/verification. The instances at start-up typically started the TPM-

emulator device and setup the user-environment for remote verification of the CI

platform. While the high security group include both integrity verification and AIDE

intrusion detection, the instances start up the TPM emulator device and setup the

user-environment for remote verification of the CI platform. The AIDE database is

already pre-seeded, but the end-user verification process needs to be set-up as well.

From Table 3.2, the control group had an average boot-time of 54.16 seconds, while

the medium security group had an average boot-time of 55.38 seconds; the high

 49

security group had an average booth time of 56.81 seconds. The results show that

the overhead incurred including TPM based integrity measurements/verification into

a cloud platform for this research is 1.22 seconds while the overhead incurred

including TPM and AIDE based intrusion detection into a cloud platform is 2.65

seconds. This is further represented in Figure 3.7, which shows the results obtained

from the deployment of 21 instances at each security level. The maximum overhead

between low and high security levels is between 3 and 4 seconds. The results

suggest that the improved security overhead on the cloud platform is limited and

capable of scaling to large numbers (thousands) of instances.

Table 3.2: Instances Boot-time

Low Security Med Security High Security

Min:Sec.CenSec Min:Sec.CenSec Min:Sec.CenSec

1 00:53.32 00:55.58 00:56.81

2 00:54.11 00:55.32 00:57.01

3 00:53.78 00:55.35 00:56.66

4 00:54.21 00:55.14 00:57.18

5 00:53.81 00:55.28 00:56.59

6 00:53.63 00:55.54 00:57.09

7 00:53.54 00:55.13 00:56.54

8 00:53.78 00:55.20 00:57.01

9 00:53.92 00:55.22 00:56.61

10 00:53.63 00:55.01 00:56.67

11 00:54.88 00:54.91 00:56.90

12 00:54.84 00:55.51 00:57.21

13 00:54.39 00:55.49 00:56.69

14 00:54.51 00:55.44 00:56.90

15 00:54.10 00:55.78 00:56.72

16 00:54.14 00:55.00 00:56.66

17 00:54.50 00:55.26 00:56.87

 50

18 00:54.41 00:55.70 00:56.83

19 00:54.77 00:56.22 00:57.02

20 00:54.80 00:55.78 00:56.61

21 00:54.23 00:55.03 00:56.51

Av Sp. 00:54.16 00:55.38 00:56.81

Figure 3.7: Boot time representation

3.5 Summary

A trusted cloud deployment especially suited for mission critical applications in the

energy sector was presented and discussed in this chapter. The approach involves

the integration of end-user accessible TPM integrity measurement/verification into

the cloud platform/infrastructure without the need for “custom” software or patches.

Furthermore, security is enhanced by the inclusion of an instance-level file and

directory integrity checker for selected files and directories. Using a trusted cloud

computing infrastructure can guarantee trusted ownership and integrity of the

uploaded data as it would ensure that each operator is provided with a diversified

access model based on data sharing needs. In a cloud deployment approach,

individual organisations/users share a common cloud platform and sometimes not

 51

necessarily retaining control over their sensitive data or applications deployed on

external infrastructure. The research presented here provides additional levels of

trust for cloud infrastructure which allows individual organisations/users to retain

control of their sensitive data/processes. A working prototype of the secure trusted

cloud deployed on the Brunel University London network has been made available to

industry partners OGS and NG to deploy and test power system applications like

Cimphony.

 52

Chapter 4

Securing Resources in the Cloud with Data Colouring

Given the nature of the cloud platform and its present limited ways to detect

unauthorized access or modifications to data; cloud users and data owners do not

trust that their data is adequately secure on the cloud platforms. This chapter

presents a technique of data colouring for securing data on cloud platforms based on

establishing and using concatenated fingerprints for watermarking. In the prototype

implementation presented here, cloud users and data-owners secure their data by

first colouring it offline before uploading onto any cloud platform. The colours may be

used to detect unauthorized modifications and also suggest the path of data loss or

theft. A basic shell-script implementation of the technique based on steganography is

presented along with some evaluation results from its use and evaluation on an

experimental cloud platform deployed during the research work.

4.1 Introduction

Due to the anonymous nature of cloud, data owners hardly trust the cloud providers

and the cloud platforms to deploy their sensitive data on the cloud; this in turn has

adversely affected the rapid deployment of cloud computing infrastructures[26], [28].

Data confidentiality, integrity and availability remain the major security concerns for

users with different security considerations. By virtue of its multi-tenancy

configuration, sensitive data can be comprised or tampered with by an unauthorized

user and the cloud provider may not be able to provide a record of which client

accessed which data or in the case the data is tampered with, the user or cloud

provider cannot trace on which cloud platform it occurred [73].

Trust and security would greatly be enhanced in cloud computing when cloud users

and data owners are able to secure their data before uploading onto the cloud

platform and are still able to trace and confirm any distortion to the data and the

exact path of distortion. This means cloud security challenges must be addressed

from the provider’s end, on the server and resources side and also from the client or

user’s side [12]. Measures have been put in place to protect data from been

tampered with, limit unauthorised access or illegal usage using a suitable

 53

mechanism such as hashing, data-colouring or encryption or obfuscation. Encryption

is one common measure put in place to render data unreadable to unauthorised

users through scrambling of data, although this process could attract undue

attention to the data [74].

Another measure frequently used is watermarking as various digital formats

especially those for images including the portable document format (PDF) already

support the easy embedding (and removal) of visible watermarks. These watermarks

are usually located in well-defined sections thereby making identification and

unauthorized removal easy.

Table 4.1 shows a comparison of possible self-defence techniques for securing data

used by end-users. It is not exhaustive but offers a quick overview. As may be

inferred from the Table, data-colouring could be an optimal technique for cloud

platforms/applications as coloured data may still be processed without overhead (the

colouring is transparent) while also providing the ability to detect tampering and/or

identifying and reporting data-loss . That is, coloured-data (output of a data-colouring

process) may be viewed as being able to maintain integrity and availability of data

without a processing overhead. Therefore, considering security related metrics of

Confidentiality, Integrity and Availability in a cloud context, hashing as a data-

protection technique can only provide integrity, while obfuscation provides only

limited confidentiality; data-colouring provides integrity and availability; while

encryption provides confidentiality and integrity but not availability.

This chapter presents a way of securing data using a technique of data colouring

[53]. The technique allows data owners to first secure their data offline (off the cloud

platform) by colouring it before subsequently uploading or processing the colour data

on any cloud platform. Based on steganography, the implemented shell-script allows

the user to detect if the data has been tampered with and identify the path through

which it was tampered; this in turn ensures data integrity and confidentiality. The

technique has been evaluated on the deployed experimental cloud platform at

Brunel.

 54

Table 4.1: Comparison of various data security techniques

 Hashing Data-colouring Obfuscation Encryption

Example MD5, SHA Watermarks,

fingerprinting

Minimization,

compression

Code-

table/cipher

Association/

Technique

mathematical Mathematical/

embedding

Entropy

reduction/

transformation

Cryptographic

transformation

Creation

overhead

Low Low Medium High

Resulting data

can be directly

processed on

clouds

Yes Yes Yes (if process

is reversed and

recreated after

processing)

Yes (if

decrypted and

encrypted after

processing)

Security

/features

Data integrity Data ownership Making

data/content

illegible

Making

data/content

inaccessible to

unauthorised

access.

Notes Storage of hash

is external to

data.

Embedding/

distribution of

watermark/

fingerprint inside

data. may be

difficult to detect

and remove if

steganography

is used

Relatively easy

to undo and

redo

Difficult to undo

without original

code-table

4.2 Watermarking and Data Colouring

Watermarking is a security feature that prevents and discourages counterfeiting

through the addition of an identification image/pattern with varying visibility. In digital

watermarking, a digital mark (pattern) is embedded in a digital file; the digital

watermark, which may sometimes be hidden, serves to identify ownership (and

copyrights) thereby verifying the authenticity and integrity of the digital file.

An extension of the watermarking concept known as fingerprinting ensures that

different watermarks are embedded in every copy of the distributed data-sets (digital

 55

files), this aids the detection and tracking of both perpetrators and the path of data

distortion [75], [76]. Digital fingerprinting (watermarking) may also include information

that is useful for identifying unauthorised modifications to the content.

Most data owners are still not comfortable with the idea of having a faceless entity

host their data where there is still no existing solution that allows the user to secure

its data before uploading on to the cloud platform or while processing. Most existing

networked environment security measures can be extended to the cloud

environment [53].Since the cloud is a multilayer entity, enforcing security has to be

done across the different layers. Security measures in cloud computing has to be a

build-up of all the layers. These security measures once enforced across the layers

would make users confident of the platform and assured that their data’s integrity

has not been tampered with while still having unlimited availability to computing

resources.

A cloud platform is only secured if and when both the cloud user and cloud providers

are able to participate fully depending on one another to perform certain task [12],

[65]. While IaaS involves the sharing of common hardware, the cloud provider needs

to enforce security across the network and cloud platform through firewalls, intrusion

detection, DNSSec and encryption among others. Copyright protection needs to be

put in place for the applications that would run on the platform while measures like

data colouring, watermarking, and monitoring needs to be enforced on SaaS layer.

Though watermarking provides a form of security and ownership, it doesn’t stop

unauthorized users from locating and removing the image.

Data Colouring (DC) may be considered as a special form of digital watermarking,

where fragments of the digital mark known as colour drops are distributed or spread

out within the data. That is, the fragments of the digital mark are not co-located or

limited to a specific location or segment. Data colouring allows users to secure their

data using colour drops without the drops being visible[53].

Figure 4.1 shows the data colouring process, where according to [53] and [65] the

colour drops are a combination of an “expected” value - 𝐸𝑥 known only to the data

owner, the “entropy” value – 𝐸𝑛 known only to the users in a particular group and the

hyperentropy value 𝐻𝑒 known to all the users of the cloud infrastructure. 𝐸𝑥, 𝐸𝑛 and

 56

𝐻𝑒 are combined together to generate a collection of colour drops that forms a

unique colour that neither the cloud providers nor other cloud users can detect.

It is argued in [77] that the computational complexity in obtaining 𝐸𝑥, 𝐸𝑛 and 𝐻𝑒 is

lower than that in conventional encryption and decryption process. It can be

observed from Figure 4.1 that 𝐸𝑛 + 𝐻𝑒 represents information that is agreed and

exchanged between a cloud provider and a data-owner such as the public-key

component of a cryptographic key-pair. Specifically 𝐸𝑥 is the information that is only

known to the data owner such as the private component of personal cryptographic

key-pair and an encryption password. 𝐸𝑛 is the value known to only the users of a

specific group on the platform such as the public-key component of the cryptographic

key-pair for that group and 𝐻𝑒 is the value know to all users of the platform, such as

the public key component of the cryptographic key-pair of the cloud platform.

The forward colour generator is composed of two distinct operations, these are the

colour drops generator and the data colouring process. The colour drops generator

is responsible for producing a sequence of bits from the combination of(𝐸𝑛 + 𝐻𝑒) +

𝐸𝑥. In traditional watermarking, the colour drops would be the unique watermark.

The second operation inserts the generated bit sequence (watermark) into the user-

data to obtain the coloured data. The coloured (watermarked) data may be

subsequently stored or processed on the cloud platform or a copy maybe delivered

to a recipient.

In data colouring, the coloured (or watermarked) data retains all the functionality of

the original data but contains additional identification bits that is included within the

data in a manner that does not permit easy detection or removal of the colour drops

(unique watermark).

The backward colour generator verifies the inserted colour drops (watermark). It

consist of 3 separate operations; they are - the extraction of colour drops from the

coloured data, the generation of the colour drops based on the same input

parameters initially passed to the forward colour generation and an operation to

compare the generated colour drops to the colour drops extracted from the coloured

data.

 57

The colouring and verification of the colour drops is carried out by the data-owner as

they would require knowledge of 𝐸𝑥.

Figure 4.1: Data Colouring Process

In data colouring, the colour drops (or watermarks) are embedded within the data (or

data-set) to provide integrity and identification without impacting the functionality of

the data. The presence of colour drops should be invisible (or transparent) during

regular use of the data-set. The process of colouring or embedding the colour drops

within the data sets should also be resilient against unauthorized reversal while

reliably supporting the authorized location and extraction of colour drops.

Steganography, the art of hidden writing [78] is used as the primary technique for

embedding colour drops into the data sets in the data colouring implementation

discussed in Section 4.3. The aim in steganography is to embed and hide the

existence of a message within another carrier message from a third party.

Steganography requires the presence of empty (unused) locations where data may

be inserted within a data-file. In Information Theory, the entropy (in bits) of a unit-

length multiplied by the total-length of that message is a measure of how much

information the message contains. It is important to note that unit-length is domain

dependent, that is, the unit-length for a spoken message is different from the unit-

length of the same message in written form even when both types convey exactly

the same information. The implications are that the entropy is related to both type

and length of a message. In digital water-marking, where the preservation of the

 58

information-content of a message is important, the modification of a message (by

noise) is domain specific; that is an audio message requires modification in the

audio-domain (by audio noise) while a visual image is affected in the visual domain

(by visual noise). That is, visual-noise would not affect information content of an

audio-messages or vice-versa. While it is possible to simply combine two digital files

into a single one using a concatenation technique. For example, a “PNG” may be

combined with a “ZIP” file into a new file where the upper part is the original “PNG”

image and the lower (bottom) part is the original “ZIP” file. The resulting (combined)

file may be treated either as a “PNG” file or a ZIP file and its size is a sum of both

original files, however, it is quite trivial to extract the individual files. Steganography

requires format specific methods and techniques for inserting hidden messages into

a digital file.

 Steganography is different from Cryptography in the sense that it does not make the

message unreadable from third party but just embeds and hides a message (secret

communication) within it. An advantage of steganography is that it doesn’t attract

undue attention [78], [79] as the original message continues to function as normal

(the hidden message is invisible or transparent).

Sometimes, the hidden message may be pre-encrypted, compressed or encoded

before embedding in the carrier message. Also, sometimes, the hidden message

may be split among a set of files but then all files must be available, unmodified and

processed in the right order in other to retrieve the hidden data/message. In

steganography, the security of the hidden message is cryptographically enhanced

when the secret messages are first encrypted before embedding into the carrier. The

hidden message is usually embedded as bit-level in the redundant space of the

carrier message most times, in a statistical manner to avoid possible detection or

modifications.

4.3 Implementation

The implementation presented here expects that colouring is carried out completely

offline to enhance security; therefore, this means only coloured data should be

uploaded to cloud platform(s). The colouring of data-files before uploading to various

cloud-service models is expected to improve the integrity of the cloud-based

 59

resources as it enables data-owners to detect, trace, report and document

unauthorized access and use of uploaded data/data-files to respective cloud

providers or users.

The shell-scripts discussed in this section depend on the free and open-source

steganography tool OutGuess[80] for colouring data files (embedding hidden data

into redundant bits of a carrier file) or extracting colour drops from already coloured

files (i.e. extracting the hidden data from redundant bits). OutGuess relies on specific

data handlers that would identify and modify redundant bits to carry the secret

message. OutGuess is able to handle different data formats as long as a suitable

handler is available. Table I presents the sources of colour drops used in the data-

colouring implementation.

The cryptographic hash of a Public Key Infrastructure (PKI) private key of the data

owner guarantees the colour drops contain information that ascertains ownership,

while the hash of the PKI public key of data recipient or cloud service is useful to

trace and highlight path of data loss or theft and the hash of the data content itself is

useful for detecting unauthorised modifications.

Table 4.2: Data Sources for Colour Drops Generation

Item Contribution

Data-file to be coloured Fingerprint to detect unauthorised

modifications to content

Private-key of data-owner Fingerprint to identify data owner

Public key of recipient or cloud-

service

Fingerprint to trace path of data-loss/theft

Furthermore, a password is used during the embedding process to encrypt the

colour drops thereby securing them against unauthorized modification and removal.

The use of the original data-file as well as suitable PKI keys such as pretty good

privacy (PGP) keys for creating the digital-fingerprint (watermark) guarantees

uniqueness (and entropy) while also satisfying other defining conditions of 𝐸𝑥, 𝐸𝑛

and 𝐻𝑒 such as, knowledge limited to data-owner and association to defined group

of users (or cloud-platform).

 60

4.3.1 Forward Colour Generator

Figure 4.2 shows the source code of the forward colour generator (fcg.sh) command-

line shell-script that generates the colour drops and uses them for colouring the

original data.

Figure 4.2: Forward Colour Generator Scripts (fcg.sh)

The script (fcg.sh) concatenates the md5 hashes of the three input-files to obtain a

unique digital fingerprint (384 bits) that forms the colour drops for colouring. For

portability, the md5 sums are generated using the “openssl” software application (a

command-line executable). The colour-drops are embedded in the original data

using the OutGuess steganography tool where the drops are treated as a "hidden"

message to be embedded in the original data.

The fcg.sh scripts can be briefly described thus. In this case, brunel_letter.jpg is the

data file to be coloured, id_dsa is the private key of the data-owner and

9FBB231E.asc is the public key of the cloud provider. At the prompt of the scripts,

the user provides the file name, a password, the user’s private key and the provider’s

public key – these are the input values. The “file” command then determines the

Multi-Purpose Internet Mail Extensions (MIME) type of the original data file. The

 61

implementation depends on the "file" command tool to determine MIME type of the

data to be coloured. The colour drops are then created by concatenating the

respective md5-hashes of the three input files, subsequently a temporary file is

created containing the drops and its file-name is created by prefixing the name of the

original data-file with the word “coloured”. Now the “outguess” utility is called to

embed the colour drops into the original data-file and saves to the pre-set output

filename for supported file types otherwise prints an error message (Line 19). On

successful completion of colouring a message is relayed to the user (Line 23) and an

alternative message (Line 25) in the case of failures.

In the resulting script (Line 10), the discovered MIME-type is used to ensure only

supported types are passed to the “outguess” tool, however, this idea may also be

used to also select alternative steganography tools that are capable of colouring data

types not supported by the "outguess" software application.

4.3.2 Backward Colour Generator

Figure 4.3 shows the source code of the backward colour generator script (bcg.sh).

The script extracts colour drops from a coloured file and compares with colour drops

generated directly from the input parameters. The script (bcg.sh) uses the OutGuess

steganography tool for extracting the colour drops (the hidden message) from the

coloured file with the supplied pass-phrase for decryption.

 62

 Figure 4.3: Backward Colour Generator Scripts (bcg.sh)

The script then generates a new set of colour drops based on the input parameters it

is then compared with the extracted set and a match or mismatch reported.

Comparison is carried out using the "diff" command-line tool.

In the case of the bcg.sh scripts, the input parameters would be the data that had

been coloured initially in this case coloured-brunel_letter.jpg, the original data file

which is brunel_letter.jpg, same password used in fcg.sh, the private key (of the data

owner) which is id_dsa. The “file” command determines the Multi-Purpose Internet

Mail Extensions (MIME) type of the original data file, the colour drops are created

and stored in a temporary file and the suffix ‘.txt’ is added to the filename.

The “outguess” utility is then called to extract the colour drops from the coloured data

file and saves to a pre-set output filename. If the coloured file’s MIME type is not

supported by “outguess”, an error message (line 21) is printed. The files containing

the extracted and generated colour drops are then compared and a message on

 63

successful verification (line 30) or an error message if the drops don’t match (line

32). The bcg.sh also depends on an additional tool the “diff” command to determine

if the extracted colour drops match the generated colour drops.

4.3.3 Theft and Loss Responsibilities

An important feature of this data colouring implementation is its ability to highlight a

path of data-loss/theft based on fingerprinting.

Table 4.2 presents a simple matrix showing how the theft/loss responsibilities (path)

may be determined from the corresponding inputs used during the data colouring

process. In Table 4.2, row 1 represents the classical watermarking process as only

the identity of the owner is verifiable from the colour drops (watermark).

Rows 2, 3 and 5 suggest that colour drops based on the corresponding combinations

would not carry owner information and in such cases, the drops cannot be used to

prove ownership of the data. Row 4 and 6 suggests combinations for which the

drops may also be used to identify either a Cloud Service Infrastructure (CSI) or a

Cloud Service Provider (CSP) or single-recipient. Row 7 highlights the combination

for which drops are capable of also identifying individual CSP, CSI and recipient.

From Figure 4.1, the verification of colour drops is expected to be carried out by the

data-owner.

Table 4.3: Theft / Loss Responsibilities

 Private Key of data-

owner

Public key of cloud-

service

Public key of data

recipient

INFORMATION OBTAINED FROM

DROPS

1 YES NO NO Identity of data-owner

2 NO YES NO Identity of CSI

3 NO NO YES Identity of recipient (CSP)

4 YES YES NO Identity of both owner and CSI

5 NO YES YES Identity of both CSI and recipient (CSP)

6 YES NO YES Identity of both owner and recipient (CSP)

7 YES YES YES Identity of owner, CSI and recipient (CSP)

 64

4.3.4 Mathematical Representation

The cryptographic hash used in generating the colour drops is based on the

Message Digest checksum algorithm popularly called MD5, which is usually used to

verify data integrity and authenticity [81], [82].

According to Hwang and Li in [53], the expression for colour drops can be

represented by a combination of 𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒 where 𝐸𝑥 is known only to the data-

owner, 𝐸𝑛 and 𝐻𝑒 are the values or public key component of the cryptographic key-

pair that may be shared by users on the cloud platform. Specifically, 𝐸𝑛 is known or

shared only among the users of a common group on the platform and 𝐻𝑒 is known or

shared by all the users on a particular platform irrespective of the group they belong

on the platform.

In this implementation, the generated colour drops (before

embedding/steganography) are represented mathematically by the expression of

𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾) + 𝑓(𝑃𝑢𝐾) where 𝑓(x) is the md5checksum operation, 𝑂𝐹 is the

original file, 𝑓(𝑂𝐹) is the md5checksum of the original file, 𝑃𝑟𝐾 is the private key of

the file,𝑓(𝑃𝑟𝐾) is the md5checksum of the private key,𝑃𝑢𝐾 is the public key of the

recipient or CSP and 𝑓(𝑃𝑢𝐾) is the md5checksum of the public key.

In the data colouring implementation, 𝐸𝑥 may be represented by the Equation (4.1).

𝐸𝑥 = 𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾) (4.1)

As these two items are known only to the data-owner, which implies that

𝐸𝑛 + 𝐻𝑒 = 𝑓(𝑃𝑢𝐾) (4.2)

It follows that the embedded colour drops is then given by Equation (4.3).

𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒 = 𝑅𝐶4(𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾) + 𝑓(𝑃𝑢𝐾), 𝐾) (4.3)

where 𝑅𝐶4(𝑥, 𝐾) is the encryption function as it is implemented in “outguess” and 𝐾

is the password supplied by the data-owner.

Mathematically, the simple watermark technique may be described as the

embedding of a watermark (𝑊) in a data set (𝐷) such that:

 65

• 𝑊 can be reliably located and extracted from 𝐷

• 𝑊 is large (the embedding has a high data rate).

• Embedding 𝑊 into 𝐷 does not adversely affect the functionality of 𝐷

• Embedding 𝑊 into 𝐷 does not change any statistical properties of 𝐷.

• 𝑊 has a mathematical property that allows us to argue that its presence in 𝐷 is

the result of deliberate actions.

In data colouring, the watermark is defined as:

𝑊 = 𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒 (4.4)

that is,

𝑊 = 𝑅𝐶4(𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾) + 𝑓(𝑃𝑢𝐾), 𝐾) (4.5)

Generally, the colouring process represented a transformation of 𝐷 by 𝑊 that is:

𝐷′ = 𝑇(𝐷, 𝑊) (4.6)

where 𝐷′ is the resulting coloured data, 𝐷 is the original data, 𝑊 is the colour

drops/watermark and 𝑇() is the data-type specific transformation function used

during colouring to embed the drops into the original data such that substituting the

above we have

𝐷′ = 𝑇(𝑂𝐹, 𝑅𝐶4(𝑓(𝑂𝐹) + 𝐹(𝑃𝑟𝐾) + 𝑓(𝑃𝑢𝐾), 𝐾)) (4.7)

Equation (4.7) is the mathematical representation of the coloured data set. Where 𝐷′

is the coloured data, 𝑂𝐹 is the original file or data, 𝑇() represents the embedding of

W into 𝐷 (data-type specific transformation during steganography), 𝑅𝐶4(𝑥, 𝐾) is a

function that encrypts x based on the password 𝐾, 𝑓() is the MD5 checksum

function, 𝑃𝑟𝐾 is the private key of data-owner and 𝑃𝑢𝐾 is the public key of the

recipient /CSP or CSI.

The above equation suggests that in this implementation the colour drops

(represented by 𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒) is protected by an encryption function and

subsequent embedding in the original data in such a way that the functionality of the

original data is preserved while making its unauthorised extraction or removal

difficult.

 66

4.4 Cloud Platform and Testing

Simulation is already a widely used research technique in Science and Engineering,

for example, simulation is heavily used in areas such as climate-modeling, drug-

design, material-science, supply/logistics and protein- analysis. However, simulation

in Cloud Computing requires Cloud specific solutions due to the service oriented

nature of clouds combined with other features such as elasticity of resources, multi-

tenancy of resources, multiple layers and components. The virtualization of

resources is fundamental to Cloud Computing and so it is vital that the simulation

process can present virtualized resources for improved simulation of resource

elasticity. In Cloud Computing, the selection, scheduling, allocation and consumption

of resources is typically governed by algorithms that may be influenced by both

internal and external factors such as user requirements, current consumption levels,

availability requirements and other legal requirements (for example SLA documents)

[83] which may also affect direct or in-direct Trust. Thus, the accuracy of

simulations in Cloud Computing platforms is enhanced by the ability to simulating

virtualized resources and complex scheduling/allocation of elastic resources.

Researchers in [84] and [85] provided a comprehensive list of Cloud simulators that

satisfy these requirements, however, none appear to provide objects that may be

used to direct study Trust in Cloud Computing. Researchers in [86] carried out a

research on Simulation of Security on computational GRIDs with a focus on

improving scheduling by including security considerations. Researchers in [87]

focused on simulation of Trust relationships and consider both direct and reputation

based Trust in computational grids using both discrete and Fuzzy Logic algorithms

for selection. Researchers in [88] examined Trust in distributed and peer-to-peer

networks and considered discrete algorithms.

Shaikh and Sasikumar [84] provided a comparison of several different Cloud

simulators including Eucalyptus and the CloudSim toolkit (this well-known Cloud

Simulator written in the Java programming language) based on some selected

features. [85] compared a wider range of Cloud Computing simulation tools including

CloudSim toolkit, CloudAnalyst (which appears to be graphical and similar to

CloudSim), GreenCloud (based on Network Simulator NS2), iCanCloud, MDCSim

(from the University of Pennsyvania), NetworkCloudSim and VirtualCloud. Both

 67

[84] and [85] rated CloudSim within the top four tools for Cloud Simulation. Other

works including [89] and [90] present aspects of CloudSim including portions of its

rich API for simulating various cloud objects including large scale IaaS, PaaS or

SaaS cloud implementations. Figure 4.4 shows the basic architecture of CloudSim

2.0.

Figure 4.4: CloudSim Architecture (source [89])

[91] described a basic scenario of using CloudSim where a datacenter (object) has

one or many Host (object), and each host has one or many VMs. Each VM deals

with many cloudlets (or units of a cloud service). In CloudSim, each VM is assigned

several cloudlets which are processed using a selected scheduling policy such as

time-sharing and space-sharing. Simulation of Cloud IaaS layer involves extending

the Datacentre object, which manages a number of host objects which in turn

manage VM during their life cycle. A host represents a physical computing server

and is defined with a pre-configured processing capability (MIPS - millions of

instructions per second), memory (RAM) size, storage capacity and a provisioning

policy for the allocation of processing cores to virtual machines. The hosts are

assigned to one or more VMs based on a VM allocation policy that should be defined

by the IaaS service provider. CloudSim hosts may be single-core or multi-core

hosts. Simulation of Cloud PaaS layer involves the allocation/provisioning of virtual

 68

machines on hosts that satisfy some characteristics which include storage, memory,

software environments and availability or zone requirements. In CloudSim, cloudlets

may be used to define custom software environments/ applications that can be

deployed within a VM instance using a virtual machine allocation policy

(VmAllocationPolicy). The default allocation policy available in CloudSim assigns VM

to hosts on a First-Come-First-Serve (FCFS) basis. Implementing a Trust based

policy would require extending the default policy or extending the VmAllocationPolicy

class.

For Cloud SaaS layer, CloudSim uses cloudlets to model individual cloud-based

application services (such as content delivery, social networking, and business

workflow). However, each application is defined in terms of its computational

requirements/complexity and requires specification of program instruction length,

program size, data transfer overheads, output data size.

As shown in Figure 4.5, simulating complex large scale Clouds with CloudSim does

not require knowledge of the underlying core simulation engine and the results from

the simulation engine include the result of processes, the time consumption of each

cloudlet. [92] and [93] show the extensibility of the CloudSim toolkit. In [93], the

toolkit is complemented with a completely new set of objects were created to provide

fine-grain simulation of network components and behaviour as shown in Figure 4.5.

Figure 4.5: NetworkCloudSim architecture (source [93])

 69

However, in this research work, an experimental approach using the Eucalyptus

cloud platform was used rather than simulation using CloudSim. The experimental

approach allows studying addition real-world situations that is possible with

simulations.

A trusted cloud computing platform was deployed using Eucalyptus [94] enabled by

the TPM [95]. The cloud platform integrates end-user accessible TPM integrity

measurement/verification without the need for “custom” software or patches.

Furthermore, on the platform, security is enhanced by the inclusion of an instance-

level file and directory integrity checker for selected files and directories. In this cloud

deployment approach, individual organisations or users share a common cloud

platform and sometimes not necessarily retaining control over their sensitive data or

applications deployed on (foreign) infrastructure.

 The data-colouring implementation reported in this work is aimed at providing

integrity/protection of uploaded data as it would ensure that each operator/user can

retain and verify ownership of sensitive data with a flexible access model based on

data sharing needs.

The implemented scripts may be obtained from the url

https://powersystemscloud.brunel.ac.uk:8888/brunelece. Figure 4.6 shows the fcg.sh

script running during the colouring of a jpg image. The first input item to the script is

the jpg image to be coloured followed by the encryption password.

 70

Figure 4.6: Generating colour drops (fcg.sh running)

As shown the data-owner is identified by a DSA private-key taken from the secure

shell (SSH) application, while a PGP public-key belonging to the cloud-service

provider (Brunel University London) is used to identify the cloud-platform/service.

Figure 4.7 shows the output of the bcg.sh script during the successful verification of

the coloured file. As shown both the original file as well as the coloured version is

required for successful verification. The steganography tool (outguess) can extract

the colour drops from the coloured file once the right password is provided. The

original file is needed for the generation of a new set of colour-drops.

Figure 4.7: Extracting colour drops with bcg.sh

Figure 4.8 shows the output of the bcg.sh script when detecting modifications to the

coloured data file where a word was changed in the file. As shown, the

 71

steganography tool would fail to reliably extract the colour drops from the tampered

file and produces an error message accordingly.

Figure 4.8: Verifying colour drops with bcg.sh

4.5 Summary

In this chapter we have presented a technique of data colouring for securing user

data resources in cloud platforms.

The implementation creates colour drops from concatenated fingerprints that allow

the verification of data owner, cloud service provider or recipient while also

protecting against unauthorised modifications.

The concept of data colouring presented in this chapter can be applicable to all data

formats; though as it is for now based on the OutGuess steganography tool, the

present implementation discussed in this chapter can only be used on the following

digital image formats: JPEG, PPM and PNM. Future work would investigate the

support of additional data formats and other steganography tools.

 72

Chapter 5

Modelling Trust in Cloud Computing based on Fuzzy Logic

As mission critical applications continue to be deployed on the cloud platform, a

trusted distributed end-user attestable multilayer security tool to verify the trustworthy

state of the platform is necessary. This is important as the end-user wants to be

confident that the service is available and reliable, with accountability and non-

repudiation. Tradition security and privacy controls continue to be implemented on

cloud but due to its fluid and dynamic nature, research work in the area of end-user

attestable trust evaluation of the cloud platform seem to be limited. With the nature

of cloud, even though users are given and usually sign service level agreements with

the providers[96] these are still not enough, the user would want a transparent

system with a facility that allows the user to trace or determine the relationship

between varying trust relationships across the cloud layers, components, algorithms

and applications especially at large scale. A trust model using fuzzy logic was

deployed; this model is useful in determining the trust values for a cloud platform or

service. Using this model an end-user is also able to classify and compare various

cloud platforms. The results obtained show that the model deployed in this research

improves end-user’s confidence when selecting or consuming cloud resources.

5.1 Introduction

Several security protocols and tools have been enhanced and adopted to fit cloud

computing but few of these take into account specific issues as it relates to the cloud

end-users [97], [98]. Cloud end-users are unable to fully adopt the cloud platform as

it lacks transparency, accountability and governance unlike other computing

technologies [97]. A cloud end-user wants to be able to have control of the services

they are accessing, whether across the different cloud layers or physical locations.

While a lot of research has gone into making cloud computing more secure by

enforcing security mechanisms like encryption, firewalls, and security groups,

obstacles to trust still hinder potential users from completely adopting “cloud” (as it is

sometimes called). End-users are concerned about the “faceless” provider taking

control and having access to their resources during processing or storage in the

 73

cloud. The end-user wants to be more aware about what happens at the backend of

the cloud platform.

An end-user’s trust concern does not lie entirely on technology but also lack of

transparency. While an end-user desires a secure platform, the end-user also wants

measures that would promote transparency and accountability and this is lacking

even among major providers like Amazon EC2 or S3, Microsoft Azure and Google.

Insufficient information could lead an end-user to distrust even the most secure

system [97], [99].

In general, it may be stated that the overall trustworthiness of any cloud resource

may be derived from an algorithmic sum of trust levels (security measures) that are

enforced or available across all layers or parts of a computing system [100].

In the case of cloud computing, the ability to probe and test on-demand the

trustworthiness of all assigned or consumed computing resources would make end-

users confident of the platform as it provides them with additional assurance of data-

integrity both during storage and processing [101]. An objective aggregation or

evaluation of various security mechanisms configured across the layers of a cloud

platform would provide the end-user with useful information on the trustworthy state

of the platform.

As stated by Andert et al in [102] the key principle of any security design and

implementation is that security must be built into every layer of the solution. The

researchers also defined trust modelling as the process performed by a security

architect to define complementary threat profile on a use-case-driven flow analysis.

The model identifies the mechanisms that necessary to respond to a specific threat.

A trust model includes an explicit validation of an entity’s identity.

Figure 5.1 shows the three popular layers of the cloud platform, these are also

known as the delivery models – IaaS, PaaS and SaaS. From Figure 5.1, we also

see that an end-user who subscribes to a SaaS provider or any of the services may

not be concerned about the trustworthiness of the PaaS layer or other layers but

maybe concerned with the trustworthiness of the SaaS layer as that is the resource

the end-user wants; or the end user maybe subscribing to all the services and

maybe concerned with the overall trustworthiness of the platform.

 74

Figure 5.1: Cloud service delivery models and trust interaction

For the IaaS layer, the physical environment of the host (server) may be protected by

a Data-Cetre-Policy (DCP), which ensures that the server host is protected against

power-outages, loss of connectivity and even limits access to authorised personnel.

Typically, SLA may be used to monitor and guarantee the enforcement of an

adequate DCP. Furthermore, the server (host) computer which is part of the IaaS,

may be secured using a suitable mechanism such as TC, which refers to the TPM

dependent chain of trust (CoT) that is built from the cryptographic storage of

measurements for the various component parts of a computing platform including

BIOS, boot-loader, O.S. kernel, system libraries and/or virtualization middleware.

In the process of TC verification, the current set of measurements is compared

against preset values using a verifier application such as openPTS, which can also

act as a collector [103]. Finally, most implementations of the virtualization engine

(part of the IaaS layer) include an intrusion detection security mechanism known as

security zone or security groups that serve mainly to isolate or prevent unauthorized

communications or interactions between instances that belong to different security

groups or zones.

In the PaaS layer, the virtual machine may be protected by a suitable mechanism

such as software based virtual TPM (vTPM) that provides TC like protection for the

virtual machine or instance. That is, a chain of trust is built from the cryptographic

 75

storage of measurements for the various component parts of the instance including

BIOS, boot-loader, O.S. kernel, system libraries and/or applications.

Similar to the TC verification process, the current set of measurements (from the

vTPM) is compared against preset values using a verifier application such as

openPTS. PaaS layer access to an instance is typically over some secure channel

such as Secure Shell (SSH), which includes a direct (peer-to-peer) key-based

verification process before securing the communication channel using cryptographic

encryption [104].

In a high security context, an instance may also include an Intrusion Detection

Engine (IDE) for ensuring that contents (applications, files and data) of the instance

have not been tampered with or have only undergone authorised modification or

changes.

At the SaaS layer, connections to services are commonly protected using the secure

socket layer (SSL), which is based on the use of certificates for both identification

and securing the communications channel cryptographically.

Self-signed SSL certificates may be self-signed for arbitrary (take-it-or-leave-it) trust,

while certificates from external third party certification authorities provide in-direct

trust. For high security, an additional security mechanism such as DC secures the

data for cloud-based processing and storage. In the DC implementation (as

discussed in Chapter 4), the original data is coloured (via steganographic

techniques) using digital bits that can uniquely identify the data-owner, cloud-service

and data-recipient which can help in tracing the path through which a data loss or

theft happened in the event it happens.

For any cloud platform to be secure and trusted, the individual layers (IaaS, PaaS

and SaaS) of the platform must be secure. As may be deduced from the above

descriptions, there is no “one fit all solution” for securing all the layers [105]. This

work derives a unified trust value for a cloud platform from the fuzzy combination of

security states of eight different security mechanisms across all cloud layers. The

approach is based on attribute / identity trust with elements of direct and in-direct

trust. The choice of fuzzy logic is informed by the ability of fuzzy logic to allow

representation of any information with some varying (non-crisp) degree of

membership [106].

 76

The results from this research show that an accurate trust value may be obtained in

as little as 4 transactions for low security platforms to up to 8 transactions for high

security ones, this appears to be faster than other comparable models.

The trust model presented in this research may be used to evaluate relative trust

derivable from diverse security mechanisms configured on a cloud platform and may

also be used as a reference or index tool for comparing the relative trust of cloud

platforms. Section 5.2 presents an analysis of related work. Section 5.3 discusses

trusted computing and fuzzy logic, the proposed model is discussed in section 5.4

and its implementation and testing is presented in section 5.5. The results are

evaluated in section 5.6 and section 5.7 concludes the chapter.

5.2 Related Work

Security and trust related research though not new is still an emerging field in cloud

computing. Considering that cloud computing itself is an evolving and unique

technology, serving a variety of users with various needs and demands, a single

security architecture may be impossible to achieve [5], [27]. Most cloud security

related research appear to focus more on the IaaS or related layers with limited or no

considerations for other layers that make up the cloud platform.

Researchers in [107] used a subjective logic approach to evaluate trust. While

researchers in [108] provided a framework without adequate information about its

implementation. Wu in [109] ascertained that a platform can only be secured when

all players or stakeholders put their heads together and used a fuzzy reputation for

trust management in cloud based on detection of malicious attacks with some set of

metrics. Fan et al in [110] considered objective and subjective trustworthiness, with

subjective trust based on SLA(s) and some quality of service (QoS) attributes. The

approach involved users going through some third party trust providers. The

researchers in [111] though considered a trust evaluation system using hierarchical

fuzzy inference system for service selection, they only considered infrastructure as a

service (IaaS), they didn’t consider the other services.

Researchers in [112] also considered evaluating trust in a cloud computing

environment but the system was evaluated using past experiences of previous

customers by assigning a reliability weight to customer’s feedback but a high

 77

reliability weight doesn’t necessarily mean the platform is trusted and secure at later

time.

My approach instead focuses on direct monitoring by end-users themselves as this

eliminates the doubts that trust ratings are without bias and/or may not completely

relevant to the end-user’s desired scenarios.

Researchers in [113] presented a trust based approach using trusted computing

which is applied only at the IaaS layer and as earlier mentioned a cloud end-user

also wants security mechanisms configured across all the layers of a cloud platform

to enable the end-user make a more informed decision. The researchers in [114]

proposed data access control mechanism but the security considerations were not

sufficient.

Researchers in [115] extended the trusted computing chain of trust from the physical

infrastructure domain (or IaaS layer) to the PaaS Layer. It is clear that a trust value

is only obtainable on cloud platforms that have implanted this extension. While

researchers in [54] calculated trust based on historic, direct and recommended (in-

direct) values, they do appear to consider attributed trust that may be derived from

the identified behaviour of the platform. Also, their proposed model does not appear

to cater for diverse end-users needs and requirements.

In general, it may be stated that the overall trustworthiness of any cloud resource

may be derived from an algorithmic sum of trust levels (security measures) that are

enforced or available across all layers or parts of a computing system [100].

In the case of cloud computing, the ability to probe and test on-demand the

trustworthiness of all assigned or consumed computing resources would make end-

users confident of the platform as it provides them with additional assurance of data-

integrity both during storage and processing.

The research work on trust presented in this chapter involves the ability of a user to

evaluate the trustworthiness of the resources on a cloud platform using fuzzy logic.

The model was evaluated and compared against two cloud trust models they are

Dynamic multi-dimensional trust model (DMTC) as presented by [116] and Trust

model based on fuzzy mathematics (TMFM) as presented by [54]. DMTC

 78

dynamically reflects a trust relationship in a cloud system by calculating direct trust

based on time evaluation and space evaluation for recommended trust.

TMFM computes and evaluated the trust status of a platform based on fuzzy

mathematics. The evaluation is based on direct observation between entities.

5.3 Trusted Computing and Fuzzy Logic Theory

Generally, trust in computing tend to be modelled after human relationships as users

tend to exchange and share ideas based on experiences thereby indirectly or

subconsciously building an impression of the services based on previous users’

experiences and in turn any perceived service. Users would now tend to form an

impression based on the previous user’s experience after interacting with the old

user so even if the new user hasn’t had the experience he forms his impression

based on the previous user [99], [100], [117]. The concept of trust may also be

applied to the area of service delivery, for example, a party may “trust” another party

to deliver quality service, in which case trust becomes a measure of the service-

availability. In the case of security, if the party’s trust is based on the availability of

some security measures, then trust becomes a measure of the security available and

attested to. Authors in [88] classified trust into objective and subjective trust as

known as direct and in-direct trust. Objective trust is obtained from the direct

interactions between two parties; while, subjective trust involves the impressions

obtained from third parties.

As shown in Figure 5.1, trust in cloud should be examined over four different layers

(Physical, IaaS, PaaS and Saas). In this work, trust at the physical layer is derived

from the defence capability of individual physical devices. A single cloud host

(physical server) which is an IaaS component may be secured using the TPM based

Trusted Computing (TC) industry standard[103]. As shown in Figure 5.2 [115], a

chain of transitive trust is established from hardware (core Root of Trust) to the

software layers (virtualization) across the BIOS device, the boot-loader and

operating system.

 79

Figure 5.2: Linear and tree based on trusted computing of a single host

In Figure 5.2, the chain of trust that exists between the core root of trust to the

virtualization machine manager layer may be modelled based on the linear transitive

trust principle where the final trust is the minimum offered by each intermediary

object that is part of the chain. Each stage of the TC chain (cRMT to VMM) shown in

Figure 5.2 may be represented as a node in an N node graph system where the trust

level between two adjacent nodes would be given by the expression [115]:

𝑇(𝐴, 𝐵) = min {𝑇(𝐴, 𝐵), 𝑇(𝐵, 𝐶), 𝑇(𝐶, 𝐷), … , 𝑇(𝑁 − 1, 𝑁)} (5.1)

Similarly, the trust relationship between the virtualization machine manager and the

virtual machines is a one-to-many relationship of direct trust and may be modelled by

a tree graph where the trust relationship is the maximum trust level obtained from

each directly connected object. That is, assuming a one-to-many node (𝑉𝑀𝑀 𝑡𝑜 𝑣𝑚𝑖)

system where T denotes the Trust level between two adjacent levels.

𝑇(𝑉𝑀𝑀, 𝑣𝑚) = max {𝑇 (𝑉𝑀𝑀, 𝑣𝑚1), 𝑇(𝑉𝑀𝑀, 𝑣𝑚2), … , 𝑇(𝑉𝑀𝑀, 𝑣𝑚𝑖)} (5.2)

While, the virtual machines may include a virtual TPM device as shown in Figure 5.2,

their virtual nature precludes their consideration in the overall security and trust of

 80

the IaaS layer. Typically, the IaaS layer is a collection of physical resources (such

as hosts) that may be co-located in a single data-centre or distributed across

geographically separated data-centres and the net trust expected from the IaaS

service layer is obtained from the multiplicative sum of the trust levels of individual

physical hosts and resources. It is clear that the presence of a single compromised

or unsecured host would negatively affect the trust of all hosts in a data-centre or the

IaaS layer.

𝑇𝐼𝑎𝑎𝑆 layer = 𝑚𝑖𝑛 (𝑇𝑅1, 𝑇𝑅2, … , 𝑇𝑅𝑛) (5.3)

In many cloud implementations, the cloud PaaS layer is mainly secured using either

zones or firewalls and in some cases both are implemented at the Cloud middle-

ware and the trust replications may thus be modelled by the equation with the

number of virtual machines limited to the finite set of vm(s) sharing the same zone.

In addition, trust at the PaaS layer may be complemented by a defence capability

such as the inclusion of an IDS engine directly into the PaaS software-environment.

In which case, the IDS is used to provide a baseline control against which the

contents (files and data) of the PaaS system may be compared to detect

unauthorised modifications or updates to the PaaS software-environment caused by

trojan horses, viruses or other malicious activities. The IDS engine is typically a

separate application that runs within a vm, consumes resources and provides a

measure of the one-to-many (tree) direct trust of other applications within the vm.

That is, the IDS trust may be modelled by:

𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝) = max { 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝1), 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝2), . . , 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝𝑛)} (5.4)

where 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝𝑛),represents the trust measure provided by the IDS engine for a

particular application. The PaaS environment is typically created from a software

hierarchy consisting of a boot-loader, operating system kernel, shell and libraries.

The final security of individual applications therefore depends on the security of this

underlying software stack. That is:

𝑇 (𝐼𝐷𝑆, 𝑎𝑝𝑝𝑥) = min{𝑇(𝐼𝐷𝑆, 𝑏𝑜𝑜𝑡𝑙𝑜𝑎𝑑𝑒𝑟), 𝑇(𝐼𝐷𝑆, 𝑂. 𝑆 − 𝐾𝑒𝑟𝑛𝑒𝑙), 𝑇(𝐼𝐷𝑆, 𝑂. 𝑆 −

𝑠ℎ𝑒𝑙𝑙), 𝑇(𝐼𝐷𝑆, 𝑂. 𝑆 − 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠)} (5.5)

 81

PaaS layers are typically provided by virtual machines from the underlying IaaS

layers and the trust relationship between the IaaS and PaaS layers may be modelled

as a trust fusion or average process.

𝑇 (𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆) = max{ 𝑇(𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆1), 𝑇(𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆2), . . , 𝑇(𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆𝑛}

 (5.6)

And for each PaaS

𝑇 (𝑃𝑎𝑎𝑆) = 𝑇 (𝐼𝑎𝑎𝑆𝑥, 𝑃𝑎𝑎𝑆𝑥) + 𝑇 (𝐼𝐷𝑆𝑥, 𝑎𝑝𝑝𝑥) (5.7)

Where the “+” sign represents the trust fusion process and 𝑇 (𝐼𝐷𝑆𝑥, 𝑎𝑝𝑝𝑥)represents

the added component provided by the internal IDS engine.

In cloud implementations, the SaaS layer is typically protected by securing the

communication layer against man-in-the-middle attacks using a suitable mechanism

such as secure socket layer (SSL) connections or secure shell (SSH) connections.

Both SSL or SSH represent identity trust relationships based on possession of

matched certificates or credentials, however, while SSL may require a 3rd party

certification authority, SSH connections represent direct-trust between two parties.

SSH connection may be modelled as simple vector, where an unknown host is not

trusted while a known or matching host is fully trusted. It is noted that a known but

not-matching host is completely untrusted.

T (SSH) = {
0 𝑖𝑓identity − trust exists but is not matched
1 if identity − trust is matched

 (5.8)

Although trust in SSL is different from SSH, the simplest form of SSL connections

may similarly be modelled by:

T (SSL) = {

0 if identity − trust is NOT verified
0 if identity − trust is revoked
1 if identity − trust is verified

 (5.9)

 82

However, the ability to revoke certificates suggest that SSL connections may be

better modelled by more complex algorithms such as EigenTrust or PeerTrust where

the group of peers is limited to a well-known set of peers or community.

At the application level, data at the SaaS layer may be protected against theft or loss

using a suitable mechanism such as hashing, data-colouring, encryption or

obfuscation. Data-colouring could be an optimal technique for cloud platforms or

applications as coloured data may still be processed without overhead (the colouring

is transparent) while also providing the ability to detect tampering, identifying and

reporting data-loss. Considering security related metrics of confidentiality, integrity

and availability in a cloud context, the coloured-data (output of a data-colouring

process) is able to maintain integrity and availability of data during processing.

While, hashing as a data-protection technique can only provide integrity, obfuscation

provides only limited confidentiality; data-colouring provides integrity and availability;

while encryption provides confidentiality and integrity but not availability. In situations

where all multiple protection mechanisms are in use, it is possible to assign weights

to each based on the relative contribution of the individual mechanism.

The SaaS layer trust may be modelled as a fusion of trusts derived from the security

values of its connections and data-protection mechanisms. Typically, a SaaS service

requires an underlying PaaS. The trust relationship between a PaaS and a SaaS

application is typically a 1-to-1 nature which may be modelled as a discount trust

process.

The simulation for this researcher would be implemented to accommodate different

scenarios. These scenarios would be deployed to accommodate different levels of

trust, this is achieved by deploying different security techniques across different

layers and this in turn can be evaluated to reflect the different levels of trust in the

platform.

Since no computing system can be completely trusted as every system is “only as

secure as its weakest link”, the same can be said of the cloud system; therefore,

categorically stating a system is completely trusted or not may not be a true

reflection of the system.

 83

Fuzzy logic which is a computing approach that is based on “degrees of certainty”

includes cases of trust not just based on 0 and 1 (low or high) but it allows the

inclusion of various cases in between such as low to medium, medium to high, etc.

Fuzzy logic makes an aggregate of various parameters and based on certain

thresholds makes a decision, it is suitable for modelling uncertainties. Type 1 fuzzy

set or type 2 fuzzy set can be applied to the different cases for decision making[118],

[119].

In this chapter, fuzzy logic evaluation is used to calculate cloud trustworthiness

based on the user’s needs and satisfaction. The user may only want to know the

trust state of the IaaS and doesn’t mind about PaaS and SaaS as the user doesn’t

need that service or maybe only concerned with the trust state of IaaS and PaaS and

not SaaS or vice versa. Using fuzzy logic approach, trust values are combined to

enable the user decide the trustworthiness of the platform or services.

5.4 Proposed Model

The security assessment of a cloud platform should be of paramount importance to

any user regardless of the service required. Researchers in [108] listed some

parameters necessary for measuring the overall security of a cloud platform and the

deployed service.

The cumulative crisp sum of security values is used to evaluate the trustworthiness

of the cloud platform or the deployed service. In a dynamic world, security is not

static but ever evolving, crisp value representation (a 1 which is “present” or a 0

which means “absence”) would only provide a theoretical or expected (or possibly

inaccurate) state of the platform. In this section, we propose a multi-layer security

trust model (MLSTM) that is based on FLC system with the following characteristics

[120]:

• State changes are based on Gaussian fuzzy numbers

• Various operators are used to represent the rules

• The overall control action of the system is computed to reflect the

accumulated security strength.

 84

As shown in Figure 5.3, the proposed Multi-Layer Security trust model (MLSTM) cuts

across the well-known layers of a cloud platform – IaaS, PaaS and SaaS.

Trust evaluation at any layer is derived from the identified behaviour of individual

security mechanisms at distinct layers of the platform. For the IaaS layer, the trust

value is obtained from a FLC system that combines verifications of the TC, ID

security mechanisms and an adequate DCP. Similarly, at the PaaS layer, trust value

is obtained from the FLC combination of verifications of the SSH, IDE and vTPM

security mechanisms, while the SaaS layer trust value is obtained from the FLC

combination of SSL and DC security mechanisms.

In our model, the end-user is presented with a single trust value derived from the

FLC combination of trust values from IaaS, PaaS and SaaS layers which may be

used to decide if platform is trustworthy or not.

Figure 5.3: Multi Layer Security Trust Modell (MLSTM) Concept

Fuzzy sets are different from simple every day probabilities as with probability the

even would happen or it would not happen leading to a crisp value of true or false –

1 or 0, therefore the operators of the classic set theory need to be redefined to fit

membership functions for values between 0 and 1. Crisp representation imposes a

sharp boundary on a set where each member of a set is assigned 1 while a member

outside the set is assigned a value of 0, that is in crisp representation an element

belongs to a set or not.

𝓍 ∈ Χ 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 1 (5.10)

or

 85

𝑥 ∉ 𝑋 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 0 (5.11)

In the crisp interpretation, a given cloud (x) is secure if it is a member of the set of

secure clouds (X) as presented by equation (5.10), while the converse is true that is

a given cloud platform is NOT secure when it is NOT a member of the set of secure

clouds (X) as shown in Equation (5.11).

However, practically, it is possible that a sub-set part of a cloud platform to be secure

(member of set X) while some other part of the same cloud service is not secure (not

a member of X).

In Set Theory, the intersection of two crisp sets is composed only of the elements

that are present in both sets while the union of the sets is derived from elements that

are present in either of the sets. For example, in digital electronics, binary logic

circuits can assume distinct (crisp) states of 1 or 0, the intersection of the two states

in the AND logic gate results in the lower state.

While the union of the two sets which may be illustrated by a logical OR gate

operation in digital electronics would take the higher value of the sets as shown in

Table 5.1

Table 5.1: Binary Logic Representation of Intersection and Union

Intersection

 (Logical AND)

Union

(Logical OR)

1 AND 1 = 1 1 OR 1 = 1

1 AND 0 = 0 1 OR 0 = 1

0 AND 1 = 0 0 OR 1 = 1

In fuzzy logic, membership of a given element in a set is determined as a

fractional value between 0 and 1 known as the degree of membership, which

conveys an idea of much of that element is contained within a given set.

It is possible to define an arbitrary minimum membership value say 0.5 that

should be increasing for a cloud platform to be indeed trusted. The degree of

membership function would be thus:

 86

2 [𝜇𝐴(𝑠)]2 𝑖𝑓 0 ≤ μ
A
≤0.5

1 − 2 [1 − 𝜇𝐴(𝑠)]2 𝑖𝑓 0.5 ≤ 𝜇𝐴 ≤ 1

(5.12)

With the Gaussian membership function:

μ
Ai

(𝑥) = exp(−
(𝑐𝑖−𝑥)2

2𝜎𝑖
2) (5.13)

In Equation 5.13, 𝜎 is the standard deviation and c is the centre of the ith fuzzy set of

𝐴𝑖 . the membership function always returns values in the range of 0 and 1.

The degree of membership from Fuzzy Logic can be used to support vague

concepts and model real world situations including the dynamic evolution/changing

nature of security of a cloud platform with much higher accuracy compared with a

crisp representation. That is, with fuzzy representation, it becomes possible to say a

given cloud platform is x% secure or y% unsecure.

Alternatively, a cloud platform cannot be said to be completely secure, it may be

secure to a certain degree or level even when the components that make up the

system are assumed to be fully secured or completely unsecure, this also means a

cloud platform must be able to offer real-time security [121].

Based on fuzzy logic, the degree is usually a real number between the range of 0

and 1. While, the crisp representation of cloud security can provide a binary (“True”

or “False”; 1 or 0) answer to the question of “Can I trust the cloud platform?”, the

fuzzy representation goes further and can provide an answer to the question of “how

trustworthy is the platform?” even when presented with diverse or varying

requirements.

With fuzzy logic, any given cloud platform would have a varying degree of

membership in two distinct universal sets of secure-clouds and unsecure-clouds. For

an element with varying degree of membership in two different sets, the membership

 87

value in the resulting intersection (fuzzy AND) of both sets would be the lower of

both membership values, while the membership value in a union (fuzzy OR) of both

sets would be the higher value.

That is, the fuzzy OR operation is given by:

𝜇𝐴∪𝐵(𝑥) = max{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} (5.14)

While, the fuzzy AND operation is given by:

𝜇𝐴∩𝐵(𝑥) = min{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)} (5.15)

Figure 5.4 shows the four major components of a FLC system, which according to

[19] are:

 The fuzzification interface acquires the values of input variables and performs

a scale mapping that transfers the range of values of inputs variables into

corresponding universes of discourse, this is the range of all possible values

for an input to a fuzzy system and converts input data into suitable linguistic

values which may be viewed as label of fuzzy sets.

 The "linguistic (fuzzy) control rule base", provides necessary definitions which

are used to define linguistic control rules and fuzzy data manipulation, the rule

base characterizes the control goals and the control policy of the domain

experts by means of a set of linguistic control rules.

 The fuzzy inference engine is the kernel of a FLC; it simulates a process

similar to that of of human decision making based on both fuzzy concepts and

inferring fuzzy control actions from the rules of inference in fuzzy logic. The

inference type used in this research is the Mamdani-type inference.

 The defuzzification interface performs a scale mapping of the range of values

of fuzzy output variables into corresponding universes of discourse,

defuzzification to obtain a non-fuzzy control action from an inferred fuzzy

control action and operates to transform fuzzy sets into crisp data sets.

 88

The defuzzification process may be represented by the expression:

out = defuzz(x,mf, type) (5.16)

where defuzz returns a defuzzified value based on the membership function “mf” at

an associated variable of value “x” and according to an argument “type” which for

this research the centroid type was used.

In summary, the processing of rules (fuzzy conditional statements) in an FLC system

is based on fuzzy sets, and any crisp inputs need to be “fuzzified” for correct

processing and produces a fuzzy output which is then “defuzzified” to obtain a crisp

value. The FLC system presented here is composed of a set of rules (conditional

statements and algorithms) characterised to represent simple and complex relations

in the form:

𝐼𝐹 𝑥1 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵 𝑎𝑛𝑑 𝑥𝑛𝑖𝑠 𝐶 … 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐷 (5.17)

The fuzzy conditional statement in Equation (5.17), may be interpreted generally as

IF a set of conditions is satisfied THEN a set of consequences can be inferred.

Figure 5.4: Functional / Block Diagram of a Fuzzy Logic Control (FLC) System (Source: [122])

 89

A fuzzy rule system has multiple parts which is unlike classical rule based system

where the result is always true or false (1 or 0). In a fuzzy system, all parts of the

antecedent are calculated simultaneously and results in a single number using fuzzy

set operations. The fuzzy operators AND or OR are applied to obtain a single

number depending on the type of evaluation.

As mentioned earlier, due to the multilayer nature of the cloud infrastructure, each

layer of the cloud platform may implement different security measures each of which

should to be individually secure and aggregated at each layer even for complex

configurations such as a user who is interested in accessing a cloud platform with

the following specific configurations: trusted computing (TC), intrusion detection (ID),

data centre policy (DCP); ssh, intrusion detection environment (IDE) and vTPM but

not bothered about the presence or absence of data colouring.

Based on fuzzy intersections, the corresponding linguistic values of the input

assigned a degree, which is a product of all its antecedents and consequent

memberships. The fuzzy set provides a continuous transition across the input range

based on the order weighted averaging of the associated set of weights 𝑊 =

 (𝑤1, 𝑤2, … 𝑤𝑛) of each security configuration is such that 𝑤𝑖 ∈ [0,1] and ∑ 𝑤𝑖
𝑛
𝑖=1 =

1 its computed and represented thus:

𝑇 = ∑ 𝑤𝑗𝑠𝑗
𝑛
𝑗=1 (5.18)

So for the cloud platform let the reference set be S {𝑠1, 𝑠2,𝑠3,𝑠4,𝑠5,𝑠6}, A is the crisp set

that can only take two values 0 or 1, which would represent each of the

configurations in IaaS, PaaS and PaaS and each can be represented thus:

𝐴 = {(𝑠𝑥, 𝜇𝐴(𝑠𝑥)} (5.19)

The multi-layer security trust model (MLSTM) is based on the use of fuzzy logic

combination of a controlled sequencing of specific transactions that examine various

security mechanisms specific to the cloud layers of IaaS, PaaS and SaaS. The

MLSTM is a tool for assessing and evaluating the diverse security concerns related

 90

to cloud services and can provide users with the ability to evaluate the security of a

chosen cloud platform as part of the process of establishing trust.

The input variables for the system as noted above are IaaS, PaaS and SaaS. The

value of IaaS is calculated from the following security configurations: trusted

computing, intrusion detection, data policy; while that of PaaS is calculated from ssh,

intrusion detection environment, virtual TPM and SaaS is calculated from ssl and

data colouring and the output is the security value which the user is able to make

decision as to “how secure or trustworthy is the system?”

Furthermore based on Equation 5.17, the rule base for the overall system consists of

27 rules which are represented in Table 5.2. There are three linguistic values for the

input variables (IaaS, PaaS and SaaS) which are low, medium and high and six

linguistic values for the output variable (security): extremely low, very low, low,

medium, high and very high.

Table 5.2: Fuzzy Rule base Table for all the Layers

 IF THEN

Rule No IaaS PaaS SaaS Security

1. low low low ex.Low

2. low low med v.low

3. low low high v.low

4. low Med Low low

5. low med med low

6. low med high low

7. low high low low

8. low high med low

9. low high high low

10. med low low low

11. med low high low

12. med low med low

13. med high low med

 91

14. med high high high

15. med high med med

16. med med low med

17. med med high low

18. med med med med

19. high high high v.high

20. high high med high

21. high high low med

22. high low med med

23. high low high med

24. high med med med

25. high med high med

26. high med low med

27. high low low med

Furthermore, the rule base for the individual layers – IaaS, PaaS and SaaS are

represented in Tables 5.3, 5.4 and 5.5 where the input variables can only have the

linguistic values of low or high and the output variable has the linguistic value of low,

medium and high.

Table 5.3: Fuzzy Rule base Table for the IaaS Layer

IF THEN

Rule No TC ID DCP IaaS

1 low low low low

2 low low high low

3 low high low low

4 high low low low

5 high low high med

6 high high low med

 92

7 low high high med

8 high high high high

Table 5.4: Fuzzy Rule base Table for the PaaS Layer

IF THEN

Rule No SSH IDE vTPM PaaS

1 low low low low

2 low low high low

3 low high low low

4 high low low low

5 high low high med

6 high high low med

7 low high high med

8 high high high high

Table 5.5: Fuzzy Rule base Table for the SaaS Layer

IF THEN

Rule No SSL Dcol SaaS

1 low low low

2 high low med

3 low high med

4 high high high

For a user who is interested in accessing a cloud platform with the following

configurations: TC, ID, DCP; ssh, IDE and vTPM but is not bothered about data

coloring, the FLC system is analysed in Table 5.6, where the corresponding linguistic

values of the inputs (IaaS, PaaS and SaaS), are combined using fuzzy (fired) rules

into a trust value and their corresponding fuzzy levels computed with t-norm product

to obtain the corresponding crisp values. The computed crisp trust value is 0.7323.

 93

Table 5.6: FLC System Analysis Table

Cloud layer Membership (𝝁) range Fuzzy level Crisp value

IaaS 0.5 – 1.0 Medium 0.5927

PaaS 0.5 – 1.0 Medium 0.5935

SaaS 0.0 – 0.5 Medium 0.6324

Trust High 0.7323

Figures 5.5, 5.6 and 5.7 show the membership function graphs for the individual

variable input of the security mechanisms configured on the IaaS layer and Figure

5.8 show the membership function for the output variable of IaaS after the rules have

been applied.

Figure 5.5: Membership Function graph for the input variable TC

 94

Figure 5.6: Membership Function graph for the input variable ID

Figure 5.7: Membership Function graph for the input variable DCP

 95

Figure 5.8: Membership function graph for the output variable IaaS

Figure 5.9 show the membership function graph of the output variable PaaS after the

rules have been applied on the input variables of the security mechanisms on PaaS.

The individual membership function graphs of the input variables are shown in

Figures 5.10, 5.11 and 5.12.

Figure 5.9: Membership function graph for the output variable PaaS

 96

Figure 5.10: Membership function graph for the input variable ssh

Figure 5.11: Membership function graph for the input variable IDE

 97

Figure 5.12: Membership Function graph for the input variable vTPM

The membership function graph in Figure 5.13 is that of the output SaaS and the

graphs in Figures 5.14 and 5.15 are for the individual security mechanisms

configured on the SaaS layer.

Figure 5.13: Membership Function graph for the output variable SaaS

 98

Figure 5.14: Membership Function graph for the input variable ssl

Figure 5.15: Membership Function graph for the input variable Dcol

Figures 5.16, 5.17 and 5.18 are membership function graph of the IaaS, PaaS and

SaaS as input variables while Figure 5.19 show the membership function for the

 99

output variable security, which what provides the final crisp overall value of the

system.

Figure 5.16: Membership Function graph for the input variable IaaS

Figure 5.17: Membership Function graph for the input variable PaaS

 100

Figure 5.18: Membership Function graph for the input variable SaaS

Figure 5.19: Membership Function graph for the output variable Security

5.5 Implementation and Testing

The proposed multi-layer security trust model MLSTM which derives a trust value

from the fuzzy logic combinations of eight different security mechanisms (see

section 5.1) from the three distinct cloud layers of IaaS, PaaS and SaaS was

implemented using the matlab simulation software as shown in Figure 5.20

 101

Figure 5.20: Matlab implementation of Multi-Layer Security Trust Modell (MLSTM)

Various simulations were conducted in both static and dynamic contexts. In the

static context, the inputs (security mechanisms) could only take on two crisp or

distinct states of 0 or 1 representing not-secure or fully-secured while in the

dynamic context, the input values were changing with time.

For better understanding, the MLSTM identifies 4 distinct classification

categories namely: High security, Normal security, Some-how secure and Low

security that represent distinct combinations of the security mechanisms as

shown in Table 5.7.

The trust value for a cloud platform is obtained through a controlled sequencing

of the MLSTM transactions or probes as show in Table 5.8, where the “+” sign

represents a fuzzy logic combination.

The MLSTM transactions results are obtained from specific probes (checks) that

verify adequate response functionality expected from the security mechanism. A

test-bed deployment of a cloud platform was also performed using the

Eucalyptus cloud-in-a-box software and all security mechanisms listed in section

5.1 were implemented on the test-bed as well as MLSTM transactions or probes.

 102

The results of the matlab simulation as well as other results from the test-bed are

reported in the next section.

Table 5.7: MLSTM Categories

Category Combination of security mechanisms

IaaS Layer PaaS Layer SaaS

Layer

TC ID DCP SSH IDE vTPM SSL DC

High Security 1 1 1 1 1 1 1 1

Normal Security 1 0 1 1 0 1 1 0

Some-how secure 0 0 1 1 1 0 1 0

Low Security 0 0 1 1 0 0 1 0

Table 5.8 : MLSTM Combinations

Transacti

on/sequen

ce

Combination of transactions

High Security Normal

Security

Some-how

secure

Low security

1 TC DCP DCP DCP

2 TC+ID DCP+SSH DCP+SSH DCP+SSH

3 TC+ID+DCP DCP+SSH+SSL DCP+SSL DCP+SSH+SSL

4 TC+ID+DCP+

Ssh

DCP+TC DCP +SSH+SSL DCP+SSH+SSL

5 TC+ID+DCP+

SSH+IDE

DCP+SSH+TC DCP+IDE DCP+SSH+SSL

6 TC+ID+DCP+

SSH+IDE+vTPM

DCP+SSH+vTP

M+

SSL

DCP+IDE+SSL

DCP+SSH+SSL

 103

7 TC+ID+DCP+

SSH+IDE+vTPM+

SSL

DCP+TC+SSH+

vTPM

DCP+IDE+SSH DCP+SSH+SSL

8 TC+ID+DCP+

SSH+IDE+vTPM+

SSL+DC

DCP+TC+SSH+

vTPM+SSL

DCP+IDE+SSH+

SSL

DCP+SSH+SSL

5.6 Results and Evaluation

In the matlab simulation, a static configuration where the transactions and

probes are replaced by a constant value generator with an output value of 1 has

the resulting trust values reported in Table 5.9 and Figure 5.21.

Table 5.9: MLSTM Trust Values by Sequence and Categories

Transaction/

sequence

Trust value

High security Normal security Some-how secure Low security

1 0.235 0.235 0.235 0.235

2 0.4262 0.235 0.235 0.235

3 0.5708 0.2725 0.2725 0.2725

4 0.5708 0.4262 0.2745 0.2475

5 0.5974 0.4262 0.2974 0.2725

6 0.6234 0.4298 0.309 0.2725

7 0.7323 0.5928 0.4298 0.2725

8 0.7548 0.5935 0.4298 0.2725

 104

Figure 5.21: Multi-Layer Security Trust for 4 identified categories

Similarly, it is possible to obtain trust values for various combinations of security

mechanisms as shown in Table 5.10.

The results presented in Tables 5.5 and 5.6 were derived from static

considerations, where all security mechanisms are assumed to be fully secured.

However, in a real-world context, a security mechanism may not always be in a

fully secured state. For example, an un-patched SSH server is no longer in a

fully secured state. Similarly, an IDE with an outdated database is no longer fully

secured. In the matlab simulations, a real-world context was simulated by using

suitable waveform generators for the transactions/probes.

Table 5.10: MLSTM Trust Values for Various Security Mechanisms Combinations

Scenarios Combinations Trust Value

1 TC 0.235

2 𝑇𝐶 ∩ 𝐼𝐷 0.4262

3 𝑇𝐶 ∩ 𝐷𝐶𝑃 0.4262

4 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 0.5708

5 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ 0.5708

6 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 0.5974

 105

7 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 ∩ 𝑣𝑇𝑃𝑀 0.6324

8 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 ∩ 𝑣𝑇𝑃𝑀 ∩ 𝑠𝑠𝑙 0.7323

9 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 ∩ 𝑣𝑇𝑃𝑀 ∩ 𝑠𝑠𝑙 ∩ 𝐷𝐶 0.7547

The data in Table 5.11 is plotted in Figure 5.22 which shows the effect of the

dynamic variations in the transaction results on the final trust value. As show, the

final trust values appear to be lower by about 7%, however, the classification

process is still successful. The peak trust graph shows the maximum trust

values for a 10 seconds interval. It is really the same graph as Figure 5.21.

Table 5.11: MLSTM Trust Values for Real World Simulation

Transaction/

sequence

Trust value

High security Normal security Some-how

secure

Low security

1 0.235 0.235 0.235 0.235

2 0.4259 0.3498 0.265 0.265

3 0.4712 0.2941 0.2941 0.2941

4 0.4720 0.432 0.2973 0.2974

5 0.5910 0.4355 0.4397 0.2974

6 0.6352 0.4524 0.3401 0.2956

7 0.6095 0.5906 0.4497 0.2941

8 0.595 0.593 0.369 0.2725

9 0.6772 0.5933 0.4513 0.2941

10 0.70804 0.5933 0.4298 0.2724

 106

Figure 5.22: Multi-Layer Security for dynamic real world simulation

The MLSTM high success rate may be attributed to its use of special sequencing

of 8 specific transactions devoted to security probes. In measuring the trust of a

high security cloud, all 8 specific transactions are used and the results have

been plotted in Figure 5.25 and also in comparison with other similar models –

DMTC and TMFM [54] it reflects a higher success interaction rate. Figure 5.23

reflects the peak trust rate across the different security scenarios, Figure 5.24

reflects the dynamic input for the transactions in Figure 5.22 but in this instance

it reflects the simulation carried out across 30 seconds. Figure 5.26 reflects the

trust accuracy of MLSTM in comparison to other models. MLSTM already

assumes a platform is untrusted and only begins to trust the platform when the

probes and configure mechanisms are successful but the other models trust the

platform and the trust level falls when the test carried out by users fail because

the necessary security mechanisms are not in place.

 107

Figure 5.23: MLSTM Peak Trust Values

Figure 5.24: MLSTM matlab simulation with dynamic input transactions period of 30s

Figure 5.25: MLSTM success interaction rate in comparison with MDMTC and TMFM models

 108

In detecting malicious hosts, the MLSTM model uses only 4 specific transactions

and as Figure 5.26 shows, the MLSTM model can efficiently detect malicious

hosts with a highly accurate rate. Here the MLSTM is benefitting from its initial

assumption that all clouds may be malicious.

Figure 5.26: MLSTM trust accuracy rate comparison with DMTC and TMFM models

The data used for plotting Figure 5.27 reflects a large overhead which appears to

be related to obtaining the TC (and vTPM) measurements. Probably this is due

to the need for cryptographic encryption/decryption from the TPM chip/module.

Figure 5.27 shows that it takes less than 1 second to identify a low security or

some-how secure cloud, while it could take up to 8 seconds to identify a Normal

security cloud and about 10 seconds to identify a high security cloud. This figure

shows that it takes less than 1 second to identify a low security or some-how

secure cloud, while it could take up to 8 seconds to identify a Normal security

cloud and about 10 seconds to identify a high security cloud.

The results obtained from this research is compared to that obtained by [54] we

see (Figure 5.26) that all have similar trust rate but as interactions continue they

reflect different rates so my comparison would be along the following:

 Inputs : The results obtained in this research combines inputs from all

layers of the platform to provide the trust value of the platform while the

results in [54] have not considered the other layers and considered third

party trust which could be biased

 109

 Output : The model in this research meets it objectives better than the

other two models as it efficiently detects malicious interactions and its

trust accuracy remains consistent unlike the other models where the trust

accuracy declines as reflected in Figure 5.26

 Impact : MLSTM impact is considered better as its successful interactions

as seen in Figure 5.25 continues to increase as the success rate

increases with successful interaction and would decline instead in the

event of malicious interactions.

Figure 5.27: MLSTM average overhead for transactions

Figure 5.28 shows that at 50% of a transaction cycle, the MLSTM can provide a

reasonable accurate classification of a cloud platform into high/normal security

versus somehow secure/Low security.

 110

Figure 5.28: MLSTM average overhead for 1 transaction cycle

Figure 5.29 shows that the overhead required to complete the classification of a

cloud is constant even after elevated number of transactions. This implies that

the MLSTM model may be used for a continuous discrete sampling/classification

of clouds.

Figure 5.29: MLSTM average overhead for 100 transaction cycles

Figure 5.30 shows the overhead required to complete the parallel classification

of a set of clouds. This implies that when the MLSTM model is used for the

continuous discrete sampling/classification of clouds in parallel, there is a

proportional increment in time to complete a classification.

 111

The data used in plotting Figures 5.27, 5.28, 5.29 and 5.30 were measured from

the Brunel Eucalyptus test-bed [103].

Figure 5.30: MLSTM cumulative overhead for 100 transaction cycle

5.7 Summary

The results presented above from the MLSTM suggest that the initial trust value of

0.235 shows marginal trust by end-users. Unlike other models, which show a

convergence towards a maximum trust value of 1, the MLS trust model presented

here has a maximum value of 0.7548 when all probes are in the OK state suggests

that “cloud always include some inherent risk”. The MLSTM requires continuous

discrete probing (sampling) to ensure that trust is maintained. The MLSTM fast

convergence to a result in all 4 scenarios suggests a low overhead for parallelization

and/or integration with normal cloud transactions.

The mechanisms used in this research to model trust in cloud are unique. This

chapter presents the techniques and how it would be used to model trust in the

cloud. Further work would include implementing and evaluating the techniques. The

 112

evaluation would include using fuzzy logic algorithms to select trustworthy cloud

platform.

 113

Chapter 6

Conclusions and Future Work

This chapter concludes the contribution of this research. It also outlines potential

opportunities for further or improved work presented in this dissertation.

6.1 Conclusions

The research reported in this thesis focused on trusted cloud computing with

distributed end-user attestable multi-layer security across the cloud platform.

Cloud computing is rapidly gaining acceptance in mission critical applications such

as power, health, finance and education to mention but a few. Cloud computing

allows remote processing using multiple computers and varied instances running at

the same time. Cloud computing also allows shared resources to a variety of users

on a single or shared resource; it allows the user to pay for only the consumed

resources while allowing for scalability within the resources. Even with its potential in

providing resources to multiple users at a reduced cost, it is becoming clear that end-

users are still drawing back from fully adopting cloud computing and its deployed

resources.

Cloud platforms remain easy targets for intruders due to its multi-tenancy and

distributed nature. A cloud user wants to be confident and trust that the resources

they are accessing are secure and available and its integrity is not compromised. An

end-user wants to also ascertain ownership of the data or other resources they are

accessing or processing. The end-user wants the data to be free of any interference

while accessing or processing the data, basically an end-user wants a transparent

system.

This thesis presented a unique end-user attestable multilayer security model that

adequately addresses these challenges given that no one solution fits or cuts across

all the layers of the cloud platform. The MLS model comprises of individual and

distinct security mechanisms across the 4 major layers of a cloud platform –

physical, IaaS, PaaS and SaaS.

 114

The research work on the MLS security model began with the deployment of a

community cloud platform on the Brunel network where a number of security

configurations were implemented. Trusted Computing based on hardware Trusted

Platform Module device was then implemented to secure the IaaS layer. At the PaaS

layer, a virtual (software) TPM device was deployed to provide TC-like service that

was subsequently combined with an intrusion detection engine (IDE) system where

file level integrity verifications are carried out based on stored hashes. A high-

security image for secure-instances was created and used by power-users to verify

(on-demand) the integrity of the physical and IaaS layer using TC attestation and the

PaaS layer using the IDE. This image was evaluated and used for deployment of a

mission critical SaaS application for the energy sector. The results obtained show

the average overhead in starting secure instances is less than 5% (< 3 sec) which is

next to minimal and the gains in running a secure instance with such overhead is

considered to be beneficial when compared with a less secure instance.

Subsequently, at the SaaS layer, a unique implementation of data-colouring was

developed that uses a combination of digital fingerprints and steganography for

securing data integrity and highlighting a possible path-of-loss in the event of a theft

or comprise. In the implementation deployed on the community cloud platform, the

process of data colouring is carried out off-line to improve on the integrity of the data

as only then is the user or data owner sure that the integrity of the data is

substantiated before enforcing any protection. This also improves the trust

relationship between a user, provider and co-tenants on the same platform.

To provide a holistic trust status of the whole system, a fuzzy logic computing

technique was used to develop a model known as Multilayer Security Trust Model

(MLSTM) for combining the states of several security mechanisms across all cloud

layers to provide a unified trust status for the platform or depending on the needs of

the user the trust status of the desired layer. This MLSTM model is useful for

classifying and comparing various cloud platforms which would then provide an

informed decision on “which to choose” based on its trustworthy state. That is, it

provides a tool to measure transparency, integrity and accountability of the

resources even for major providers like Google, Microsoft Azure ore Amazon EC2.

MLSTM was developed as a matlab simulation and also evaluated on the deployed

cloud platform at Brunel. The results obtained show that the model has improved

 115

characteristics over the TMFM and DMTC models and MLSTM models cloud

platforms with better accuracy.

The MLS trust model implemented in this research, models cloud trustworthiness

across its layers or the whole cloud platform and it provides a much needed tool for

end-users to attest or verify or classify a cloud for trustworthiness on a continuous

and on-demand basis.

The research work provides an autonomous method for continuous testing and

probing across multiple (all) cloud layers using the different security mechanisms

and thus enables the end-user to make informed decision on-demand.

The outputs of this research work are applicable across any cloud platform as they

do not require changes in the underlying software code layer.

While, the implementation of TC based on TPM is scalable as each virtual server

running on any platform has its own keys and each one is uniquely identified as far

TPM is concerned, end-user attestation/verification is based on the use of pre-

seeded databases that may limit overall scalability. The management/distribution of

these pre-seeded databases is a possible future work

As more applications are moving online, processing data on the cloud platform is

gradually becoming important and thus the need for an alternative to encrypting data

on the cloud is important. Using data colouring as implemented in this research work

allows transparent processing of protected data on cloud platforms preserving its

integrity. However, the identification of data loss or theft path from fingerprinting in

the implementation of data colouring is suggestive and limited by other factors

outside the scope of this work.

The MLS trust model also allows users to assess the platform they want to use

based on trust values derived from multiple security mechanisms. While, using

multiple mechanisms provides different level of protection across different layers of

the platform possibly mitigating effects of single-point of failure of security

mechanisms on the platform, the implementation is based on UNIX (Linux) and

would require some adjustments for non-Unix cloud platforms. Continuous

testing/probing using the MLS trust model is limited by the combined

duration/overhead from individual probes/tests.

 116

6.3 Future Work

Future work on the MLS trust model would involve reducing overall overhead,

possibly by optimising and caching heavy transactions. The results show that in

particular TC and vTPM transactions account for over 90% of the overhead. A

possible strategy would be to perform a TC and vTPM transaction once in 5 minutes

and cache the results for use during probe cycles. It is estimated that a cycle

performed using the cached values for TC and vTPM would complete in less than a

second.

An alternative is to study the use of parallel transactions especially in a context of

testing multiple cloud servers/services concurrently. Here it would be necessary to

study both parallelisation on a single host and parallelization on a cluster of hosts

with some inter-host communication.

A future work would also be to study the automated scheduling and periodic-

execution of MLS trust model transactions as a tool for automated cloud security

testing, verification and reporting. In this case, the MLS trust model would be studied

as a possible tool for level 3 certification in the CSA STAR [8] Open Certification and

similar framework.

Even as NIST, ITU-T, IEEE and other cloud focus groups work on standardisation

and interoperability, it is of paramount importance too that extensive work be carried

out on in the area of interoperability so another area of future work would involve

studying the interoperability and portability of the outputs of this research work on

diverse (non-Unix) cloud implementations, especially in the context of seamless

migrations of end-user service/data across cloud platforms/providers. It shouldn’t

pose a problem to a user that a change in provider would mean also rebuilding one’s

application to suite the new platform depending on the provider’s settings, adjusting

the security settings of the user’s application or resources to match the capabilities of

the provider or even having to be concerned about how the data would be handled

while in transit between the providers.

In line with interoperability different jurisdiction may have different data policy so it

may also be necessary to look into having a global and neutral body handle issues

surrounding interoperability implementation and guidelines.

 117

The use of the outputs from this research work in the context of ISO27018

certification [123] and the planned European based infrastructure is required. The

ISO27018 is the code of practise for protection of personally identified information

(PII) in public clouds. Where processing requires that sensitive data remain

encrypted. Specifically, studying the merits of data colouring based on fingerprinting

even for existing services such as Dropbox is immeasurable. A possible study would

involve uploading coloured versions of a data-file via different cloud services (for

example dropbox and gmail) and the random tampering/hidden-exchange of these

files between participants would be detected using techniques documented in

Chapter 4.

The model presented in this thesis provides a needed tool to determine the

trustworthy status of a cloud platform and its impact on the global deployment of

cloud services requires additional study as users become more confident of data

integrity, availability of service and non-repudiation of theft or data tampering.

As the identification of data loss or theft path from fingerprinting in the

implementation of data colouring is suggestive and not conclusive, further research

can be carried to ascertain in total if it was as result of a break in on the platform or it

was actually tampered with by an authorised user. Mechanisms may be put in place

to further secure the data in the event the platform is attacked.

 118

References

[1] M. R. Nelson, “OECD Briefing Paper for the ICCP Technology Foresight
Forum: Cloud Computing and Public Policy | Publications | Georgetown
University,” 2009. [Online]. Available:
http://explore.georgetown.edu/publications/47143/. [Accessed: 28-Oct-2015].

[2] M. Armbrust, I. Stoica, M. Zaharia, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, and A. Rabkin, “A view of cloud computing,”
Commun. ACM, vol. 53, no. 4, p. 50, Apr. 2010.

[3] R. Chalse, A. Selokar, and A. Katara, “A New Technique of Data Integrity for
Analysis of the Cloud Computing Security,” in 2013 5th International
Conference on Computational Intelligence and Communication Networks,
2013, pp. 469–473.

[4] P. Mell, “What’s Special about Cloud Security?,” IT Prof., vol. 14, no. 4, pp. 6–
8, 2012.

[5] P. Mell and T. Grance, “The NIST Definition of Cloud Computing (Draft)
Recommendations of the National Institute of Standards and Technology,” Nist
Spec. Publ., vol. 145, no. 6, p. 7, 2011.

[6] NIST, “NIST Cloud Computing Security Reference Architecture -
M0007_v1_3376532289.pdf.” [Online]. Available:
http://bigdatawg.nist.gov/_uploadfiles/M0007_v1_3376532289.pdf. [Accessed:
03-Mar-2016].

[7] NIST, “An Introduction to Computer Security: The NIST Handbook -
handbook.pdf.” [Online]. Available:
http://www.davidsalomon.name/CompSec/auxiliary/handbook.pdf. [Accessed:
04-Mar-2016].

[8] CSA, “CSA Security, Trust & Assurance Registry (STAR) : Cloud Security
Alliance.” [Online]. Available: https://cloudsecurityalliance.org/star/. [Accessed:
03-Mar-2016].

[9] CSA, “Consensus Assessments : Cloud Security Alliance.” [Online]. Available:
https://cloudsecurityalliance.org/group/consensus-assessments/. [Accessed:
03-Mar-2016].

[10] W. K. Daniel, “Challenges on privacy and reliability in cloud computing
security,” in 2014 International Conference on Information Science, Electronics
and Electrical Engineering, 2014, vol. 2, pp. 1181–1187.

[11] A. Behl and K. Behl, “An analysis of cloud computing security issues,” in 2012
World Congress on Information and Communication Technologies, 2012, pp.
109–114.

 119

[12] Z. Tari, X. Yi, U. S. Premarathne, P. Bertok, and I. Khalil, “Security and Privacy
in Cloud Computing: Vision, Trends, and Challenges,” IEEE Cloud Comput.,
vol. 2, no. 2, pp. 30–38, Mar. 2015.

[13] A. Gordon, “The Hybrid Cloud Security Professional,” IEEE Cloud Comput.,
vol. 3, no. 1, pp. 82–86, Jan. 2016.

[14] A. Hendre and K. P. Joshi, “A Semantic Approach to Cloud Security and
Compliance,” in 2015 IEEE 8th International Conference on Cloud Computing,
2015, pp. 1081–1084.

[15] D. Gollmann, Computer Security, 2 edition. John Wiley & Sons, Inc., 2006.

[16] K. D. Mitnick and W. L. Simon, “The Art of Deception: Controlling the Human
Element in Security,” BMJ: British Medical Journal, 2003. [Online]. Available:
http://www.bmj.com/content/347/bmj.f5889. [Accessed: 04-Mar-2016].

[17] J. G. Bronson, “Unfriendly eyes,” IEEE Trans. Prof. Commun., vol. PC-30, no.
3, pp. 173–178, 1987.

[18] L. M. Kaufman, “Data security in the world of cloud computing,” IEEE Secur.
Priv., vol. 7, no. 4, pp. 61–64, 2009.

[19] BBC, “Edward Snowden: Leaks that exposed US spy programme - BBC
News.” [Online]. Available: http://www.bbc.com/news/world-us-canada-
23123964. [Accessed: 04-Mar-2016].

[20] U. C. Office, “Security_Requirements_for_List_X_Contractors.pdf.” [Online].
Available:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/
367514/Security_Requirements_for_List_X_Contractors.pdf. [Accessed: 05-
Mar-2016].

[21] P. Giannoulis and S. Northcutt, “Physical Security.” [Online]. Available:
http://www.sans.edu/research/security-laboratory/article/281. [Accessed: 05-
Mar-2016].

[22] TPM, “Trusted Computing Group - Solutions - Cloud Security.” [Online].
Available: http://www.trustedcomputinggroup.org/solutions/cloud_security.
[Accessed: 20-Jul-2015].

[23] TPM, “Trusted Computing Group - Trusted Platform Module (TPM) Summary.”
[Online]. Available:
http://www.trustedcomputinggroup.org/resources/trusted_platform_module_tp
m_summary. [Accessed: 04-Mar-2016].

[24] H.-J. Liao, C.-H. Richard Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” J. Netw. Comput. Appl., vol. 36, no. 1, pp.
16–24, Jan. 2013.

 120

[25] R. Bace and P. Mell, “NIST Special Publication on Intrusion Detection
Systems.” [Online]. Available:
http://www.21cfrpart11.com/files/library/reg_guid_docs/nist_intrusiondetections
ys.pdf. [Accessed: 05-Mar-2016].

[26] M. R. Nelson, “The Cloud, the Crowd, and Public Policy,” Issues in Science
and Technology, 2009. [Online]. Available: http://issues.org/25-4/nelson-2/.
[Accessed: 20-Jul-2015].

[27] W. Jansen and T. Grance, “Guidelines on Security and Privacy in Public Cloud
Computing,” Director, vol. 144, no. 7, pp. 800–144, 2011.

[28] S. Kaur and P. S. Mann, “A review on cloud computing issues and challenges,”
Intl J. Res. Comput. Appl. Robot., vol. 2, no. 5, pp. 63–68, 2014.

[29] P. A. Laplante, J. Zhang, and J. Voas, “What’s in a Name? Distinguishing
between SaaS and SOA,” IT Prof., vol. 10, no. 3, pp. 46–50, May 2008.

[30] D. Meyer and G. Zobrist, “TCP/IP versus OSI,” IEEE Potentials, vol. 9, no. 1,
pp. 16–19, Feb. 1990.

[31] C. Saravanakumar and C. Arun, “Survey on interoperability, security, trust,
privacy standardization of cloud computing,” in 2014 International Conference
on Contemporary Computing and Informatics (IC3I), 2014, pp. 977–982.

[32] S. De Chaves, R. Uriarte, and C. Westphall, “Toward an architecture for
monitoring private clouds,” IEEE Commun. Mag., vol. 49, no. 12, pp. 130–137,
Dec. 2011.

[33] Z. Chen and J. Yoon, “IT Auditing to Assure a Secure Cloud Computing,” in
2010 6th World Congress on Services, 2010, pp. 253–259.

[34] M. Guizani, “Protecting private cloud located within public cloud,” in 2013 IEEE
Global Communications Conference (GLOBECOM), 2013, pp. 677–681.

[35] A. M. Khan, L. Navarro, L. Sharifi, and L. Veiga, “Clouds of small things:
Provisioning infrastructure-as-a-service from within community networks,” in
2013 IEEE 9th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), 2013, pp. 16–21.

[36] M. Gall, A. Schneider, and N. Fallenbeck, “An Architecture for Community
Clouds Using Concepts of the Intercloud,” in 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications (AINA),
2013, pp. 74–81.

[37] V. Varadharajan and U. Tupakula, “Security as a Service Model for Cloud
Environment,” IEEE Trans. Netw. Serv. Manag., vol. 11, no. 1, pp. 60–75, Mar.
2014.

 121

[38] X. Chen, C. Chen, Y. Tao, and J. Hu, “A Cloud Security Assessment System
Based on Classifying and Grading,” IEEE Cloud Comput., vol. 2, no. 2, pp. 58–
67, Mar. 2015.

[39] K. Hashizume, D. G. Rosado, E. Fernández-Medina, and E. B. Fernandez, “An
analysis of security issues for cloud computing,” J. Internet Serv. Appl., vol. 4,
no. 1, p. 5, 2013.

[40] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side channels
and their use to extract private keys,” in Proceedings of the 2012 ACM
conference on Computer and communications security - CCS ’12, 2012, p.
305.

[41] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-Defined Networking (SDN) and
Distributed Denial of Service (DDoS) Attacks in Cloud Computing
Environments: A Survey, Some Research Issues, and Challenges,” IEEE
Commun. Surv. Tutorials, vol. 18, no. 1, pp. 602–622, 2016.

[42] M. Ficco and M. Rak, “Stealthy Denial of Service Strategy in Cloud
Computing,” IEEE Trans. Cloud Comput., vol. 3, no. 1, pp. 80–94, Jan. 2015.

[43] S. Yu, Y. Tian, S. Guo, and D. O. Wu, “Can We Beat DDoS Attacks in
Clouds?,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 9, pp. 2245–2254,
Sep. 2014.

[44] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965.

[45] J. Singla, “Comparative study of Mamdani-type and Sugeno-type fuzzy
inference systems for diagnosis of diabetes,” in 2015 International Conference
on Advances in Computer Engineering and Applications, 2015, pp. 517–522.

[46] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a
fuzzy logic controller,” Int. J. Man. Mach. Stud., vol. 7, no. 1, pp. 1–13, Jan.
1975.

[47] H. Sato, A. Kanai, and S. Tanimoto, “A Cloud Trust Model in a Security Aware
Cloud,” in 2010 10th IEEE/IPSJ International Symposium on Applications and
the Internet, 2010, pp. 121–124.

[48] D. Gonzales, J. Kaplan, E. Saltzman, Z. Winkelman, and D. Woods, “Cloud-
Trust - a Security Assessment Model for Infrastructure as a Service (IaaS)
Clouds,” IEEE Trans. Cloud Comput., pp. 1–1, 2015.

[49] S. Saadat and H. R. Shahriari, “Towards a process-oriented framework for
improving trust and security in migration to cloud,” in 2014 11th International
ISC Conference on Information Security and Cryptology, 2014, pp. 220–225.

[50] P. Sirohi and A. Agarwal, “Cloud computing data storage security framework
relating to data integrity, privacy and trust,” in 2015 1st International

 122

Conference on Next Generation Computing Technologies (NGCT), 2015, pp.
115–118.

[51] S. M. Habib, V. Varadharajan, and M. Muhlhauser, “A Trust-Aware Framework
for Evaluating Security Controls of Service Providers in Cloud Marketplaces,”
in 2013 12th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, 2013, pp. 459–468.

[52] D. Wallom, M. Turilli, A. Martin, A. Raun, G. Taylor, N. Hargreaves, and A.
McMoran, “myTrustedCloud: Trusted Cloud Infrastructure for Security-critical
Computation and Data Managment,” in 2011 IEEE Third International
Conference on Cloud Computing Technology and Science, 2011, pp. 247–
254.

[53] K. Hwang and D. Li, “Trusted Cloud Computing with Secure Resources and
Data Coloring,” IEEE Internet Comput., vol. 14, no. 5, pp. 14–22, Sep. 2010.

[54] A. Mohsenzadeh and H. Motameni, “A trust model between cloud entities
using fuzzy mathematics,” J. Intell. Fuzzy Syst., vol. 29, no. 5, pp. 1795–1803,
Jul. 2015.

[55] S. Han’guk Chŏnja T'ongsin Yŏn'guwŏn., M. Han’guk Chŏngbo Sahoe
Chinhŭngwŏn., Global IT Research lnstitute (Korea), and IEEE
Communications Society., The 12th International Conference on Advanced
Communication Technology : ICT for green growth and sustainable
development : ICACT 2010 : Phoenix Park, Korea, Feb. 7-10, 2010 :
proceedings, vol. 2. IEEE, 2010.

[56] A. Donevski, S. Ristov, and M. Gusev, “Security assessment of virtual
machines in open source clouds,” Information & Communication Technology
Electronics & Microelectronics (MIPRO), 2013 36th International Convention
on. pp. 1094–1099, 2013.

[57] S. Biedermann, M. Zittel, and S. Katzenbeisser, “Improving security of virtual
machines during live migrations,” in 2013 Eleventh Annual Conference on
Privacy, Security and Trust, 2013, pp. 352–357.

[58] A. A. M. Matsui, S. Michalsky, and M. A. Gerosa, “Using Virtual Machine
Security to Reinforce Components Constraints,” in 2012 38th Euromicro
Conference on Software Engineering and Advanced Applications, 2012, pp.
138–141.

[59] R. Mehrotra, A. Dubeyy, S. Abdelwahed, and K. Rowland, “On state of the art
in virtual machine security,” in 2012 Proceedings of IEEE Southeastcon, 2012,
pp. 1–6.

[60] S. Berger, R. Cáceres, K. Goldman, D. Pendarakis, R. Perez, J. R. Rao, E.
Rom, R. Sailer, W. Schildhauer, D. Srinivasan, S. Tal, and E. Valdez, “Security
for the cloud infrastructure: trusted virtual data center implementation,” IBM J.
Res. Dev., vol. 53, no. 4, pp. 560–571, Jul. 2009.

 123

[61] W. A. Jansen, “Cloud Hooks: Security and Privacy Issues in Cloud
Computing,” in 2011 44th Hawaii International Conference on System
Sciences, 2011, pp. 1–10.

[62] K. Vieira, A. Schulter, C. B. Westphall, and C. M. Westphall, “Intrusion
Detection for Grid and Cloud Computing,” IT Prof., vol. 12, no. 4, pp. 38–43,
Jul. 2010.

[63] AIDE, “Advance Intrusion Detection Environment.” [Online]. Available:
http://aide.sourceforge.net/. [Accessed: 03-Mar-2015].

[64] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation - tools for software protection,” IEEE Trans. Softw. Eng., vol. 28,
no. 8, pp. 735–746, Aug. 2002.

[65] Y.-C. Liu, Y.-T. Ma, H.-S. Zhang, D.-Y. Li, and G.-S. Chen, “A method for trust
management in cloud computing: Data coloring by cloud watermarking,” Int. J.
Autom. Comput., vol. 8, no. 3, pp. 280–285, Aug. 2011.

[66] Eucalyptus, “Plan Your Deployment | HP Helion Eucalyptus.” [Online].
Available: https://www.eucalyptus.com/eucalyptus-cloud/plan-deployment.
[Accessed: 28-Aug-2015].

[67] Seiji Munetoh, “userguide-0.2.4.pdf.” [Online]. Available:
http://jaist.dl.osdn.jp/openpts/51879/userguide-0.2.4.pdf. [Accessed: 28-Aug-
2015].

[68] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, “The Eucalyptus Open-Source Cloud-Computing System,” in
2009 9th IEEE/ACM International Symposium on Cluster Computing and the
Grid, 2009, pp. 124–131.

[69] B. I. Santoso, “DESIGNING NETWORK SECURITY FOR EUCALYPTUS
PRIVATE CLOUD INFRASTRUCTURE USING SSL-VPN,” in Seminar
Nasional Teknologi Informasi dan Komunikasi 2014 (SENTIKA 2014), 2014.

[70] Eucalyptus, “Eucalyptus Documentation.” [Online]. Available:
http://docs.hpcloud.com/eucalyptus/4.2.1/#install-
guide/euca_components.html. [Accessed: 19-Apr-2016].

[71] HP-Cloud, “Eucalyptus Documentation.” [Online]. Available:
http://docs.hpcloud.com/eucalyptus/4.2.1/#user-guide/index.html. [Accessed:
20-Apr-2016].

[72] Xen, “The Xen Project, the powerful open source industry standard for
virtualization.” [Online]. Available: http://www.xenproject.org/. [Accessed: 19-
Apr-2016].

[73] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the Public Cloud,”
IEEE Internet Comput., vol. 16, no. 1, pp. 69–73, Jan. 2012.

 124

[74] X. Zhang, H. Du, J. Chen, Y. Lin, and L. Zeng, “Ensure Data Security in Cloud
Storage,” in 2011 International Conference on Network Computing and
Information Security, 2011, vol. 1, pp. 284–287.

[75] G. C. Kessler, “Steganography for the Computer Forensics Examiner,” 2015.
[Online]. Available: http://www.garykessler.net/library/fsc_stego.html.
[Accessed: 20-Jul-2015].

[76] C. S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation - Tools for software protection,” IEEE Trans. Softw. Eng., vol. 28,
no. 8, pp. 735–746, 2002.

[77] S. U. S. Sandosh, “AN AUTHENTICATION IN CLOUD THROUGH DATA
COLORING USING PROGRESSIVE APPROACH,” Int. J. Curr. Res. Rev., vol.
4, no. 21, pp. 179–182, 2012.

[78] T. Morkel, “Steganography and Steganalysis,” 2005.

[79] C. S. Collberg and C. Thompson, “Watemarking, tamper-proofing, and
obfuscation - tools for software protection,” IEEE Trans. Softw. Eng, vol. 28,
no. 8, pp. 735–746, 2002.

[80] OutGuess, “OutGuess - Information,” 2015. [Online]. Available:
http://www.outguess.org/info.php. [Accessed: 20-Jul-2015].

[81] Ubuntu, “Howtomd5sum.” .

[82] R. Rivest, “The md5 message-digest algorithm.” .

[83] M. Armbrust, M. Armbrust, A. Fox, A. Fox, R. Griffith, R. Griffith, A. Joseph, A.
Joseph, RH, and RH, “Above the clouds: A Berkeley view of cloud computing,”
Univ. California, Berkeley, Tech. Rep. UCB , pp. 07–013, 2009.

[84] R. Shaikh and M. Sasikumar, “Cloud Simulation Tools: A Comparative
Analysis,” IJCA Proc. Int. Conf. Green Comput. Technol., vol. ICGCT, no. 3,
pp. 11–14.

[85] M. H. Rahman and M. Adnan, “Survey on cloud simulator.” [Online]. Available:
http://www.slideshare.net/habibur01/survey-on-cloud-simulator. [Accessed: 30-
Oct-2015].

[86] G. Gębczyński, J. Kołodziej, and S. U. Khan, “Secure-Sim-G: Security-Aware
Grid Simulator - Basic Concept and Structure,” J. Telecommun. Inf. Technol.,
vol. nr 1, pp. 33–42, 2012.

[87] M. Brinklov and R. Sharp, “Incremental Trust in Grid Computing,” in Seventh
IEEE International Symposium on Cluster Computing and the Grid (CCGrid
’07), 2007, pp. 135–144.

[88] M. B. B. K. Thomas Beth, “Valuation of Trust in Open Networks.”

 125

[89] P. Humane and J. N. Varshapriya, “Simulation of cloud infrastructure using
CloudSim simulator: A practical approach for researchers,” in 2015
International Conference on Smart Technologies and Management for
Computing, Communication, Controls, Energy and Materials (ICSTM), 2015,
pp. 207–211.

[90] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Softw.
Pract. Exp., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[91] W. Long, L. Yuqing, and X. Qingxin, “Using CloudSim to Model and Simulate
Cloud Computing Environment,” in 2013 Ninth International Conference on
Computational Intelligence and Security, 2013, pp. 323–328.

[92] Xiang Li, Xiaohong Jiang, Kejiang Ye, and Peng Huang, “DartCSim+:
Enhanced CloudSim with the Power and Network Models Integrated,” in 2013
IEEE Sixth International Conference on Cloud Computing, 2013, pp. 644–651.

[93] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling Parallel Applications
in Cloud Simulations,” in 2011 Fourth IEEE International Conference on Utility
and Cloud Computing, 2011, pp. 105–113.

[94] Eucalyptus, “HP Helion Eucalyptus | Open Source Private Cloud Software.”
[Online]. Available: https://www.eucalyptus.com/. [Accessed: 28-Aug-2015].

[95] TPM, “Trusted Platform Module (TPM) - Trusted Platform Module
Summary_04292008.pdf.” [Online]. Available:
http://www.trustedcomputinggroup.org/files/resource_files/4B55C6B9-1D09-
3519-AD916F3031BCB586/Trusted Platform Module Summary_04292008.pdf.
[Accessed: 04-Mar-2016].

[96] J. Luna, N. Suri, M. Iorga, and A. Karmel, “Leveraging the Potential of Cloud
Security Service-Level Agreements through Standards,” IEEE Cloud Comput.,
vol. 2, no. 3, pp. 32–40, May 2015.

[97] S. Pearson and A. Benameur, “Privacy, Security and Trust Issues Arising from
Cloud Computing,” in 2010 IEEE Second International Conference on Cloud
Computing Technology and Science, 2010, pp. 693–702.

[98] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg, Q.
Liang, and B. S. Lee, “TrustCloud: A Framework for Accountability and Trust in
Cloud Computing,” in 2011 IEEE World Congress on Services, 2011, pp. 584–
588.

[99] K. M. Khan and Q. Malluhi, “Establishing Trust in Cloud Computing,” IT Prof.,
vol. 12, no. 5, pp. 20–27, Sep. 2010.

 126

[100] A. Nagarajan and V. Varadharajan, “Dynamic trust enhanced security model
for trusted platform based services,” Futur. Gener. Comput. Syst., vol. 27, no.
5, pp. 564–573, May 2011.

[101] K. Ren, C. Wang, and Q. Wang, “Toward secure and effective data utilization
in public cloud,” IEEE Netw., vol. 26, no. 6, pp. 69–74, Nov. 2012.

[102] D. Andert, R. Wakefield, and J. Weise, “Trust Modeling for Security
Architecture Development.” [Online]. Available: http://www-
it.desy.de/common/documentation/cd-docs/sun/blueprints/1202/817-0775.pdf.
[Accessed: 19-Apr-2016].

[103] M.-J. Sule, M. Li, G. A. Taylor, and S. Furber, “Deploying trusted cloud
computing for data intensive power system applications,” in 2015 50th
International Universities Power Engineering Conference (UPEC), 2015, pp.
1–5.

[104] ssh communication Security, “Why SSH Communication Security?,” 2016.
[Online]. Available: http://www.ssh.com/.

[105] K. A. Beaty, J. M. Chow, R. L. F. Cunha, K. K. Das, M. F. Hulber, A. Kundu, V.
Michelini, and E. R. Palmer, “Managing sensitive applications in the public
cloud,” IBM J. Res. Dev., vol. 60, no. 2–3, pp. 4:1–4:13, Mar. 2016.

[106] L. A. Zadeh, “The Concept of a Linguistic Variable and its Application to
Approximate Reasoning,” J. Inf. Sci., vol. 8, pp. 199–249, 1975.

[107] J. Huang and D. M. Nicol, “Trust mechanisms for cloud computing,” J. Cloud
Comput. Adv. Syst. Appl., vol. 2, no. 1, p. 9, 2013.

[108] R. Shaikh and M. Sasikumar, “Trust Model for Measuring Security Strength of
Cloud Computing Service,” Procedia Comput. Sci., vol. 45, pp. 380–389, 2015.

[109] Wu Xu, “A Fuzzy Reputation-based Trust Management Scheme for Cloud
Computing,” Int. J. Digit. Content Technol. its Appl., vol. 6, no. 17, pp. 437–
445, Sep. 2012.

[110] W. Fan and H. Perros, “A novel trust management framework for multi-cloud
environments based on trust service providers,” Knowledge-Based Syst., vol.
70, pp. 392–406, Nov. 2014.

[111] C. Qu and R. Buyya, “A Cloud Trust Evaluation System Using Hierarchical
Fuzzy Inference System for Service Selection,” in 2014 IEEE 28th International
Conference on Advanced Information Networking and Applications, 2014, pp.
850–857.

[112] Z. Raghebi and M. R. Hashemi, “A new trust evaluation method based on
reliability of customer feedback for cloud computing,” in 2013 10th International
ISC Conference on Information Security and Cryptology (ISCISC), 2013, pp.
1–6.

 127

[113] H. Banirostam, A. Hedayati, A. K. Zadeh, and E. Shamsinezhad, “A Trust
Based Approach for Increasing Security in Cloud Computing Infrastructure,” in
15th International Conference on Computer Modelling Simulation, 2013.

[114] K. Yang, X. Jia, K. Ren, B. Zhang, and R. Xie, “‘DACS-MACS: Effective Data
Access Control for Multiauthority Cloud Storage Systems,’” IEEE Trans. Inf.
Forensics Secur., 2013.

[115] L. Gu, C. Wang, Y. Zhang, J. Zhong, and Z. Ni, “Trust Model in Cloud
Computing Environment Based on Fuzzy Theory,” Int. J. Comput. Commun.
Control, vol. 9, no. 5, p. 570, Aug. 2014.

[116] D. Sun, G. Chang, L. Sun, F. Li, and X. Wang, “A dynamic multi-dimensional
trust evaluation model to enhance security of cloud computing environments,”
Int. J. Innov. Comput. Appl., 2012.

[117] E. D. Canedo and R. R. de C. and R. de O. A. Rafael Timóteo de Sousa
Junior, “TRUST MEASUREMENTS YELD DISTRIBUTED DECISION
SUPPORT IN CLOUD COMPUTING,” Int. J. Cyber-Security Digit. Forensics,
vol. 1, no. 2, pp. 140–151, 2012.

[118] V. Prasath, N. Bharathan, N. N.P, N. Lakshmi, and M. Nathiya, “Fuzzy Logic In
Cloud Computing,” Int. J. Eng. Res. Technol., vol. Vol.2, no. Issue 3 (March -
2013), Mar. 2013.

[119] H. Liao, Q. Wang, and G. Li, “A Fuzzy Logic-Based Trust Model in Grid,” in
2009 International Conference on Networks Security, Wireless
Communications and Trusted Computing, 2009, vol. 1, pp. 608–614.

[120] S. N. Sivanandam, S. Sumathi, and S. N. Deepa, Introduction to Fuzzy Logic
using MATLAB. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[121] V. Chang and M. Ramachandran, “Towards achieving Data Security with the
Cloud Computing Adoption Framework,” IEEE Trans. Serv. Comput., vol. 9,
no. 1, pp. 1–1, 2015.

[122] P. B. Osofisan, “Fuzzy Logic Control of the Syrup Mixing Process in Beverage
Production,” Leonardo J. Sci., no. 11, pp. 93–108, 2007.

[123] “Dropbox gears up for new EU data protection rules.” [Online]. Available:
http://www.computerweekly.com/news/450280565/Dropbox-gears-up-for-new-
EU-data-protection-
rules?utm_medium=EM&asrc=EM_ERU_55332335&utm_campaign=2016040
5_ERU Transmission for 04/05/2016 %28UserUniverse: 2007572%29_myka-
reports@techtarget.com&utm_source=ERU&src=5497085. [Accessed: 17-Apr-
2016].

 128

Appendices

A1: Adding pre-built Ubuntu Cloud image to Eucalyptus

1. Inside your terminal window on the front-end node load the admin credentials for

eucalyptus

a. source ~/credentials/admin/eucarc

2. Download and install the kexec-loader kernel using instructions from the kexec-

loader web-page, note the following command is all on one line

a. wget -O vmlinuz https://github.com/monolive/euca-single-

kernel/blob/master/examples/vmlinuz?raw=true

b. Bundle the ubuntu kernel for eucalyptus

i. euca-bundle-image -i vmlinuz -r x86_64 --kernel true

ii. Note the path/location of the manifest.xml

c. Upload the kernel to eucalyptus

i. euca-upload-bundle –d {path_to_directory_of_manifest} –b kexec

–m full_path_to.manifest.xml

d. Register the kernel to walrus

i. euca-register –n kexec-vmlinux kexec/vmlinuz.img.manifest.xml

ii. Note the image ID returned for the kernel

3. Download and install the kexec-loader initrd file using instructions from the kexec-

loader web-page

a. wget -O initrd-kexec https://github.com/monolive/euca-single-

kernel/blob/master/examples/initrd-kexec_load?raw=true

b. Bundle the ubuntu ramdisk for eucalyptus

i. euca-bundle-image -i initrd-kexec -r x86_64 --ramdisk true

ii. Note the path/location of the manifest.xml

c. Upload the ramdisk to eucalyptus

i. euca-upload-bundle –d {path_to_directory_of_manifest} –b kexec

–m full_path_to.manifest.xml

d. Register the ramdisk to walrus

i. euca-register –n kexec-initrd kexec/initrd-kexec.img.manifest.xml

ii. Note the ID returned for the ramdisk

4. For an ubuntu distribution of your choice, download the tar.gz file containing the

rootfs image, kernel and loader. Note, you may have to scroll down the page to get to

the tar.gz versions

 129

a. wget http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-

amd64.tar.gz

b. Extract the files from the archive

i. tar -zxvf saucy-server-cloudimg-amd64.tar.gz

ii. Note that the tar archive also contains a kernel but we shall not use

these. As the kexec utility will determine and call the right kernel

located inside the rootfs image file.

c. Bundle the root filesystem image for eucalyptus

i. euca-bundle-image –i saucy-server-cloudimg-amd64-disk1.img -

r x86_64

ii. Note the path/location of the manifest.xml file (under /var/tmp)

d. Upload the image to the eucalyptus

i. euca-upload-bundle –d {path_to_directory_of_manifest} –b saucy

–m {full_path_to.manifest.xml_from_step_above}

e. Register the image

i. euca-register -n ubuntu-saucy --kernel {kernel_id_from_step_2d}

--ramdisk {initrd_id_from_step_3d} {saucy/saucy-server-

cloudimg-amd64-disk1.img.manifest.xml}

f. Note the name of the emi shown

5. Verify that your image(s) is now listed (kernel – eki, ramdisk – eri and rootfs – emi)

a. euca-describe-images

6. Optionally set permissions on the new image to be launch-able by all users.

a. euca-modify-image-attribute -l –a all {emi-62443F41}

7. Create a new key-pair for use with Eucalyptus

a. euca-create-keypair mytest –f mytest.private

8. Launch an instance of your virtual machine using the command

a. euca-run-instances –k mytest {emi-62443F41}

b. Note the instance id returned

9. Check the status of your instance

a. euca-describe-instances {instance_id}

10. Once the status of your instance is “running”, you can now ssh into your instance,

using the key-file in step 23.

a. ssh -i mytest.private -v root@{IP_of_running_instance}

11. To shutdown your instance, simply from the server run the

a. euca-terminate-instances {id_of_instance}

http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz
http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz

 130

A2: Creating a cloud image from an Ubuntu 13.10 CD/ISO disk-

image:

1. Install virt-viewer, tightvnc and other applications

a. yum install virt-viewer tightvnc virt-manager qemu-kvm

2. Create a raw qemu image file of about 2GB (less than 5GB is better) in a

directory of your choice

a. qemu-img create -f raw /scratch/ubuntu.img 2G

3. Ensure that the raw disk has an msdos style label

a. parted /scratch/ubuntu.img mklabel msdos

4. Start the installation of the virtual machine

a. virt-install --name ubuntu13.10 --ram 1024 --os-type linux -c

/home/onime/Downloads/ubuntu-13.10-server-amd64.iso --disk

path=cloudtest.img,device=disk,bus=virtio --graphics

vnc,listen=0.0.0.0 --force

b. It may be necessary to specify the network type

-w NETWORK,bridge=br0,model=virtio

5. During installation

a. DO NOT PERFORM GUIDED PARTITIONING

i. Select manual partitioning and create only 1 primary ext4

partition for / on the whole disk. DO not create or use a swap

partition or setup additional partitions.

b. create account with username ec2-user

i. Set the password to something you remember ..

6. After installation check the vm details in virt-manager.

a. Set the disk model to virtio

b. Set the network device model to virtio

c. Set the NIC Source device to the entry with NAT

i. If there is an error about o the entry with NATault has not been

started” then

1. Run the command

a. virsh net-start default

2. In the virt-manager settings click Cancel and then

reselect the NAT entry in the Source Device settings

a. Apply should work OK now.

7. Start the vm and login as ec2-user

 131

a. Verify the status of the network using the ifconfig command, if there

is no IP on eth0 then

i. Edit the interfaces file and add a new block for eth0

1. sudo vi /etc/network/interfaces

2. Add the following 3 lines, note leave a blank line before

the new lines

#default network interface

auto eth0

iface eth0 inet dhcp

3. Save and exit the file

4. Restart networking

a. sudo service networking restart

b. Check the status of the network using the ifconfig command and

optionally update packages using the following commands

i. sudo apt-get update

ii. sudo apt-get upgrade

c. Modify the sudo settings

i. sudo visudo

1. Modify the line with %sudo to

%sudo ALL=(ALL:ALL) NOPASSWD: ALL

2. Add the following line below the above line

ec2-user ALL=(ALL:ALL) NOPASSWD: ALL

3. Save and exit the file (for vi use :wq)

d. Modify the disk label for the disk

i. sudo e2label /dev/vda1 cloudimg-rootfs

e. Modify /etc/fstab to mount by label

i. Modify the file /etc/fstab and change the entry for root to

1. LABEL=cloudimg-rootfs / ext4 defaults 0 0

ii. Comment or remove any reference to swap

#UUID=a954336633683638 none swap swap 0 0

iii. Save the file

f. Modify grub and enable serial console

i. sudo vi /etc/default/grub

1. Add the following 2 lines and remove other entries that

have the same name part (before the = sign).

GRUB_CMDLINE_LINUX="console=tty1 console=ttyS0”

GRUB_TERMINAL=console

 132

GRUB_DISABLE_LINUX_UUID=true

2. Save and exit the file

3. Update the grub configuration

a. sudo update-grub

g. Update the initramfs volume

i. sudo update-initramfs -u

h. Install the rc.local script for updating ssh keys (for root user).

i. sudo wget –O /etc/rc.local

https://raw.github.com/eucalyptus/Eucalyptus-

Scripts/master/rc.local

ii. sudo chmod a+rx /etc/rc.local

i. Add some security enhancements

i. By default, the rc.local script will setup ssh-keyed login for user

root. You can disable this by commenting out the right block

inside the file /etc/rc.local

#if [! -f /root/.ssh/authorized_keys]; then

echo >> /root/.ssh/authorized_keys

curl --retry 3 --retry-delay 10 -m 45 -s http://169.254.169.254/latest/meta-

data/public-#keys/0/openssh-key | grep 'ssh-rsa' >> /root/.ssh/authorized_keys

echo "AUTHORIZED_KEYS:"

echo "************************"

cat /root/.ssh/authorized_keys

echo "************************"

#fi

ii. Ensure user root has no pre-existing authorized_keys by

adding the following line before the above block.

echo > /root/.ssh/authorized_keys

iii. Modify /etc/rc.local to also perform keylogin for user ec2-user

by adding the following block.

echo > /home/ec2-user/.ssh/authorized_keys

curl --retry 3 --retry-delay 10 -m 45 -s http://169.254.169.254/latest/meta-

data/public-keys/0/openssh-key | grep 'ssh-rsa' >> /home/ec2-

user/.ssh/authorized_keys

 echo "AUTHORIZED_KEYS:"

 echo "************************"

 cat /home/ec2-user/.ssh/authorized_keys

echo "************************"

chown ************************"ized_k

chmod 0600 /home/ec2-user/.ssh

chmod 0640 /home/ec2-user/.ssh/authorized_keys

https://raw.github.com/eucalyptus/Eucalyptus-Scripts/master/rc.local
https://raw.github.com/eucalyptus/Eucalyptus-Scripts/master/rc.local

 133

iv. Modify the /etc/rc.local to optionally lock the passwords of root

and ec2-user accounts by adding the following lines below the

above block.

/usr/bin/passwd -l ec2-user

/usr/bin/passwd -l root

v. Save the file /etc/rc.local

j. Install cloud-init

i. sudo apt-get install cloud-init

k. Upload the kernel and ramdisk to the host

i. tar ad the kernel and ramdisk to the hostck the passwords

ii. scp /tmp/ubuntu-kernel.tgz

{your_username}@{real_ip_of_host}

l. Power off the machine

i. sudo poweroff

8. Extract the root partition from the qemu disk image using the following steps

a. First determine the sector size (512) and start of partition 1 (usually

2048) in the image file using the following command

i. fdisk determine the se

b. Use dd to extract just the raw partition (vda1), replace 512 with correct

sector size and skip with correct start of 1st partition as report by the

fdisk command.

i. dd if=ubuntu.img bs=512 skip=2048 of=rootfs.img

9. Inside your terminal window load the admin credentials for eucalyptus

a. source /root/credentials/admin/eucarc

10. Untar tar the kernel and ramdisk

a. tar r tar the kernel and ramdiskme/ubuntu-kernel.tgz

11. Bundle the ubuntu kernel for eucalyptus

a. euca-bundle-image -i /scratch/vmlinuz* -r x86_64 --kernel true

b. Note the path/location of the manifest.xml

12. Upload the kernel to eucalyptus

a. euca-upload-bundle o eucalyptusdirectory_of_manifest}

calubuntu13.10 –m full_path_to.manifest.xml

13. Register the kernel to walrus

a. euca-register ernel to walrus-kernel

ubuntu13.10/vmlinuz.img.manifest.xml

b. Note the image ID returned for the kernel

14. Bundle the ubuntu ramdisk for eucalyptus

 134

a. euca-bundle-image -i /scratch/initrd* -r x86_64 --ramdisk true

b. Note the path/location of the manifest.xml

15. Upload the ramdisk to eucalyptus

a. euca-upload-bundle to eucalyptusirectory_of_manifest}

eucalyptus3.10 ory_of_manifest} eucalyptusl

16. Register the ramdisk to walrus

a. euca-register an ubuntu_13_10-initrd

ubuntu13.10/initrd.img.manifest.xml

b. Note the ID returned for the ramdisk

17. Bundle the root filesystem image for eucalyptus

a. euca-bundle-image lesystem image for eucalyptus6_64

b. Note the path/location of the manifest.xml file (under /var/tmp)

18. Upload the image to the eucalyptus

a. euca-upload-bundle the eucalyptusectory_of_manifest} the

eucalyptus ctory_of_manifest} the eucalyptus_step_17

19. Register the image

a. euca-register magebuntu_13_10 r magel

{kernel_id_from_step_14} alyptusk {initrd_id_from_step_17}

ubuntu13.10/rootfs.img.manifest.xml

b. Note the name of the emi shown

20. Verify that your image(s) is now listed (kernel g.manifest.xmlp)fest.xmlt sector

size aneuca-describe-images

21. Optionally set permissions on the new image to be launch-able by all users.

a. euca-modify-image-attribute -l he new image to be lau

22. Create a new key-pair for use with Eucalyptus

a. euca-create-keypair mytest se with Eucalyptu

23. Launch an instance of your virtual machine using the command

a. euca-run-instances of your virtual machin}

b. Note the instance id returned

24. Check the status of your instance

a. euca-describe-instances {instance_id}

25. Once the status of your instance is }achin} using the commandh into your

instance, using the key-file in step 23.

a. ssh -i mytest.private -v root@{IP_of_running_instance}

26. To shutdown your instance, simply from the server run the

a. euca-terminate-instances {id_of_instance}

 135

A3: Creating an EBS backed image for Eucalyptus:

1. Start/run a new instance of the image you want to convert to an EBS backed image.

This will be used as a helper instance.

a. source ~/credentials/admin/eucarc

b. euca-describe-images

i. Note the the id from the image you choose

c. euca-create-keypair –f mykey mykey

d. euca-run-instances -k mykey {image_id_from_step_1b}

i. Note the new instance ID

2. Create a new ebs volume, big enough to hold the rootfs, hint you can use euca-

describe-clusters to identify and select your cluster name. The size is specified as

number of GB. It should be larger than size of vda.

a. euca-create-volume -z {cluster_name} -s 6

i. Note volume id of new volume

3. Attach the volume to the running instance from step 1. Note this assumes that it will

be the second disk of the instance (vbd), if it is not, then please change to vdc or

other suitable device.

a. euca-attach-volume {id_of_volume_from_step_2a} -i

{id_of_instance_from_step_1d} -d vbd

4. The following procedures are performed inside the “helper” instance

a. Login to the instance

i. ssh -i mykey ec2-user@{ip_of_instance}

b. Become root user

i. sudo su –

c. verify that new disk (vdb) is larger than the size of old disk (vda) from the

output of the following two commands

i. fdisk -l /dev/vda

ii. fdisk -l /dev/vdb

iii. If the new disk is not bigger then detach it using euca-detach-volume

{volume_id_from_step_2a} and delete it using euca-delete-volume

{volume_id_from_step_2a} and repeat step 2a.

d. Setup grub on the disk, note this command maybe called grub-setup instead

of grub-bios-setup.

i. grub-bios-setup /dev/vda

1. If there is an error about missing boot.img then use the

following command

 136

a. grub-bios-setup -b i386-pc/boot.img -c i386-pc/core.img

/dev/vda

ii. grub-install /dev/vda

e. Ensure network configuration is clean

i. Use one of the following commands to remove persistent network

configuration file

1. rm -f /etc/udev/rules.d/70-persistent-net.rules

2. rm -f /etc/udev/rules.d/*persistent*net*

3. rm -f `grep -l eth0 /etc/udev/rules.d/*`

ii. Remove hardware mac address from the file /etc/sysconfig/network-

scripts/ifcfg-eth0 if it exists

1. perl –pi –e ‘s/^HWADDR/#HWADDR/g’

/etc/sysconfig/network-scripts/ifcfg-eth0

f. Copy the root disk (should be vda) to the new device (should be vbd) using

the dd command:

i. dd if=/dev/vda of=/dev/vdb bs=1M

1. Note: This command will take a while to run.

g. When complete, leave the ssh session open as it will be needed again in step

7

5. Detach the volume from the instance

a. euca-detach-volume {volume_id_from_step_2a}

b. Wait 1 minute for the detach to complete

6. Re-attach the volume to the instance, this will allow the now defined partitions (vbd1,

vdb2) to now show up

a. euca-attach-volume {id_of_volume_from_step_2a} -i

{id_of_instance_from_step_1d} -d vbd

7. The following procedures are performed inside the “helper” instance

a. Perform a file system check on the root partition (and other mounted

partitions) of the new device (vbd) to ensure the filesystem is marked as

clean/OK.

i. fsck -y /dev/vdb1

ii. fsck -y /dev/vdb2

8. Detach the ebs volume from the helper instance

a. euca-detach-volume {id_of_volume_from_step_2a}

b. You may want to terminate the helper instance as it is no longer needed

i. euca-terminate-instance {instance_id_from_step_1d}

9. Create a snapshot of the ebs volume

 137

a. euca-create-snapshot {id_of_volume_from_step_2a}

10. Register the snapshot as a new image on the system

a. euca-register --name ubuntu-ebs --snapshot

{id_of_snapshot_from_step_9a} --root-device-name /dev/vda

i. Note the image id from output of command

11. Make the new image available to all users

a. euca-modify-image-attributes -l -a all {image_id_from_step_10a}

12. Ensure that the snapshot creation is complete to 100%

a. euca-describe-snapshots {id_of_snapshot_from_step_9a}

13. Start the new image using the normal euca-run-instances.

a. euca-run-instances -k {mykey} {image_id_from_step_10a}

i. Note instance id from output of command

ii. Note that each instance will get a separate EBS snapshot/volume

created for it that is deleted whenever the instance is terminated.

14. Connecting to new instance is same as before using the ssh command and keys.

a. ssh -v -i {mykey} ec2-user@{ip_of_instance}

15. Suspend (or stop) the ebs backed instance with the command euca-stop-instances.

a. euca-stop-instances {instance_id_from_step_13a}

i. Note: This command will free up the IP addresses used but keep the

ebs backed storage.

16. Resume an ebs backed instance with the command euca-start-instances

a. euca-start-instances {instance_id_from_step_13a}

17. Terminating an instance is with the normal euca-terminate-instance command.

NOTE: IT APPEARS THAT WILL ERASE THE SNAPSHOT DISK-copy THAT

WAS CREATED FOR THE INSTANCE, maybe you wanted euca-stop-instances

a. euca-terminate-instance {instance_id_from_step_13a}

 138

A4: Adding HADOOP to pre-built Ubuntu (Eucalyptus) cloud image

Requirements

- Ubuntu Cloud image TAR file downloaded from one of the following

locations

- http://cloud-images.ubuntu.com/saucy/current/

- OR

- http://cloud-images.ubuntu.com/

-

- hadoop-2.4.0.tar.gz TAR file from

http://www.motorlogy.com/apache/hadoop/common/current/

- Eucalyptus cloud server.

Procedure/STEPS (NOTE ALL COMMANDS SHOULD BE RUN AS root)

27. Inside your terminal window on the front-end node load the admin

credentials for eucalyptus

a. source ~/credentials/admin/eucarc

28. For an ubuntu distribution of your choice, download the tar.gz file

containing the rootfs image, kernel and loader. Note, you may have to

scroll down the page to get to the tar.gz versions

a. wget http://cloud-images.ubuntu.com/saucy/current/saucy-

server-cloudimg-amd64.tar.gz

b. Extract the files from the archive

i. tar -zxvf saucy-server-cloudimg-amd64.tar.gz

ii. Note that the tar archive also contains a kernel but we

shall not use these but use those from inside the IMG file.

29. Create a new and bigger img file from the existing one, to have space

for the hadoop application

a. Create a blank image file of the right size, 3GB in this case

i. dd if=/dev/zero of=mynewfile.img bs=1M count=3072

b. Copy the existing image to the new file

i. dd if=saucy-server-cloudimg-amd64.img

of=mynewfile.img conv=notrunc,nocreat bs=10M

http://cloud-images.ubuntu.com/saucy/current/
http://cloud-images.ubuntu.com/
http://www.motorlogy.com/apache/hadoop/common/current/
http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz
http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz

 139

c. Check the filesystem using e2fsck

i. e2fsck he filesystem us

d. Resize the image of the copied file

i. resize2fs mynewfile.img

e. Check the file system of the new file

i. e2fsck he file system o

30. Mount the new image file under /mnt and prepare it for modifications

a. Mount the image

i. mount the imagemage file under /

b. Mount the proc, sys and dev on the new file system

i. mount the proc, sys and dev o

ii. mount the proc, sys and dev

iii. mount the proc, sys and dev

31. Copy the name server configuration to the image

a. mkdir he name server configu

b. cp /etc/resolv.conf /mnt/run/resolvconf/

32. Now enter the image file system for modifications. The prompt should

change, you might get an error about groups, which may be safely

ignored

a. chroot /mnt

33. Prepare the image for updates and perform

a. rm pare the image for upda

b. mkdir e the image for updates and p

c. apt-get update

d. Upgrade the openssh server/client to the latest patch level

i. apt-get install openssh-server openssh-client

34. Install Java

a. apt-get install default-jdk

35. Download and install the hadoop tar file

a. Change directory to the root user folder

i. cd /root

b. Download

 140

i. wget

http://www.motorlogy.com/apache/hadoop/common/c

urrent/hadoop-2.3.0.tar.gz

c. Untar the archive

i. tar r the archiveotorlogy.com

d. Install the extracted directory to /usr/local

i. mv hadoop-2.4.0 /usr/local/hadoop

36. Create a hadoop startup configuration file for all users

a. Edit the file /etc/profile.d/hadoop.sh and add the indicated lines

i. vi /etc/profile.d/99_hadoop.sh

#HADOOP VARIABLES START

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

export HADOOP_INSTALL=/usr/local/hadoop

export PATH=$PATH:$HADOOP_INSTALL/bin

export PATH=$PATH:$HADOOP_INSTALL/sbin

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL

export HADOOP_COMMON_HOME=$HADOOP_INSTALL

export HADOOP_HDFS_HOME=$HADOOP_INSTALL

export YARN_HOME=$HADOOP_INSTALL

export HADOOP_YARN_HOME=$HADOOP_INSTALL

export

HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/li

b/native

export HADOOP_OPTS="-

Djava.library.path=$HADOOP_INSTALL/lib"

#HADOOP VARIABLES END

b. Make the file executable

i. chmod a+rx /etc/profile.d/99_hadoop.sh

37. Edit various hadoop configuration files and setup single node operation

a. Edit /usr/local/hadoop/etc/hadoop/hadoop-env.sh and set

JAVA_HOME to the indicated value

i. vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh

JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64

 141

b. Edit core-site.xml and add an entry for hdfs (indicated lines) in

between the <configuration> and </configuration>

i. vi /usr/local/hadoop/etc/hadoop/core-site.xml

<property>

 <name>fs.default.name</name>

 <value>hdfs://localhost:9000</value>

</property>

c. Edit yarn-site.xml and add entries for the default mapreduce and

nodemanager in between the existing <configuration> and

</configuration> entries

i. vi /usr/local/hadoop/etc/hadoop/yarn-site.xml

<property>

 <name>yarn.nodemanager.aux-services</name>

 <value>mapreduce_shuffle</value>

</property>

<property>

 <name>yarn.nodemanager.aux-

services.mapreduce.shuffle.class</name>

 <value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

d. Create the mapreduce site file from the template

i. cp /usr/local/hadoop/etc/hadoop/mapred-

site.xml.template

/usr/local/hadoop/etc/hadoop/mapred-site.xml

ii. Edit the mapred-site.xml and add the indicated entries in

between the <configuration> and </configuration> entries.

1. vi /usr/local/hadoop/etc/hadoop/mapred-

site.xml

<property>

 <name>mapreduce.framework.name</name>

 <value>yarn</value>

</property>

e. Create the hdfs storage directories and configure the hadoop

hdfs

 142

i. Create the hdfs directories

1. mkdir -p /var/hadoop_store/hdfs/namenode

2. mkdir -p /var/hadoop_store/hdfs/datanode

ii. Edit the hdfs-site.xml and add the indicated lines in

between the <configuration> and </configuration> tags.

1. vi /usr/local/hadoop/etc/hadoop/hdfs-site.xml

<property>

 <name>dfs.replication</name>

 <value>1</value>

 </property>

 <property>

 <name>dfs.namenode.name.dir</name>

 <value>file:/var/hadoop_store/hdfs/namenode</value>

 </property>

 <property>

 <name>dfs.datanode.data.dir</name>

 <value>file:/var/hadoop_store/hdfs/datanode</value>

 </property>

38. Add entries in the system startup file to start up hadoop at boot time,

Entries must be before the line with tries.> a

a. vi /etc/rc.local

#Give ownership of the various hadoop files to user ubuntu

chown oR ubuntu /usr/local/hadoop

chown oR ubuntu /usr/local/hadoop

#Place entry for hostname in /etc/hosts file

X=`hostname | cut -dtname in /etc/hosts fileto

[-n name | cut -dtname in /etc/hosts fileto user ubu

[-z name | cut -dtname in /etc/hosts filetoame`r ubuntuat boot

#Start hadoop as user ubuntu

su ubuntu oop as user ubuntu /etc/hosts fi

39. Create a new file for starting up hadoop as a normal user.

a. vi /etc/start-hadoop-as-user.sh

#/bin/bash

source /etc/profile.d/99_hadoop.sh

 143

/bin/rm /etc/profi/id_rsa*

#Create an ssh key for user ubuntu Note after normal user.c/hosts

time, Entrie

ssh-keygen ssh key for user ubuntu Note a

#Ensure that user-ubuntu can login without the need to supply a

password

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

chmod 0644 ~/.ssh/authorized_keys

ssh d 0644 ~/.ssh/authorized_keysthorized_key

ssh d 0644 ~/.ssh/authorized_keysthorized_k

ssh d 0644 ~/.ssh/authorized_keysthorized_keys

#Format the hdfs filesystem as user ubuntu

/usr/local/hadoop/bin/hdfs namenode ubuntu_

#Start up Hadoop

/usr/local/hadoop/sbin/start-dfs.sh

/usr/local/hadoop/sbin/start-yarn.sh

b. Make the script executable by all users

i. chmod a+rx /etc/start-hadoop-as-user.sh

40. Exit from the image/ubuntu

a. exit

41. Copy the vmlinuz and initrd files from the image

a. cp /mnt/boot/vmlinuz-3.11.0-18-generic .

b. cp /mnt/boot/initrd.img-3.11.0-18-generic .

42. Umount the image

a. umount /mnt/dev

b. umount /mnt/sys

c. umount /mnt/proc

d. umount /mnt

43. Bundle the extracted ubuntu kernel for use with Eucalyptus

a. Bundle the image

i. euca-bundle-image -i vmlinuz-3.11.0-18-generic -r

x86_64 --kernel true

ii. Note the path/location of the manifest.xml

b. Upload the kernel to eucalyptus

 144

i. euca-upload-bundle o

eucalyptusairectory_of_manifest} _64 --kernel

truedEntries must be before

c. Register the kernel to walrus

i. euca-register ernel to walrususairectory_of_manifest}

_64 --kernel truedEntries mus

ii. Note the image ID returned for the kernel

44. Bundle the extracted ubuntu ramdisk for eucalyptus

a. Bundle the initrd

i. euca-bundle-image -i initrd.img-3.11.0-18-generic -r

x86_64 --ramdisk true

ii. Note the path/location of the manifest.xml

b. Upload the ramdisk to eucalyptus

i. euca-upload-bundle to eucalyptusnifest.xmlgeneric -

r x86_64 --ramdisk trueries must be before

c. Register the ramdisk to walrus

i. euca-register amdisk to

walrus_directory_of_manifest} x86_64 --ramdisk

trueries must

ii. Note the ID returned for the ramdisk

45. Upload the img file to eucalyptus

a. Bundle the root filesystem image for eucalyptus

i. euca-bundle-image lesystem image for eucalyptus

ii. Note the path/location of the manifest.xml file (under

/var/tmp)

b. Upload the image to the eucalyptus

i. euca-upload-bundle d

{path_to_directory_of_manifest} –b hadoopimg –m

{full_path_to.manifest.xml_from_step_above}

c. Register the image

i. euca-register -n hadoop-single-node --kernel

{kernel_id_from_step_2d} --ramdisk

{initrd_id_from_step_3d}

{hadoopimg/mynewfile.img.manifest.xml}

 145

d. Note the name of the emi shown

46. Verify that your image(s) is now listed (kernel rnel_id_from_step_2d} --

ramdisk {initrd

a. euca-describe-images

47. Optionally set permissions on the new image to be launch-able by all

users.

a. euca-modify-image-attribute -l he new image to 43F41}

48. Create a new key-pair for use with Eucalyptus

a. euca-create-keypair myhadoop with Eucalyptus244

49. Launch an instance of your virtual machine using the command

a. euca-run-instances of your virtual machine {emi-62443F41}

b. Note the instance id returned

50. Check the status of your instance

a. euca-describe-instances {instance_id}

51. Once the status of your instance is }achine {emi-62443F41}and by all

users.disk {initrd_id_from_step_3d} {hadoopi

a. ssh -i myhadoop.private -v

ubuntu@{IP_of_running_instance}

52. Once inside, check the status of hadoop using the command jps, you

should get a list with 6 items as show below

a. jps

1858 ResourceManager

1396 NameNode

2433 Jps

1519 DataNode

1724 SecondaryNameNode

1978 NodeManager

53. You can now as user ubuntu run hadoop applications without

problems.

54. To shutdown your instance, simply from the server run the

euca-terminate-instances {id_of_instance}

