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Abstract  

As cloud computing continues to gain popularity and its economies of scale continue 

to improve, stakeholders want to minimise the security risk, protect their data and 

other resources while maximising the gains of using any cloud resources and its 

application. It is predicted that by the end of 2017, bulk of spending on any IT 

infrastructure would be on cloud infrastructure and services as many critical 

applications – power, medical, finance among others continue to be migrated onto 

cloud platforms. For these sectors, the security challenges of cloud adoption 

continue to be of a great concern even with its benefits. 

  

The ability to trust and measure security levels of any cloud platform is paramount in 

the complete adoption and use of cloud computing in many mission critical sectors. 

In-depth study and analysis of the trustworthiness of various cloud based 

platforms/systems are often limited by the complex and dynamic nature of cloud and 

often do not correctly foresee or practically determine the varying trust relationship 

between and across the cloud layers, components (schedulers), algorithms and 

applications especially at a large scale.  

 

Tradition security and privacy controls continue to be implemented on cloud but due 

to its fluid and dynamic nature, research work in the area of end-user attestable trust 

evaluation of the cloud platform is limited. Most of the current simulation tools do not 

cater for modelling of Trust on scalable multi-layer cloud deployments (including 

workflow and infrastructure).Even as these tools continue to be implemented none 

has been used to cater for all the layers of the cloud platform. 

 

This research presents a deployment of trusted computing applied in cloud 

computing suited for mission critical applications. It attempts to simplify the 

integration of trusted platform module based integrity measurement into cloud 

infrastructure. Using Eucalyptus cloud software on server-grade hardware, a trusted 

community cloud platform was deployed on the Brunel Network as presented in 

Chapter 3. Security is enhanced by the integration of an end-user accessible TPM 

integrity measurement and verification process; this guarantees trusted ownership 
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and integrity of the uploaded data and provides additional level of trust for the cloud 

platform.   

 

This research further presents a technique which allows data owners to first secure 

their data offline by inserting colour drops into the data using steganography. The 

colour drops are used to detect unauthorised modifications, verify data owner in the 

event the copyright of the data is in dispute and identify the path through which it 

was tampered with. This process ensures integrity and confidentiality of the 

resources. 

 

This thesis also presents a trust model using fuzzy logic which was simulated using 

Simulink in Matlab and subsequently evaluated on an experimental platform 

deployed on the Brunel network. Using this model, end-users can determine the trust 

values for a cloud platform or service, as well as, classify and compare various cloud 

platforms. The results obtained suggest that the outputs of this research work can 

improve end-user confidence when selecting or consuming cloud resources with 

enhanced data integrity and protection. 
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Chapter 1 

Introduction 

Cloud computing while achieving economies of scale, have made scalable 

computing resources widely available; however, as noted in [1]–[4] a global 

challenge to its full deployment and adaptation are the security and integrity of 

various components on the Cloud Infrastructure (CI), such as the deployed 

instances/virtual machines, and the hosted data among others. The National Institute 

of Standards and Technology (NIST) [5] defines CI as the combination of both the 

hardware and software that enable cloud computing.  

With cloud computing, there are three fundamental service models known as the 

delivery models [1], [2], [5], [6] , which are Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS)  and Software/Application as a Service (SaaS/AaaS). 

Infrastructure as a Service (IaaS) which provides access to virtualised hardware 

services like servers, disk space and memory to clients for software 

deployment/development. The IaaS service enables the deployment of the 

instances/virtual machines that are the “work-horses” in cloud computing. 

Platform as a Service (PaaS) – provides a platform for clients to deploy/develop 

application but clients have no control of the underlying cloud infrastructure. 

Software/Application as a Service (SaaS/AaaS) – provides client access to software 

applications running on the cloud infrastructure. 

The above service models are quite distinct from the following deployment models 

[1], [2], [5], [6]: 

Private Cloud – this deployment model allows only users of a single organisation 

access to resources on privately owned and dedicated cloud infrastructure. 

Public Cloud – this deployment model provides the general public with access to 

resources on shared (common) cloud infrastructure. 

Community Cloud – this deployment model allows users from different organisations 

with the same mission to share and access cloud infrastructure resources. 
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Hybrid Cloud – this deployment model combines two or more cloud models together 

in a manner that allows users of both models to seamlessly scale resources between 

the combined models. 

Figure 1.1 by [7] provides a visual overview of Cloud Computing and shows 

hierarchical relationship between cloud service modes and deployment models. 

 

Figure 1.1: Visual Model of NIST working definition of Cloud Computing (Source: [7]) 

Cloud Computing allows remote processing using multiple varied instances and 

multiple computers running at the same time. The large, multi-tenant and distributed 

nature of cloud systems means they are relatively easy targets for intruders and 

security can easily be compromised if care is not taken [4], [6]. With the centralised 

nature of most cloud resources, data owners and end-users lack direct control on 

cloud remote resources and the cloud provider’s perceived complete control over 

hosted data on its infrastructure is beginning to make data owners and end-users 

care about how the cloud provider handles and uses their hosted data or other 

resources while on the CI. 

As shown in Figure 1.2 from [6], a cloud deployment should have five distinct roles, 

these are the cloud provider, cloud consumer, cloud auditor, cloud broker and cloud 

carrier. For the purpose of this research work, the cloud consumer and cloud 

provider roles have been further subdivided as follows:  

End-User: usually the end-user is the ultimate consumer of the reliable and 

available cloud services and only pays for consumed services. 



 

 3 

Data Owner: a data owner is one who has the legal rights over the data and 

is usually also accountable for it. In some cases, the end-user is distinct from 

the data-owner or the data owner could also be an end-user. 

 Cloud Service Provider: is usually a provider of one or more cloud services 

to any cloud consumer. The cloud service provider acquires, manages and 

maintains the cloud infrastructure and services over the network and provides 

these services through virtualisation, resource pooling. 

Cloud Application Vendor: usually sells the on-demand cloud applications 

to end-user. It could also be distinct from a service provider or a service 

provider could also be an application vendor. 

Cloud Tool Provider: provides cloud support and manageability tools to do 

accounting, monitoring and usage reporting.  

 

While, the roles of end-user and data-owner are associated with cloud consumer, the 

latter three (service provider, application vendor and tool provider) are associated 

with the cloud provider. The cloud auditor whose role includes security audit is 

expected to be independent for transparency purposes. 

From Figure 1.2, it is clear that within the architecture, cloud consumers (end-users 

and data owners) only have an “indirect” way (via the cloud auditor) of knowing the 

security status of the cloud infrastructure and how their data is processed.  Basically, 

some commercial cloud auditors are listed via initiatives such as the CSA Security 

Trust and Assurance Registry (STAR)[8]. The open certification framework used by 

STAR recommends three distinct levels of certification, which are self-assessment, 

3rd – party assessment and continuous monitoring based certification [9]. Most of the 

security information available from STAR seems to be out-dated self-assessments 

(by cloud providers) and provide little or no useful information about wire-level 

security of individual services.   

A cloud user or data owner wants to be confident and trust that the cloud resources 

they are accessing is secured, and would be available, while its data integrity is 

tamper proof and not compromised [4], [5], [10]. In addition, a data owner wants to 

know that the originality of his or her data can be ascertained in the case of any 

misunderstanding, theft or tampering. 
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Figure 1.2: NIST Cloud Computing Reference Architecture (Source: [6]) 

Improving the trust relationship between cloud users, data owners and the cloud 

providers for wider adaption of cloud services is a global challenge not adequately 

addressed by existing approaches where end-users have very limited ability to 

directly measure or attest the security and integrity of any single cloud service. This 

research work addresses this challenge through the investigation of multiple security 

mechanisms across the cloud layers. The results obtained allows a data owner / 

cloud user to measure the security of the cloud infrastructure at each layer 

(Infrastructure, Platform and Software), while also protecting their data through data-

colouring, which ensures that a data owner can highlight or trace data-loss-path in 

the case of theft or data compromise and can also prove ownership, copyright or 

originality of owned data. 

1.1  Motivations  

Even as cloud computing improves computing and economies of scale, its security 

plays a critical part in its full deployment and adoption by the end-users [11]–[14]. 

Therefore, the overall motivation of this research has been to provide a means for 

users to attest to and verify the security status and integrity of a cloud infrastructure 

thereby deciding whether to trust the platform with sensitive information and 

processes. This would improve the trust relationship between cloud users, data 

owners and cloud providers. Three specific motivations that drove the research 

were: 
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1. To provide enhanced distributed Virtual Machine (VM) security against man-

in-the-middle attack and Denial of Service (DoS) 

2. To improve end-user's ability to measure / attest cloud security and data 

integrity 

3. To improve trust relationship between end-users and cloud providers 

1.2 Methodology 

The research method has been experimental with modelling and simulation. The 

approach demonstrated the feasibility of using the solution to solve a global 

challenge in cloud computing security as it relates to cloud user’s ability to attest and 

verify CI security status while also checking the integrity of its hosted data.  

An experimental Eucalyptus cloud in a box community platform was deployed on the 

Brunel Network on an Intel server which was used to evaluate the research work 

presented in this thesis. The specifications of the platform and the instances that 

were deployed on it are presented in Chapter 3.  

The research answers the following questions: 

 How can “end-user” multilayer security on cloud infrastructure be achieved 

using Trusted Computing (TC), file integrity checking/Intrusion Detection 

System (IDS) and Data Coloring (DC)? 

 How can TC, IDS and DC be combined to enhance distributed CI security 

(against man-in-the-middle attacks and denial of service)? How can TC, IDS 

and DC be combined to establish the trust status of the CI? 

 What is the performance impact on real world applications of a multilayer 

security based on TC, IDS and Data Coloring? 

The research work includes a detailed literature review to provide a clear 

understanding of the security and trust challenges encountered by end-users and 

cloud providers and also the deployment of a cloud platform that will be used to 

represent readily available resource allocation and utilisation within a community 

cloud system.  This also helps in understanding potential security issues and how 

they could be addressed.  
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1.3 Major Contributions to Knowledge 

The major contributions of this research work are summarised as follows: 

 The thesis presents a “patch-free” trusted cloud deployment integrated with 

end-user accessible Trusted Platform Module (TPM) integrity measurement 

and verification suited for mission critical applications. This deployment 

enhances overall security by the inclusion of an instance-level file or directory 

integrity checker for selected files and directories. This combined approach 

guarantees confidentiality and integrity at instance-level while at the same 

time providing end-users with the ability to attest/verify on-demand, the 

integrity and state of the underlying platform/service. A working prototype 

based on the Eucalyptus cloud software was deployed on the Brunel network 

and made available to industry partners in the energy sector to test power 

system application like Cimphony during mission critical usage, in a context 

that guarantees ownership and integrity of the uploaded data as each 

operator is provided with a diversified model based on the data sharing 

needs. 

 Implements a shell-script for data colouring which secures the data that is 

being processed or stored on the cloud platforms. The implementation is 

based on establishing and using concatenated fingerprints for watermarking 

through steganography. Using this technique, cloud and data owners are able 

to secure their data offline before uploading it onto any cloud platform. The 

fingerprint based “colours” are used to detect unauthorised modifications and 

suggest or highlight possible path of data loss or theft. The implementation 

was evaluated on the deployed experimental cloud platform. 

 This thesis presents a multi-layer security model based on fuzzy logic that 

combines the application of multiple traditional security and privacy 

mechanisms/controls across the different layers of the cloud platform in the 

determination of trust values. This model is resilient to failures of individual 

security mechanisms and allows continuous discrete testing/probing of cloud 

platforms. Unlike other models that converge to allow secure, the model from 
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this research shows that a cloud platform always include some inherent risk. It 

provides the end-user with a tool to check service reliability, accountability 

and non-repudiation.  

1.4 Structure of the Thesis 

The description below outlines the overall structure of the thesis and the purpose of 

each chapter.  

Chapter 2 presents aspects of Cloud Computing Security, discusses the 

implementations of security mechanisms at various cloud layers, and other relevant 

studies in the context of cloud security research.  

Chapter 3 provides further details about trusted computing as a security mechanism 

for the IaaS layer, where integrity measurements are taken and stored on a trusted 

platform module (TPM) with the aim of verifying the measurements. This chapter 

also, discusses the use of an independent intrusion detection system (IDS) for 

instances at the PaaS layer. It also presents a Eucalyptus community cloud 

deployment test-bed on the Brunel network.  

Chapter 4 discusses the implementation of data colouring based on steganography 

for data-protection. This is shown to provide a traceable path in the case of data 

theft, tamper or proof of data originality for the SaaS layer.  

Chapter 5 provides details about the matlab based simulation and testing of the 

Multi-Layer Security Trust Model (MLSTM) that uses Fuzzy-Logic Maths to provide 

users with information about the state of the cloud infrastructure. This chapter also 

presents results of MLSTM test carried out on the deployed eucalyptus test-bed.  

Chapter 6 concludes the research and proposes some future work for further 

research improvement in the field of cloud computing security and trust.  
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Chapter 2 

Literature Review 

As cloud computing deployment continues to provide savings on IT investment, its 

popularity is rising even among sensitive mission-critical sectors like the health and 

energy sectors. Cloud computing can provide timely, cost effective scalable 

deployment of ICT services and infrastructure to these sectors. However, the 

availability, confidentiality and integrity of data are paramount and are of great 

concern to these sectors and other cloud users. This chapter provides an overview 

of cloud computing security; it introduces the techniques employed presently in 

securing the cloud and then introduces some security mechanisms that can used to 

enforce data integrity for cloud processing. 

2.1 Computing Security 

Every automated system needs to be protected to preserve its integrity, availability 

and confidentiality [7] . In any field of IT and computing, computer security involves 

the protection and fortification of computing resources, data integrity, limiting 

unauthorised activities, keeping malicious users out, and of paramount importance 

also maintaining and enforcing data confidentiality. For any system to satisfy the 

security requirement its resources have to be available, timely, consistent, not 

exposed to malicious destruction and would not be disclosed or accessed by 

unauthorised users. 

As reliance on computer technology globally continues to increase, measures to 

secure these resources remain of utmost importance. Various measures to maintain 

confidentiality minimise failure or loss continues to be put in place by researchers 

and industries. Implementing security has never been an easy task and most times 

security of these resources are sometimes an afterthought which makes 

implementation even more difficult. 

Some of the common threats to security in computing and information systems may 

be categorised into the following [7]:  

 Operator’s error: this error which may be caused by any user who has the 

privilege of creating or modifying data. Errors affect the fundamental integrity 
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of the data and compromise any processing that may depend on the data. 

Depending on the severity of these errors, they could be a threat or may 

cause the system to be vulnerable [15]. 

 Social engineering: Mitnick and Simon explained in [16] why even the 

strongest enforced firewalls and encryption protocols may not be sufficient 

enough to stop a would-be attacker from having unauthorised access to a 

computer system. Social engineering involves determining (sometimes 

through blackmail, bribery, deceit) the needed or authorised information such 

as passwords or technical “workings” of the system from an insider or getting 

it through their social interactions including trash items. 

 Malicious Hackers: Some people have a sophisticated knowledge of the 

computer systems and may exploit these errors or privileged know-how of 

these systems to gain unauthorised access to the systems [15]. Even though 

initially their expert knowledge of the computer systems was to positively use 

or maintain the system beyond other ordinary users, it becomes malicious 

when used negatively to the detriment of the systems and other users. 

Though the group of people who are called hackers are further divided into 

two – white hats and black hats. White hats use their expertise to assist 

developers while the black hats use their expertise to inflict harm to a targeted 

system. 

 Fire and Natural Disasters: Fire and natural disasters such as earthquakes 

can highly affect the availability of computing resources even when the 

probability of such occurrence is low. While, it is impossible to predict or 

control such events, they can be catered for through adequate contingency 

planning [7]. 

 Espionage: In computing, espionage involves the collection and acquisition of 

privileged or confidential information by an authorised privilege user. The 

collected data or information may be sold or bought, circulated or used to 

directly aid a competitor or another organisation. Espionage may be 

impossible to control especially when it is perpetuated by government 

agencies in response to terrorism or with the collaboration of a compromised 

insider with privileged access [17]. 
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 Physical: there could be an act of sabotage by physically attacking or 

damaging computer systems or resources. A physical attack for instance on 

data storage would render the data completely or partly unreadable. 

These treats can be broadly categorised as accidental disclosures where any 

component of the computer systems may fail thereby exposing it to attacks, 

deliberate penetration where there is deliberate effort to acquire information about or 

contained in the system and physical attack where there is an attack on the physical 

system or the environment where these systems are placed or hosted physically. 

Cloud computing security is not different from traditional IT and computing security 

as previously described, instead security in cloud computing is more complex as 

processing on cloud platforms involves virtualisation, multi-tenancy and almost every 

interaction is carried out over the network. From the end-user’s perspective, clouds 

are not confined to a single or exact physical location and many-a-times, it is 

impossible to specify the exact location of where one’s data is stored or processed 

[18]. Many of the security threats and/or vulnerabilities affecting cloud computing are 

in reality linked to the described computing security categories/topics of user 

(operator) error, malicious (ordinary) hackers, social engineering, natural disasters, 

terrorism and in recent times even espionage as in the case of the US government 

and Edward Snowden [19]. 

The risk of computing resources being compromised due to security threats are 

minimised through the enforcements of adequate defence mechanisms or having 

security measures put in place to protect computing resources and ensure they 

remain safe even when accessed by nefarious or malicious users. Some examples 

of these computing security measures include: 

 Access control: These are the measures put in place to safe guard against 

theft and deny unauthorised access to the computer systems and data 

resources. Techniques involve in limiting or granting access include 

passwords, user authentication, access control, intruder alarms, physical 

barriers among others. Users are encouraged to have strong passwords that 

meet the password requirement and it’s hard to guess by malicious attackers. 

Due to advances in computing technology, the resources are more vulnerable 

to attacks now more than ever.  
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 Physical security involves limiting physical access to computing resources. 

This may take the form of providing special access for privileged users. 

 Organisational control: This could include security clearance and operating 

procedures for employees of an organisation. 

 Network and Internet security: The inception of the Internet and now cloud 

computing has broadened the scope of computing security. Firewall which 

regulates remote network communication of computer systems is one of the 

most effective forms of protection on the Internet, network or cloud. Antivirus 

software is another form of protection for computer systems that connect to 

any form of network, internet or the cloud. Users are also encouraged to have 

strong password which meets the password requirement and it’s hard to 

guess by malicious attackers.  

 Natural Disasters: While disasters may be impossible to avoid, their impact 

may be mitigated through effective planning in order to avoid the unavailability 

or loss of data and other computing resources. A disaster recovery plan 

should include keeping regular back-up or copies of critical data/systems as 

well as the physical replication or duplication of resources/data both on-site 

and at a remote safe location.  

 Policies and legislation: Due to the changing nature of security attacks, it is 

usually necessary to have suitable or specific policies that ensure computing 

resources are regularly validated for security holes, security mechanisms are 

adequately patched or updated to address new threats or variations of 

existing ones. For example, a Data Centre Policy is typically used to safe-

guard physical access to computing resources, high-availability of critical 

resources (including energy) as well as multiple levels of backups of critical 

databases.  In many countries, the handling of data about persons is 

governed by suitable legislation aimed at protecting the privacy and rights of 

individuals against abuse while allowing the correct use of such data. 

Sometimes, legislation may go further to include items such as mandatory 

logging of access, mandatory periodic changing of access credentials and 

specifying limitations on storage or transfer of data outside determined 

boundaries often with penalties. 
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2.1.1 Physical Security and Trusted Platform Module  

Physical security is a measure that is designed to deny unauthorised access to the 

data centre environment, equipment and resources. Physical security in computing is 

the foundation of all other security policies. As such, the improper physical security 

of any computing system carries grave consequences for its overall security 

regardless of the comprehensiveness of all other security mechanisms that were put 

in place. For example, regardless of how much is spent on other part of security like 

intrusion detection, anti-virus and others, the confidentiality of resources are in doubt 

as long as the critical (physical) infrastructure is not adequately protected even 

though physical security measures vary according to organisational structure and 

needs.   

Beginning with the site or premises on which these resources are kept or processed 

some measures need to be enforced. In the UK, the storage or usage of government 

resources classified above “Restricted” is only possible at locations that are listed as 

satisfying security requirements; they are called the “list X” facility [6].  Workers are 

not permitted to use their personal computers or other IT equipment that are located 

in a “list X” facility as these are thought to be less secure than on a “list X” site [20]. 

Other physical measures include protection of the server room, laptops and 

desktops. While the systems maybe located and secure in a room there must be 

measures put in place to make sure only authorised users access the room or 

resources. These include [21]:  

 Biometrics: This involves the use of matching physical characteristic(s) of the 

individual such as retina, fingerprint or facial recognition to provide access to 

the secured room or resources.  

 Access Cards: an access card is linked to a specific user and is expected to 

be in the possession of that user at all times. Access cards are non-

transferable, are not to be shared and the loss of an access card is expected 

to be reported immediately. 

 User Awareness: Being aware of who is authorised to access certain 

locations allow users to confront any unauthorised user that may be in a 

restricted area. 
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 Locks: Special cables and locks (for example Kensington locks) are used to 

physically connect a system to a desk, this makes it impossible to move 

devices or steal them. 

 OS Hardening: Refers to the process of disabling unused services, de-

installation of un-needed application/software and sometimes disabling of 

USB ports and CD drives to discourage copying of the resources off the 

system. 

Physical security is further enhanced when access to resources by users is based on 

a ring approach.  

It is clear that all the measures discussed above are aimed at limiting un-authorised 

access or theft of computing resources, but they provide little or no information about 

the overall integrity of a system, that is, if it has been tampered with by possibly an 

insider with malicious intent. An alliance formed by several industry partners namely: 

Microsoft, Intel, IBM, HP and AMD developed the TC industry standard for a more 

secure computing platform.  

In TC, the goal is to provide a seemingly tamper proof computing platform with the 

ability to manage digital rights, detect/fight software piracy and even facilitate the 

rental access to software (and/data). The design of TC provides for all computing 

platforms to have a monitoring and reporting component (with some storage), known 

as TPM, implemented directly on the motherboard, that coordinates with TC enabled 

operating system kernel and other TC applications for protection enforcement and 

possibly direct access to a registry of online security servers maintained by hardware 

and software vendors 

Since 2006, new computers were sold with a built-in TPM chip, that independently 

secures computing hardware using integrated cryptographic key(s) that may be 

integrated into various computing operations such as firmware (BIOS) loader, 

system boot-loading, O.S. kernel and application start-up to monitor and store 

cryptographic (almost unforgeable) hash data about the integrity and trustworthy 

state of the computing chain and/or computer platform.   

That is the data stored in the TPM may be used to determine if individual 

components of a platform behave as intended. The TC process of attestation 

(verification) involves comparing the TPM data against a prior set of hash key 
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summary for certifying the tamper-proof state of hardware and software 

configuration. The prior set of hash keys may be stored off-line and periodically used 

even by third-parties and over suitable remote connections to verify that the software 

has not been tampered with or changed [22]. The TPM device may also be used to 

securely store third-party artifacts such as passwords, certificates and encryption 

keys designed to uniquely identify/authenticate individual computer platform(s) even 

for remote attestation and/or authentication by authorised third-parties.  

The use of a TPM backed TC authentication and attestation process provides a safer 

computing environment that may be used to enhance the level of protection offered 

to mission critical applications [23]. 

Figure 2.1 shows the functional block components of a TPM device. The TPM device 

may also be used in other devices like mobile phones and other network equipment 

as it would ensure that the critical information (stored on the device) is better 

protected from external software attack and tampering.  

It is important to note that the current implementation of TPM devices cannot control 

the software running on the computer system, as it only stores the cryptographic 

hash measurements taken during a chained start-up (pre-run time configurations). 

 

Figure 2.1 : TPM components (source [23]) 

For hashing, TPM uses a form of asymmetric key cryptography called RSA that 

makes it infeasible to modify data without changing the hash key; this guarantees 

integrity and provides a form of protection for the stored data. The TPM provides a 

secure root of trust (starting from the BIOS/firmware) for both reporting and storage 
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and each separate measurement of a component sub-system (of the computing 

platform) is a single/independent transaction that generates a separate hash key. 

It is note-worthy that, in a context of machine-to-machine (M2M) communication, 

trust could be based on confirmed identity as well as the verified expected 

(predictable) reliability of each party. 

2.1.2 Intrusion Detection and Prevention 

The rise in the number of security issues experienced by users has been attributed 

to the explosive deployment and processing of computing resources over network 

[24]. NIST in [25] describes intrusion as an attempt to compromise confidentiality, 

integrity and availability. Intrusion detection is the process of monitoring the events 

and/or changes on a computing platform and analysing them for any sign of 

intrusion. Software or hardware systems that automate the process of monitoring 

occurring events and/or changes in a computer system and analysing these systems 

for any security problems are called intrusion detection systems and they are vital in 

computing systems security as network based attacks have greatly increased in 

number in recent times [25]. 

Intrusion detection systems can detect attacks and other security violations that 

result from breaches or failures by other security measures. In large enterprises, 

intrusion detection systems serve as quality control for security implementation and 

of course these systems provide information about intrusions and attack that may 

have taken place. 

Sometimes once a system has been installed, the administrators rarely go back to 

update patches and other improvements either due to lack of time or knowledge, the 

IDS detects when an attacker exploits these flaws and penetrates the systems. 

Security attacks on a computer system may occur in some  predictable manner- for 

example, at first the attacker may use probes to examine (or scan) the system [25] 

exhaustively and choose an attack vector capable of inflicting the highest possible 

damage or threat.  A monitoring IDS analysing traffic in near real-time would trigger 

alerts to the necessary entity for further action, while, an intelligent IDS capable of 

operating in prevention mode would identify the probes as suspicious and 

appropriate actions taken to limit further probes/attacks by introducing evasive 
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behaviours (time-limited blacklisting of all passwords from the offender, during the 

time period even the right password is rejected), or outright firewalling (blocking or 

preventing total communication with) the offending parties.  

There are two main strategic approaches to implementing intrusion detection as 

reported in [25] , the host target co-location approach was used in the early days of 

mainframes, where most IDS were installed on the target system, this was done then 

as having another computing system to run IDS was expensive. The other, host 

target separation approach was introduced with the advent of personal computers 

and as mainframe systems became cheaper. In host target separation, the IDS were 

now installed on separate systems from the target host and this approach also 

improved security of the systems as the existence of the IDS is hidden from the 

attackers. IDS may also be classified as network based, where the IDS detect 

attacks by capturing and analysing network packets arriving at the target system or 

host based, where the IDS detects attacks by information collected within the target 

system. 

An intrusion detection system is composed of the following fundamental 

components: Information source(s): which is used to determine if any intrusion has 

taken place. The analysis/decision engine: that analyses the events and extracts 

security related information from it and the response engine: which is the set of 

action(s) the system takes once it detects any intrusion.  The IDS components are 

coordinated to provide security related to accountability, response and control.  

Accountability is provided by associating the intrusion activity or event to the entities 

responsible for initiating such activity, however, the accuracy of such association 

may be severely limited when the attacker uses a distributed network of 

compromised hosts for scanning or possibly uses forged identities. It is important 

that the system enforces a strong identification and authentication mechanism to 

further make it more difficult for the attacker to use a forged identity.  

Once a malicious probe, scan or attack is identified and classified by the IDS, 

appropriate response action is taken even when it originates from an authorised 

user, typically through some mechanism to control several elements of the 

computing system such as the authentication modules or ip firewall. 
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2.2 Cloud Computing  

Cloud computing has made scalable computing resources more widely available and 

has also achieved economies of scale; however, as noted in [2], [3], [5], [26] a global 

challenge to its full deployment and adaptation are the security and integrity of 

various components such as the CI and the deployed instances/virtual machines. 

Virtual machines (VMs) are software machines created to emulate or imitate a 

computer hardware system; they operate based on the function and capabilities of 

real computer hardware which also host the VMs. Instances are virtual machines or 

servers that are created from the cloud infrastructure. 

Cloud computing is an integration of different computing technologies; therefore its 

security challenges are not entirely “new.” Cloud computing security and trust 

challenges are only more noticeable because transactions are most times carried out 

with clients or providers whom the end-users have never met or do not see them 

physically [27] [26] [28]. 

There are three popular layers in cloud computing which are called the delivery 

models IaaS, PaaS and SaaS. IaaS provides the cloud user with virtualised shared 

storage and computing resources, which include CPU, disk space and memory. The 

IaaS delivery model enables the deployment of the instances/virtual machines that 

are the “work-horses” in Cloud computing [2], [26] and [5]. PaaS provides the cloud 

user with a platform for testing any application. While, SaaS provides the user with 

software and applications without the user having to worry about licenses and 

installation, this usually runs on the cloud provider’s infrastructure [29]. 

Conceptually, one can refer to a cloud stack as similar to a TCP/IP stack [30], which 

can then be represented thus: Physical  Virtualization  IaaS  PaaS  SaaS. 

Based on the user’s perspective, IaaS would require low-level hardware to be 

virtualized and as shown in Figure 2.2, each layer requires the structure and 

standards of the layer below it. In the cloud service delivery model, IaaS is at the 

lowest level and is usually the foundation of all cloud computing. It may be stated 

that all cloud services fundamentally require an underlying cloud infrastructure that is 

the IaaS layer even when it is not directly offered as a service. The SaaS layer relies 

completely on the security configurations put in place by the provider. At the PaaS 
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layer, the developer can configure further restrictions on the application or platform 

while at the IaaS layer the tenant can further customise the security configurations 

but there is no doubt that all these configurations still would have to rely on the 

underlying mechanisms to be completely secure [31]. 

Different cloud services provide different core services; Table 2.1 presents a 

summary of the services provided by each delivery model. 

Table 2.1: Services provided by each delivery model  

Services IaaS PaaS SaaS 

Networking Yes No No 

Storage / Disk 

Space 

Yes No No 

Server 

Hardware 

Resources 

Yes No No 

Application 

Layer 

No No Yes 

Integration Yes Yes Yes 

Infrastructure 

Management 

Yes No No 

Payment Per 

Utility 

Yes Yes Yes 

Resource 

Elasticity 

Yes Yes Yes 

Application 

Development 

No Yes No 

Multi-tenancy 

Architecture 

Yes Yes Yes 

 

Depending on the need of the users, cloud services may be deployed in a number of 

ways - Private, Public, Community or Hybrid cloud deployments with varying security 

considerations even for major issues like confidentiality, integrity (of data) and 

availability [5], [32], [33]. 
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When resources are deployed within a single organisation for only that organisation 

even when the offices are physically at different geographic locations or data-

centres, it is referred to as a private cloud. Private cloud when compared to other 

cloud models present the least security concern as they are only accessible via 

internal network and sensitive and mission critical application are being protected 

behind  the enterprise firewall [34]. 

Community cloud deployment on the other hand is when organisations or 

communities with similar mission, needs and requirements come together to share 

resources. It made be managed by one or more of the organisations or by a third 

party, though allowing a third party manage it comes with its inherent security risk as 

that also means accessing it over the internet [35], [36]. 

The resources deployed on a public cloud are usually accessed and shared by the 

general public and it’s usually managed by a commercial provider. It also goes 

without saying that of all these deployments mentioned, public cloud is the most 

vulnerable to attack. 

Another cloud deployment model that combines any two or more deployment models 

and techniques mentioned above is the hybrid cloud.  Even when the deployments 

are combined each deployment still maintains its uniqueness.  

NIST [5] defines Cloud Infrastructure (CI) as the combination of the hardware and 

software that enable cloud computing.  

Many challenges are apparent when sharing the same platform; these include denial 

of service, data integrity, operating system, applications piracy and copyright issues 

among others. Considering that the IaaS layer involves the sharing of common 

computing hardware resources, common security challenges obvious on this layer 

would include denial of service and man in the middle attack, among others. 

Generally, clouds enforce security across infrastructure including the network and 

the platform layer through tools such as firewalls, Intrusion Detection Systems (IDS), 

Intrusion Prevention Systems (IPS) or encrypting and securing data in transit (for 

example DNSSec) among others; and may involve the sharing of a common storage 

where data is either hosted on the platform or processed without any form of 
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protection. Figure 2.2 also shows some of the possible security measures commonly 

adopted for the different cloud layers. 

 

Figure 2.2: Cloud Layers and Possible Security Measures 

Mission critical services require on-time availability and reliability of scalable 

computing resources, which is only possible through the deployment of Cloud 

computing. However, more needs to be done with regard to the security and integrity 

of the cloud infrastructure and the virtual machines (instances) running on the 

“cloud”. There is also a need for the secured processing of data whether on the 

“cloud” or in the traditional computing environment. The security of the data and 

applications can never be over-emphasised as mission critical sectors rely heavily on 

efficient and secured data [2], [3], [5], [26].  

2.3 Cloud Security  

For any security mechanism to be effective, it must be tailored to complement the 

target platform. Therefore, for any platform to be considered secure and trusted, the 

security mechanisms across every layer must be enforced and configured as it is the 

individual security mechanism on each layer that make up the overall security status 

of the cloud platform and therefore each layer must be properly secure as there is no 

“one fit all” security solution that would be applied on the platform but all the layers 

contribute to the security of the whole platform. Cloud computing relies heavily on 

remote access and the virtualization of servers and network connectivity among 
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others. Cloud security is also of paramount importance for the full adoption of cloud 

by mission critical sectors and other end-users [4] [37].  

In cloud computing, the trust relationship between the users and the providers is 

important as the deployment and control of some security mechanisms such as 

firewalls, installation of software patches, and appropriate use of security 

groups/zones among others are completely managed by providers. Within, the Open 

Security Framework by CSA, Cloud Auditors (not end-users) are expected to ensure 

adequate security compliance by providers.  

Security groups or zones directly address multi-tenancy issues that may create more 

opportunities of misconfigurations, malicious conduct or data compromise. Securing 

the multi-tenancy environment also requires the proper isolation of identity 

verification as well as enforcing limits access to resources and locations. For cloud 

users they could be group based on their activity where privilege users may be 

grouped according to roles like administrator, ordinary user and so on and the 

provided with a single standard-based user login capability to allow easy, quick and 

authenticated cloud service. 

Network or IP firewalls are used to block access to computing services/resources 

from untrusted persons and other nefarious computer based attacks. The 

deployment of firewalls follows several different concepts that influence the 

deployment and usage of cloud computing services. In the Closed/ Walled garden 

concept, end-users are restricted only to approved applications and services. 

Additionally, there is usually some form of security to the allowed services from 

unwanted users. The key disadvantage of the closed/walled garden concept is that it 

limits end-users from seamlessly deploying or implementing public or community 

clouds. The Open garden concept on the other hand allows unrestricted access to 

services and applications by all end-users, this concept is not suitable for storing 

sensitive data and can lead to the data integrity been tempered with. In the end it 

best to keep sensitive data behind the closed/walled garden firewalls. Additionally, 

some regular monitoring is required to ensure adequate safety of the sensitive data 

even when clouds are also deployed on the network. 

The way data is stored, accessed or processed on a platform also plays a massive 

role in the integrity and availability of such data. Various mechanisms can be applied 
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on a cloud platform to enforce security as applying only a particular traditional 

security mechanism is unsuitable for the cloud platform [38] . Data information needs 

to be properly segregated on the cloud platform. Encryption is one way of protecting 

data while it is transit or during storage. Encryption maintains data confidentiality and 

integrity at the expense of accessibility as only authorised users with the necessary 

keys can decrypt data for processing. Encryption requirement is also different from 

one user to another. While some may require very high restrictions, others may 

require only for specific data and delegate the key management to a third party.  

Data colouring is another mechanism for securing cloud data which, in contrast to 

encryption, maintains accessibility and integrity at the expense of confidentiality.  

For data, it is important that both users and providers are aware of national 

legislation, policies or other intellectual property or privacy laws that could govern the 

ability to store or process data in geographical locations outside national boundaries. 

In the medical fields, the high fidelity processing of images is also important in order 

to preserve the integrity of sensitive information. 

2.3.1 Cloud Models and Security  

Researchers in [39] carried out an analysis where they presented a variety of 

security issues across the different cloud computing models. These researchers also 

suggested counter measures though the counter measures seem to be more for 

implementation from the provider’s side they none the less acknowledged that 

outsourcing resources to third party in the cloud environment makes it harder to 

secure the resources. 

In the SaaS model, which is the most popular deployment model, the deployment, 

control and enforcement of security mechanisms is mainly the responsibility of the 

provider. End-users access to the service is mainly via a web interface controlled by 

the provider, who may choose to restricted access based on IP address or 

geographical location. 

In the PaaS model, users have more responsibility in managing their configuration 

and security mechanisms than in the SaaS model. Although, choices of security 

mechanisms are limited to configurations selected by the provider, the user may be 
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able change or expand on the configurations even by deploying additional 

mechanisms. 

In the IaaS mode, majority of the responsibility for the correct deployment, control 

and enforcement of security mechanism is on the end-users. In the multi-tenancy 

situation, the end-user’s choices and decisions are limited only to the virtualized 

infrastructure (images, network and storage). For example, it is possible that a 

different tenant would not pay as much attention to security or engage in activities 

that adversely affect overall security or the security of physical infrastructure is not 

adequate. As noted by researchers in  [40], some attacks include the existence of 

cross-virtual machine attacks among VMs that co-locate with others. These attacks 

can be minimised by checking the logs of the VMs and also enabling a trigger alarm 

based on the IDS. 

Many users with mission critical applications choose to deploy private clouds where 

they can also maintain adequate control over every aspect with clearer visibility and 

less concerns, while other users choose to only deploy non-critical application and 

resources on the community clouds. 

Another area of concern for a cloud user is the case of denial of service (DoS) or 

distributed denial of service (DDoS) attacks [41]–[43]. Availability requirement vary 

also from user to user so also the time requirement needed to recover from failure is 

greatly determined by the security compliance checks to be performed. It is 

important that the service provider extends the clients’ security capability as at when 

needed. 

2.3.2 Fuzzy logic in Cloud Computing Security and Trust 

Boolean Logic, which modern computing is based on, cannot be replicated in the 

case of cloud computing security; rather the fuzzy logic approach is applied. Fuzzy 

logic as described by Zadeh in [44] is a class of object that has degrees of truth 

characterised by membership function raging between zero and one rather than the 

Boolean zero or one. It is difficult to describe trust with accurate probability based on 

only true or false, Zadeh advanced the idea of fuzzy logic understanding of normal 

language to represent some measurement of vagueness. 
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Furthermore, fuzzy logic which is based on fuzzy set allows operations of inclusion, 

union intersection and complement on its sets. Fuzzy logic allows all things to 

represent a degree of some form. It is descriptive instead of just black and white, it 

allows something to be represented with a bit of black and white a bit of grey, it 

allows one  to represent an item as to what degree it is black and to what degree it 

white at the same time.  

Now to fully represent any item using fuzzy logic, some basic processes must be 

employed, these are 

 Fuzzy Rule: This allows the representation of items in linguistic form assigns 

linguistic values to them. This is usually a conditional statement which allows 

one to be able to represent the item with some degree of membership. The 

difference between classical rules and fuzzy rules are that classical rules is 

binary logic 1 or 0 which with fuzzy they are represented based on 

“membership degree”. For example if a man is short, it can also be 

represented in fuzzy as “to what degree is the man tall?” but for classical 

representation, the man can never be tall (0). Fuzzy rule have various parts 

that when put together provide a crisp solution to a problem. 

 Fuzzy Inference Type: this maps a given input to an output. There are 

various inference techniques but two popular types are the Mamdani and 

Sugeno types[45]. Mamdani method [46] is commonly used method and it 

was chosen over the Sugeno method because it is intuitive, has widespread 

acceptance and well suited for human input. 

 Defuzzification: This allows the final output to be a crisp number as it takes 

as input the various aggregate to produce a final single/crisp number. 

No cloud platform is completely secured or completely trusted instead it should be 

“to what degree is this platform secure or trusted?” Systems that may be presently 

may not be secure later as it may need to update or upgrade some patches but that 

doesn’t now mean it is totally unsecure. 

This therefore means that in terms of security and trust of a cloud platform, fuzzy 

logic would allow the representation of “to what degree is the cloud platform secure 

across all the layers and so therefore to what degree can I trust this platform? 
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2.3.3 Existing and Related Works in Cloud Computing Security and Trust 

As the security and trust concerns continue to be more pronounced in cloud, various 

researchers continue to provide solution in this area but these works seem to be 

limited to the IaaS layer and nothing seem to have being develop for the whole 

infrastructure and no tool seem to be available to provide the user with the ability to 

check and probe continuously the security status of the cloud platform therefore the 

user is not able to completely trust the cloud platform. 

Researchers in [47] only considered security on the IaaS layer with emphasis on 

TPM and the contract documents but how can a user probe and attest to the quality 

of service provided by the provider only by just what is written and signed in the 

contract? 

Gonzales et al in [48] considered the IaaS infrastructure and provided alternative 

cloud security controls for defence called the cloud-trust model, the model  provided 

by the researchers strengthens cloud service providers and minimises discovery of 

live virtual machines but this also doesn’t consider the end-user or the different 

layers that make up the cloud platform. 

In [49], Saadat and Shahriari proposed a framework that would analyse and 

categorise customer’s security and trust concerns, it further considers a cycle that 

would continuously monitor and  solve any problem on the cloud environment but 

this was just a framework and was not evaluated using any technology. 

Sirohi and Agarwal in [50] considered a security framework that would provide 

protection to the data resources on the cloud and providing transparency between  

the cloud  provider and cloud user. The real time monitoring of the resources is a 

very important and worthy but the use of only encryption technique to protect the 

data may attract unnecessary attention from the unwanted intruders to want to probe 

further why that data is encrypted. 

In [51], the researchers considered a trusted model to verify and evaluate the 

security controls claimed by a cloud service provider to meet the customer’s 

requirement. In carrying out the evaluation and verification, the model considers 

trusted third parties and user’s past experience but these options do not provide an 

unbiased judgement so the judgment maybe inconsistent/flawed. 



 

 26 

In the same vain, CSA STAR[8] created the self-assessment framework for cloud 

providers to make public their platform’s security and control capabilities but these 

are sometimes outdated and no way for the end-user to verify before subscribing 

and even after subscribing there is no way to continuously probe the platform, so 

how can an end user trust the platform? 

Wallom et al in [52] seem to make an effort in deploying trusted computing for 

mission critical applications in the cloud  but the work had used a lot software 

patches and this automatically means the cloud platform software cannot be upgrade 

or updated and this is a great security flaw that must be tackled else the platform is 

never up to date  and no matter the security controls and mechanisms it would 

always be prone to attacks. 

Hwang and Li [53] also proposed a method of securing data on the cloud based on 

data colouring which generates unique colour drops from three different 

characteristics but this method  has not been implemented or evaluated. 

Researchers in [54] deployed a fuzzy based trust model but this model assumes all 

cloud platform are secure and after continuous probing user’s trust level begins to 

drop when the necessary mechanisms have not been applied. 

Even as Cloud computing provides virtualised, metered real time, on demand 

computing resources, the cloud user wants a secure trusted platform with its 

resources available anytime it is needed and an assurance that its data integrity is 

not tampered with.  

The research reported in this thesis intends to address the following: 

 Improve user’s ability to measure and attest to a cloud platform security status  

 Improve the trust relationship between end-users and providers 

 Provide a technique for users to protect their data integrity and claim right to 

ownership. 

 

2.5 Summary  

Due to the need for mobility and improved access, users are gradually embracing 

cloud technology and its security cannot be over emphasized. Cloud computing 



 

 27 

security like any computing technology must also be examined based on security 

principles of confidentiality, integrity and availability and the individual associated 

contributions by the deployed security mechanism some of which are examined in 

this chapter. 

The cloud infrastructure needs to be physically secure. Mechanisms that may be put 

in place to enforce physical security include monitoring of physical access, 

biometrics, CCTV among others. While accessing the cloud platform remotely, it is 

important to make sure that only authorised users have access to the platform and 

every authorised user has access to only the resources which they are authorised to 

access.  

In the different cloud models, responsibility for security is shared between the 

provider and users. In the IaaS model, the user has a major responsibility while in 

the SaaS model, they have the least responsibility.  

Due to the multi-tenancy nature of clouds, the security of the shared environment 

including network and other physical infrastructure are the sole responsibility of the 

providers as it is important to ensure that adequate leak proof separation (security 

zones or domains) is maintained between users.  

As users take advantage of the operational and financial benefit of cloud, they are 

concerned that their information is kept safe and not disclosed to unauthorised 

persons, processes or devices. It is also important users are able to evaluate and 

attest to the platform and services they would be accessing even after signing the 

agreed contract which is usually referred to as Service Level Agreement (SLA), the 

SLA defines the level of service quality the end-user is entitled to from the provider 

[55]. Any security negligence leaves a gap and a wide door open to cloud threats 

and data breaches. Just signing an SLA doesn’t prove that appropriate security has 

been put in place.  
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Chapter 3 

Deploying Trusted Cloud Computing for Data Intensive 

System Applications  

Trusted cloud computing is a form of trusted computing applied in cloud computing 

to improve the confidentiality and integrity of the platform. As providers are making 

substantial effort to secure their platforms, there is a clear need among cloud end-

users for a solution that guarantees confidentiality and integrity while at the same 

time providing users with the ability to verify the state of this solution or service.  

Presently existing virtual machines running on various cloud platforms have 

limitations that prevent end-users from verifying their security states and also lack 

adequate protection from unauthorised access by privileged users such as the cloud 

providers. Trusted cloud computing provide cloud end-users with a possible tool to 

assess the cloud provider, the trustworthy state of the cloud platform, enable on-

demand monitoring and application of industry standard based security solution in 

the field of cloud computing.   

This chapter presents the deployment of trusted cloud computing for mission critical 

applications in the energy sector. The research presented in this chapter simplifies 

the integration of trusted platform module based integrity measurement into 

commodity cloud infrastructure by eliminating the need for “custom” software and 

patches; it also enhances instance-level security by including a distributed file and 

directory integrity checker for added security. The deployment of trusted cloud 

computing using the Eucalyptus Cloud software on server-grade hardware is 

presented, as well as the results of a comparative evaluation of the additional 

overhead in the instance creation/start-up based on a simulation of low, medium and 

high security settings. The trusted cloud computing infrastructure was made 

available to the power system application developers and users for deployment and 

testing.  
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3.1 Introduction  

Mission critical services such as the electrical power grid require on-time availability 

and reliability of scalable computing resources, which is only possible through the 

deployment of cloud computing. However, more needs to be done with regard to the 

security and integrity of the cloud infrastructure and the virtual machines (instances) 

running on the “cloud” [56]–[59]. There is also a need for the secured processing of 

data whether in the “cloud” or in the traditional computing environment. The security 

of the data and applications can never be over-emphasised as the energy sector 

relies heavily on efficient and secured data. 

This chapter presents a modified use-case secured platform for the use by UK power 

industry (which includes the Distribution Network Operators (DNOs), the 

Transmission System Operators (TSOs) and the UK National Grid (NG)). Cloud 

computing can facilitate and simplify the exchange of data between the Distribution 

Network Operators (DNOs) and the Transmission System Operators (TSOs) as 

required in the UK by National Grid (NG) [6]. The NG plays a vital role in the daily 

capacity planning and distribution of electricity in the U.K and makes extensive use 

of models based on real-data from DNOs and TSOs conforming to a strict standard 

and format as defined by the NG [60]. For example, data from a DNO would include 

the state of its electrical network; connectivity arrangements; electrical loads; sub-

transient/transient currents, power injection values such as power, average voltage 

and power factor and reactance/resistance ratio at each grid connection point [61]. 

In a cloud-based environment, the integrity of the entire UK power system would 

depend on the ability of DNOs/TSOs to update and maintain only sections of data 

related to their equipment/network. The exchange of data between DNOs and TSOs 

is greatly facilitated by the adoption and use of a common file exchange format. 

However, the data is of great value (potentially highly sensitive to national security) 

as they describe the state of portions of the national transmission and distribution 

networks. The energy sector requires a trusted cloud computing infrastructure that 

can guarantee secure ownership and integrity of the uploaded data even when it is 

decrypted for processing. The research presented in this chapter focuses on 

intrusion detection (integrity / trust) and security of the virtual infrastructure 
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(architecture) as a possible approach to addressing security when deploying cloud 

computing in mission critical sectors [62].  

A group of DNO or TSOs (end-users) carried out the up-load, validation and storage 

of data in the secure storage locations (Elastic Block Store (EBS) storage volumes). 

Typically, the end-users operate exclusively over the secure interface of applications 

such as an SSL-enabled web-interface. Direct attestation and verification of the 

cloud Infrastructure’s security and integrity by end-users (DNO/TSOs) is possible if 

enabled by both the CI provider and the application providers (NGs).  

The Open Grid Systems (OGS), as a SaaS provider (and PaaS user), are 

responsible for creating the instances from the supplied images, installing and 

configuring additional or needed applications for use by end-users.  As PaaS users, 

OGS have secure shell (SSH) access to their running instances complimented with 

SSH access to the CI, the latter is useful for conducting security / integrity testing 

and verification. Brunel University London as the IaaS provider is responsible for 

setting up the secured images and volumes from which the instances are created. 

The use case adopts the OGS Cimphony application as the key interface between 

the end-users and others power-users such as the National Grid (NG). The 

Cimphony software application is network-model data visualization and analysis tool 

that can validate different network models present in the CIM format, merge these 

data models and transform them from one format to another. 

The network models uploaded by the DNOs/TSOs are stored into individual EBS 

volumes which are tagged with the name of the DSO/TSO and a time-stamp of the 

upload. Each DNO/TSO has read/write access only to its volumes, while an NG 

would have read-only access to all volumes managed by the DNOs/TSOs.  

In this use case, it is assumed that:  

 Each user (DNS/TSO/NG) has a private public key pair. 

 The NG and DNO/TSO exchange their public keys 

 NG and DNO/TSO have read-only access to a pre-seeded IDS database for 

verifying the applications, data and configuration of the instances. 



 

 31 

 NG and DNO/TSO have read-only access to pre-seeded manifest/database of 

measurements for the TC verification (openPTS) of the cloud-infrastructure. 

 The Eucalyptus cloud infrastructure is integrated with the Trusted Computing 

technology described in Section 3.2. In this way, NGs (and DNO/TSO) can 

run/interrogate openPTS to obtain the TC measurements of the cloud-

infrastructure. 

Each SaaS provider workflow is as follows: 

 Instantiate a VM from the stored image  

 Verify that the cloud infrastructure can be trusted using openPTS 

 Verify that the VM can be trusted using the Advanced Intrusion Detection 

Environment (AIDE) command. 

 Mount the necessary Elastic Block Store volumes 

 Install and configure the end-user application (Cimphony). 

 Create the necessary access credential for the DNOs/TSOs 

 Inform DNOs/TSOs about access credentials 

 Wait for DNOs/TSOs to complete workflow 

 Decrypt and verify the signature of the models/data uploaded by DNOs/TSOs 

 Merge all the DNO models 

 Convert and process the resulting models 

 Elaborate or download the model over a secure channel 

 Destroy the VM  
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The DNS/TSO (cloud end-users) workflow is as follows: 

 Obtain the access credentials from NG 

 Verify that the access credentials work correctly 

 Verify that the application can be trusted 

 Verify that the cloud-infrastructure can be trusted 

 Verify that the instance can be trusted 

 Upload the data/network model to the correct EBS storage device. 

 Validate the network model using the Cimphony application 

 Encrypt/sign the uploaded data using the NG public-key and DSO/TSO 

private-key. 

 Inform NG on completion of task. 

The integrity of the instance itself is established by the Advanced Intrusion Detection 

Environment (AIDE) which is an intrusion detection programme specifically referred 

to as file and directory integrity detection checker, while the integrity of the cloud-

infrastructure is based on TC.  The independent security verification of both 

instances and cloud-infrastructure ensures an overall stronger security when both 

instance and infrastructure have not been altered or modified. 

Figure 3.1 shows a prototype implementation of a trusted cloud computing 

deployment on the Brunel University computer network where both TC integrity 

measurement and verification based on the TPM [22] and intrusion detection using 

AIDE [63] were integrated into a Eucalyptus based cloud platform. The prototype 

demonstrates the levels of containment used to provide infrastructure security, while 

also providing a form of integrity and trust for the clients using the platform. 
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Figure 3.1: Deployed system on Brunel University Network 

This research is in collaboration with industry partners Open Grid Systems [10] and 

NG [6]. The prototype was made available to the industry partners for application 

deployment and testing. The result suggests little or no overhead from the added 

security mechanisms.  

3.2 Integration of Trust and Security 

As reflected in [64] and [65], security in cloud computing is a well-researched area 

although most work do not adequately address security across the layered nature of  

cloud infrastructure (physical and the virtual machines running on the “cloud”) and in 

many cases, also do not extend integrity verifications to the applications or services 

running on the cloud platform. 

In the community cloud model (see Figure 3.1), individual partners may be provided 

with a diversified access model based on resource sharing needs as this creates a 

secured environment that guarantees trusted ownership and integrity of the cloud 

resources. Individual actors are responsible for the upload of owned data into 

dedicated storage locations that is subsequently shared (with diverse privileges) to a 

restricted set of partners, with the ability to verify the integrity and secure-storage of 

all accessible resources (owned or coming from partners) and the integrity of the 

cloud-infrastructure including hardware, boot-process, middleware and instances 

that process their own data. 
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Figure 3.2:  Logical overview of cloud environment secured by TC 

Figure 3.2 shows the unique chain of trust that is used to secure the physical, virtual 

and IaaS layers. At the physical layer, a TPM [22] chain of trust extends from the 

hardware device through the firmware (BIOS), boot loader (kernel), operating system 

of the cloud middleware and virtualization layer (Hypervisor). This chain may also be 

extended to cover IaaS storage devices (virtual disks) as shown in Figure 3.2 

However, for the use-case application, this particular chain is not automatically 

extended to cover instances running above the Hypervisor (Virtualization layer) 

because a virtual machine or instance, once created, is treated as completely 

different/independent computer. For these instances, the inclusion of a software 

based virtual-TPM (vTPM) device within them allows a different and unique chain of 

trust to be built for the kernel, operating system and software components of the 

instance. 

Attestation of the Cloud infrastructure: The overall integrity of an instance or VM 

would also depend on that of the underlying cloud infrastructure, that is, it is 

important for a VM to verify that it was created by the right process (cloud-controller), 

it is running on the correct hardware (node-controller) and accessing/using the 

proper data storage devices (storage-controller). Such an attestation process thus 

implies some interaction between a VM and one or more component parts of its host 

cloud platform and infrastructure. It is noted that in cloud platform implementations 

such as Eucalyptus cloud-in-a-box[66], the cloud-middleware may be protected by 

additional security measures such as firewalls that limit/minimize exposure of the 

critical internal cloud structure to the hosted VMs, services and/or end-users.  
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In our implementation of a secure trusted community cloud (see Figure. 3.3), the TC 

attestation of the cloud-infrastructure (based on the TPM hardware chain-of-trust) 

from a hosted/running VM is carried out as a transaction (TC operation) targeted at 

its local controller over a secure-shell connection with reduced privileges. The use of 

a local/reduced-privilege secure-shell connection reduces the possibilities for 

network based man-in-the-middle attacks and also limits exposure of internal cloud 

structure. 

 

 

Figure 3.3: Architecture of the secure trusted cloud 

The process of securing the physical and virtual resources that combine to make up 

the IaaS layer using TC was implemented thus, TPM support is enabled in the BIOS 

to measure the initial state of the physical system. In prior work by other researchers 

[52], trusted grub or grub-ima was used to secure the bootstrap layer. However, 

these are no longer supported on modern versions of operating systems such as 

Ubuntu 14.04 and have been superseded by the newer UEFI secure-boot process. 

Secure-boot is also enabled from BIOS and is already supported by modern 

operating systems including Microsoft Windows and Ubuntu 14.04. During secure 

boot, another option for enhanced security is to use TPM for measured boot. The 

Eucalyptus cloud platform is based on the CentOS Linux, where secure-boot is 

expected to be fully supported in a future release.  The standard Linux kernel already 

includes the IBM Integrity Measurement Architecture for measuring all the 

applications, kernel modules and configuration files loaded at boot time.  Enabling 
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this requires passing the option “ima” to the booting kernel and mounting a 

corresponding securityfs virtual file-system during boot.  

The above steps were used to build a chain-of-trust from the hardware/BIOS where 

the TC measurements of critical operating system and software components of the 

cloud-platform are stored and used for verification. The process of measuring, 

storing and verifying TC integrity of operating-systems and software components is 

covered extensively in other work including [52] and [67]. In the Linux operating 

system, a Trusted Core Service Daemon (TCSD) is used to export trusted services 

from the physical TPM into the operating system of the cloud-infrastructure.  

A software application, the Open Platform Trust Services (OpenPTS) [67] application 

is used to implement the TC attestation procedure. OpenPTS runs in either collector 

or verification modes and can carry out remote attestations using the standard 

secure-shell application for transportation and protection against man-in-the-middle 

attacks. 

In the collector mode, openPTS collects and maintains a private manifest/database 

of trusted-measurements to be examined during the verification process. 

In our implementation, the private manifest/database of trusted-measurements is 

integrated into the immutable images (see Figure 3.1) from which VMs are created. 

When running, each VM/instance uses this private manifest/database for the on-

demand TC attestation of the cloud-infrastructure. 

Attestation of Instance/Virtual Machine:  The inclusion of a software based virtual 

TPM (vTPM) device within the instances allows a new and unique chain of trust to be 

built for its kernel, operating system and software components of the instance. 

However, for our purpose, an instance/VM is always a TC verifier and the virtual 

TPM (vTPM) installed within the VM is only required to satisfy a dependency 

requirement of the openPTS application (installed in the VM) used for the attestation 

of the cloud infrastructure. 

In our implementation, end-users of services provided by the secured/trusted 

community cloud can immediately verify service integrity based on a mandatory use 

of authenticated Secure Sockets Layers (SSL) certificates for all connections. 

However, this does not guarantee internal integrity of an instance (VM) providing the 
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service, that is, the service is being provided by the expected software application 

using the expected configuration files and data. This additional assurance is 

provided during the attestation process by a file/directory level intrusion detection 

system (IDS), for which the hash of its pre-seeded database may be protected using 

a suitable TPM based chain-of-trust such as that of the host cloud 

platform/infrastructure. 

3.2.1 Securing Cloud Platforms with TC and Intrusion Detection 

Currently, security in most Cloud computing platforms is limited to the ability to 

partition/group instances by owners, or hierarchical levels of administration. They do 

not include or enable support for Trusted Computing integrity 

measurements/verifications based on TPM, an industry standard for computing 

hardware integrity measurement and testing, that depends on special hardware 

storage of cryptographic keys. Cloud platforms also do not include adequate 

intrusion detection mechanisms for certifying that the instances/virtual machines 

have not been tampered with.  

TC provides an added level of trust related to the cloud-infrastructure as it allows 

measuring the collective integrity of the hardware platform, firmware and operating 

systems components responsible for booting. 

Integrating TC into cloud implementations would allow cloud administrators to 

measure and verify infrastructure integrity; however, the end-user integrity 

measurement/testing of the underlying infrastructure require some additional 

mechanism such as a secure channel for end-users to access the cloud platform.  

TC based on TPM is useful for measuring system integrity; it typically cannot detect 

exactly what was changed or locate the changes to exact file, the addition of a file 

and directory intrusion detection system allows fine-grain 

examination/characterisation of the changes that occurred. 

Intrusion detection software such as AIDE provides file level integrity verifications 

(including permissions and attributes) based on stored hashes. A relatively small 

Linux system could easily have hundreds of thousands of files. A full scan and 

verification tend to be both processing-intensive and time-consuming as the hash 

must be recalculated for each file and compared to the stored value. The ability to 
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limit the scan to certain selected files is quite useful and can significantly reduce the 

amount of time needed during verification. 

The methodology used in securing the underlying cloud-infrastructure and instances 

for end-user verification involves the following steps: 

- Enabling TPM hardware from BIOS/firmware: The cloud hardware is expected 

to include suitable TPM hardware.  

- Enabling TC measurement related options on the Kernel layer. For Linux, this 

is by modifying the boot-loader options (adding IMA) and configuring a virtual 

file system (securityfs). 

- Installing and configuring the operating system TPM related applications 

(trousers and openpts). 

- Creating an SSH-only account for remote attestation by instances. 

- Integrating TPM tools into the virtualised image. 

- Pre-seeding the OpenPTS verification database in the image with the keys 

from the Cloud-infrastructure. 

 

3.3 Prototype Design  

3.3.1 Eucalyptus Cloud Software  

Eucalyptus which is an acronym for Elastic Utility Computing Architecture for Linking 

Your Programs To Useful Systems is a Linux based cloud software. This is the 

software that was used for the experimental platform. It enables the cloud service 

know as IaaS to be deployed on existing IT infrastructure either as a private, public, 

community or hybrid cloud. It is portable, modular and simple software which was 

initially developed to support High Performance Computing (HPC). The API offered 

by Eucalyptus is compatible with Amazon’s EC2, S3, IAM, ELB, Auto Scaling and 

CloudWatch services thereby offering the capability of a hybrid cloud [66]. 

Most exiting cloud computing software are either proprietary or depend on software 

that cannot be extended for experimental purposes and studies. 

Eucalyptus was chosen for this research based on the following features:  it is open 

source which allows for further customisation and configurations, it provides a 
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user/management web interface with custom credentials, allows for re-write of the 

scheduling controller and provides strong internal security settings[2], [63], [67], [68]. 

Eucalyptus allows for easy installation and as nonintrusive as possible unlike most 

cloud software that locks up or exposes the interfaces and platform to proprietary 

and closed software and resources. The framework implementation was carried out 

according to industry standards and thus allows and encourages third party 

extensions.  

The Eucalyptus Cloud Software also allows the entire cloud infrastructure to be 

configured and deployed on a single computer (box). This “Cloud-in-a-box” 

technology is basically a CIaaS that provides basic functions like provision storage, 

network and security resources. Furthermore, it also includes auto scaling, cloud-

watch and elastic load balancing, which are typically found in a fully functional 

“cloud”. 

Eucalyptus provides some basic cloud computing security on its platform such as ssl 

certificate, user password management among others that were activated on the 

platform. It provides a network overlay that isolates the network traffic of different 

users.  

The Eucalyptus framework comprises of various components but there are four high 

level components among them and each with its own web-service interface. These 

components are the cloud controller, the node controller, the cluster controller and 

storage controller  [68], [69]. These are represented in Figure 3.4. 

Cloud Controller:  This is the entry point for all users (administrators, developers 

and end-users) of any eucalyptus platform installation. Cloud controller (CLC) 

queries the node manager for information about resources, The CLC manages all 

the underlying virtualised resources of any Eucalyptus cloud and makes visible to the 

users.  

Node Controller: On each node or host is a node controller (NC) which in response 

to queries and control request from the cluster controller, the node controller queries 

and controls among others the system software, the host operating system and 

hypervisor. It is the node controller that discovers the node’s (or host’s) physical 

resources, size of memory, available disk space and even the state of other VMs or 



 

 40 

instances running on the node/host. Even though the node controller seems to be 

maintaining records of the instances or VMs on the host, there may be a situation 

where instances are started and stopped with mechanisms that are beyond the node 

controller. In respect of this and for best resources management and resource 

availability, it’s important that the node controller sends its information to the cluster 

controller. 

Cluster Controller: The cluster controller (CC) acts the link between the node 

controller and the cloud controller. The CC has three main functions which are  

 Schedules incoming instance run requests to the specific NC : when there is a 

request to run an instance, the CC contacts each NC of a host  and sends the 

instance run request to the first available NC that meets and has the required 

resources to host the instance.  

 Controls the  instance virtual network overlay which is further discussed in a 

later section  

 Gathers and reports information about a set of NCs : the CC can receive a list 

of resource characterises describing a resource requirement needed by an 

instance like memory, disk and can use these information to calculate how 

many instance of a specific type can be executed on the its NCs, this 

information is sent to the CLC. 

Storage Controller:  The storage controller is a data storage service that supports 

standard web service technologies and its interface is compatible with Amazon’s S3. 

SC acts as storage service for VM images and users can also use SC to stream data 

from instances that have been started on the nodes. It supports concurrent and 

serial data transfer and to aid scalability on the eucalyptus platform it does not 

provide locking for object writes. 

Other components of the Eucalyptus software like the User Facing Services (UFS) 

serves as the endpoint for any Amazon web compatible services offered by 

Eucalyptus (e.g S3). The management console allows the user to manage the 

eucalyptus cloud. 
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Figure 3.4: Major components of a Eucalyptus software(source [70]) 

Eucalyptus has been designed in such a way that it allows easy deployment into 

existing enterprise network topology. The instance network solution has also been 

designed to provide connectivity between various instances and interfaces, isolation 

from other instances or groups and also provides high performance. 

In other to create and enforce security across the platform, Eucalyptus has what is 

referred to as security groups. A security group allows specific network rules to be 

applied on an instance or group of instances running on the cloud platform. It allows 

you control the network access to the instances. This specifies the kinds of traffic 

that are allowed in or out of the instances. Basically the security groups are set of 

firewalls that are applied to any VM associated with the group. The eucalyptus cloud 

software has a default security group and any instance created takes up that security 

though an administrator can change the rules for the default security, the 

administrator can also delete, create, authorise and revoke security groups[71].  

In other to assign the resources of a node appropriately, the virtual machine capacity 

is limited to the size and number of node controllers available. Eucalyptus relies on 

the xen hypervisor [72] to create and run the virtual machines. Eucalyptus allows you 

to bundle describe, run, terminate and reboot a variety of Linux and Windows VMs 

[71]. 
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TC measurements/verification based on the OpenPTS (Open Platform Trust 

Services) implementation and Intrusion detection based on AIDE (Advanced 

Intrusion Detection Environment) software were installed / configured on the images 

to further enhance security and trust of the images that would subsequently be used 

to deploy the instances. 

3.3.2 Infrastructure Setup and Configuration  

The cloud platform was deployed on a high performance Intel server with 4 Intel 

processors running at 2.27 GHz with 64 GB of memory/RAM. Each processor had 

10 cores. 

The specific hardware and software details are displayed in Table 3.1. 

Table 3.1: Configuration of the deployed Cloud Platform 

Hardware HDD 1 TB 

Processor 40 Cores 

CPU 2.27 GHz 

LAN Connectivity  Gigabit Ethernet 

Software Cloud Software Eucalyptus  

CI Operating System CentOS 

Images Operating System Ubuntu 14.01 (Trusty) 

 

 

Installation of Eucalyptus was performed using a CD image of Cloud-in-a-Box 

version 3.4 downloaded from Eucalyptus website. In cloud in a box, all components 

(shown in Figure 3.4) are installed to a single physical host. It represents an optimal 

choice for research as the hardware requirements are limited even in production 

mode and it is also possible to install additional software packages on the cloud 

server using the RedHat yum package manager. 
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The Eucalyptus installer installed a customized version of RedHat 6.2 to the entire 

harddisk. During the installation process, the server network card (eth0) was 

assigned a public IP address of 193.62.138.225, netmask of 255.255.255.0. The IP 

gateway was set to 193.62.138.254 and DNS was set to 134.83.127.81. The 

following IP address range was assigned as “the public ip for use by the virtual 

machines“:   193.62.138.226 – 193.62.138.249. 

In a Eucalyptus cloud-in-a-box installation, all instances (virtual machines) are 

attached to an internal network bridge named br0 that exists only inside the server 

machine, however all instance are usually isolated from each other on this internal 

bridge.  The network connectivity over br0 is used to push configuration information 

to running instances (virtual machines).  

The server uses 1 public IP address for itself.  The end-users including those outside 

Brunel University and connect to the server using a web browser (on port 8443) in 

order to start their applications on demand. This is the cloud self-service model. All 

15 other public addresses are placed in a pool to be used by instances (virtual 

machines). 

Once an instance (virtual machine) is started and running, it gets an external IP 

address assigned to it from the pool. The physical server will use iptables/proxy-arp 

to also place the IP address of the instance on eth0: X (physical NIC eth0) alongside 

its own public IP. Once the instance (virtual machine) is destroyed, the 

iptables/proxy-arp/eth0: X entries are removed and the IP is returned to the pool. 

With the self-service cloud model, the web interface of the server informs the end-

user what exact IP address is assigned to their instance (virtual machine) from the 

pool once it is created. The end user now connects directly with his instance through 

the external IP using one of the approved protocols (ssh or http/httpd) and can use 

his power application. 

Overall the installation was fairly straightforward and during the process, the system 

clock was set to UTC and a secure password was set on the root account. The 

installer reported that over 1000 packages were installed before requesting a reboot. 

The first boot process was lengthy and additional configurations were automatically 

performed before showing the welcome wizard GUI, which aided with creating the 
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normal user account and performing NTP settings. The GUI then reported the 

automatic creation of two Eucalyptus accounts. The first was a demo account, with a 

user named admin and password of password, while the second was the eucalyptus 

account with a user named admin and password of admin before requesting a new 

reboot. 

Activating the TPM hardware started from the server BIOS, once the Eucalyptus 

hypervisor was started  The bootloader configuration file (/boot/grub/enu.lst) modified 

to pass the option ima to the kernel on boot and subsequently an entry for the virtual 

file system (securityfs) was added to the file /etc/fstab. Finally, the  operating 

system TPM related applications (trousers and openpts) were installed and 

configured as specified in the OpenPTS quick start manual. 

The installation comes with a basic (default) CentOS image that can be used to 

create an instance (virtual machine) for testing. It is also possible to install new 

images from the public Eucaytus store (eustore). However, such images contain 

limited functionality, old versions of software and are difficult to update.  

An alternative method is obtaining generic pre-built cloud images of an O.S. from on-

line site such as the Ubuntu Cloud service (http://cloud-images.ubuntu.com). Given 

the difference in boot kernels, it is necessary to use a generic boot-loader (known as 

kexec) for starting the specific O.S kernel contained within the image.  The kexec 

utility for Eucalyptus is available from 

https://github.com/eucalyptus/eucalyptus/wiki/Kexec-Images/. A step-by-step 

procedure for adding and running pre-built Ubuntu images in Eucalyptus is 

documented in Appendix A1.  

As earlier stated, a more secure approach is to create a cloud image from an 

installation disk. This process requires considerable more effort but provides the 

benefit of ensuring that only relevant applications are included within the image.  The 

process of creating and testing a cloud image from an Ubuntu 13.10 CD-ROM/ISO 

disk-image is documented in Appendix A2. Similar to the use of pre-built images, 

these images may be started using the kexec boot-loader or alternative the installed 

kernel and ram-disk combination may be extracted from the image and used directly 

as an Eucalyptus boot-kernel. This procedure was used to build a highly trusted 

https://github.com/eucalyptus/eucalyptus/wiki/Kexec-Images/
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cloud image which also included the installation of additional software such as vTPM 

and OpenPTS which are required for TC attestation. 

For other less mission critical applications, it is also possible to create a reasonably 

secure cloud image by modifying an existing one. Here, the process requires a 

review/audit of all installed components followed by removal of unwanted 

applications/files and the addition of required applications. For example, creating a 

custom image that includes a specific version of the hadoop map-reduce java 

application started with expanding an existing pre-built cloud image. First, a raw disk-

image of adequate size was created and the contents of an existing cloud image 

transferred into it. The added space is required for installing the hadoop application. 

Next, the newly created image was mounted at a temporary location and its contents 

modified by installing a java development kit from the Ubuntu repository. Then a 

version of hadoop was downloaded as a TaR file and installed within the image. 

Finally, the installed hadoop was then configured to start-up at boot-time 

automatically by adding suitable entries into the system start-up file located at 

/etc/rc.local. Subsequently the kernel and ramdisk were extracted and bundled along 

with the image for use in Eucalyptus. Appendix A4 contains the procedure used to 

modify a pre-built image with the installation of hadoop and subsequent testing on 

the Eucalyptus server. 

 

By default, all instances are created with a temporary file-system that is destroyed as 

soon as the instance is deleted. This implies that all changes made within an 

instance are lost as soon as it is closed. In Eucalyptus, the alternative EBS-backed 

images allow the creation of instances with addition of an external storage location 

that can be used for storing persistent or changed data. The procedure to create an 

EBS backed image is documented in Appendix A3. 

Depending on the VM’s configuration, the platform could run up to 80 VMs. The 

images running on the deployed system are based on 64-bit Ubuntu Linux operating 

system version 14.01/trusty, which have been further customised in the current 

research. 
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3.3.3 TC Verification Process 

The OpenPTS technology operates with one of the systems, that is, the cloud-in-a-

box host system taking the role of the collector and the other system(s) (the 

instances) taking the role of the verifier   

The integrity measurements/verification provided by OpenPTS allows an end-user to 

verify that the cloud-in-a-box server, where the image is hosted (called the collector) 

is actually the right and secured one (Figure 3.5). The verification process is 

performed over a secure shell (SSH) connection based on pre-seeded keys at the 

verifier side. 

 

Figure 3.5: OpenPTS verification on the collector 

The cloud-in-a-box server performs a trusted boot based on data contained within its 

TPM hardware. TPM is a microprocessor chip built into a machine to enhance its 

security by integrating cryptographic keys into the machine; these keys provide 

authentication (proves the platform is what it claims to be) and attestation (platform is 

trustworthy and has not been breached). These keys are checked for consistency by 

the verifier.  

With a suitable OpenPTS command syntax (–v option), the PaaS layer user can 

compare the current values against a pre-seeded set (Figure 3.5). The result, which 

means the keys tally (success) or does not (failure), is reported immediately.  On 

failure, it is also possible to automate more drastic action such as the immediate shut 

down of the instance/virtual machine.  

A verification failure (reported by OpenPTS) is an indication of a variety of issues, 

including the possibility that the verifier is communicating with a different or rogue 

machine, booting from the wrong machine or even that the image has been 

tampered with or modified. TC verification can be used to verify the security and trust 

of a cloud-computing infrastructure.  
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Figure 3.6: OpenPTS verification on the verifier 

Within an instance, file level Intrusion detection is provided by AIDE, an integrity 

checker for files and directories, based on a variety of digest algorithms (md5, sha1, 

rmd160, tiger, whirlpool, sha512, etc). AIDE has the ability to check for 

inconsistencies in the file/directory attributes. Based on the required 

speed/performance, the scan/verification may be limited to specific files and 

directories. 

3.3.4 Hierarchical Security Model 

Apart from the built-in security groups features in Eucalyptus, a hierarchical 

security model was also used to provide secure Cloud computing services to a group 

of researchers both within and outside the University. These researchers are 

categorized according to the following access levels: 

a.  Power Systems Cloud Infrastructure administrators – This category of users 

is responsible for providing secured images to be used by other users for their 

application /software. They have control of the underlying cloud infrastructure and 

can access the system on both ports 8443 and 8888 using the address 

https://powersystemscloud.brunel.ac.uk:8888/ or 

https://powersystemscloud.brunel.ac.uk:8443/ 

b. Power Systems Cloud Application Developer: The second category of users 

on this platform is responsible for creating instances (VMs) from the provided images 

and subsequently installs desired applications; these applications are in turn used by 

the end-users. They have no access to or control over the underlying cloud 

infrastructure and can only access the system using the address 

https://powersystemscloud.brunel.ac.uk:8888/ 

c.  Power Systems Cloud Application Users: The third category of users on this 

platform is the end-users. Users in this category have only HTTP/HTTPS access to 

instances / applications running on the platform. 

https://powersystemscloud.brunel.ac.uk:8443/
https://powersystemscloud.brunel.ac.uk:8888/


 

 48 

3.4 Evaluation and Results 

The integration of either TC or intrusion detection with Cloud computing introduces 

performance overhead especially during boot up or in the process of setting up 

attestation or verification [10]. The goal of the research experiment was to determine 

the overhead that could result from the introduction of either TC integrity 

measurement/verification or AIDE based intrusion detection/verification into an 

instance.  

Cloud images which are preinstalled disk images with various operating systems 

which include CentOS and Ubuntu were configured on the platform.   The different 

images had different security configurations and were thus classified as “low 

security” if the images had only the operating system basic security configuration, 

“medium security” if trusted computing using TPM was configured and “high security” 

if both TPM and AIDE were configured. Instances were then deployed from these 

images. 

The improved security appears to have limited and negligible overhead for single 

instances and it can therefore be concluded that it is not going to be noticeable until 

thousands of instances are started. Table 3.2 shows the average boot-time recorded 

for each security level and Figure 3.7 shows a graphical representation of the 21 

instances deployed from each of the 3 categories of images during the research 

experiment. These instances were deployed from the images classified into three 

broad security levels: low, medium and high as explained above. Where the low 

security group do not include TPM or AIDE and serve as an experimental control or 

baseline group. The medium group include only TPM based integrity 

measurements/verification. The instances at start-up typically started the TPM-

emulator device and setup the user-environment for remote verification of the CI 

platform. While the high security group include both integrity verification and AIDE 

intrusion detection, the instances start up the TPM emulator device and setup the 

user-environment for remote verification of the CI platform. The AIDE database is 

already pre-seeded, but the end-user verification process needs to be set-up as well. 

From Table 3.2, the control group had an average boot-time of 54.16 seconds, while 

the medium security group had an average boot-time of 55.38 seconds; the high 
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security group had an average booth time of 56.81 seconds. The results show that 

the overhead incurred including TPM based integrity measurements/verification into 

a cloud platform for this research is 1.22 seconds while the overhead incurred 

including TPM and AIDE based intrusion detection into a cloud platform is 2.65 

seconds. This is further represented in Figure 3.7, which shows the results obtained 

from the deployment of 21 instances at each security level. The maximum overhead 

between low and high security levels is between 3 and 4 seconds. The results 

suggest that the improved security overhead on the cloud platform is limited and 

capable of scaling to large numbers (thousands) of instances. 

Table 3.2: Instances Boot-time 

 

Low Security  Med Security  High Security  

Min:Sec.CenSec Min:Sec.CenSec Min:Sec.CenSec 

1 00:53.32 00:55.58 00:56.81 

2 00:54.11 00:55.32 00:57.01 

3 00:53.78 00:55.35 00:56.66 

4 00:54.21 00:55.14 00:57.18 

5 00:53.81 00:55.28 00:56.59 

6 00:53.63 00:55.54 00:57.09 

7 00:53.54 00:55.13 00:56.54 

8 00:53.78 00:55.20 00:57.01 

9 00:53.92 00:55.22 00:56.61 

10 00:53.63 00:55.01 00:56.67 

11 00:54.88 00:54.91 00:56.90 

12 00:54.84 00:55.51 00:57.21 

13 00:54.39 00:55.49 00:56.69 

14 00:54.51 00:55.44 00:56.90 

15 00:54.10 00:55.78 00:56.72 

16 00:54.14 00:55.00 00:56.66 

17 00:54.50 00:55.26 00:56.87 
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18 00:54.41 00:55.70 00:56.83 

19 00:54.77 00:56.22 00:57.02 

20 00:54.80 00:55.78 00:56.61 

21 00:54.23 00:55.03 00:56.51 

Av Sp. 00:54.16 00:55.38 00:56.81 

 

 

Figure 3.7: Boot time representation 

3.5 Summary 

A trusted cloud deployment especially suited for mission critical applications in the 

energy sector was presented and discussed in this chapter. The approach involves 

the integration of end-user accessible TPM integrity measurement/verification into 

the cloud platform/infrastructure without the need for “custom” software or patches. 

Furthermore, security is enhanced by the inclusion of an instance-level file and 

directory integrity checker for selected files and directories. Using a trusted cloud 

computing infrastructure can guarantee trusted ownership and integrity of the 

uploaded data as it would ensure that each operator is provided with a diversified 

access model based on data sharing needs. In a cloud deployment approach, 

individual organisations/users share a common cloud platform and sometimes not 
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necessarily retaining control over their sensitive data or applications deployed on 

external infrastructure.  The research presented here provides additional levels of 

trust for cloud infrastructure which allows individual organisations/users to retain 

control of their sensitive data/processes. A working prototype of the secure trusted 

cloud deployed on the Brunel University London network has been made available to 

industry partners OGS and NG to deploy and test power system applications like 

Cimphony.   
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Chapter 4 

Securing Resources in the Cloud with Data Colouring 

Given the nature of the cloud platform and its present limited ways to detect 

unauthorized access or modifications to data; cloud users and data owners do not 

trust that their data is adequately secure on the cloud platforms. This chapter 

presents a technique of data colouring for securing data on cloud platforms based on 

establishing and using concatenated fingerprints for watermarking. In the prototype 

implementation presented here, cloud users and data-owners secure their data by 

first colouring it offline before uploading onto any cloud platform. The colours may be 

used to detect unauthorized modifications and also suggest the path of data loss or 

theft. A basic shell-script implementation of the technique based on steganography is 

presented along with some evaluation results from its use and evaluation on an 

experimental cloud platform deployed during the research work. 

4.1 Introduction 

Due to the  anonymous nature of cloud, data owners hardly trust the cloud providers 

and the cloud platforms to deploy their sensitive data on the cloud; this in turn has 

adversely affected the rapid deployment of cloud computing infrastructures[26], [28]. 

Data confidentiality, integrity and availability remain the major security concerns for 

users with different security considerations. By virtue of its multi-tenancy 

configuration, sensitive data can be comprised or tampered with by an unauthorized 

user and the cloud provider may not be able to provide a record of which client 

accessed which data or in the case the data is tampered with, the user or cloud 

provider cannot trace on which cloud platform it occurred [73].  

Trust and security would greatly be enhanced in cloud computing when cloud users 

and data owners are able to secure their data before uploading onto the cloud 

platform and are still able to trace and confirm any distortion to the data and the 

exact path of distortion. This means cloud security challenges must be addressed 

from the provider’s end, on the server and resources side and also from the client or 

user’s side [12]. Measures have been put in place to protect data from been 

tampered with, limit unauthorised access or illegal usage using a suitable 
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mechanism such as hashing, data-colouring or encryption or obfuscation. Encryption 

is one common measure put in place to render data unreadable to unauthorised 

users through scrambling  of data, although this process could attract undue 

attention to the data [74]. 

Another measure frequently used is watermarking as various digital formats 

especially those for images including the portable document format (PDF) already 

support the easy embedding (and removal) of visible watermarks. These watermarks 

are usually located in well-defined sections thereby making identification and 

unauthorized removal easy. 

Table 4.1 shows a comparison of possible self-defence techniques for securing data 

used by end-users.  It is not exhaustive but offers a quick overview.  As may be 

inferred from the Table, data-colouring could be an optimal technique for cloud 

platforms/applications as coloured data may still be processed without overhead (the 

colouring is transparent) while also providing the ability to detect tampering and/or 

identifying and reporting data-loss . That is, coloured-data (output of a data-colouring 

process) may be viewed as being able to maintain integrity and availability of data 

without a processing overhead.  Therefore, considering security related metrics of 

Confidentiality, Integrity and Availability in a cloud context, hashing as a data-

protection technique can only provide integrity, while obfuscation provides only 

limited confidentiality; data-colouring provides integrity and availability; while 

encryption provides confidentiality and integrity but not availability. 

This chapter presents a way of securing data using a technique of data colouring 

[53]. The technique allows data owners to first secure their data offline (off the cloud 

platform) by colouring it before subsequently uploading or processing the colour data 

on any cloud platform. Based on steganography, the implemented shell-script allows 

the user to detect if the data has been tampered with and identify the path through 

which it was tampered; this in turn ensures data integrity and confidentiality. The 

technique has been evaluated on the deployed experimental cloud platform at 

Brunel. 
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Table 4.1: Comparison of various data security techniques 

 Hashing Data-colouring Obfuscation Encryption 

Example MD5, SHA Watermarks, 

fingerprinting 

Minimization, 

compression 

Code-

table/cipher 

Association/ 

Technique 

mathematical Mathematical/ 

embedding 

Entropy 

reduction/ 

transformation 

Cryptographic 

transformation 

Creation 

overhead 

Low Low Medium High 

Resulting data 

can be directly 

processed on 

clouds 

Yes Yes Yes  (if process 

is reversed and 

recreated after 

processing) 

Yes (if 

decrypted and 

encrypted after 

processing) 

Security 

/features 

Data integrity Data ownership  Making 

data/content 

illegible 

Making 

data/content 

inaccessible to 

unauthorised 

access. 

Notes Storage of hash 

is external to 

data.  

Embedding/ 

distribution of 

watermark/ 

fingerprint inside 

data. may be 

difficult to detect 

and remove if 

steganography 

is used 

Relatively easy 

to undo  and 

redo 

Difficult to undo 

without original 

code-table 

 

4.2 Watermarking and Data Colouring 

Watermarking is a security feature that prevents and discourages counterfeiting 

through the addition of an identification image/pattern with varying visibility. In digital 

watermarking, a digital mark (pattern) is embedded in a digital file; the digital 

watermark, which may sometimes be hidden, serves to identify ownership (and 

copyrights) thereby verifying the authenticity and integrity of the digital file. 

An extension of the watermarking concept known as fingerprinting ensures that 

different watermarks are embedded in every copy of the distributed data-sets (digital 



 

 55 

files), this aids the detection and tracking of both perpetrators and the path of data 

distortion [75], [76]. Digital fingerprinting (watermarking) may also include information 

that is useful for identifying unauthorised modifications to the content. 

Most data owners are still not comfortable with the idea of having a faceless entity 

host their data where there is still no existing solution that allows the user to secure 

its data before uploading on to the cloud platform or while processing. Most existing 

networked environment security measures can be extended to the cloud 

environment [53].Since the cloud is a multilayer entity, enforcing security has to be 

done across the different layers. Security measures in cloud computing has to be a 

build-up of all the layers. These security measures once enforced across the layers 

would make users confident of the platform and assured that their data’s integrity 

has not been tampered with while still having unlimited availability to computing 

resources.  

A cloud platform is only secured if and when both the cloud user and cloud providers 

are able to participate fully depending on one another to perform certain task [12], 

[65]. While IaaS involves the sharing of common hardware, the cloud provider needs 

to enforce security across the network and cloud platform through firewalls, intrusion 

detection, DNSSec and encryption among others. Copyright protection needs to be 

put in place for the applications that would run on the platform while measures like 

data colouring, watermarking, and monitoring needs to be enforced on SaaS layer. 

Though watermarking provides a form of security and ownership, it doesn’t stop 

unauthorized users from locating and removing the image. 

Data Colouring (DC) may be considered as a special form of digital watermarking, 

where fragments of the digital mark known as colour drops are distributed or spread 

out within the data. That is, the fragments of the digital mark are not co-located or 

limited to a specific location or segment. Data colouring allows users to secure their 

data using colour drops without the drops being visible[53]. 

Figure 4.1 shows the data colouring process, where according to [53] and [65] the 

colour drops are a combination of an “expected” value - 𝐸𝑥 known only to the data 

owner, the “entropy” value – 𝐸𝑛 known only to the users in a particular group and the 

hyperentropy value 𝐻𝑒 known to all the users of the cloud infrastructure. 𝐸𝑥, 𝐸𝑛 and 



 

 56 

𝐻𝑒 are combined together to generate a collection of colour drops that forms a 

unique colour that neither the cloud providers nor other cloud users can detect.  

It is argued in [77] that the computational complexity in obtaining 𝐸𝑥, 𝐸𝑛 and 𝐻𝑒 is 

lower than that in conventional encryption and decryption process. It can be 

observed from Figure 4.1 that 𝐸𝑛 + 𝐻𝑒 represents information that is agreed and 

exchanged between a cloud provider and a data-owner such as the public-key 

component of a cryptographic key-pair. Specifically  𝐸𝑥  is the information that is only 

known to the data owner such as the private component of personal cryptographic 

key-pair and an encryption password. 𝐸𝑛 is the value  known to only the users of a 

specific group on the platform such as the public-key component of the cryptographic 

key-pair for that group and 𝐻𝑒 is the value know to all users of the platform, such as 

the public key component of the cryptographic key-pair of the cloud platform. 

The forward colour generator is composed of two distinct operations, these are the 

colour drops generator and the data colouring process. The colour drops generator 

is responsible for producing a sequence of bits from the combination of(𝐸𝑛 + 𝐻𝑒) +

𝐸𝑥. In traditional watermarking, the colour drops would be the unique watermark. 

The second operation inserts the generated bit sequence (watermark) into the user-

data to obtain the coloured data. The coloured (watermarked) data may be 

subsequently stored or processed on the cloud platform or a copy maybe delivered 

to a recipient. 

In data colouring, the coloured (or watermarked) data retains all the functionality of 

the original data but contains additional identification bits that is included within the 

data in a manner that does not permit easy detection or removal of the colour drops 

(unique watermark).  

The backward colour generator verifies the inserted colour drops (watermark). It 

consist of 3 separate operations; they are -  the extraction of colour drops from the 

coloured data, the generation of the colour drops based on the same input 

parameters initially passed to the forward colour generation and an operation to 

compare the generated colour drops to the colour drops extracted from the coloured 

data.  
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The colouring and verification of the colour drops is carried out by the data-owner as 

they would require knowledge of 𝐸𝑥. 

 

Figure 4.1: Data Colouring Process 

In data colouring, the colour drops (or watermarks) are embedded within the data (or 

data-set) to provide integrity and identification without impacting the functionality of 

the data. The presence of colour drops should be invisible (or transparent) during 

regular use of the data-set. The process of colouring or embedding the colour drops 

within the data sets should also be resilient against unauthorized reversal while 

reliably supporting the authorized location and extraction of colour drops. 

Steganography, the art of hidden writing [78] is used as the primary technique for 

embedding colour drops into the data sets in the data colouring implementation 

discussed in Section 4.3. The aim in steganography is to embed and hide the 

existence of a message within another carrier message from a third party. 

Steganography requires the presence of empty (unused) locations where data may 

be inserted within a data-file. In Information Theory, the entropy (in bits) of a unit-

length multiplied by the total-length of that message is a measure of how much 

information the message contains. It is important to note that unit-length is domain 

dependent, that is, the unit-length for a spoken message is different from the unit-

length of the same message in written form even when both types convey exactly 

the same information. The implications are that the entropy is related to both type 

and length of a message. In digital water-marking, where the preservation of the 
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information-content of a message is important, the modification of a message (by 

noise) is domain specific; that is an audio message requires modification in the 

audio-domain (by audio noise) while a visual image is affected in the visual domain 

(by visual noise). That is, visual-noise would not affect information content of an 

audio-messages or vice-versa. While it is possible to simply combine two digital files 

into a single one using a concatenation technique. For example, a “PNG” may be 

combined with a “ZIP” file into a new file where the upper part is the original “PNG” 

image and the lower (bottom) part is the original “ZIP” file. The resulting (combined) 

file may be treated either as a “PNG” file or a ZIP file and its size is a sum of both 

original files, however, it is quite trivial to extract the individual files. Steganography 

requires format specific methods and techniques for inserting hidden messages into 

a digital file. 

 Steganography is different from Cryptography in the sense that it does not make the 

message unreadable from third party but just embeds and hides a message (secret 

communication) within it. An advantage of steganography is that it doesn’t attract 

undue attention [78], [79] as the original message continues to function as normal 

(the hidden message is invisible or transparent). 

Sometimes, the hidden message may be pre-encrypted, compressed or encoded 

before embedding in the carrier message. Also, sometimes, the hidden message 

may be split among a set of files but then all files must be available, unmodified and 

processed in the right order in other to retrieve the hidden data/message. In 

steganography, the security of the hidden message is cryptographically enhanced 

when the secret messages are first encrypted before embedding into the carrier. The 

hidden message is usually embedded as bit-level in the redundant space of the 

carrier message most times, in a statistical manner to avoid possible detection or 

modifications. 

4.3 Implementation 

The implementation presented here expects that colouring is carried out completely 

offline to enhance security; therefore, this means only coloured data should be 

uploaded to cloud platform(s). The colouring of data-files before uploading to various 

cloud-service models is expected to improve the integrity of the cloud-based 
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resources as it enables data-owners to detect, trace, report and document 

unauthorized access and use of uploaded data/data-files to respective cloud 

providers or users. 

The shell-scripts discussed in this section depend on the free and open-source 

steganography tool OutGuess[80] for colouring data files (embedding hidden data 

into redundant bits of a carrier file) or extracting colour drops from already coloured 

files (i.e. extracting the hidden data from redundant bits). OutGuess relies on specific 

data handlers that would identify and modify redundant bits to carry the secret 

message. OutGuess is able to handle different data formats as long as a suitable 

handler is available. Table I presents the sources of colour drops used in the data-

colouring implementation.  

The cryptographic hash of a Public Key Infrastructure (PKI) private key of the data 

owner guarantees the colour drops contain information that ascertains ownership, 

while the hash of the PKI public key of data recipient or cloud service is useful to 

trace and highlight path of data loss or theft and the hash of the data content itself is 

useful for detecting unauthorised modifications. 

Table 4.2: Data Sources for Colour Drops Generation 

Item Contribution 

Data-file to be coloured Fingerprint to detect unauthorised 

modifications to content 

Private-key of data-owner Fingerprint to identify data owner  

Public key of recipient or cloud-

service 

Fingerprint to trace path of data-loss/theft 

 

Furthermore, a password is used during the embedding process to encrypt the 

colour drops thereby securing them against unauthorized modification and removal.  

The use of the original data-file as well as suitable PKI keys such as pretty good 

privacy (PGP) keys for creating the digital-fingerprint (watermark) guarantees 

uniqueness (and entropy) while also satisfying other defining conditions of 𝐸𝑥, 𝐸𝑛 

and 𝐻𝑒 such as, knowledge limited to data-owner and association to defined group 

of users (or cloud-platform). 
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4.3.1 Forward Colour Generator  

Figure 4.2 shows the source code of the forward colour generator (fcg.sh) command-

line shell-script that generates the colour drops and uses them for colouring the 

original data. 

  

Figure 4.2:  Forward Colour Generator Scripts (fcg.sh) 

The script (fcg.sh) concatenates the md5 hashes of the three input-files to obtain a 

unique digital fingerprint (384 bits) that forms the colour drops for colouring. For 

portability, the md5 sums are generated using the “openssl” software application (a 

command-line executable). The colour-drops are embedded in the original data 

using the OutGuess steganography tool where the drops are treated as a "hidden" 

message to be embedded in the original data. 

The fcg.sh scripts can be briefly described thus. In this case, brunel_letter.jpg is the 

data file to be coloured, id_dsa is the private key of the data-owner and 

9FBB231E.asc is the public key of the cloud provider. At the prompt of the scripts, 

the user provides the file name, a password, the user’s private key and the provider’s 

public key – these are the input values. The “file” command then determines the 

Multi-Purpose Internet Mail Extensions (MIME) type of the original data file. The 
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implementation depends on the "file" command tool to determine MIME type of the 

data to be coloured. The colour drops are then created by concatenating the 

respective md5-hashes of the three input files, subsequently a temporary file is 

created containing the drops and its file-name is created by prefixing the name of the 

original data-file with the word “coloured”. Now the “outguess” utility is called to 

embed the colour drops into the original data-file and saves to the pre-set output 

filename for supported file types otherwise prints an error message (Line 19). On 

successful completion of colouring a message is relayed to the user (Line 23) and an 

alternative message (Line 25) in the case of failures. 

In the resulting script (Line 10), the discovered MIME-type is used to ensure only 

supported types are passed to the “outguess” tool, however, this idea may also be 

used to also select alternative steganography tools that are capable of colouring data 

types not supported by the "outguess" software application. 

4.3.2 Backward Colour Generator 

Figure 4.3 shows the source code of the backward colour generator script (bcg.sh). 

The script extracts colour drops from a coloured file and compares with colour drops 

generated directly from the input parameters. The script (bcg.sh) uses the OutGuess 

steganography tool for extracting the colour drops (the hidden message) from the 

coloured file with the supplied pass-phrase for decryption.  
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 Figure 4.3: Backward Colour Generator Scripts (bcg.sh) 

The script then generates a new set of colour drops based on the input parameters it 

is then compared with the extracted set and a match or mismatch reported. 

Comparison is carried out using the "diff" command-line tool. 

In the case of the bcg.sh scripts, the input parameters would be the data that had 

been coloured initially in this case coloured-brunel_letter.jpg, the original data file 

which is brunel_letter.jpg, same password used in fcg.sh, the private key (of the data 

owner) which is id_dsa. The “file” command determines the Multi-Purpose Internet 

Mail Extensions (MIME) type of the original data file, the colour drops are created 

and stored in a temporary file and the suffix ‘.txt’ is added to the filename.  

The “outguess” utility is then called to extract the colour drops from the coloured data 

file and saves to a pre-set output filename. If the coloured file’s MIME type is not 

supported by “outguess”, an error message (line 21) is printed. The files containing 

the extracted and generated colour drops are then compared and a message on 
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successful verification (line 30) or an error message if the drops don’t match (line 

32). The bcg.sh also depends on an additional tool the “diff” command to determine 

if the extracted colour drops match the generated colour drops. 

4.3.3 Theft and Loss Responsibilities 

An important feature of this data colouring implementation is its ability to highlight a 

path of data-loss/theft based on fingerprinting.  

Table 4.2 presents a simple matrix showing how the theft/loss responsibilities (path) 

may be determined from the corresponding inputs used during the data colouring 

process. In Table 4.2, row 1 represents the classical watermarking process as only 

the identity of the owner is verifiable from the colour drops (watermark).  

Rows 2, 3 and 5 suggest that colour drops based on the corresponding combinations 

would not carry owner information and in such cases, the drops cannot be used to 

prove ownership of the data. Row 4 and 6 suggests combinations for which the 

drops may also be used to identify either a Cloud Service Infrastructure (CSI) or a 

Cloud Service Provider (CSP) or single-recipient. Row 7 highlights the combination 

for which drops are capable of also identifying individual CSP, CSI and recipient. 

From Figure 4.1, the verification of colour drops is expected to be carried out by the 

data-owner. 

Table 4.3: Theft / Loss Responsibilities 

 Private Key of data-

owner 

Public key of cloud-

service  

Public key of data 

recipient   

INFORMATION OBTAINED FROM 

DROPS 

1 YES NO NO Identity of data-owner 

2 NO YES NO Identity of CSI 

3 NO NO YES Identity of recipient (CSP) 

4 YES YES NO Identity of both owner and CSI 

5 NO YES YES Identity of both CSI and recipient (CSP) 

6 YES NO YES Identity of both owner and recipient (CSP) 

7 YES YES YES Identity of  owner, CSI and recipient (CSP) 
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4.3.4 Mathematical Representation 

The cryptographic hash used in generating the colour drops is based on the 

Message Digest checksum algorithm popularly called MD5, which is usually used to 

verify data integrity and authenticity [81], [82]. 

According to Hwang and Li in  [53], the expression for colour drops can be 

represented by a combination of 𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒 where 𝐸𝑥 is known only to the data-

owner, 𝐸𝑛 and 𝐻𝑒 are the values or public key component of the cryptographic key-

pair that may be shared by users on the cloud platform. Specifically, 𝐸𝑛 is known or 

shared only among the users of a common group on the platform and 𝐻𝑒 is known or 

shared by all the users on a particular platform irrespective of the group they belong 

on the platform. 

In this implementation, the generated colour drops (before 

embedding/steganography) are represented mathematically by the expression of 

𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾) + 𝑓(𝑃𝑢𝐾) where 𝑓(x) is the md5checksum operation, 𝑂𝐹 is the 

original file, 𝑓(𝑂𝐹) is the md5checksum of the original file, 𝑃𝑟𝐾 is the private key of 

the file,𝑓(𝑃𝑟𝐾) is the md5checksum of the private key,𝑃𝑢𝐾 is the public key of the 

recipient or CSP and 𝑓(𝑃𝑢𝐾) is the md5checksum of the public key. 

In the data colouring implementation, 𝐸𝑥 may be represented by the Equation (4.1). 

𝐸𝑥 = 𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾)         (4.1) 

As these two items are known only to the data-owner, which implies that 

𝐸𝑛 + 𝐻𝑒 = 𝑓(𝑃𝑢𝐾)         (4.2) 

It follows that the embedded colour drops is then given by Equation (4.3). 

𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒 = 𝑅𝐶4(𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾 ) + 𝑓(𝑃𝑢𝐾), 𝐾)     (4.3) 

where 𝑅𝐶4(𝑥, 𝐾) is the encryption function as it is implemented in “outguess” and 𝐾 

is the password supplied by the data-owner. 

Mathematically, the simple watermark technique may be described as the 

embedding of a watermark (𝑊) in a data set (𝐷) such that: 
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• 𝑊 can be reliably located and extracted from 𝐷  

• 𝑊 is large (the embedding has a high data rate). 

• Embedding 𝑊 into 𝐷 does not adversely affect the functionality of 𝐷  

• Embedding 𝑊 into 𝐷 does not change any statistical properties of 𝐷. 

• 𝑊 has a mathematical property that allows us to argue that its presence in 𝐷 is 

the result of deliberate actions. 

In data colouring, the watermark is defined as: 

𝑊 = 𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒              (4.4) 

that is, 

𝑊 = 𝑅𝐶4(𝑓(𝑂𝐹) + 𝑓(𝑃𝑟𝐾) + 𝑓(𝑃𝑢𝐾), 𝐾)      (4.5) 

Generally, the colouring process represented a transformation of 𝐷 by 𝑊 that is: 

𝐷′ = 𝑇(𝐷, 𝑊)              (4.6) 

where 𝐷′ is the resulting coloured data, 𝐷 is the original data,  𝑊 is the colour 

drops/watermark and 𝑇() is the data-type specific transformation function used 

during colouring to embed the drops into the original data such that substituting the 

above we have 

𝐷′ = 𝑇(𝑂𝐹, 𝑅𝐶4(𝑓(𝑂𝐹) + 𝐹(𝑃𝑟𝐾) + 𝑓(𝑃𝑢𝐾), 𝐾))         (4.7) 

Equation (4.7) is the mathematical representation of the coloured data set. Where 𝐷′ 

is the coloured data, 𝑂𝐹 is the original file or data, 𝑇() represents the embedding of 

W into 𝐷 (data-type specific transformation during steganography), 𝑅𝐶4(𝑥, 𝐾) is a 

function that encrypts x based on the password 𝐾, 𝑓( ) is the MD5 checksum 

function, 𝑃𝑟𝐾 is the private key of data-owner and 𝑃𝑢𝐾 is the public key of the 

recipient /CSP or CSI. 

The above equation suggests that in this implementation the colour drops 

(represented by 𝐸𝑥 + 𝐸𝑛 + 𝐻𝑒) is protected by an encryption function and 

subsequent embedding in the original data in such a way that the functionality of the 

original data is preserved while making its unauthorised extraction or removal 

difficult.  
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4.4 Cloud Platform and Testing 

Simulation is already a widely used research technique in Science and Engineering, 

for example, simulation is heavily used in areas such as climate-modeling, drug-

design, material-science, supply/logistics and protein- analysis. However, simulation 

in Cloud Computing requires Cloud specific solutions due to the service oriented 

nature of clouds combined with other features such as elasticity of resources, multi-

tenancy of resources, multiple layers and components.  The virtualization of 

resources is fundamental to Cloud Computing and so it is vital that the simulation 

process can present virtualized resources for improved simulation of resource 

elasticity. In Cloud Computing, the selection, scheduling, allocation and consumption 

of resources is typically governed by algorithms that may be influenced by both 

internal and external factors such as user requirements, current consumption levels, 

availability requirements and other legal requirements (for example SLA documents) 

[83]  which may also affect direct or in-direct Trust.  Thus, the accuracy of 

simulations in Cloud Computing platforms is enhanced by the ability to simulating 

virtualized resources and complex scheduling/allocation of elastic resources. 

Researchers in  [84] and [85] provided a comprehensive list of Cloud simulators that 

satisfy these requirements, however, none appear to provide objects that may be 

used to direct study Trust in Cloud Computing. Researchers in  [86] carried out a 

research on Simulation of Security on computational GRIDs with a focus on 

improving scheduling by including security considerations. Researchers in [87] 

focused on simulation of Trust relationships and consider both direct and reputation 

based Trust in computational grids using both discrete and Fuzzy Logic algorithms 

for selection. Researchers in [88] examined Trust in distributed and peer-to-peer 

networks and considered discrete algorithms. 

Shaikh and Sasikumar [84] provided a comparison of several different Cloud 

simulators including Eucalyptus and the CloudSim toolkit (this well-known Cloud 

Simulator written in the Java programming language) based on some selected 

features. [85] compared a wider range of Cloud Computing simulation tools including 

CloudSim toolkit, CloudAnalyst (which appears to be graphical and similar to 

CloudSim), GreenCloud (based on Network Simulator NS2), iCanCloud, MDCSim 

(from the University of Pennsyvania),   NetworkCloudSim and VirtualCloud.  Both 
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[84] and [85] rated CloudSim within the top four tools for Cloud Simulation.  Other 

works including  [89] and [90] present aspects of CloudSim including portions of its 

rich API for simulating various cloud objects including large scale IaaS, PaaS or 

SaaS cloud implementations. Figure 4.4 shows the basic architecture of CloudSim 

2.0.  

 

Figure 4.4: CloudSim Architecture (source [89]) 

[91] described a basic scenario of using CloudSim where a datacenter (object) has 

one or many Host (object), and each host has one or many VMs. Each VM deals 

with many cloudlets (or units of a cloud service).  In CloudSim, each VM is assigned 

several cloudlets which are processed using a selected scheduling policy such as 

time-sharing and space-sharing.  Simulation of Cloud IaaS layer involves extending 

the Datacentre object, which manages a number of host objects which in turn 

manage VM during their life cycle.  A host represents a physical computing server 

and is defined with a pre-configured processing capability (MIPS - millions of 

instructions per second), memory (RAM) size, storage capacity and a provisioning 

policy for the allocation of processing cores to virtual machines. The hosts are 

assigned to one or more VMs based on a VM allocation policy that should be defined 

by the IaaS service provider.  CloudSim hosts may be single-core or multi-core 

hosts. Simulation of Cloud PaaS layer involves the allocation/provisioning of virtual 
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machines on hosts that satisfy some characteristics which include storage, memory, 

software environments and availability or zone requirements.  In CloudSim, cloudlets 

may be used to define custom software environments/ applications that can be 

deployed within a VM instance using a virtual machine allocation policy 

(VmAllocationPolicy). The default allocation policy available in CloudSim assigns VM 

to hosts on a First-Come-First-Serve (FCFS) basis.  Implementing a Trust based 

policy would require extending the default policy or extending the VmAllocationPolicy 

class. 

For Cloud SaaS layer, CloudSim uses cloudlets to model individual cloud-based 

application services (such as content delivery, social networking, and business 

workflow). However, each application is defined in terms of its computational 

requirements/complexity and requires specification of program instruction length, 

program size, data transfer overheads, output data size. 

As shown in Figure 4.5, simulating complex large scale Clouds with CloudSim does 

not require knowledge of the underlying core simulation engine and the results from 

the simulation engine include the result of processes, the time consumption of each 

cloudlet. [92] and [93] show the extensibility of the CloudSim toolkit. In [93], the 

toolkit is complemented with a completely new set of objects were created to provide 

fine-grain simulation of network components and behaviour as shown in Figure 4.5. 

 

Figure 4.5: NetworkCloudSim architecture (source [93]) 
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However, in this research work, an experimental approach using the Eucalyptus 

cloud platform was used rather than simulation using CloudSim. The experimental 

approach allows studying addition real-world situations that is possible with 

simulations.   

A trusted cloud computing platform was deployed using Eucalyptus [94] enabled by 

the TPM [95]. The cloud platform integrates end-user accessible TPM integrity 

measurement/verification without the need for “custom” software or patches. 

Furthermore, on the platform, security is enhanced by the inclusion of an instance-

level file and directory integrity checker for selected files and directories. In this cloud 

deployment approach, individual organisations or users share a common cloud 

platform and sometimes not necessarily retaining control over their sensitive data or 

applications deployed on (foreign) infrastructure. 

 The data-colouring implementation reported in this work is aimed at providing 

integrity/protection of uploaded data as it would ensure that each operator/user can 

retain and verify ownership of sensitive data with a flexible access model based on 

data sharing needs. 

The implemented scripts may be obtained from the url 

https://powersystemscloud.brunel.ac.uk:8888/brunelece. Figure 4.6 shows the fcg.sh 

script running during the colouring of a jpg image. The first input item to the script is 

the jpg image to be coloured followed by the encryption password. 
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Figure 4.6: Generating colour drops (fcg.sh running) 

As shown the data-owner is identified by a DSA private-key taken from the secure 

shell (SSH) application, while a PGP public-key belonging to the cloud-service 

provider (Brunel University London) is used to identify the cloud-platform/service. 

Figure 4.7 shows the output of the bcg.sh script during the successful verification of 

the coloured file. As shown both the original file as well as the coloured version is 

required for successful verification. The steganography tool (outguess) can extract 

the colour drops from the coloured file once the right password is provided. The 

original file is needed for the generation of a new set of colour-drops. 

 

Figure 4.7: Extracting colour drops with bcg.sh 

Figure 4.8 shows the output of the bcg.sh script when detecting modifications to the 

coloured data file where a word was changed in the file. As shown, the 
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steganography tool would fail to reliably extract the colour drops from the tampered 

file and produces an error message accordingly. 

 

Figure 4.8: Verifying colour drops with bcg.sh 

4.5 Summary 

In this chapter we have presented a technique of data colouring for securing user 

data resources in cloud platforms. 

The implementation creates colour drops from concatenated fingerprints that allow 

the verification of data owner, cloud service provider or recipient while also 

protecting against unauthorised modifications.  

The concept of data colouring presented in this chapter can be applicable to all data 

formats; though as it is for now based on the OutGuess steganography tool, the 

present implementation discussed in this chapter can only be used on the following 

digital image formats: JPEG, PPM and PNM. Future work would investigate the 

support of additional data formats and other steganography tools.  
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Chapter 5 

Modelling Trust in Cloud Computing based on Fuzzy Logic  

As mission critical applications continue to be deployed on the cloud platform, a 

trusted distributed end-user attestable multilayer security tool to verify the trustworthy 

state of the platform is necessary. This is important as the end-user wants to be 

confident that the service is available and reliable, with accountability and non-

repudiation. Tradition security and privacy controls continue to be implemented on 

cloud but due to its fluid and dynamic nature, research work in the area of end-user 

attestable trust evaluation of the cloud platform seem to be limited.  With the nature 

of cloud, even though users are given and usually sign service level agreements with 

the providers[96] these are still not enough, the user would want a transparent 

system with a facility that allows the user to trace or determine the relationship 

between varying trust relationships across the cloud layers, components, algorithms 

and applications especially at large scale. A trust model using fuzzy logic was 

deployed; this model is useful in determining the trust values for a cloud platform or 

service. Using this model an end-user is also able to classify and compare various 

cloud platforms. The results obtained show that the model deployed in this research 

improves end-user’s confidence when selecting or consuming cloud resources. 

5.1 Introduction 

Several security protocols and tools have been enhanced and adopted to fit cloud 

computing but few of these take into account specific issues as it relates to the cloud 

end-users [97], [98]. Cloud end-users are unable to fully adopt the cloud platform as 

it lacks transparency, accountability and governance unlike other computing 

technologies [97]. A cloud end-user wants to be able to have control of the services 

they are accessing, whether across the different cloud layers or physical locations. 

While a lot of research has gone into making cloud computing more secure by 

enforcing security mechanisms like encryption, firewalls, and security groups, 

obstacles to trust still hinder potential users from completely adopting “cloud” (as it is 

sometimes called).  End-users are concerned about the “faceless” provider taking 

control and having access to their resources during processing or storage in the 
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cloud. The end-user wants to be more aware about what happens at the backend of 

the cloud platform. 

An end-user’s trust concern does not lie entirely on technology but also lack of 

transparency. While an end-user desires a secure platform, the end-user also wants 

measures that would promote transparency and accountability and this is lacking 

even among major providers like Amazon EC2 or S3, Microsoft Azure and Google. 

Insufficient information could lead an end-user to distrust even the most secure 

system [97], [99]. 

In general, it may be stated that the overall trustworthiness of any cloud resource 

may be derived from an algorithmic sum of trust levels (security measures) that are 

enforced or available across all layers or parts of a computing system [100].  

In the case of cloud computing, the ability to probe and test on-demand the 

trustworthiness of all assigned or consumed computing resources would make end-

users confident of the platform as it provides them with additional assurance of data-

integrity both during storage and processing [101]. An objective aggregation or 

evaluation of various security mechanisms configured across the layers of a cloud 

platform would provide the end-user with useful information on the trustworthy state 

of the platform. 

As stated by Andert et al in [102] the key principle of any security design and 

implementation is that security must be built into every layer of the solution. The 

researchers also defined trust modelling as the process performed by a security 

architect to define complementary threat profile on a use-case-driven flow analysis. 

The model identifies the mechanisms that necessary to respond to a specific threat. 

A trust model includes an explicit validation of an entity’s identity.   

Figure 5.1 shows the three popular layers of the cloud platform, these are also 

known as the delivery models – IaaS, PaaS and SaaS.  From Figure 5.1, we also 

see that an end-user who subscribes to a SaaS provider or any of the services may 

not be concerned about the trustworthiness of the PaaS layer or other layers but 

maybe concerned with the trustworthiness of the SaaS layer as that is the resource 

the end-user wants; or the end user maybe subscribing to all the services and 

maybe concerned with the overall trustworthiness of the platform. 



 

 74 

 

Figure 5.1: Cloud service delivery models and trust interaction 

For the IaaS layer, the physical environment of the host (server) may be protected by 

a Data-Cetre-Policy (DCP), which ensures that the server host is protected against 

power-outages, loss of connectivity and even limits access to authorised personnel. 

Typically, SLA may be used to monitor and guarantee the enforcement of an 

adequate DCP.  Furthermore, the server (host) computer which is part of the IaaS, 

may be secured using a suitable mechanism such as TC, which refers to the TPM 

dependent chain of trust (CoT) that is built from the cryptographic storage of 

measurements for the various component parts of a computing platform including 

BIOS, boot-loader, O.S. kernel, system libraries and/or virtualization middleware. 

In the process of TC verification, the current set of measurements is compared 

against preset values using a verifier application such as openPTS, which can also 

act as a collector [103]. Finally, most implementations of the virtualization engine 

(part of the IaaS layer) include an intrusion detection security mechanism known as 

security zone or security groups that serve mainly to isolate or prevent unauthorized 

communications or interactions between instances that belong to different security 

groups or zones. 

In the PaaS layer, the virtual machine may be protected by a suitable mechanism 

such as software based virtual TPM (vTPM) that provides TC like protection for the 

virtual machine or instance. That is, a chain of trust is built from the cryptographic 
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storage of measurements for the various component parts of the instance including 

BIOS, boot-loader, O.S. kernel, system libraries and/or applications. 

Similar to the TC verification process, the current set of measurements (from the 

vTPM) is compared against preset values using a verifier application such as 

openPTS.  PaaS layer access to an instance is typically over some secure channel 

such as Secure Shell (SSH), which includes a direct (peer-to-peer) key-based 

verification process before securing the communication channel using cryptographic 

encryption [104]. 

In a high security context, an instance may also include an Intrusion Detection 

Engine (IDE) for ensuring that contents (applications, files and data) of the instance 

have not been tampered with or have only undergone authorised modification or 

changes. 

At the SaaS layer, connections to services are commonly protected using the secure 

socket layer (SSL), which is based on the use of certificates for both identification 

and securing the communications channel cryptographically. 

Self-signed SSL certificates may be self-signed for arbitrary (take-it-or-leave-it) trust, 

while certificates from external third party certification authorities provide in-direct 

trust. For high security, an additional security mechanism such as DC secures the 

data for cloud-based processing and storage. In the DC implementation (as 

discussed in Chapter 4), the original data is coloured (via steganographic 

techniques) using digital bits that can uniquely identify the data-owner, cloud-service 

and data-recipient which can help in tracing the path through which a data loss or 

theft happened in the event it happens. 

For any cloud platform to be secure and trusted, the individual layers (IaaS, PaaS 

and SaaS) of the platform must be secure. As may be deduced from the above 

descriptions, there is no “one fit all solution” for securing all the layers [105]. This 

work derives a unified trust value for a cloud platform from the fuzzy combination of 

security states of eight different security mechanisms across all cloud layers.  The 

approach is based on attribute / identity trust with elements of direct and in-direct 

trust. The choice of fuzzy logic is informed by the ability of fuzzy logic to allow 

representation of any information with some varying (non-crisp) degree of 

membership [106].  
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The results from this research show that an accurate trust value may be obtained in 

as little as 4 transactions for low security platforms to up to 8 transactions for high 

security ones, this appears to be faster than other comparable models. 

The trust model presented in this research may be used to evaluate relative trust 

derivable from diverse security mechanisms configured on a cloud platform and may 

also be used as a reference or index tool for comparing the relative trust of cloud 

platforms. Section 5.2 presents an analysis of related work. Section 5.3 discusses 

trusted computing and fuzzy logic, the proposed model is discussed in section 5.4 

and its implementation and testing is presented in section 5.5. The results are 

evaluated in section 5.6 and section 5.7 concludes the chapter. 

5.2 Related Work 

Security and trust related research though not new is still an emerging field in cloud 

computing. Considering that cloud computing itself is an evolving and unique 

technology, serving a variety of users with various needs and demands, a single 

security architecture may be impossible to achieve [5], [27]. Most cloud security 

related research appear to focus more on the IaaS or related layers with limited or no 

considerations for other layers that make up the cloud platform. 

Researchers in [107] used a subjective logic approach to evaluate trust. While 

researchers in [108] provided a framework without adequate information about its 

implementation. Wu in [109] ascertained that a platform can only be secured when 

all players or stakeholders put their heads together and used a fuzzy reputation for 

trust management in cloud based on detection of malicious attacks with some set of 

metrics. Fan et al in [110] considered objective and subjective trustworthiness, with 

subjective trust based on SLA(s) and some quality of service (QoS) attributes. The 

approach involved users going through some third party trust providers. The 

researchers in [111] though considered a trust evaluation system using hierarchical 

fuzzy inference system for service selection, they only considered infrastructure as a 

service (IaaS), they didn’t consider the other services.   

Researchers in [112] also considered evaluating trust in a cloud computing 

environment but the system was evaluated using past experiences of previous 

customers by assigning a reliability weight to customer’s feedback but a high 
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reliability weight doesn’t necessarily mean the platform is trusted and secure at later 

time.  

My approach instead focuses on direct monitoring by end-users themselves as this 

eliminates the doubts that trust ratings are without bias and/or may not completely 

relevant to the end-user’s desired scenarios.  

Researchers in [113] presented a trust based approach using trusted computing 

which is applied only at the IaaS layer and as earlier mentioned a cloud end-user 

also wants security mechanisms configured across all the layers of a cloud platform 

to enable the end-user make a more informed decision. The researchers in [114] 

proposed data access control mechanism but the security considerations were not 

sufficient. 

Researchers in [115] extended the trusted computing chain of trust from the physical 

infrastructure domain (or IaaS layer) to the PaaS Layer.  It is clear that a trust value 

is only obtainable on cloud platforms that have implanted this extension. While 

researchers in [54] calculated trust based on historic, direct and recommended (in-

direct) values, they do appear to consider attributed trust that may be derived from 

the identified behaviour of the platform.  Also, their proposed model does not appear 

to cater for diverse end-users needs and requirements. 

In general, it may be stated that the overall trustworthiness of any cloud resource 

may be derived from an algorithmic sum of trust levels (security measures) that are 

enforced or available across all layers or parts of a computing system [100].  

In the case of cloud computing, the ability to probe and test on-demand the 

trustworthiness of all assigned or consumed computing resources would make end-

users confident of the platform as it provides them with additional assurance of data-

integrity both during storage and processing. 

The research work on trust presented in this chapter involves the ability of a user to 

evaluate the trustworthiness of the resources on a cloud platform using fuzzy logic. 

The model was evaluated and compared against two cloud trust models they are 

Dynamic multi-dimensional trust model (DMTC) as presented by [116] and Trust 

model based on fuzzy mathematics ( TMFM) as presented by [54]. DMTC 
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dynamically reflects a trust relationship in a cloud system by calculating direct trust 

based on time evaluation and space evaluation for recommended trust. 

TMFM computes and evaluated the trust status of a platform based on fuzzy 

mathematics. The evaluation is based on direct observation between entities. 

  

5.3 Trusted Computing and Fuzzy Logic Theory 

Generally, trust in computing tend to be modelled after human relationships as users 

tend to exchange and share ideas based on experiences thereby indirectly or 

subconsciously building an impression of the services based on previous users’ 

experiences and in turn any perceived service. Users would now tend to form an 

impression based on the previous user’s experience after interacting with the old 

user so even if the new user hasn’t had the experience he forms his impression 

based on the previous user [99], [100], [117]. The concept of trust may also be 

applied to the area of service delivery, for example, a party may “trust” another party 

to deliver quality service, in which case trust becomes a measure of the service-

availability. In the case of security, if the party’s trust is based on the availability of 

some security measures, then trust becomes a measure of the security available and 

attested to. Authors in [88] classified trust into objective and subjective trust as 

known as direct and in-direct trust. Objective trust is obtained from the direct 

interactions between two parties; while, subjective trust involves the impressions 

obtained from third parties. 

As shown in Figure 5.1, trust in cloud should be examined over four different layers 

(Physical, IaaS, PaaS and Saas). In this work, trust at the physical layer is derived 

from the defence capability of individual physical devices. A single cloud host 

(physical server) which is an IaaS component may be secured using the TPM based 

Trusted Computing (TC) industry standard[103].  As shown in Figure 5.2 [115], a 

chain of transitive trust is established from hardware (core Root of Trust) to the 

software layers (virtualization) across the BIOS device, the boot-loader and 

operating system. 
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Figure 5.2: Linear and tree based on trusted computing of a single host 

 

In Figure 5.2, the chain of trust that exists between the core root of trust to the 

virtualization machine manager layer may be modelled based on the linear transitive 

trust principle where the final trust is the minimum offered by each intermediary 

object that is part of the chain.  Each stage of the TC chain (cRMT to VMM) shown in 

Figure 5.2 may be represented as a node in an N node graph system where the trust 

level between two adjacent nodes would be given by the expression [115]: 

 

𝑇(𝐴, 𝐵) =  min {𝑇(𝐴, 𝐵), 𝑇(𝐵, 𝐶), 𝑇(𝐶, 𝐷), … , 𝑇(𝑁 − 1, 𝑁)}   (5.1) 

Similarly, the trust relationship between the virtualization machine manager and the 

virtual machines is a one-to-many relationship of direct trust and may be modelled by 

a tree graph where the trust relationship is the maximum trust level obtained from 

each directly connected object. That is, assuming a one-to-many node (𝑉𝑀𝑀 𝑡𝑜 𝑣𝑚𝑖) 

system where T denotes the Trust level between two adjacent levels. 

 

𝑇(𝑉𝑀𝑀, 𝑣𝑚) = max {𝑇 (𝑉𝑀𝑀, 𝑣𝑚1), 𝑇(𝑉𝑀𝑀, 𝑣𝑚2), … , 𝑇(𝑉𝑀𝑀, 𝑣𝑚𝑖)}  (5.2) 

 

While, the virtual machines may include a virtual TPM device as shown in Figure 5.2, 

their virtual nature precludes their consideration in the overall security and trust of 
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the IaaS layer.  Typically, the IaaS layer is a collection of physical resources (such 

as hosts) that may be co-located in a single data-centre or distributed across 

geographically separated data-centres and the net trust expected from the IaaS 

service layer is obtained from the multiplicative sum of the trust levels of individual 

physical hosts and resources. It is clear that the presence of a single compromised 

or unsecured host would negatively affect the trust of all hosts in a data-centre or the 

IaaS layer. 

𝑇𝐼𝑎𝑎𝑆 layer = 𝑚𝑖𝑛 (𝑇𝑅1, 𝑇𝑅2, … , 𝑇𝑅𝑛)      (5.3) 

In many cloud implementations, the cloud PaaS layer is mainly secured using either 

zones or firewalls and in some cases both are implemented at the Cloud middle-

ware and the trust replications may thus be modelled by the equation with the 

number of virtual machines limited to the finite set of vm(s) sharing the same zone.  

In addition, trust at the PaaS layer may be complemented by a defence capability 

such as the inclusion of an IDS engine directly into the PaaS software-environment. 

In which case, the IDS is used to provide a baseline control against which the 

contents (files and data) of the PaaS system may be compared to detect 

unauthorised modifications or updates to the PaaS software-environment caused by 

trojan horses, viruses or other malicious activities.  The IDS engine is typically a 

separate application that runs within a vm, consumes resources and provides a 

measure of the one-to-many (tree) direct trust of other applications within the vm. 

That is, the IDS trust may be modelled by: 

 

𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝 )  = max  { 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝1), 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝2), . . , 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝𝑛)}  (5.4) 

 

where 𝑇(𝐼𝐷𝑆, 𝑎𝑝𝑝𝑛),represents the trust measure provided by the IDS engine for a 

particular application. The PaaS environment is typically created from a software 

hierarchy consisting of a boot-loader, operating system kernel, shell and libraries.  

The final security of individual applications therefore depends on the security of this 

underlying software stack.  That is: 

𝑇 (𝐼𝐷𝑆, 𝑎𝑝𝑝𝑥) = min{𝑇(𝐼𝐷𝑆, 𝑏𝑜𝑜𝑡𝑙𝑜𝑎𝑑𝑒𝑟), 𝑇(𝐼𝐷𝑆, 𝑂. 𝑆 − 𝐾𝑒𝑟𝑛𝑒𝑙), 𝑇(𝐼𝐷𝑆, 𝑂. 𝑆 −

𝑠ℎ𝑒𝑙𝑙), 𝑇(𝐼𝐷𝑆, 𝑂. 𝑆 − 𝑙𝑖𝑏𝑟𝑎𝑟𝑖𝑒𝑠)}          (5.5) 
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PaaS layers are typically provided by virtual machines from the underlying IaaS 

layers and the trust relationship between the IaaS and PaaS layers may be modelled 

as a trust fusion or average process. 

 

𝑇 (𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆) = max{ 𝑇(𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆1), 𝑇(𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆2), . . , 𝑇(𝐼𝑎𝑎𝑆, 𝑃𝑎𝑎𝑆𝑛}  

      (5.6) 

And for each PaaS 

 

𝑇 (𝑃𝑎𝑎𝑆) = 𝑇 (𝐼𝑎𝑎𝑆𝑥, 𝑃𝑎𝑎𝑆𝑥) + 𝑇 (𝐼𝐷𝑆𝑥, 𝑎𝑝𝑝𝑥)     (5.7) 

 

Where the “+” sign represents the trust fusion process and 𝑇 (𝐼𝐷𝑆𝑥, 𝑎𝑝𝑝𝑥)represents 

the added component provided by the internal IDS engine.  

In cloud implementations, the SaaS layer is typically protected by securing the 

communication layer against man-in-the-middle attacks using a suitable mechanism 

such as secure socket layer (SSL) connections or secure shell (SSH) connections. 

Both SSL or SSH represent identity trust relationships based on possession of 

matched certificates or credentials, however, while SSL may require a 3rd party 

certification authority, SSH connections represent direct-trust between two parties. 

SSH connection may be modelled as simple vector, where an unknown host is not 

trusted while a known or matching host is fully trusted. It is noted that a known but 

not-matching host is completely untrusted. 

 

T (SSH) =  {
0  𝑖𝑓identity − trust exists but is not matched 
1                             if identity − trust is matched

    (5.8) 

 

Although trust in SSL is different from SSH, the simplest form of SSL connections 

may similarly be modelled by: 

T (SSL) =   {

0 if identity −  trust is NOT verified 
0          if identity − trust is revoked
1          if identity − trust is verified

    (5.9) 
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However, the ability to revoke certificates suggest that SSL connections may be 

better modelled by more complex algorithms such as EigenTrust or PeerTrust where 

the group of peers is limited to a well-known set of peers or community. 

At the application level, data at the SaaS layer may be protected against theft or loss 

using a suitable mechanism such as hashing, data-colouring, encryption or 

obfuscation. Data-colouring could be an optimal technique for cloud platforms or 

applications as coloured data may still be processed without overhead (the colouring 

is transparent) while also providing the ability to detect tampering, identifying and 

reporting data-loss. Considering security related metrics of confidentiality, integrity 

and availability in a cloud context, the coloured-data (output of a data-colouring 

process) is able to maintain integrity and availability of data during processing. 

While, hashing as a data-protection technique can only provide integrity, obfuscation 

provides only limited confidentiality; data-colouring provides integrity and availability; 

while encryption provides confidentiality and integrity but not availability. In situations 

where all multiple protection mechanisms are in use, it is possible to assign weights 

to each based on the relative contribution of the individual mechanism. 

The SaaS layer trust may be modelled as a fusion of trusts derived from the security 

values of its connections and data-protection mechanisms. Typically, a SaaS service 

requires an underlying PaaS. The trust relationship between a PaaS and a SaaS 

application is typically a 1-to-1 nature which may be modelled as a discount trust 

process. 

The simulation for this researcher would be implemented to accommodate different 

scenarios. These scenarios would be deployed to accommodate different levels of 

trust, this is achieved by deploying different security techniques across different 

layers and this in turn can be evaluated to reflect the different levels of trust in the 

platform. 

Since no computing system can be completely trusted as every system is “only as 

secure as its weakest link”, the same can be said of the cloud system; therefore, 

categorically stating a system is completely trusted or not may not be a true 

reflection of the system.  
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Fuzzy logic which is a computing approach that is based on “degrees of certainty” 

includes cases of trust not just based on 0 and 1 (low or high) but it allows the 

inclusion of various cases in between such as low to medium, medium to high, etc. 

Fuzzy logic makes an aggregate of various parameters and based on certain 

thresholds makes a decision, it is suitable for modelling uncertainties. Type 1 fuzzy 

set or type 2 fuzzy set can be applied to the different cases for decision making[118], 

[119].  

In this chapter, fuzzy logic evaluation is used to calculate cloud trustworthiness 

based on the user’s needs and satisfaction. The user may only want to know the 

trust state of the IaaS and doesn’t mind about PaaS and SaaS as the user doesn’t 

need that service or maybe only concerned with the trust state of IaaS and PaaS and 

not SaaS or vice versa. Using fuzzy logic approach, trust values are combined to 

enable the user decide the trustworthiness of the platform or services. 

5.4 Proposed Model 

The security assessment of a cloud platform should be of paramount importance to 

any user regardless of the service required.  Researchers in [108] listed some 

parameters necessary for measuring the overall security of a cloud platform and the 

deployed service.   

The cumulative crisp sum of security values is used to evaluate the trustworthiness 

of the cloud platform or the deployed service.  In a dynamic world, security is not 

static but ever evolving, crisp value representation (a 1 which is “present” or a 0 

which means “absence”) would only provide a theoretical or expected (or possibly 

inaccurate) state of the platform. In this section, we propose a multi-layer security 

trust model (MLSTM) that is based on FLC system with the following characteristics 

[120]: 

• State changes are based on Gaussian fuzzy numbers 

• Various operators are used to represent the rules 

• The overall control action of the system is computed to reflect the 

accumulated security strength. 
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As shown in Figure 5.3, the proposed Multi-Layer Security trust model (MLSTM) cuts 

across the well-known layers of a cloud platform – IaaS, PaaS and SaaS.  

Trust evaluation at any layer is derived from the identified behaviour of individual 

security mechanisms at distinct layers of the platform. For the IaaS layer, the trust 

value is obtained from a FLC system that combines verifications of the TC, ID 

security mechanisms and an adequate DCP.  Similarly, at the PaaS layer, trust value 

is obtained from the FLC combination of verifications of the SSH, IDE and vTPM 

security mechanisms, while the SaaS layer trust value is obtained from the FLC 

combination of SSL and DC security mechanisms. 

In our model, the end-user is presented with a single trust value derived from the 

FLC combination of trust values from IaaS, PaaS and SaaS layers which may be 

used to decide if platform is trustworthy or not. 

 

Figure 5.3: Multi Layer Security Trust Modell (MLSTM) Concept 

Fuzzy sets are different from simple every day probabilities as with probability the 

even would happen or it would not happen leading to a crisp value of true or false – 

1 or 0, therefore the operators of the classic set theory need to be redefined to fit 

membership functions for values between 0 and 1. Crisp representation imposes a 

sharp boundary on a set where each member of a set is assigned 1 while a member 

outside the set is assigned a value of 0, that is in crisp representation an element 

belongs to a set or not. 

𝓍 ∈ Χ 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 1          (5.10) 

or 
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𝑥 ∉ 𝑋 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑓𝑜𝑟 0         (5.11) 

In the crisp interpretation, a given cloud (x) is secure if it is a member of the set of 

secure clouds (X) as presented by equation (5.10), while the converse is true that is 

a given cloud platform is NOT secure when it is NOT a member of the set of secure 

clouds (X) as shown in Equation (5.11). 

However, practically, it is possible that a sub-set part of a cloud platform to be secure 

(member of set X) while some other part of the same cloud service is not secure (not 

a member of X).  

In Set Theory, the intersection of two crisp sets is composed only of the elements 

that are present in both sets while the union of the sets is derived from elements that 

are present in either of the sets. For example, in digital electronics, binary logic 

circuits can assume distinct (crisp) states of 1 or 0, the intersection of the two states 

in the AND logic gate results in the lower state. 

While the union of the two sets which may be illustrated by a logical OR gate 

operation in digital electronics would take the higher value of the sets as shown in 

Table 5.1 

Table 5.1: Binary Logic Representation of Intersection and Union 

Intersection 

 (Logical AND) 

Union  

(Logical OR) 

1 AND 1 = 1 1 OR 1 = 1 

1 AND 0 = 0 1 OR 0 = 1 

0 AND 1 = 0 0 OR 1 = 1 

 

In fuzzy logic, membership of a given element in a set is determined as a 

fractional value between 0 and 1 known as the degree of membership, which 

conveys an idea of much of that element is contained within a given set.  

It is possible to define an arbitrary minimum membership value say 0.5 that 

should be increasing for a cloud platform to be indeed trusted. The degree of 

membership function would be thus: 
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2 [ 𝜇𝐴(𝑠)]2                              𝑖𝑓 0 ≤ μ
A
≤0.5 

 

1 − 2 [1 −  𝜇𝐴(𝑠)]2         𝑖𝑓 0.5 ≤  𝜇𝐴 ≤ 1 

(5.12) 

With the Gaussian membership function: 

 

μ
Ai

(𝑥) = exp(−
(𝑐𝑖−𝑥)2

2𝜎𝑖
2 )       (5.13) 

 

In Equation 5.13, 𝜎 is the standard deviation and c is the centre of the ith fuzzy set of 

𝐴𝑖  . the membership function always returns values in the range of 0 and 1.  

The degree of membership from Fuzzy Logic can be used to support vague 

concepts and model real world situations including the dynamic evolution/changing 

nature of security of a cloud platform with much higher accuracy compared with a 

crisp representation. That is, with fuzzy representation, it becomes possible to say a 

given cloud platform is x% secure or y% unsecure. 

Alternatively, a cloud platform cannot be said to be completely secure, it may be 

secure to a certain degree or level even when the components that make up the 

system are assumed to be fully secured or completely unsecure, this also means a 

cloud platform must be able to offer real-time security [121].  

Based on fuzzy logic, the degree is usually a real number between the range of 0 

and 1. While, the crisp representation of cloud security can provide a binary (“True” 

or “False”; 1 or 0) answer to the question of “Can I trust the cloud platform?”, the 

fuzzy representation goes further and can provide an answer to the question of “how 

trustworthy is the platform?” even when presented with diverse or varying 

requirements. 

With fuzzy logic, any given cloud platform would have a varying degree of 

membership in two distinct universal sets of secure-clouds and unsecure-clouds. For 

an element with varying degree of membership in two different sets, the membership 
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value in the resulting intersection (fuzzy AND) of both sets would be the lower of 

both membership values, while the membership value in a union (fuzzy OR) of both 

sets would be the higher value. 

That is, the fuzzy OR operation is given by: 

 

𝜇𝐴∪𝐵(𝑥) = max{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}       (5.14) 

 

While, the fuzzy AND operation is given by: 

 

𝜇𝐴∩𝐵(𝑥) = min{𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}       (5.15) 

 

Figure 5.4 shows the four major components of a FLC system, which according to 

[19] are:  

 The fuzzification interface acquires the values of input variables and performs 

a scale mapping that transfers the range of values of inputs variables into 

corresponding universes of discourse, this is the range of all possible values 

for an input to a fuzzy system and converts input data into suitable linguistic 

values which may be viewed as label of fuzzy sets. 

 The "linguistic (fuzzy) control rule base", provides necessary definitions which 

are used to define linguistic control rules and fuzzy data manipulation, the rule 

base characterizes the control goals and the control policy of the domain 

experts by means of a set of linguistic control rules. 

 The fuzzy inference engine is the kernel of a FLC; it simulates a process 

similar to that of of human decision making based on both fuzzy concepts and 

inferring fuzzy control actions from the rules of inference in fuzzy logic. The 

inference type used in this research is the Mamdani-type inference. 

 The defuzzification interface performs a scale mapping of the range of values 

of fuzzy output variables into corresponding universes of discourse, 

defuzzification to obtain a non-fuzzy control action from an inferred fuzzy 

control action and operates to transform fuzzy sets into crisp data sets. 
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The defuzzification process may be represented by the expression: 

 

out = defuzz(x,mf, type)        (5.16) 

where defuzz returns a defuzzified value based on the membership function “mf” at 

an associated variable of value “x” and according to an argument “type” which for 

this research the centroid type was used. 

In summary, the processing of rules (fuzzy conditional statements) in an FLC system 

is based on fuzzy sets, and any crisp inputs need to be “fuzzified” for correct 

processing and produces a fuzzy output which is then “defuzzified” to obtain a crisp 

value.  The FLC system presented here is composed of a set of rules (conditional 

statements and algorithms) characterised to represent simple and complex relations 

in the form: 

𝐼𝐹 𝑥1 𝑖𝑠 𝐴 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐵 𝑎𝑛𝑑 𝑥𝑛𝑖𝑠 𝐶 … 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐷     (5.17) 

 

The fuzzy conditional statement in Equation (5.17), may be interpreted generally as 

IF a set of conditions is satisfied THEN a set of consequences can be inferred.   

 

Figure 5.4: Functional / Block Diagram of a Fuzzy Logic Control (FLC) System (Source: [122]) 
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A fuzzy rule system has multiple parts which is unlike classical rule based system 

where the result is always true or false (1 or 0). In a fuzzy system, all parts of the 

antecedent are calculated simultaneously and results in a single number using fuzzy 

set operations. The fuzzy operators AND or OR are applied to obtain a single 

number depending on the type of evaluation. 

As mentioned earlier, due to the multilayer nature of the cloud infrastructure, each 

layer of the cloud platform may implement different security measures each of which 

should to be individually secure and aggregated at each layer even for complex 

configurations such as a user who is interested in accessing a cloud platform with 

the following specific configurations: trusted computing (TC), intrusion detection (ID), 

data centre policy (DCP); ssh, intrusion detection environment (IDE) and vTPM but 

not bothered about the presence or absence of data colouring. 

Based on fuzzy intersections, the corresponding linguistic values of the input 

assigned a degree, which is a product of all its antecedents and consequent 

memberships. The fuzzy set provides a continuous transition across the input range 

based on the order weighted averaging of the associated set of weights 𝑊 =

 (𝑤1, 𝑤2, … 𝑤𝑛)  of each security configuration is such that 𝑤𝑖  ∈  [ 0,1 ] and  ∑ 𝑤𝑖
𝑛
𝑖=1 =

1  its computed and represented thus: 

 

𝑇 =  ∑ 𝑤𝑗𝑠𝑗
𝑛
𝑗=1          (5.18) 

 

So for the cloud platform let the reference set be S {𝑠1, 𝑠2,𝑠3,𝑠4,𝑠5,𝑠6}, A is the crisp set 

that can only take two values 0 or 1, which would represent each of the 

configurations in IaaS, PaaS and PaaS and each can be represented thus: 

 

𝐴 =  {(𝑠𝑥, 𝜇𝐴(𝑠𝑥)}        (5.19) 

 

The multi-layer security trust model (MLSTM) is based on the use of fuzzy logic 

combination of a controlled sequencing of specific transactions that examine various 

security mechanisms specific to the cloud layers of IaaS, PaaS and SaaS. The 

MLSTM is a tool for assessing and evaluating the diverse security concerns related 
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to cloud services and can provide users with the ability to evaluate the security of a 

chosen cloud platform as part of the process of establishing trust.  

The input variables for the system as noted above are IaaS, PaaS and SaaS. The 

value of IaaS is calculated from the following security configurations:  trusted 

computing, intrusion detection, data policy; while that of PaaS is calculated from ssh, 

intrusion detection environment, virtual TPM and SaaS is calculated from ssl and 

data colouring and the output is the security value which the user is able to make 

decision as to “how secure or trustworthy is the system?” 

Furthermore based on Equation 5.17, the rule base for the overall system consists of 

27 rules which are represented in Table 5.2. There are three linguistic values for the 

input variables (IaaS, PaaS and SaaS) which are low, medium and high and six 

linguistic values for the output variable (security): extremely low, very low, low, 

medium, high and very high. 

Table 5.2: Fuzzy Rule base Table for all the Layers 

 IF THEN 

Rule No IaaS PaaS SaaS Security 

1.  low low low ex.Low 

2.  low low med v.low 

3.  low low high v.low 

4.  low Med Low low 

5.  low med med low 

6.  low med high low 

7.  low high low low 

8.  low high med low 

9.  low high high low 

10.  med low low low 

11.  med low high low 

12.  med low med low 

13.  med high low med 
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14.  med high high high 

15.  med high med med 

16.  med med low med 

17.  med med high low 

18.  med med med med 

19.  high high high v.high 

20.  high high med high 

21.  high high low med 

22.  high low med med 

23.  high low high med 

24.  high med med med 

25.  high  med high med 

26.  high med low med 

27.  high low low med 

 

Furthermore, the rule base for the individual layers – IaaS, PaaS and SaaS are 

represented in Tables 5.3, 5.4 and 5.5 where the input variables can only have the 

linguistic values of low or high and the output variable has the linguistic value of low, 

medium and high. 

Table 5.3: Fuzzy Rule base Table for the IaaS Layer 

IF THEN 

Rule No TC ID DCP IaaS 

1 low low low low 

2 low low high low 

3 low high low low 

4 high low low low 

5 high low high med 

6 high high low med 
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7 low high high med 

8 high high high high 

 

Table 5.4: Fuzzy Rule base Table for the PaaS Layer 

IF THEN 

Rule No SSH IDE vTPM PaaS 

1 low low low low 

2 low low high low 

3 low high low low 

4 high low low low 

5 high low high med 

6 high high low med 

7 low high high med 

8 high high high high 

 

Table 5.5: Fuzzy Rule base Table for the SaaS Layer 

IF THEN 

Rule No SSL Dcol SaaS 

1 low low low 

2 high low med 

3 low high med 

4 high high high 

 

For a user who is interested in accessing a cloud platform with the following 

configurations: TC, ID, DCP; ssh, IDE and vTPM but is not bothered about data 

coloring, the FLC system is analysed in Table 5.6, where the corresponding linguistic 

values of the inputs (IaaS, PaaS and SaaS), are combined using fuzzy (fired) rules 

into a trust value and their corresponding fuzzy levels computed with t-norm product 

to obtain the corresponding crisp values. The computed crisp trust value is 0.7323. 
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Table 5.6: FLC System Analysis Table 

Cloud layer Membership (𝝁) range Fuzzy level Crisp value 

IaaS 0.5 – 1.0 Medium 0.5927 

PaaS 0.5 – 1.0 Medium 0.5935 

SaaS 0.0 – 0.5 Medium 0.6324 

Trust   High 0.7323 

 

Figures 5.5, 5.6 and 5.7 show the membership function graphs for the individual 

variable input of the security mechanisms configured on the IaaS layer and Figure 

5.8 show the membership function for the output variable of IaaS after the rules have 

been applied. 

 

Figure 5.5: Membership Function graph for the input variable TC 
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Figure 5.6: Membership Function graph for the input variable ID 

 

 

Figure 5.7: Membership Function graph for the input variable DCP 
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Figure 5.8: Membership function graph for the output variable IaaS 
 

Figure 5.9 show the membership function graph of the output variable PaaS after the 

rules have been applied on the input variables of the security mechanisms on PaaS. 

The individual membership function graphs of the input variables are shown in 

Figures 5.10, 5.11 and 5.12. 

 

Figure 5.9: Membership function graph for the output variable PaaS 
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Figure 5.10: Membership function graph for the input variable ssh 

 

 

Figure 5.11: Membership function graph for the input variable IDE 
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Figure 5.12: Membership Function graph for the input variable vTPM 

The membership function graph in Figure 5.13 is that of the output SaaS and the 

graphs in Figures 5.14 and 5.15 are for the individual security mechanisms 

configured on the SaaS layer. 

 

Figure 5.13: Membership Function graph for the output variable SaaS 
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Figure 5.14: Membership Function graph for the input variable ssl 

 

 

Figure 5.15: Membership Function graph for the input variable Dcol 

 

Figures 5.16, 5.17 and 5.18 are membership function graph of the IaaS, PaaS and 

SaaS as input variables while Figure 5.19 show the membership function for the 
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output variable security, which what provides the final crisp overall value of the 

system. 

 

Figure 5.16: Membership Function graph for the input variable IaaS 

 

 

Figure 5.17: Membership Function graph for the input variable PaaS 
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Figure 5.18: Membership Function graph for the input variable SaaS 

 

 

Figure 5.19: Membership Function graph for the output variable Security 

5.5 Implementation and Testing  

The proposed multi-layer security trust model MLSTM which derives a trust value 

from the fuzzy logic combinations of eight different security mechanisms (see 

section 5.1) from the three distinct cloud layers of IaaS, PaaS and SaaS was 

implemented using the matlab simulation software as shown in Figure 5.20 
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Figure 5.20: Matlab implementation of Multi-Layer Security Trust Modell (MLSTM) 

Various simulations were conducted in both static and dynamic contexts.  In the 

static context, the inputs (security mechanisms) could only take on two crisp or 

distinct states of 0 or 1 representing not-secure or fully-secured while in the 

dynamic context, the input values were changing with time. 

 

For better understanding, the MLSTM identifies 4 distinct classification 

categories namely: High security, Normal security, Some-how secure and Low 

security that represent distinct combinations of the security mechanisms as 

shown in Table 5.7.  

 

The trust value for a cloud platform is obtained through a controlled sequencing 

of the MLSTM transactions or probes as show in Table 5.8, where the “+” sign 

represents a fuzzy logic combination. 

 

The MLSTM transactions results are obtained from specific probes (checks) that 

verify adequate response functionality expected from the security mechanism. A 

test-bed deployment of a cloud platform was also performed using the 

Eucalyptus cloud-in-a-box software and all security mechanisms listed in section 

5.1 were implemented on the test-bed as well as MLSTM transactions or probes. 
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The results of the matlab simulation as well as other results from the test-bed are 

reported in the next section. 

Table 5.7: MLSTM Categories  

Category Combination of security mechanisms 

IaaS Layer PaaS Layer SaaS 

Layer 

TC ID DCP SSH IDE vTPM SSL DC 

High Security 1 1 1 1 1 1 1 1 

Normal Security 1 0 1 1 0 1 1 0 

Some-how secure 0 0 1 1 1 0 1 0 

Low Security 0 0 1 1 0 0 1 0 

 

Table 5.8 : MLSTM Combinations 

Transacti

on/sequen

ce 

Combination of transactions 

High Security Normal 

Security 

Some-how 

secure 

Low security 

1 TC DCP DCP DCP 

2 TC+ID DCP+SSH DCP+SSH DCP+SSH 

3 TC+ID+DCP DCP+SSH+SSL DCP+SSL DCP+SSH+SSL 

4 TC+ID+DCP+ 

Ssh 

DCP+TC DCP +SSH+SSL DCP+SSH+SSL 

5 TC+ID+DCP+ 

SSH+IDE 

DCP+SSH+TC DCP+IDE DCP+SSH+SSL 

6 TC+ID+DCP+ 

SSH+IDE+vTPM 

DCP+SSH+vTP

M+ 

SSL 

DCP+IDE+SSL 

 
 

DCP+SSH+SSL 
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7 TC+ID+DCP+ 

SSH+IDE+vTPM+ 

SSL 

DCP+TC+SSH+ 

vTPM 

 

DCP+IDE+SSH DCP+SSH+SSL 

8 TC+ID+DCP+ 

SSH+IDE+vTPM+ 

SSL+DC 

DCP+TC+SSH+ 

vTPM+SSL 

DCP+IDE+SSH+ 

SSL 

DCP+SSH+SSL 

 

5.6 Results and Evaluation  

In the matlab simulation, a static configuration where the transactions and 

probes are replaced by a constant value generator with an output value of 1 has 

the resulting trust values reported in Table 5.9 and Figure 5.21.  

 

Table 5.9: MLSTM Trust Values by Sequence and Categories 

Transaction/ 

sequence 

Trust value 

High security Normal security Some-how secure Low security 

1 0.235 0.235 0.235 0.235 

2 0.4262 0.235 0.235 0.235 

3 0.5708 0.2725 0.2725 0.2725 

4 0.5708 0.4262 0.2745 0.2475 

5 0.5974 0.4262 0.2974 0.2725 

6 0.6234 0.4298 0.309 0.2725 

7 0.7323 0.5928 0.4298 0.2725 

8 0.7548 0.5935 0.4298 0.2725 
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Figure 5.21: Multi-Layer Security Trust for 4 identified categories 

 

Similarly, it is possible to obtain trust values for various combinations of security 

mechanisms as shown in Table 5.10. 

The results presented in Tables 5.5 and 5.6 were derived from static 

considerations, where all security mechanisms are assumed to be fully secured. 

However, in a real-world context, a security mechanism may not always be in a 

fully secured state. For example, an un-patched SSH server is no longer in a 

fully secured state.  Similarly, an IDE with an outdated database is no longer fully 

secured. In the matlab simulations, a real-world context was simulated by using 

suitable waveform generators for the transactions/probes. 

Table 5.10: MLSTM Trust Values for Various Security Mechanisms Combinations  

Scenarios Combinations Trust Value 

1 TC 0.235 

2 𝑇𝐶 ∩ 𝐼𝐷 0.4262 

3 𝑇𝐶 ∩ 𝐷𝐶𝑃 0.4262 

4 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 0.5708 

5 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ 0.5708 

6 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 0.5974 
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7 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 ∩ 𝑣𝑇𝑃𝑀 0.6324 

8 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 ∩ 𝑣𝑇𝑃𝑀 ∩ 𝑠𝑠𝑙 0.7323 

9 𝑇𝐶 ∩ 𝐼𝐷 ∩ 𝐷𝐶𝑃 ∩ 𝑠𝑠ℎ ∩ 𝐼𝐷𝐸 ∩ 𝑣𝑇𝑃𝑀 ∩ 𝑠𝑠𝑙 ∩ 𝐷𝐶 0.7547 

 

 

The data in Table 5.11 is plotted in Figure 5.22 which shows the effect of the 

dynamic variations in the transaction results on the final trust value. As show, the 

final trust values appear to be lower by about 7%, however, the classification 

process is still successful.  The peak trust graph shows the maximum trust 

values for a 10 seconds interval. It is really the same graph as Figure 5.21.  

Table 5.11: MLSTM Trust Values for Real World Simulation 

Transaction/ 

sequence 

Trust value 

High security Normal security Some-how 

secure 

Low security 

1 0.235 0.235 0.235 0.235 

2 0.4259 0.3498 0.265 0.265 

3 0.4712 0.2941 0.2941 0.2941 

4 0.4720 0.432 0.2973 0.2974 

5 0.5910 0.4355 0.4397 0.2974 

6 0.6352 0.4524 0.3401 0.2956 

7 0.6095 0.5906 0.4497 0.2941 

8 0.595 0.593 0.369 0.2725 

9 0.6772 0.5933 0.4513 0.2941 

10 0.70804 0.5933 0.4298 0.2724 

 



 

 106 

 

 

Figure 5.22: Multi-Layer Security for dynamic real world simulation 

 

The MLSTM high success rate may be attributed to its use of special sequencing 

of 8 specific transactions devoted to security probes.  In measuring the trust of a 

high security cloud, all 8 specific transactions are used and the results have 

been plotted in Figure 5.25 and also in comparison with other similar models – 

DMTC and TMFM [54] it reflects a higher success interaction rate. Figure 5.23 

reflects the peak trust rate across the different security scenarios, Figure 5.24 

reflects the dynamic input for the transactions in Figure 5.22 but in this instance 

it reflects the simulation carried out across 30 seconds. Figure 5.26 reflects the 

trust accuracy of MLSTM in comparison to other models. MLSTM already 

assumes a platform is untrusted and only begins to trust the platform when the 

probes and configure mechanisms are successful but the other models trust the 

platform and the trust level falls when the test carried out by users fail because 

the necessary security mechanisms are not in place. 
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Figure 5.23: MLSTM Peak Trust Values 

 

 

Figure 5.24: MLSTM matlab simulation with dynamic input transactions period of 30s 

 

 

Figure 5.25: MLSTM success interaction rate in comparison with MDMTC and TMFM models 
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In detecting malicious hosts, the MLSTM model uses only 4 specific transactions 

and as Figure 5.26 shows, the MLSTM model can efficiently detect malicious 

hosts with a highly accurate rate. Here the MLSTM is benefitting from its initial 

assumption that all clouds may be malicious.  

 

 

 

Figure 5.26: MLSTM trust accuracy rate comparison with DMTC and TMFM models 

The data used for plotting Figure 5.27 reflects a large overhead which appears to 

be related to obtaining the TC (and vTPM) measurements. Probably this is due 

to the need for cryptographic encryption/decryption from the TPM chip/module. 

Figure 5.27 shows that it takes less than 1 second to identify a low security or 

some-how secure cloud, while it could take up to 8 seconds to identify a Normal 

security cloud and about 10 seconds to identify a high security cloud. This figure 

shows that it takes less than 1 second to identify a low security or some-how 

secure cloud, while it could take up to 8 seconds to identify a Normal security 

cloud and about 10 seconds to identify a high security cloud. 

The results obtained from this research is compared to that obtained by [54] we 

see (Figure 5.26 ) that all have similar trust rate but as interactions continue they 

reflect different rates so my comparison would be along the following: 

 Inputs : The results obtained in this research combines inputs from all 

layers of the platform to provide the trust value of the platform while the 

results in [54] have not considered the other layers and considered third 

party trust which could be biased 
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 Output  : The model in this research meets it objectives better than the 

other two models as it efficiently detects malicious interactions and its 

trust accuracy remains consistent unlike the other models where the trust 

accuracy declines as reflected in Figure 5.26 

 Impact : MLSTM impact is considered better as its successful interactions 

as seen in Figure 5.25 continues to increase as the success rate 

increases with successful interaction and would decline instead in the 

event of malicious interactions. 

  

 

Figure 5.27: MLSTM average overhead for transactions 

 

Figure 5.28 shows that at 50% of a transaction cycle, the MLSTM can provide a 

reasonable accurate classification of a cloud platform into high/normal security 

versus somehow secure/Low security. 
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Figure 5.28: MLSTM average overhead for 1 transaction cycle 

Figure 5.29 shows that the overhead required to complete the classification of a 

cloud is constant even after elevated number of transactions. This implies that 

the MLSTM model may be used for a continuous discrete sampling/classification 

of clouds. 

 

Figure 5.29: MLSTM average overhead for 100 transaction cycles 

 

Figure 5.30 shows the overhead required to complete the parallel classification 

of a set of clouds. This implies that when the MLSTM model is used for the 

continuous discrete sampling/classification of clouds in parallel, there is a 

proportional increment in time to complete a classification. 
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The data used in plotting Figures 5.27, 5.28, 5.29 and 5.30 were measured from 

the Brunel Eucalyptus test-bed [103]. 

 

 

Figure 5.30: MLSTM cumulative overhead for 100 transaction cycle 

 

5.7 Summary  

The results presented above from the MLSTM suggest that the initial trust value of 

0.235 shows marginal trust by end-users. Unlike other models, which show a 

convergence towards a maximum trust value of 1, the MLS trust model presented 

here has a maximum value of 0.7548 when all probes are in the OK state suggests 

that “cloud always include some inherent risk”. The MLSTM requires continuous 

discrete probing (sampling) to ensure that trust is maintained. The MLSTM fast 

convergence to a result in all 4 scenarios suggests a low overhead for parallelization 

and/or integration with normal cloud transactions. 

The mechanisms used in this research to model trust in cloud are unique. This 

chapter presents the techniques and how it would be used to model trust in the 

cloud. Further work would include implementing and evaluating the techniques. The 
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evaluation would include using fuzzy logic algorithms to select trustworthy cloud 

platform.  
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Chapter 6 

Conclusions and Future Work 

This chapter concludes the contribution of this research. It also outlines potential 

opportunities for further or improved work presented in this dissertation. 

6.1 Conclusions  

The research reported in this thesis focused on trusted cloud computing with 

distributed end-user attestable multi-layer security across the cloud platform. 

Cloud computing is rapidly gaining acceptance in mission critical applications such 

as power, health, finance and education to mention but a few. Cloud computing 

allows remote processing using multiple computers and varied instances running at 

the same time. Cloud computing also allows shared resources to a variety of users 

on a single or shared resource; it allows the user to pay for only the consumed 

resources while allowing for scalability within the resources. Even with its potential in 

providing resources to multiple users at a reduced cost, it is becoming clear that end-

users are still drawing back from fully adopting cloud computing and its deployed 

resources.  

Cloud platforms remain easy targets for intruders due to its multi-tenancy and 

distributed nature. A cloud user wants to be confident and trust that the resources 

they are accessing are secure and available and its integrity is not compromised. An 

end-user wants to also ascertain ownership of the data or other resources they are 

accessing or processing. The end-user wants the data to be free of any interference 

while accessing or processing the data, basically an end-user wants a transparent 

system. 

This thesis presented a unique end-user attestable multilayer security model that 

adequately addresses these challenges given that no one solution fits or cuts across 

all the layers of the cloud platform. The MLS model comprises of individual and 

distinct security mechanisms across the 4 major layers of a cloud platform – 

physical, IaaS, PaaS and SaaS.  
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The research work on the MLS security model began with the deployment of a 

community cloud platform on the Brunel network where a number of security 

configurations were implemented. Trusted Computing based on hardware Trusted 

Platform Module device was then implemented to secure the IaaS layer. At the PaaS 

layer, a virtual (software) TPM device was deployed to provide TC-like service that 

was subsequently combined with an intrusion detection engine (IDE) system where 

file level integrity verifications are carried out based on stored hashes. A high-

security image for secure-instances was created and used by power-users to verify 

(on-demand) the integrity of the physical and IaaS layer using TC attestation and the 

PaaS layer using the IDE.  This image was evaluated and used for deployment of a 

mission critical SaaS application for the energy sector. The results obtained show 

the average overhead in starting secure instances is less than 5% (< 3 sec) which is 

next to minimal and the gains in running a secure instance with such overhead is 

considered to be beneficial when compared with a less secure instance. 

Subsequently, at the SaaS layer, a unique implementation of data-colouring was 

developed that uses a combination of digital fingerprints and steganography for 

securing data integrity and highlighting a possible path-of-loss in the event of a theft 

or comprise. In the implementation deployed on the community cloud platform, the 

process of data colouring is carried out off-line to improve on the integrity of the data 

as only then is the user or data owner sure that the integrity of the data is 

substantiated before enforcing any protection. This also improves the trust 

relationship between a user, provider and co-tenants on the same platform. 

To provide a holistic trust status of the whole system, a fuzzy logic computing 

technique was used to develop a model known as Multilayer Security Trust Model 

(MLSTM) for combining the states of several security mechanisms across all cloud 

layers to provide a unified trust status for the platform or depending on the needs of 

the user the trust status of the desired layer. This MLSTM model is useful for 

classifying and comparing various cloud platforms which would then provide an 

informed decision on “which to choose” based on its trustworthy state. That is, it 

provides a tool to measure transparency, integrity and accountability of the 

resources even for major providers like Google, Microsoft Azure ore Amazon EC2. 

MLSTM was developed as a matlab simulation and also evaluated on the deployed 

cloud platform at Brunel. The results obtained show that the model has improved 
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characteristics over the TMFM and DMTC models and MLSTM models cloud 

platforms with better accuracy. 

The MLS trust model implemented in this research, models cloud trustworthiness 

across its layers or the whole cloud platform and it provides a much needed tool for 

end-users to attest or verify or classify a cloud for trustworthiness on a continuous 

and on-demand basis. 

The research work provides an autonomous method for continuous testing and 

probing across multiple (all) cloud layers using the different security mechanisms 

and thus enables the end-user to make informed decision on-demand.  

The outputs of this research work are applicable across any cloud platform as they 

do not require changes in the underlying software code layer.  

While, the implementation of TC based on TPM is scalable as each virtual server 

running on any platform has its own keys and each one is uniquely identified as far 

TPM is concerned, end-user attestation/verification is based on the use of pre-

seeded databases that may limit overall scalability. The management/distribution of 

these pre-seeded databases is a possible future work 

As more applications are moving online, processing data on the cloud platform is 

gradually becoming important and thus the need for an alternative to encrypting data 

on the cloud is important. Using data colouring as implemented in this research work 

allows transparent processing of protected data on cloud platforms preserving its 

integrity. However, the identification of data loss or theft path from fingerprinting in 

the implementation of data colouring is suggestive and limited by other factors 

outside the scope of this work. 

The MLS trust model also allows users to assess the platform they want to use 

based on trust values derived from multiple security mechanisms. While, using 

multiple mechanisms provides different level of protection across different layers of 

the platform possibly mitigating effects of single-point of failure of security 

mechanisms on the platform, the implementation is based on UNIX (Linux) and 

would require some adjustments for non-Unix cloud platforms. Continuous 

testing/probing using the MLS trust model is limited by the combined 

duration/overhead from individual probes/tests. 
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6.3 Future Work 

Future work on the MLS trust model would involve reducing overall overhead, 

possibly by optimising and caching heavy transactions. The results show that in 

particular TC and vTPM transactions account for over 90% of the overhead. A 

possible strategy would be to perform a TC and vTPM transaction once in 5 minutes 

and cache the results for use during probe cycles. It is estimated that a cycle 

performed using the cached values for TC and vTPM would complete in less than a 

second. 

An alternative is to study the use of parallel transactions especially in a context of 

testing multiple cloud servers/services concurrently. Here it would be necessary to 

study both parallelisation on a single host and parallelization on a cluster of hosts 

with some inter-host communication.  

A future work would also be to study the automated scheduling and periodic-

execution of MLS trust model transactions as a tool for automated cloud security 

testing, verification and reporting. In this case, the MLS trust model would be studied 

as a possible tool for level 3 certification in the CSA STAR [8] Open Certification and 

similar framework. 

Even as NIST, ITU-T, IEEE and other cloud focus groups work on standardisation 

and interoperability, it is of paramount importance too that extensive work be carried 

out on in the area of interoperability so another area of future work would involve 

studying the interoperability and portability of the outputs of this research work on 

diverse (non-Unix) cloud implementations, especially in the context of seamless 

migrations of end-user service/data across cloud platforms/providers. It shouldn’t 

pose a problem to a user that a change in provider would mean also rebuilding one’s 

application to suite the new platform depending on the provider’s settings, adjusting 

the security settings of the user’s application or resources to match the capabilities of 

the provider or even having to be concerned about how the data would be handled 

while in transit between the providers. 

In line with interoperability different jurisdiction may have different data policy so it 

may also be necessary to look into having a global and neutral body handle issues 

surrounding interoperability implementation and guidelines. 
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The use of the outputs from this research work in the context of  ISO27018 

certification [123] and the planned European based infrastructure is required. The 

ISO27018 is the code of practise for protection of personally identified information 

(PII) in public clouds. Where processing requires that sensitive data remain 

encrypted. Specifically, studying the merits of data colouring based on fingerprinting 

even for existing services such as Dropbox is immeasurable. A possible study would 

involve uploading coloured versions of a data-file via different cloud services (for 

example dropbox and gmail) and the random tampering/hidden-exchange of these 

files between participants would be detected using techniques documented in 

Chapter 4. 

 

The model presented in this thesis provides a needed tool to determine the 

trustworthy status of a cloud platform and its impact on the global deployment of 

cloud services requires additional study as users become more confident of data 

integrity, availability of service and non-repudiation of theft or data tampering. 

  

As the identification of data loss or theft path from fingerprinting in the 

implementation of data colouring is suggestive and not conclusive, further research 

can be carried to ascertain in total if it was as result of a break in on the platform or it 

was actually tampered with by an authorised user. Mechanisms may be put in place 

to further secure the data in the event the platform is attacked. 
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Appendices 
 

A1: Adding pre-built Ubuntu Cloud image to Eucalyptus 

1. Inside your terminal window on the front-end node load the admin credentials for 

eucalyptus 

a. source  ~/credentials/admin/eucarc 

2. Download and install the kexec-loader kernel using instructions from the kexec-

loader web-page, note the following command is all on one line 

a. wget -O vmlinuz https://github.com/monolive/euca-single-

kernel/blob/master/examples/vmlinuz?raw=true 

b. Bundle the ubuntu kernel for eucalyptus 

i. euca-bundle-image -i vmlinuz  -r x86_64 --kernel true 

ii. Note the path/location of the manifest.xml 

c. Upload the kernel to eucalyptus 

i. euca-upload-bundle –d {path_to_directory_of_manifest} –b kexec 

–m full_path_to.manifest.xml 

d. Register the kernel to walrus 

i. euca-register –n kexec-vmlinux kexec/vmlinuz.img.manifest.xml 

ii. Note the image ID returned for the kernel 

3. Download and install the kexec-loader initrd file using instructions from the kexec-

loader web-page 

a. wget -O initrd-kexec https://github.com/monolive/euca-single-

kernel/blob/master/examples/initrd-kexec_load?raw=true 

b. Bundle the ubuntu ramdisk for eucalyptus 

i. euca-bundle-image -i initrd-kexec  -r x86_64 --ramdisk true 

ii. Note the path/location of the manifest.xml 

c. Upload the ramdisk to eucalyptus 

i. euca-upload-bundle –d {path_to_directory_of_manifest} –b kexec 

–m full_path_to.manifest.xml 

d. Register the ramdisk to walrus 

i. euca-register –n kexec-initrd kexec/initrd-kexec.img.manifest.xml 

ii. Note the ID returned for the ramdisk 

4. For an ubuntu distribution of your choice, download the tar.gz file containing the 

rootfs image, kernel and loader. Note, you may have to scroll down the page to get to 

the tar.gz versions 
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a. wget http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-

amd64.tar.gz 

b. Extract the files from the archive  

i. tar  -zxvf  saucy-server-cloudimg-amd64.tar.gz 

ii. Note that the tar archive also contains a kernel but we shall not use 

these. As the kexec utility will determine and call the right kernel 

located inside the rootfs image file. 

c. Bundle the root filesystem image for eucalyptus 

i. euca-bundle-image –i  saucy-server-cloudimg-amd64-disk1.img  -

r x86_64  

ii. Note the path/location of the manifest.xml file (under /var/tmp) 

d. Upload the image to the eucalyptus 

i. euca-upload-bundle –d {path_to_directory_of_manifest} –b saucy 

–m {full_path_to.manifest.xml_from_step_above} 

e. Register the image 

i. euca-register -n ubuntu-saucy --kernel {kernel_id_from_step_2d} 

--ramdisk {initrd_id_from_step_3d} {saucy/saucy-server-

cloudimg-amd64-disk1.img.manifest.xml} 

f. Note the name of the emi shown 

5. Verify that your image(s) is now listed (kernel – eki, ramdisk – eri and rootfs – emi)  

a. euca-describe-images 

6. Optionally set permissions on the new image to be launch-able by all users. 

a. euca-modify-image-attribute -l –a all  {emi-62443F41} 

7. Create a new key-pair for use with Eucalyptus 

a. euca-create-keypair mytest –f mytest.private 

8.  Launch an instance of your virtual machine using the command 

a. euca-run-instances –k mytest {emi-62443F41} 

b. Note the instance id returned 

9. Check the status of your instance 

a. euca-describe-instances {instance_id} 

10. Once the status of your instance is “running”, you can now ssh into your instance, 

using the key-file in step 23. 

a. ssh -i  mytest.private  -v root@{IP_of_running_instance} 

11. To shutdown your instance, simply from the server run the  

a. euca-terminate-instances {id_of_instance}   

http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz
http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz


 

 130 

A2: Creating a cloud image from an Ubuntu 13.10 CD/ISO disk-

image: 

1. Install virt-viewer, tightvnc and other applications 

a. yum install virt-viewer tightvnc virt-manager qemu-kvm 

2. Create a raw qemu image file of about 2GB (less than 5GB is better) in a 

directory of your choice 

a. qemu-img create -f raw /scratch/ubuntu.img 2G 

3. Ensure that the raw disk has an msdos style label 

a. parted /scratch/ubuntu.img mklabel msdos 

4. Start the installation of the virtual machine 

a. virt-install --name ubuntu13.10  --ram 1024 --os-type linux   -c 

/home/onime/Downloads/ubuntu-13.10-server-amd64.iso --disk 

path=cloudtest.img,device=disk,bus=virtio  --graphics 

vnc,listen=0.0.0.0 --force  

b. It may be necessary to specify the network type  

-w NETWORK,bridge=br0,model=virtio 

5. During installation  

a. DO NOT PERFORM GUIDED PARTITIONING 

i. Select manual partitioning and create only 1 primary ext4 

partition for / on the whole disk. DO not create or use a swap 

partition or setup additional partitions. 

b. create account with username ec2-user 

i. Set the password to something you remember .. 

6. After installation check the vm details in virt-manager.  

a. Set the disk model to virtio 

b. Set the network device model to virtio 

c. Set the NIC Source device to the entry with NAT 

i. If there is an error about o the entry with NATault has not been 

started” then 

1. Run the command 

a. virsh net-start default 

2. In the virt-manager settings click Cancel and then 

reselect the NAT entry in the Source Device settings 

a. Apply should work OK now. 

7. Start the vm and login as ec2-user 
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a. Verify the status of the network using the ifconfig command, if there 

is no IP  on eth0 then 

i. Edit the interfaces file and add a new block for eth0 

1. sudo vi  /etc/network/interfaces 

2. Add the following 3 lines, note leave a blank line before 

the new lines 

#default network interface 

auto eth0 

iface eth0 inet dhcp 

3. Save and exit the file 

4. Restart networking 

a. sudo service networking restart 

b. Check the status of the network using the ifconfig command and 

optionally update packages using the following commands 

i. sudo apt-get update 

ii. sudo apt-get upgrade  

c. Modify the sudo settings  

i. sudo visudo 

1. Modify the line with %sudo to 

%sudo ALL=(ALL:ALL) NOPASSWD: ALL 

2. Add the following line below the above line  

ec2-user  ALL=(ALL:ALL)       NOPASSWD: ALL 

3. Save and exit the file (for vi use :wq) 

d. Modify the disk label for the disk 

i. sudo e2label /dev/vda1 cloudimg-rootfs  

e. Modify /etc/fstab to mount by label 

i. Modify the file /etc/fstab and change the entry for root to 

1. LABEL=cloudimg-rootfs   /   ext4   defaults   0  0 

ii. Comment or remove any reference to swap 

#UUID=a954336633683638  none  swap  swap  0 0 

iii. Save the file 

f. Modify grub and enable serial console 

i. sudo vi /etc/default/grub 

1. Add the following 2 lines and remove other entries that 

have the same name part (before the = sign). 

GRUB_CMDLINE_LINUX="console=tty1 console=ttyS0” 

GRUB_TERMINAL=console 
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GRUB_DISABLE_LINUX_UUID=true 

2. Save and exit the file 

3. Update the grub configuration 

a. sudo update-grub 

g. Update the initramfs volume 

i. sudo update-initramfs  -u  

h. Install the rc.local script for updating ssh keys (for root user). 

i. sudo wget –O /etc/rc.local   

https://raw.github.com/eucalyptus/Eucalyptus-

Scripts/master/rc.local 

ii. sudo chmod a+rx  /etc/rc.local 

i. Add some security enhancements 

i. By default, the rc.local script will setup ssh-keyed login for user 

root. You can disable this  by commenting out the right block 

inside the file /etc/rc.local 

#if [ ! -f /root/.ssh/authorized_keys ]; then 

#    echo >> /root/.ssh/authorized_keys 

#    curl --retry 3 --retry-delay 10 -m 45 -s http://169.254.169.254/latest/meta-

data/public-#keys/0/openssh-key | grep 'ssh-rsa' >> /root/.ssh/authorized_keys 

#    echo "AUTHORIZED_KEYS:" 

#    echo "************************" 

#    cat /root/.ssh/authorized_keys 

#    echo "************************" 

#fi 

ii. Ensure user root has no pre-existing authorized_keys by 

adding the following line before the above block. 

echo > /root/.ssh/authorized_keys 

iii. Modify /etc/rc.local to also perform keylogin for user ec2-user 

by adding the following block. 

echo > /home/ec2-user/.ssh/authorized_keys 

curl --retry 3 --retry-delay 10 -m 45 -s http://169.254.169.254/latest/meta-

data/public-keys/0/openssh-key | grep 'ssh-rsa' >> /home/ec2-

user/.ssh/authorized_keys 

 echo "AUTHORIZED_KEYS:" 

 echo "************************" 

 cat /home/ec2-user/.ssh/authorized_keys 

echo "************************" 

chown ************************"ized_k 

chmod 0600 /home/ec2-user/.ssh 

chmod 0640 /home/ec2-user/.ssh/authorized_keys 

https://raw.github.com/eucalyptus/Eucalyptus-Scripts/master/rc.local
https://raw.github.com/eucalyptus/Eucalyptus-Scripts/master/rc.local
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iv. Modify the /etc/rc.local to optionally lock the passwords of root 

and ec2-user accounts by adding the following lines below the 

above block. 

/usr/bin/passwd  -l  ec2-user 

/usr/bin/passwd  -l root 

v. Save the file  /etc/rc.local 

j. Install cloud-init 

i. sudo apt-get install cloud-init 

k. Upload the kernel and ramdisk to the host 

i. tar ad the kernel and ramdisk to the hostck the passwords 

ii. scp /tmp/ubuntu-kernel.tgz  

{your_username}@{real_ip_of_host} 

l.  Power off the machine 

i. sudo poweroff 

8. Extract the root partition from the qemu disk image using the following steps 

a. First determine the sector size (512) and start of partition 1 (usually 

2048) in the image file using the following command 

i. fdisk determine the se 

b. Use dd to extract just the raw partition (vda1), replace 512 with correct 

sector size and skip with correct start of 1st partition as report by the 

fdisk command. 

i. dd if=ubuntu.img bs=512 skip=2048 of=rootfs.img 

9. Inside your terminal window load the admin credentials for eucalyptus 

a. source /root/credentials/admin/eucarc 

10. Untar tar the kernel and ramdisk 

a. tar r tar the kernel and ramdiskme/ubuntu-kernel.tgz 

11. Bundle the ubuntu kernel for eucalyptus 

a. euca-bundle-image -i /scratch/vmlinuz*  -r x86_64 --kernel true 

b. Note the path/location of the manifest.xml 

12. Upload the kernel to eucalyptus 

a. euca-upload-bundle o eucalyptusdirectory_of_manifest} 

calubuntu13.10 –m full_path_to.manifest.xml 

13. Register the kernel to walrus 

a. euca-register ernel to walrus-kernel 

ubuntu13.10/vmlinuz.img.manifest.xml 

b. Note the image ID returned for the kernel 

14. Bundle the ubuntu ramdisk for eucalyptus 
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a. euca-bundle-image -i /scratch/initrd*  -r x86_64 --ramdisk true 

b. Note the path/location of the manifest.xml 

15. Upload the ramdisk to eucalyptus 

a. euca-upload-bundle to eucalyptusirectory_of_manifest} 

eucalyptus3.10 ory_of_manifest} eucalyptusl 

16. Register the ramdisk to walrus 

a. euca-register an ubuntu_13_10-initrd 

ubuntu13.10/initrd.img.manifest.xml 

b. Note the ID returned for the ramdisk 

17. Bundle the root filesystem image for eucalyptus 

a. euca-bundle-image lesystem image for eucalyptus6_64  

b. Note the path/location of the manifest.xml file (under /var/tmp) 

18. Upload the image to the eucalyptus 

a. euca-upload-bundle  the eucalyptusectory_of_manifest} the 

eucalyptus ctory_of_manifest} the eucalyptus_step_17 

19. Register the image 

a. euca-register magebuntu_13_10 r magel 

{kernel_id_from_step_14} alyptusk {initrd_id_from_step_17} 

ubuntu13.10/rootfs.img.manifest.xml 

b. Note the name of the emi shown 

20. Verify that your image(s) is now listed (kernel g.manifest.xmlp)fest.xmlt sector 

size aneuca-describe-images 

21. Optionally set permissions on the new image to be launch-able by all users. 

a. euca-modify-image-attribute -l he new image to be lau 

22. Create a new key-pair for use with Eucalyptus 

a. euca-create-keypair mytest se with Eucalyptu 

23.  Launch an instance of your virtual machine using the command 

a. euca-run-instances  of your virtual machin} 

b. Note the instance id returned 

24. Check the status of your instance 

a. euca-describe-instances {instance_id} 

25. Once the status of your instance is }achin} using the commandh into your 

instance, using the key-file in step 23. 

a. ssh -i  mytest.private  -v root@{IP_of_running_instance} 

26. To shutdown your instance, simply from the server run the  

a. euca-terminate-instances {id_of_instance}  
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A3: Creating an EBS backed image for Eucalyptus: 

1. Start/run a new instance of the image you want to convert to an EBS backed image. 

This will be used as a helper instance. 

a. source  ~/credentials/admin/eucarc 

b. euca-describe-images 

i. Note the the id  from the image you choose 

c. euca-create-keypair –f mykey  mykey 

d. euca-run-instances -k mykey {image_id_from_step_1b} 

i. Note the new instance ID 

2. Create a new ebs volume, big enough to hold the rootfs, hint you can use euca-

describe-clusters to identify and select your cluster name. The size is specified as 

number of GB. It should be larger than size of vda. 

a. euca-create-volume -z {cluster_name} -s 6 

i. Note volume id of new volume 

3. Attach the volume to the running instance from step 1. Note this assumes that it will 

be the second disk of the instance (vbd), if it is not, then please change to vdc or 

other suitable device.  

a. euca-attach-volume {id_of_volume_from_step_2a} -i 

{id_of_instance_from_step_1d} -d vbd 

4. The following procedures are performed inside the “helper” instance 

a. Login to the instance  

i. ssh  -i mykey  ec2-user@{ip_of_instance} 

b. Become root user 

i. sudo su – 

c. verify that new disk (vdb) is larger than the size of old disk (vda) from the 

output of the following two commands 

i. fdisk -l /dev/vda  

ii. fdisk -l /dev/vdb 

iii. If the new disk is not bigger then detach it using euca-detach-volume 

{volume_id_from_step_2a} and delete it using euca-delete-volume 

{volume_id_from_step_2a} and repeat step 2a.  

d. Setup grub on the disk, note this command maybe called grub-setup instead 

of grub-bios-setup. 

i. grub-bios-setup /dev/vda 

1. If there is an error about missing boot.img then use the 

following command 
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a. grub-bios-setup -b i386-pc/boot.img -c i386-pc/core.img 

/dev/vda 

ii. grub-install /dev/vda 

e. Ensure network configuration is clean 

i. Use one of the following commands to remove persistent network 

configuration file  

1. rm -f  /etc/udev/rules.d/70-persistent-net.rules 

2. rm  -f  /etc/udev/rules.d/*persistent*net*  

3. rm -f  `grep -l eth0 /etc/udev/rules.d/*` 

ii. Remove hardware mac address from the file /etc/sysconfig/network-

scripts/ifcfg-eth0 if it exists 

1. perl –pi –e ‘s/^HWADDR/#HWADDR/g’ 

/etc/sysconfig/network-scripts/ifcfg-eth0 

f. Copy the root disk (should be vda) to the new device (should be vbd) using 

the dd command: 

i. dd if=/dev/vda  of=/dev/vdb bs=1M 

1. Note: This command will take a while to run. 

g. When complete, leave the ssh session open as it will be needed again in step 

7 

5. Detach the volume from the instance 

a. euca-detach-volume  {volume_id_from_step_2a} 

b. Wait 1 minute for the detach to complete 

6. Re-attach the volume to the instance, this will allow the now defined partitions (vbd1, 

vdb2) to now show up 

a. euca-attach-volume {id_of_volume_from_step_2a} -i 

{id_of_instance_from_step_1d} -d vbd 

7. The following procedures are performed inside the “helper” instance 

a. Perform a file system check on the root partition (and other mounted 

partitions) of the new device (vbd) to ensure the filesystem is marked as 

clean/OK. 

i. fsck -y /dev/vdb1 

ii. fsck -y /dev/vdb2 

8. Detach the ebs volume from the helper instance  

a. euca-detach-volume  {id_of_volume_from_step_2a} 

b. You may want to terminate the helper instance as it is no longer needed 

i. euca-terminate-instance {instance_id_from_step_1d} 

9. Create a snapshot of the ebs volume 
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a. euca-create-snapshot {id_of_volume_from_step_2a} 

10. Register the snapshot as a new image on the system 

a. euca-register --name ubuntu-ebs  --snapshot 

{id_of_snapshot_from_step_9a} --root-device-name /dev/vda  

i. Note the image id from output of command 

11. Make the new image available to all users 

a. euca-modify-image-attributes -l  -a all {image_id_from_step_10a} 

12. Ensure that the snapshot creation is complete to 100% 

a. euca-describe-snapshots {id_of_snapshot_from_step_9a} 

13. Start the new image using the normal euca-run-instances. 

a. euca-run-instances -k {mykey} {image_id_from_step_10a} 

i. Note instance id from output of command 

ii. Note that each instance will get a separate EBS snapshot/volume 

created for it that is deleted whenever the instance is terminated. 

14. Connecting to new instance is same as before using the ssh command and keys. 

a. ssh -v -i {mykey}  ec2-user@{ip_of_instance} 

15. Suspend (or stop) the ebs backed instance with the command euca-stop-instances.  

a. euca-stop-instances  {instance_id_from_step_13a} 

i. Note: This command will free up the IP addresses used but keep the 

ebs backed storage. 

16. Resume an ebs backed instance with the command euca-start-instances 

a. euca-start-instances  {instance_id_from_step_13a} 

17. Terminating an instance is with the normal euca-terminate-instance command. 

NOTE: IT APPEARS THAT WILL ERASE THE SNAPSHOT DISK-copy THAT 

WAS CREATED FOR THE INSTANCE, maybe you wanted euca-stop-instances 

a. euca-terminate-instance {instance_id_from_step_13a} 
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A4: Adding HADOOP to pre-built Ubuntu (Eucalyptus) cloud image 

Requirements 

- Ubuntu Cloud image TAR file downloaded from one of the following 

locations 

- http://cloud-images.ubuntu.com/saucy/current/ 

- OR 

- http://cloud-images.ubuntu.com/ 

-  

- hadoop-2.4.0.tar.gz TAR file from 

http://www.motorlogy.com/apache/hadoop/common/current/ 

- Eucalyptus cloud server. 

 

Procedure/STEPS (NOTE ALL COMMANDS SHOULD BE RUN AS root) 

27. Inside your terminal window on the front-end node load the admin 

credentials for eucalyptus 

a. source  ~/credentials/admin/eucarc 

28. For an ubuntu distribution of your choice, download the tar.gz file 

containing the rootfs image, kernel and loader. Note, you may have to 

scroll down the page to get to the tar.gz versions 

a. wget http://cloud-images.ubuntu.com/saucy/current/saucy-

server-cloudimg-amd64.tar.gz 

b. Extract the files from the archive  

i. tar  -zxvf  saucy-server-cloudimg-amd64.tar.gz 

ii. Note that the tar archive also contains a kernel but we 

shall not use these but use those from inside the IMG file.  

29. Create a new and bigger img file from the existing one, to have space 

for the hadoop application  

a. Create a blank image file of the right size, 3GB in this case 

i. dd if=/dev/zero of=mynewfile.img bs=1M count=3072  

b. Copy the existing image to the new file 

i. dd  if=saucy-server-cloudimg-amd64.img  

of=mynewfile.img conv=notrunc,nocreat   bs=10M 

http://cloud-images.ubuntu.com/saucy/current/
http://cloud-images.ubuntu.com/
http://www.motorlogy.com/apache/hadoop/common/current/
http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz
http://cloud-images.ubuntu.com/saucy/current/saucy-server-cloudimg-amd64.tar.gz
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c. Check the filesystem using e2fsck 

i. e2fsck he filesystem us 

d. Resize the image of the copied file 

i. resize2fs  mynewfile.img 

e. Check the file system of the new file 

i. e2fsck he file system o 

30. Mount the new image file under /mnt and prepare it for modifications 

a. Mount the image 

i. mount the imagemage file under / 

b. Mount the proc, sys and dev on the new file system 

i. mount the proc, sys and dev o 

ii. mount the proc, sys and dev 

iii. mount the proc, sys and dev 

31. Copy the name server configuration to the image 

a. mkdir he name server configu 

b. cp /etc/resolv.conf  /mnt/run/resolvconf/ 

32. Now enter the image file system for modifications. The prompt should 

change, you might get an error about groups, which may be safely 

ignored 

a. chroot /mnt 

33. Prepare the image for updates and perform 

a. rm pare the image for upda 

b. mkdir e the image for updates and p 

c. apt-get update 

d. Upgrade the openssh server/client to the latest patch level  

i. apt-get install openssh-server openssh-client 

34. Install Java 

a. apt-get install default-jdk 

35. Download and install the hadoop tar file 

a. Change directory to the root user folder 

i. cd /root 

b. Download 
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i. wget 

http://www.motorlogy.com/apache/hadoop/common/c

urrent/hadoop-2.3.0.tar.gz 

c. Untar the archive 

i. tar r the archiveotorlogy.com 

d. Install the extracted directory to /usr/local 

i. mv hadoop-2.4.0 /usr/local/hadoop 

36. Create a hadoop startup configuration file for all users  

a. Edit the file /etc/profile.d/hadoop.sh and add the indicated lines 

i. vi /etc/profile.d/99_hadoop.sh 

#HADOOP VARIABLES START 

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64 

export HADOOP_INSTALL=/usr/local/hadoop 

export PATH=$PATH:$HADOOP_INSTALL/bin 

export PATH=$PATH:$HADOOP_INSTALL/sbin 

export HADOOP_MAPRED_HOME=$HADOOP_INSTALL 

export HADOOP_COMMON_HOME=$HADOOP_INSTALL 

export HADOOP_HDFS_HOME=$HADOOP_INSTALL 

export YARN_HOME=$HADOOP_INSTALL 

export HADOOP_YARN_HOME=$HADOOP_INSTALL 

export 

HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_INSTALL/li

b/native 

export HADOOP_OPTS="-

Djava.library.path=$HADOOP_INSTALL/lib" 

#HADOOP VARIABLES END 

b. Make the file executable 

i. chmod a+rx /etc/profile.d/99_hadoop.sh 

37. Edit various hadoop configuration files and setup single node operation 

a. Edit /usr/local/hadoop/etc/hadoop/hadoop-env.sh and set 

JAVA_HOME to the indicated value 

i. vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh 

JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64 



 

 141 

b. Edit core-site.xml and add an entry for hdfs (indicated lines) in 

between the <configuration> and </configuration> 

i. vi /usr/local/hadoop/etc/hadoop/core-site.xml 

<property> 

   <name>fs.default.name</name> 

   <value>hdfs://localhost:9000</value> 

</property> 

c. Edit yarn-site.xml and add entries for the default mapreduce and 

nodemanager in between the existing <configuration> and 

</configuration> entries 

i. vi /usr/local/hadoop/etc/hadoop/yarn-site.xml 

<property> 

   <name>yarn.nodemanager.aux-services</name> 

   <value>mapreduce_shuffle</value> 

</property> 

<property> 

   <name>yarn.nodemanager.aux-

services.mapreduce.shuffle.class</name> 

   <value>org.apache.hadoop.mapred.ShuffleHandler</value> 

</property> 

d. Create the mapreduce site file from the template 

i. cp /usr/local/hadoop/etc/hadoop/mapred-

site.xml.template  

/usr/local/hadoop/etc/hadoop/mapred-site.xml 

ii. Edit the mapred-site.xml and add the indicated entries in 

between the <configuration> and </configuration> entries. 

1. vi /usr/local/hadoop/etc/hadoop/mapred-

site.xml 

<property> 

  <name>mapreduce.framework.name</name> 

    <value>yarn</value> 

</property> 

e. Create the hdfs storage directories and configure the hadoop 

hdfs 
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i. Create the hdfs directories 

1. mkdir -p  /var/hadoop_store/hdfs/namenode 

2. mkdir -p /var/hadoop_store/hdfs/datanode 

ii. Edit the hdfs-site.xml and add the indicated lines in 

between the <configuration> and </configuration> tags. 

1. vi /usr/local/hadoop/etc/hadoop/hdfs-site.xml 

<property> 

   <name>dfs.replication</name> 

   <value>1</value> 

 </property> 

 <property> 

  <name>dfs.namenode.name.dir</name> 

   <value>file:/var/hadoop_store/hdfs/namenode</value> 

 </property> 

 <property> 

   <name>dfs.datanode.data.dir</name> 

   <value>file:/var/hadoop_store/hdfs/datanode</value> 

 </property> 

38. Add entries in the system startup file to start up hadoop at boot time, 

Entries must be before the line with tries.> a 

a. vi /etc/rc.local 

#Give ownership of the various hadoop files to user ubuntu 

chown oR ubuntu /usr/local/hadoop 

chown oR ubuntu /usr/local/hadoop 

#Place entry for hostname in /etc/hosts file 

X=`hostname | cut -dtname in /etc/hosts fileto  

[  -n  name | cut -dtname in /etc/hosts fileto user ubu 

[  -z  name | cut -dtname in /etc/hosts filetoame`r ubuntuat boot 

#Start hadoop as user ubuntu 

su ubuntu oop as user ubuntu /etc/hosts fi 

39. Create a new file for starting up hadoop as a normal user. 

a. vi /etc/start-hadoop-as-user.sh 

#/bin/bash 

source  /etc/profile.d/99_hadoop.sh 



 

 143 

/bin/rm /etc/profi/id_rsa* 

#Create an ssh key for user ubuntu Note after normal user.c/hosts 

time, Entrie 

ssh-keygen ssh key for user ubuntu Note a 

#Ensure that user-ubuntu can login without the need to supply a 

password 

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys 

chmod 0644  ~/.ssh/authorized_keys 

ssh d 0644  ~/.ssh/authorized_keysthorized_key 

ssh d 0644  ~/.ssh/authorized_keysthorized_k 

ssh d 0644  ~/.ssh/authorized_keysthorized_keys 

#Format the hdfs filesystem as user ubuntu 

/usr/local/hadoop/bin/hdfs namenode ubuntu_ 

#Start up Hadoop 

/usr/local/hadoop/sbin/start-dfs.sh 

/usr/local/hadoop/sbin/start-yarn.sh 

b.  Make the script executable by all users 

i. chmod a+rx /etc/start-hadoop-as-user.sh 

40. Exit from the image/ubuntu  

a. exit 

41. Copy the vmlinuz and initrd files from the image 

a. cp  /mnt/boot/vmlinuz-3.11.0-18-generic . 

b. cp /mnt/boot/initrd.img-3.11.0-18-generic . 

42. Umount the image 

a. umount /mnt/dev 

b. umount /mnt/sys 

c. umount /mnt/proc 

d. umount /mnt 

43. Bundle the extracted ubuntu kernel for use with Eucalyptus 

a. Bundle the image 

i. euca-bundle-image -i vmlinuz-3.11.0-18-generic  -r 

x86_64 --kernel true 

ii. Note the path/location of the manifest.xml 

b. Upload the kernel to eucalyptus 
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i. euca-upload-bundle o 

eucalyptusairectory_of_manifest} _64 --kernel 

truedEntries must be before  

c. Register the kernel to walrus 

i. euca-register ernel to walrususairectory_of_manifest} 

_64 --kernel truedEntries mus 

ii. Note the image ID returned for the kernel 

44. Bundle the extracted ubuntu ramdisk for eucalyptus 

a. Bundle the initrd 

i. euca-bundle-image -i initrd.img-3.11.0-18-generic  -r 

x86_64 --ramdisk true 

ii. Note the path/location of the manifest.xml 

b. Upload the ramdisk to eucalyptus 

i. euca-upload-bundle to eucalyptusnifest.xmlgeneric  -

r x86_64 --ramdisk trueries must be before  

c. Register the ramdisk to walrus 

i. euca-register amdisk to 

walrus_directory_of_manifest} x86_64 --ramdisk 

trueries must  

ii. Note the ID returned for the ramdisk 

45. Upload the img file to eucalyptus 

a. Bundle the root filesystem image for eucalyptus 

i. euca-bundle-image lesystem image for eucalyptus 

ii. Note the path/location of the manifest.xml file (under 

/var/tmp) 

b. Upload the image to the eucalyptus 

i. euca-upload-bundle  d 

{path_to_directory_of_manifest} –b hadoopimg –m 

{full_path_to.manifest.xml_from_step_above} 

c. Register the image 

i. euca-register -n hadoop-single-node --kernel 

{kernel_id_from_step_2d} --ramdisk 

{initrd_id_from_step_3d} 

{hadoopimg/mynewfile.img.manifest.xml} 
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d. Note the name of the emi shown 

46. Verify that your image(s) is now listed (kernel rnel_id_from_step_2d} --

ramdisk {initrd 

a. euca-describe-images 

47. Optionally set permissions on the new image to be launch-able by all 

users. 

a. euca-modify-image-attribute -l he new image to 43F41} 

48. Create a new key-pair for use with Eucalyptus 

a. euca-create-keypair myhadoop  with Eucalyptus244 

49.  Launch an instance of your virtual machine using the command 

a. euca-run-instances  of your virtual machine {emi-62443F41} 

b. Note the instance id returned 

50. Check the status of your instance 

a. euca-describe-instances {instance_id} 

51. Once the status of your instance is }achine {emi-62443F41}and by all 

users.disk {initrd_id_from_step_3d} {hadoopi 

a. ssh -i  myhadoop.private  -v 

ubuntu@{IP_of_running_instance} 

52. Once inside, check the status of hadoop using the command jps, you 

should get a list with 6 items as show below 

a. jps 

 

1858 ResourceManager 

1396 NameNode 

2433 Jps 

1519 DataNode 

1724 SecondaryNameNode 

1978 NodeManager 

 

53. You can now as user ubuntu run hadoop applications without 

problems. 

54. To shutdown your instance, simply from the server run the  

euca-terminate-instances {id_of_instance}  


