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This paper is concerned with the optimal Kalman filtering problem for a class of discrete stochastic systems with multiplicative
noises and random two-step sensor delays. Three Bernoulli distributed random variables with known conditional probabilities are
introduced to characterize the phenomena of the random two-step sensor delays which may happen during the data transmission.
By using the state augmentation approach and innovation analysis technique, an optimal Kalman filter is constructed for the
augmented system in the sense of the minimummean square error (MMSE). Subsequently, the optimal Kalman filtering is derived
for corresponding augmented system in initial instants. Finally, a simulation example is provided to demonstrate the feasibility and
effectiveness of the proposed filtering method.

1. Introduction

Thefiltering problemhas been amainstream research topic in
the control theory due to its wide and important engineering
applications such as signal processing, econometrics com-
munication, guidance, navigation, and control of vehicles [1–
4]. Kalman filtering, also known as linear optimal quadratic
estimation, has attracted much research interests due to its
good filtering performance and simple filtering structure
[5, 6]. In [7], based on the minimum mean square error
(MMSE) principle and the projection theory, the traditional
Kalman filtering algorithm has been proposed for a class of
linear discrete stochastic systems. Subsequently, the Kalman
filtering problems have been widely investigated for different
systems [8, 9]. For the nonlinearmodel, the theoretical results
of the extended Kalman filter (EKF) have been proposed
and applied in many practical engineering problems [10–
13]. For example, in [14], the EKF algorithm has been
employed to deal with the mobile robot localization problem
with intermittent measurements, where the cases of missing
measurements and uncertainties have been addressed. For

the microelectromechanical systems, a new terminal sliding-
mode control scheme has been designed in [15] by using the
EKF observer.

During the processes of signal measurement, transmis-
sion, and computation, the sensor delays are frequently
encountered and are inevitable especially in the networked
systems [16–21]. The existence of the sensor delays would
deteriorate the filtering accuracy and even influence the con-
trol system performance [22–26]. Hence, it is not a surprise
that a great number of results have been reported to handle
the Kalman filtering problems with the sensor delays [8, 9,
27]. To mention a few, the optimal Kalman filtering problem
has been investigated in [8] for linear discrete system with
sensor delays, packet dropouts, and uncertain observations.
It has been shown that a unified augmentation method has
been proposed in [8] by applying the projection theory and
recursive projection formula, which can reduce the amount
of correlated parameters. Motivated by the method in [8],
the optimal Kalman filtering algorithm has been given in
[9] for the systems with random sensor delays. Based on the
unbiasedness and MMSE of the optimal Kalman filtering,
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the recursive optimal Kalman filtering approaches have been
developed in [27, 28] for linear stochastic systems with
random sensor delays. Compared with the methods in [27,
28], the developed approach in [9] can reduce the amount
of correlated parameters when tackling the optimal filtering
problem for systems with random sensor delays.

Note that a great deal of effort has been devoted to address
the problems of optimal Kalman filtering with one-step
sensor delay in the past years [29, 30]. Nevertheless, it should
be pointed out that randomly occurring two-step sensor
delays are also encountered in some networked systems [31].
Recently, the case of the noisy observation measurements
with random one-step or two-step sample delays has been
investigated and a novel unscented filtering algorithm has
been given in [31] for a class of nonlinear discrete-time
stochastic systems. On the other hand, it is necessary to deal
with the multiplicative noises when designing the Kalman
filtering [32–34]. The optimal nonfragile Kalman-type fil-
tering problem has been investigated in [32] for a class of
systems with multiplicative noises, finite-step autocorrelated
measurement noises, and multiple packet dropouts, where
the state-dependent multiplicative noises have been used
to account for the stochastic uncertainties. In [33], a new
nonlinear filter has been constructed to attenuate the effects
from the multiplicative noises and the signal quantization.
In [34], the linear minimum mean square estimator has
been designed for linear discrete-time systems with state and
measurement multiplicative noises and Markov jumps on
the parameters. It is worth pointing out that, however, the
optimal Kalman filtering problem has not been investigated
for linear stochastic systems with multiplicative noises and
random two-step sensor delays yet.

Motivated by the above discussions, in this paper, we aim
to discuss the problem of optimal Kalman filtering for linear
discrete stochastic system with multiplicative noises and
random two-step sensor delays. The state-dependent multi-
plicative noises are considered to account for the stochastic
uncertainties.The phenomena of two-step sensor delays may
happen in data transmission and are described by using
three Bernoulli distributed random variables with known
conditional probabilities. Based on the MMSE estimation
principle, the optimal Kalman filtering problem has been
discussed for system with multiplicative noises and random
two-step sensor delays. Firstly, we consider a general case for
the original system where 𝑘 ≥ 3. By using the state aug-
mentation approach and the projection theory, the optimal
Kalman filtering algorithm has been given for augmented
system. Then, the optimal Kalman filtering for the original
system can be obtained easily. Secondly, we discuss the initial
case when 𝑘 = 1 (𝑘 = 2) and give some parameters to
help algorithm developments. The main contributions of
this paper can be highlighted as follows: (1) the system
model is more general where the multiplicative noises and
randomly occurring two-step sensor delays are considered
simultaneously and (2) a new Kalman filter is designed to
handle the addressed complex phenomena. Finally, an ill-
ustrative example is provided to verify the feasibility and
effectiveness of the proposed result.

The rest of this paper is organized as follows. In Section 2,
the problem addressed is formulated and some preliminaries
are briefly introduced. In Section 3, a new Kalman filtering
algorithm is proposed to deal with the systems with mul-
tiplicative noises and random two-step sensor delays and
the explicit form of the filter gain is given. In Section 4,
an illustrative example is used to show the effectiveness
of the proposed filtering method. Finally, we provide the
conclusions in Section 5.

Notations. The notations used throughout the paper are
standard.R𝑛 andR𝑛×𝑚 denote the 𝑛-dimensional Euclidean
space and the set of all 𝑛 × 𝑚 matrices, respectively. For a
matrix 𝑃, the 𝑃

𝑇 and 𝑃
−1 represent its transpose and inverse,

respectively. E{𝑥} stands for the expectation of a stochastic
variable 𝑥. diag{𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
} stands for a block-diagonal

matrix with matrices 𝑃
1
, 𝑃
2
. . . , 𝑃
𝑛
on the diagonal. 𝐼 and

0 represent the identity matrix and the zero matrix with
appropriate dimensions, respectively. Matrices are assumed
to be compatiblewith algebraic operations if their dimensions
are not explicitly stated.

2. Problem Formulation and Preliminaries

In this paper, we consider the following class of discrete
uncertain stochastic systems with multiplicative noises and
random two-step sensor delays:

𝑥
𝑘+1

= (𝐴
𝑘
+ 𝐴
𝑠,𝑘

𝜉
𝑘
) 𝑥
𝑘
+ 𝐵
𝑘
𝜔
𝑘

(1)

𝑧
𝑘
= (𝐶
𝑘
+ 𝐶
𝑠,𝑘

𝜂
𝑘
) 𝑥
𝑘
+ ]
𝑘

(2)

𝑦
𝑘
=

min{𝑘−1,2}
∑

𝑖=0

𝛾
𝑖

𝑘
𝑧
𝑘−𝑖

, (3)

where 𝑥
𝑘

∈ R𝑛 is the system state vector to be estimated,
𝑧
𝑘
∈ R𝑚 is measured output, and 𝑦

𝑘
∈ R𝑚 is measurement

received by the sensor. 𝜔
𝑘

∈ R𝑛 and ]
𝑘

∈ R𝑚 are uncor-
related white noises with zero means and variance matrices
𝑄
𝜔𝑘

≥ 0 and 𝑄]𝑘 > 0. 𝜉
𝑘
and 𝜂
𝑘
are multiplicative noises with

zero means and unity covariances and are uncorrelated with
other noise signals. 𝐴

𝑘
, 𝐴
𝑠,𝑘
, 𝐵
𝑘
, 𝐶
𝑘
, and 𝐶

𝑠,𝑘
are known real

time-varying matrices with appropriate dimensions.
The random variables 𝛾𝑖

𝑘
obey the Bernoulli distribution

and have the following statistical properties:

Prob {𝛾
𝑖

𝑘
= 1} = E {𝛾

𝑖

𝑘
} = 𝛼
𝑖
,

Prob {𝛾
𝑖

𝑘
= 0} = 1 − E {𝛾

𝑖

𝑘
} = 1 − 𝛼

𝑖
,

(4)

where 𝛼
𝑖

∈ [0, 1] (𝑖 = 0, 1, 2) are known positive scalars.
Assume that 𝛾

𝑖

𝑘
are mutually independent of other noise

signals.

Remark 1. As in [31], for 𝑘 ≥ 3, if 𝛾0
𝑘
= 1, 𝛾1

𝑘
= 0, and 𝛾

2

𝑘
= 0

in model (3), one has 𝑦
𝑘
= 𝑧
𝑘
; that is, the sensor receives the

data at the time instant 𝑘; if 𝛾0
𝑘
= 0, 𝛾1

𝑘
= 1, and 𝛾

2

𝑘
= 0, one

has 𝑦
𝑘
= 𝑧
𝑘−1

; that is, there exists the one-step time delay; if
𝛾
0

𝑘
= 0, 𝛾1

𝑘
= 0, and 𝛾

2

𝑘
= 1, one has 𝑦

𝑘
= 𝑧
𝑘−2

; that is, there
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exists the two-step time delays. For special cases, when 𝑘 = 1,
the sensor receives the signal on time, 𝑦

1
= 𝛾
0

1
𝑧
1
with 𝛾

0

1
= 1.

When 𝑘 = 2, the sensor receives the signal on time or the one-
step sensor delay occurs, 𝑦

2
= 𝛾
0

2
𝑧
2
+𝛾
1

2
𝑧
1
; here 𝛾0

2
= 1, 𝛾1
2
= 0

or 𝛾
0

2
= 0, and 𝛾

1

2
= 1; that is, 𝛾0

2
+ 𝛾
1

2
= 1. In other words,

these Bernoulli distributed variables satisfy∑
min{𝑘−1,2}
𝑖=0

𝛾
𝑖

𝑘
= 1

for all 𝑘 ≥ 1.

Assumption 2. The initial state 𝑥
0
is uncorrelated with other

noise signals, and

E {𝑥
0
} = 𝜇
0
, E {(𝑥

0
− 𝜇
0
) (𝑥
0
− 𝜇
0
)
𝑇

} = 𝑃
0
. (5)

Without loss of generality, for 𝑘 ≥ 3, we can rewrite (3) as
follows:

𝑦
𝑘
= 𝛾
0

𝑘
𝑧
𝑘
+ 𝛾
1

𝑘
𝑧
𝑘−1

+ 𝛾
2

𝑘
𝑧
𝑘−2

. (6)

By defining 𝑥⃗
𝑘
= [𝑥
𝑇

𝑘
𝑥
𝑇

𝑘−1
𝑥
𝑇

𝑘−2
]
𝑇

, the systems (1), (2),
and (6) can be rewritten as the following compact form:

𝑥⃗
𝑘+1

= Φ⃗
𝑘
𝑥⃗
𝑘
+ 𝐵⃗
𝑘
𝜔⃗
𝑘

(7)

⃗𝑦
𝑘
= 𝐻⃗
𝑘
𝑥⃗
𝑘
+ Λ⃗
𝑘
]⃗
𝑘
, (8)

where

⃗𝑦
𝑘
= 𝑦
𝑘
, 𝜔⃗

𝑘
= 𝜔
𝑘
, ]⃗

𝑘
= [

[

]
𝑘

]
𝑘−1

]
𝑘−2

]

]

,

Φ⃗
𝑘
= 𝐴⃗
𝑘
+ 𝜉
𝑘
𝐴⃗
𝑠,𝑘

, 𝐴⃗
𝑘
= [

[

𝐴
𝑘

0 0

𝐼 0 0

0 𝐼 0

]

]

,

𝐴⃗
𝑠,𝑘

= [

[

𝐴
𝑠,𝑘

0 0

0 0 0

0 0 0

]

]

, 𝐵⃗
𝑘
= [

[

𝐵
𝑘

0

0

]

]

,

𝐻⃗
𝑘
= Λ⃗
𝑘
𝐶⃗
𝑘
+ Λ⃗
𝑘
𝐶⃗
𝑠,𝑘

⃗𝜂
𝑘
, Λ⃗

𝑘
= [

[

𝛾
0

𝑘
𝐼

𝛾
1

𝑘
𝐼

𝛾
2

𝑘
𝐼

]

]

𝑇

,

𝐶⃗
𝑘
= [

[

𝐶
𝑘

0 0

0 𝐶
𝑘−1

0

0 0 𝐶
𝑘−2

]

]

, 𝐶⃗
𝑠,𝑘

= [

[

𝐶
𝑠,𝑘

0 0

0 𝐶
𝑠,𝑘−1

0

0 0 𝐶
𝑠,𝑘−2

]

]

,

⃗𝜂
𝑘
= [

[

𝜂
𝑘
𝐼 0 0

0 𝜂
𝑘−1

𝐼 0

0 0 𝜂
𝑘−2

𝐼

]

]

.

(9)

For convenience of the subsequent developments, set

Φ
𝑘
= E {Φ⃗

𝑘
} = 𝐴⃗

𝑘
, ΔΦ

𝑘
= Φ⃗
𝑘
− Φ
𝑘
= 𝜉
𝑘
𝐴⃗
𝑠,𝑘

,

Λ⃗
𝑘
= 𝛾
0

𝑘
Λ
0
+ 𝛾
1

𝑘
Λ
1
+ 𝛾
2

𝑘
Λ
2
,

Λ
𝑘
= E {Λ⃗

𝑘
} = [𝛼

0
𝐼 𝛼
1
𝐼 𝛼
2
𝐼] ,

Λ
0
= [𝐼 0 0] , Λ

1
= [0 𝐼 0] ,

Λ
2
= [0 0 𝐼] ,

ΔΛ
𝑘
= Λ⃗
𝑘
− Λ
𝑘
=

[
[

[

(𝛾
0

𝑘
− 𝛼
0
) 𝐼

(𝛾
1

𝑘
− 𝛼
1
) 𝐼

(𝛾
2

𝑘
− 𝛼
2
) 𝐼

]
]

]

𝑇

= (𝛾
0

𝑘
− 𝛼
0
)Λ
0
+ (𝛾
1

𝑘
− 𝛼
1
)Λ
1
+ (𝛾
2

𝑘
− 𝛼
2
)Λ
2
,

𝐻
𝑘
= E {𝐻⃗

𝑘
} = Λ

𝑘
𝐶⃗
𝑘
,

Δ𝐻
𝑘
= 𝐻⃗
𝑘
− 𝐻
𝑘
= (Λ⃗
𝑘
− Λ
𝑘
) 𝐶⃗
𝑘
+ Λ⃗
𝑘
𝐶⃗
𝑠,𝑘

⃗𝜂
𝑘
,

⃗𝜂
𝑘
= 𝜂
𝑘
𝑁
0
+ 𝜂
𝑘−1

𝑁
1
+ 𝜂
𝑘−2

𝑁
2
,

𝑁
0
= diag {𝐼, 0, 0} , 𝑁

1
= diag {0, 𝐼, 0} ,

𝑁
2
= diag {0, 0, 𝐼} .

(10)
Then, it is easy to obtain that

E {ΔΦ
𝑘
} = 0, E {Δ𝐻

𝑘
} = 0, E {ΔΛ

𝑘
} = 0. (11)

The purpose of this paper is to design the optimal
Kalman filter 𝑥

𝑘|𝑘
for the addressed discrete uncertain

stochastic systems (1)–(3) based on the observation sequence
{𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘−1
}. Noting the relationship between the orig-

inal system and the augmented system, we know 𝑥
𝑘|𝑘

=

[𝐼 0 0] ̂⃗𝑥
𝑘|𝑘
.

3. Main Results

In this section, by using the projection theory, the recursion
of the Kalman filtering is derived and the explicit expression
of the filter gain is given.

To facilitate the subsequent developments, we introduce
the following definition and lemmas.

Definition 3 (see [8]). Let Ξ
𝑘

= E{𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
} be the state

covariance matrix. Then, one has

Δ ⃗
𝑇𝑘𝑈⃗𝑘

(Ξ
𝑘
) = E {[𝑇⃗

𝑘
− E {𝑇⃗

𝑘
}] 𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
[𝑈⃗
𝑘
− E {𝑈⃗

𝑘
}]
𝑇

} ,

(12)

where 𝑇⃗
𝑘
and 𝑈⃗

𝑘
are time-varying stochastic matrices.

Motivated by the excellent results in [8], we can obtain
the following lemmas which would be helpful for the further
calculation.

Lemma 4. According to the definition of the Φ⃗
𝑘
and 𝐻⃗

𝑘
, one

has
Δ
Φ⃗𝑘Φ⃗𝑘

(Ξ
𝑘
) = 𝐴⃗

𝑠,𝑘
Ξ
𝑘
𝐴⃗
𝑇

𝑠,𝑘
(13)

Δ
𝐻⃗𝑘𝐻⃗𝑘

(Ξ
𝑘
) = 𝛼
0
(1 − 𝛼

0
) Λ
0
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

0

+ 𝛼
1
(1 − 𝛼

1
) Λ
1
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

1

+ 𝛼
2
(1 − 𝛼

2
) Λ
2
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

2
−A
𝑘
−A
𝑇

𝑘

+

2

∑

𝑖=0

2

∑

𝑗=0

𝛼
𝑖
Λ
𝑖
𝐶⃗
𝑠,𝑘

𝑁
𝑗
Ξ
𝑘
𝑁
𝑇

𝑗
𝐶⃗
𝑇

𝑠,𝑘
Λ
𝑇

𝑖
,

(14)
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where
A
𝑘
= 𝛼
0
𝛼
1
Λ
0
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

1
+ 𝛼
0
𝛼
2
Λ
0
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

2

+ 𝛼
1
𝛼
2
Λ
1
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

2
.

(15)

Proof. By usingDefinition 3 and noting the expressions of Φ⃗
𝑘

and 𝐻⃗
𝑘
, one has

Δ
Φ⃗𝑘Φ⃗𝑘

(Ξ
𝑘
) = E {[Φ⃗

𝑘
− E {Φ⃗

𝑘
}] 𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
[Φ⃗
𝑘
− E {Φ⃗

𝑘
}]
𝑇

}

= E {𝜉
𝑘
𝐴⃗
𝑠,𝑘

𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
𝐴⃗
𝑇

𝑠,𝑘
𝜉
𝑘
}

= 𝐴⃗
𝑠,𝑘

Ξ
𝑘
𝐴⃗
𝑇

𝑠,𝑘
,

Δ
𝐻⃗𝑘𝐻⃗𝑘

(Ξ
𝑘
) = E {[𝐻⃗

𝑘
− 𝐻
𝑘
] 𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
[𝐻⃗
𝑘
− 𝐻
𝑘
]
𝑇

}

= E {[(Λ⃗
𝑘
− Λ
𝑘
) 𝐶⃗
𝑘
+ Λ⃗
𝑘
𝐶⃗
𝑠,𝑘

⃗𝜂
𝑘
] 𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘

⋅ [(Λ⃗
𝑘
− Λ
𝑘
) 𝐶⃗
𝑘
+ Λ⃗
𝑘
𝐶⃗
𝑠,𝑘

⃗𝜂
𝑘
]
𝑇

}

= E {(Λ⃗
𝑘
− Λ
𝑘
) 𝐶⃗
𝑘
𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
𝐶⃗
𝑇

𝑘
(Λ⃗
𝑘
− Λ
𝑘
)
𝑇

+ Λ⃗
𝑘
𝐶⃗
𝑠,𝑘

⃗𝜂
𝑘
𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
⃗𝜂
𝑘
𝐶⃗
𝑇

𝑠,𝑘
Λ⃗
𝑇

𝑘

+ (Λ⃗
𝑘
− Λ
𝑘
) 𝐶⃗
𝑘
𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
⃗𝜂
𝑘
𝐶⃗
𝑇

𝑠,𝑘
Λ⃗
𝑇

𝑘

+ Λ⃗
𝑘
𝐶⃗
𝑠,𝑘

⃗𝜂
𝑘
𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
𝐶⃗
𝑇

𝑘
(Λ⃗
𝑘
− Λ
𝑘
)
𝑇

}

= 𝛼
0
(1 − 𝛼

0
) Λ
0
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

0

+ 𝛼
1
(1 − 𝛼

1
) Λ
1
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

1

+ 𝛼
2
(1 − 𝛼

2
) Λ
2
𝐶⃗
𝑘
Ξ
𝑘
𝐶⃗
𝑇

𝑘
Λ
𝑇

2
−A
𝑘
−A
𝑇

𝑘

+

2

∑

𝑖=0

2

∑

𝑗=0

𝛼
𝑖
Λ
𝑖
𝐶⃗
𝑠,𝑘

𝑁
𝑗
Ξ
𝑘
𝑁
𝑇

𝑗
𝐶⃗
𝑇

𝑠,𝑘
Λ
𝑇

𝑖
,

(16)

whereA
𝑘
is defined in (15). Then, the proof of this lemma is

complete.

Lemma 5. The state covariance matrix Ξ
𝑘
of system (7)

satisfies the following recursion:

Ξ
𝑘
= Φ
𝑘−1

Ξ
𝑘−1

Φ
𝑇

𝑘−1
+ Δ
Φ⃗𝑘−1Φ⃗𝑘−1

(Ξ
𝑘−1

) + 𝐵⃗
𝑘−1

𝑄
𝜔𝑘−1

𝐵⃗
𝑇

𝑘−1

(17)

with the initial value Ξ
0
= diag{𝑃

0
+ 𝜇
0
𝜇
𝑇

0
, 0, 0}.

Proof. It follows from (7) that

Ξ
𝑘
= E {𝑥⃗

𝑘
𝑥⃗
𝑇

𝑘
}

= E {[Φ⃗
𝑘−1

𝑥⃗
𝑘−1

+ 𝐵⃗
𝑘−1

𝜔⃗
𝑘−1

]

⋅ [Φ⃗
𝑘−1

𝑥⃗
𝑘−1

+ 𝐵⃗
𝑘−1

𝜔⃗
𝑘−1

]
𝑇

}

= Φ
𝑘−1

Ξ
𝑘−1

Φ
𝑇

𝑘−1
+ Δ
Φ⃗𝑘−1Φ⃗𝑘−1

(Ξ
𝑘−1

) + 𝐵⃗
𝑘−1

𝑄
𝜔𝑘−1

𝐵⃗
𝑇

𝑘−1
.

(18)

The proof of this lemma is complete.

Now, we are ready to design the optimal Kalman fil-
ter for system (7)-(8) based on the observation sequence
{𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑘−1
}. By employing Lemmas 4 and 5, we have the

following theorem.

Theorem 6. The optimal Kalman filtering for system (7)-(8) is
given as follows:

̂⃗𝑥
𝑘|𝑘

= ̂⃗𝑥
𝑘|𝑘−1

+ 𝐾
𝑘
𝜀
𝑘
, (19)

̂⃗𝑥
𝑘|𝑘−1

= Φ
𝑘−1

̂⃗𝑥
𝑘−1|𝑘−1

, (20)

𝜀
𝑘
= ⃗𝑦
𝑘
− 𝐻
𝑘

̂⃗𝑥
𝑘|𝑘−1

− Λ
𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

) , (21)

𝐹
𝑘−1

= [S
𝑘−1

− 𝐺
𝑘−2

(𝐾
𝑇

𝑘−2
Φ
𝑇

𝑘−2
𝐻
𝑇

𝑘−1
+ 𝐹
𝑇

𝑘−2
Λ
𝑇

𝑘−1
)]𝑄
−1

𝜀𝑘−1

,

(22)
𝐺
𝑘−2

= N
𝑘−2

𝑄
−1

𝜀𝑘−2

, (23)

𝑃
𝑘|𝑘

= 𝑃
𝑘|𝑘−1

− 𝐾
𝑘
𝑄
𝜀𝑘
𝐾
𝑇

𝑘
, (24)

𝑃
𝑘|𝑘−1

= Φ
𝑘−1

𝑃
𝑘−1|𝑘−1

Φ
𝑇

𝑘−1
+ Δ
Φ⃗𝑘−1Φ⃗𝑘−1

(Ξ
𝑘−1

)

+ 𝐵⃗
𝑘−1

𝑄
𝜔𝑘−1

𝐵⃗
𝑇

𝑘−1
,

(25)

𝐾
𝑘
= [𝑃
𝑘|𝑘−1

𝐻
𝑇

𝑘
− Φ
𝑘−1

𝐿
𝑘−2

𝑄
𝜀𝑘−2

𝐺
𝑇

𝑘−2
Λ
𝑇

𝑘

− 𝐿
𝑘−1

𝑄
𝜀𝑘−1

𝐹
𝑇

𝑘−1
Λ
𝑇

𝑘
]𝑄
−1

𝜀𝑘

,

(26)

𝐿
𝑘−1

= [Φ
𝑘−1

𝑃
𝑘−1|𝑘−2

𝐻
𝑇

𝑘−1

− Φ
𝑘−1

𝐿
𝑘−2

𝑄
𝑇

𝜀𝑘−2

𝐹
𝑇

𝑘−2
Λ
𝑇

𝑘−1

− Φ
𝑘−1

Φ
𝑘−2

𝐿
𝑘−3

𝑄
𝑇

𝜀𝑘−3

𝐺
𝑇

𝑘−3
Λ
𝑇

𝑘−1
]𝑄
−1

𝜀𝑘−1

,

(27)

𝑄
𝜀𝑘

= Δ
𝐻⃗𝑘𝐻⃗𝑘

(Ξ
𝑘
) + 𝐻

𝑘
𝑃
𝑘|𝑘−1

𝐻
𝑇

𝑘

+

2

∑

𝑖=0

𝛼
𝑖
Λ
𝑖
𝑄
𝑘
Λ
𝑇

𝑖
+ Λ
𝑘
𝐺
𝑘−2

𝑄
𝜀𝑘−2

𝐺
𝑇

𝑘−2
Λ
𝑇

𝑘

+ Λ
𝑘
𝐹
𝑘−1

𝑄
𝜀𝑘−1

𝐹
𝑇

𝑘−1
Λ
𝑇

𝑘
+B
𝑘
+B
𝑇

𝑘
,

(28)

where

𝑄
𝑘
= diag {𝑄]𝑘 , 𝑄]𝑘−1 , 𝑄]𝑘−2} ,

S
𝑘−1

= [0 𝛼
0
𝑄]𝑘−1 𝛼

1
𝑄]𝑘−2]

𝑇

,

N
𝑘−2

= [0 0 𝛼
0
𝑄]𝑘−2]

𝑇

,

B
𝑘
= 𝐻
𝑘
(Φ
𝑘−1

Φ
𝑘−2

𝐾
𝑘−2

𝐺
𝑇

𝑘−2
+ Φ
𝑘−1

𝐾
𝑘−1

𝐹
𝑇

𝑘−1
)Λ
𝑇

𝑘

− Λ
𝑘
𝐺
𝑘−2

𝐺
𝑇

𝑘−2
Λ
𝑇

𝑘
− Λ
𝑘
𝐹
𝑘−1

𝐹
𝑇

𝑘−1
Λ
𝑇

𝑘
.

(29)

Proof. According to the projection theory, it is easy to obtain
(19). Moreover, the filter gain matrix𝐾

𝑘
is calculated by

𝐾
𝑘
= E {𝑥⃗

𝑘
𝜀
𝑇

𝑘
} [E {𝜀

𝑘
𝜀
𝑇

𝑘
}]
−1

. (30)

Taking projection on both sides of (7) onto the linear space
spanned by { ⃗𝑦

1
, ⃗𝑦
2
, . . . , ⃗𝑦

𝑘−1
}, we have

̂⃗𝑥
𝑘|𝑘−1

= Φ
𝑘−1

̂⃗𝑥
𝑘−1|𝑘−1

+ 𝐵⃗
𝑘−1

̂⃗𝜔
𝑘−1|𝑘−1

. (31)

From the projection theory, we have ̂⃗𝜔
𝑘−1|𝑘−1

= 0. Then, (20)
can be obtained directly.
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Set the innovation

𝜀
𝑘
= ⃗𝑦
𝑘
− ̂⃗𝑦
𝑘|𝑘−1

. (32)

Taking projection on both sides of (8) onto the linear space
spanned by { ⃗𝑦

1
, ⃗𝑦
2
, . . . , ⃗𝑦

𝑘−1
}, we have

̂⃗𝑦
𝑘|𝑘−1

= 𝐻
𝑘

̂⃗𝑥
𝑘|𝑘−1

+ Λ
𝑘

̂⃗]
𝑘|𝑘−1

, (33)

where the one-step prediction ̂⃗]
𝑘|𝑘−1

of the measurement
noise is calculated by

̂⃗]
𝑘|𝑘−1

= ̂⃗]
𝑘|𝑘−2

+ 𝐹
𝑘−1

𝜀
𝑘−1

. (34)

Here, the one-step prediction gain 𝐹
𝑘−1

of the measurement
noise is defined by

𝐹
𝑘−1

= E {]⃗
𝑘
𝜀
𝑇

𝑘−1
} [E {𝜀

𝑘−1
𝜀
𝑇

𝑘−1
}]
−1

. (35)

Moreover, the two-step prediction ̂⃗]
𝑘|𝑘−2

of the measurement
noise in (34) is computed by

̂⃗]
𝑘|𝑘−2

= ̂⃗]
𝑘|𝑘−3

+ 𝐺
𝑘−2

𝜀
𝑘−2

, (36)

where the two-step prediction gain of themeasurement noise
is defined by

𝐺
𝑘−2

= E {]⃗
𝑘
𝜀
𝑇

𝑘−2
} [E {𝜀

𝑘−2
𝜀
𝑇

𝑘−2
}]
−1

. (37)

From the projection theory, ̂⃗]
𝑘
⊥ L{ ⃗𝑦

1
, ⃗𝑦
2
, . . . , ⃗𝑦

𝑘−3
}, where

the symbol ⊥ denotes the orthogonality. Then, it is not
difficult to see that ̂⃗]

𝑘|𝑘−3
= 0. Subsequently, substituting (34)

and (36) into (33) yields

̂⃗𝑦
𝑘|𝑘−1

= 𝐻
𝑘

̂⃗𝑥
𝑘|𝑘−1

+ Λ
𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

) . (38)

Then, it follows from (32) and (38) that (21) is true.
The innovation 𝜀

𝑘
can be rewritten as follows:

𝜀
𝑘
= 𝐻⃗
𝑘
𝑥⃗
𝑘
+ Λ⃗
𝑘
]⃗
𝑘
− 𝐻
𝑘

̂⃗𝑥
𝑘|𝑘−1

− Λ
𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

)

= 𝐻
𝑘

̃⃗𝑥
𝑘|𝑘−1

+ Δ𝐻
𝑘
𝑥⃗
𝑘
+ Λ⃗
𝑘
]⃗
𝑘

− Λ
𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

) ,

(39)

where ̃⃗𝑥
𝑘|𝑘−1

= 𝑥⃗
𝑘
− ̂⃗𝑥
𝑘|𝑘−1

is the one-step prediction error.
Substitute (39) with 𝑘 = 𝑘 − 1 into (35). Noting

̃⃗𝑥
𝑘−1|𝑘−2

= 𝑥⃗
𝑘−1

− ̂⃗𝑥
𝑘−1|𝑘−2

= Φ
𝑘−2

̃⃗𝑥
𝑘−2|𝑘−2

+ ΔΦ
𝑘−2

𝑥⃗
𝑘−2

+ 𝐵⃗
𝑘−2

𝜔⃗
𝑘−2

,

̃⃗𝑥
𝑘−2|𝑘−2

= ̃⃗𝑥
𝑘−2|𝑘−3

− 𝐾
𝑘−2

𝜀
𝑘−2

,

(40)

the one-step prediction gain 𝐹
𝑘−1

of the measurement noise
can be calculated

𝐹
𝑘−1

= E {]⃗
𝑘
𝜀
𝑇

𝑘−1
} [E {𝜀

𝑘−1
𝜀
𝑇

𝑘−1
}]
−1

= E {]⃗
𝑘
[𝐻
𝑘−1

̃⃗𝑥
𝑘−1|𝑘−2

+ Δ𝐻
𝑘−1

𝑥⃗
𝑘−1

+ Λ⃗
𝑘−1

]⃗
𝑘−1

−Λ
𝑘−1

(𝐹
𝑘−2

𝜀
𝑘−2

+ 𝐺
𝑘−3

𝜀
𝑘−3

)]
𝑇

}

⋅ [E {𝜀
𝑘−1

𝜀
𝑇

𝑘−1
}]
−1

.

(41)

When deriving (41), we have used the fact that ]⃗
𝑘
⊥ 𝜀
𝑘−3

and
E{Δ𝐻

𝑘−1
} = 0.Then, we have (22). Similarly, substituting (39)

with 𝑘 = 𝑘 − 2 into (37), one has (23).
Subsequently, we are in a position to obtain the filtering

error covariance matrix 𝑃
𝑘|𝑘

and the prediction error covari-
ance matrix 𝑃

𝑘|𝑘−1
. Subtracting (19) from 𝑥⃗

𝑘|𝑘
, the filtering

error equation can be obtained:

̃⃗𝑥
𝑘|𝑘

= 𝑥⃗
𝑘
− ̂⃗𝑥
𝑘|𝑘

= ̃⃗𝑥
𝑘|𝑘−1

− 𝐾
𝑘
𝜀
𝑘
. (42)

Then, we have

̃⃗𝑥
𝑘|𝑘

+ 𝐾
𝑘
𝜀
𝑘
= ̃⃗𝑥
𝑘|𝑘−1

. (43)

Notice that ̃⃗𝑥
𝑘|𝑘

⊥ 𝜀
𝑘
, E{ΔΦ

𝑘−1
} = 0, 𝑥⃗

𝑘−1
, and ̃⃗𝑥

𝑘−1|𝑘−1
are all

uncorrelated with 𝜔⃗
𝑘−1

, we have

𝑃
𝑘|𝑘

= E {̃⃗𝑥
𝑘|𝑘

̃⃗𝑥
𝑇

𝑘|𝑘
}

= E {[̃⃗𝑥
𝑘|𝑘

+ 𝐾
𝑘
𝜀
𝑘
− 𝐾
𝑘
𝜀
𝑘
] [̃⃗𝑥
𝑘|𝑘

+ 𝐾
𝑘
𝜀
𝑘
− 𝐾
𝑘
𝜀
𝑘
]
𝑇

}

= 𝑃
𝑘|𝑘−1

− 𝐾
𝑘
𝑄
𝜀𝑘
𝐾
𝑇

𝑘
.

(44)

Thus, (24) is obtained.
Similarly, the one-step prediction error equation can be

obtained as follows:
̃⃗𝑥
𝑘|𝑘−1

= 𝑥⃗
𝑘
− ̂⃗𝑥
𝑘|𝑘−1

= Φ⃗
𝑘−1

𝑥⃗
𝑘−1

+ 𝐵⃗
𝑘−1

𝜔⃗
𝑘−1

− Φ
𝑘−1

̂⃗𝑥
𝑘−1|𝑘−1

= (Φ
𝑘−1

+ ΔΦ
𝑘−1

) 𝑥⃗
𝑘−1

+ 𝐵⃗
𝑘−1

𝜔⃗
𝑘−1

− Φ
𝑘−1

̂⃗𝑥
𝑘−1|𝑘−1

= Φ
𝑘−1

̃⃗𝑥
𝑘−1|𝑘−1

+ ΔΦ
𝑘−1

𝑥⃗
𝑘−1

+ 𝐵⃗
𝑘−1

𝜔⃗
𝑘−1

.

(45)

According to (45), we have the following equation:

𝑃
𝑘|𝑘−1

= E {̃⃗𝑥
𝑘|𝑘−1

̃⃗𝑥
𝑇

𝑘|𝑘−1
}

= Φ
𝑘−1

𝑃
𝑘−1|𝑘−1

Φ
𝑇

𝑘−1

+ Δ
Φ⃗𝑘−1Φ⃗𝑘−1

(Ξ
𝑘−1

) + 𝐵⃗
𝑘−1

𝑄
𝜔𝑘−1

𝐵⃗
𝑇

𝑘−1

+C
𝑘−1

+C
𝑇

𝑘−1
,

(46)
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where

C
𝑘−1

= Φ
𝑘−1

E {̃⃗𝑥
𝑘−1|𝑘−1

𝑥⃗
𝑇

𝑘−1
ΔΦ
𝑇

𝑘−1
}

+ Φ
𝑘−1

E {̃⃗𝑥
𝑘−1|𝑘−1

𝜔⃗
𝑇

𝑘−1
} 𝐵⃗
𝑇

𝑘−1

+ E {ΔΦ
𝑘−1

𝑥⃗
𝑘−1

𝜔⃗
𝑇

𝑘−1
} 𝐵⃗
𝑇

𝑘−1
.

(47)

NotingC
𝑘−1

= 0, we have

𝑃
𝑘|𝑘−1

= Φ
𝑘−1

𝑃
𝑘−1|𝑘−1

Φ
𝑇

𝑘−1

+ Δ
Φ⃗𝑘−1Φ⃗𝑘−1

(Ξ
𝑘−1

) + 𝐵⃗
𝑘−1

𝑄
𝜔𝑘−1

𝐵⃗
𝑇

𝑘−1
.

(48)

Then, it is concluded that (25) holds.
Next, we aim to derive the filter gain𝐾

𝑘
. Firstly, substitute

(39) into (30). Secondly, by using E{Δ𝐻
𝑘
} = 0 and 𝑥⃗

𝑘
=

̂⃗𝑥
𝑘|𝑘−1

+ ̃⃗𝑥
𝑘|𝑘−1

, we obtain

𝐾
𝑘
= E {𝑥⃗

𝑘
𝜀
𝑇

𝑘
}𝑄
−1

𝜀𝑘

= E {𝑥⃗
𝑘
[Δ𝐻
𝑘
𝑥⃗
𝑘
+ 𝐻
𝑘

̃⃗𝑥
𝑘|𝑘−1

+ Λ⃗
𝑘
]⃗
𝑘

−Λ
𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

)]
𝑇

}𝑄
−1

𝜀𝑘

= {𝑃
𝑘|𝑘−1

𝐻
𝑇

𝑘
+ E {𝑥⃗

𝑘
]⃗𝑇
𝑘
Λ⃗
𝑇

𝑘
} −M

𝑘
}𝑄
−1

𝜀𝑘

,

(49)

whereM
𝑘
= E{𝑥⃗

𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

)
𝑇

Λ
𝑇

𝑘
}. When deriving

(49), we have used the fact that 𝑥⃗
𝑘
is uncorrelated with ]⃗

𝑘
.

Setting

E {𝑥⃗
𝑘
𝜀
𝑇

𝑘−1
}𝑄
−1

𝜀𝑘−1
= 𝐿
𝑘−1

, (50)

we have E{𝑥⃗
𝑘
𝜀
𝑇

𝑘−1
} = 𝐿

𝑘−1
𝑄
𝜀𝑘−1

. By using (7) and noting
𝜔⃗
𝑘−1

⊥ 𝜀
𝑘−2

, the termM
𝑘
can be obtained as follows:

M
𝑘
= E {𝑥⃗

𝑘
𝜀
𝑇

𝑘−1
} 𝐹
𝑇

𝑘−1
Λ
𝑇

𝑘
+ E {𝑥⃗

𝑘
𝜀
𝑇

𝑘−2
}𝐺
𝑇

𝑘−2
Λ
𝑇

𝑘

= E {𝑥⃗
𝑘
𝜀
𝑇

𝑘−1
} 𝐹
𝑇

𝑘−1
Λ
𝑇

𝑘

+ E {(Φ⃗
𝑘−1

𝑥⃗
𝑘−1

+ 𝐵⃗
𝑘−1

𝜔⃗
𝑘−1

) 𝜀
𝑇

𝑘−2
}𝐺
𝑇

𝑘−2
Λ
𝑇

𝑘

= 𝐿
𝑘−1

𝑄
𝜀𝑘−1

𝐹
𝑇

𝑘−1
Λ
𝑇

𝑘
+ Φ
𝑘−1

𝐿
𝑘−2

𝑄
𝜀𝑘−2

𝐺
𝑇

𝑘−2
Λ
𝑇

𝑘
.

(51)

Substituting (51) into (49) and noting E{𝑥⃗
𝑘
]⃗𝑇
𝑘
Λ⃗
𝑇

𝑘
} = 0, we

have (26).
Furthermore, it follows from 𝑥⃗

𝑘−1
= ̂⃗𝑥
𝑘−1|𝑘−2

+ ̃⃗𝑥
𝑘−1|𝑘−2

that

E {𝑥⃗
𝑘
𝜀
𝑇

𝑘−1
} = E {𝑥⃗

𝑘
[𝐻
𝑘−1

̃⃗𝑥
𝑘−1|𝑘−2

+ Δ𝐻
𝑘−1

𝑥⃗
𝑘−1

+ Λ⃗
𝑘−1

]⃗
𝑘−1

− Λ
𝑘−1

(𝐹
𝑘−2

𝜀
𝑘−2

+ 𝐺
𝑘−3

𝜀
𝑘−3

)]
𝑇

}

= Φ
𝑘−1

𝑃
𝑘−1|𝑘−2

𝐻
𝑇

𝑘−1
− Φ
𝑘−1

𝐿
𝑘−2

𝑄
𝑇

𝜀𝑘−2

𝐹
𝑇

𝑘−2
Λ
𝑇

𝑘−1

− Φ
𝑘−1

Φ
𝑘−2

𝐿
𝑘−3

𝑄
𝑇

𝜀𝑘−3

𝐺
𝑇

𝑘−3
Λ
𝑇

𝑘−1
.

(52)

Substituting (52) into (50), we can see that (27) is true.

Finally, we will derive the term 𝑄
𝜀𝑘
in (28). According to

(39), we have

𝑄
𝜀𝑘

= E {𝜀
𝑘
𝜀
𝑇

𝑘
}

= E {[Δ𝐻
𝑘
𝑥⃗
𝑘
+ 𝐻
𝑘

̃⃗𝑥
𝑘|𝑘−1

+ Λ⃗
𝑘
]⃗
𝑘

−Λ
𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

)]

× [Δ𝐻
𝑘
𝑥⃗
𝑘
+ 𝐻
𝑘

̃⃗𝑥
𝑘|𝑘−1

+ Λ⃗
𝑘
]⃗
𝑘

−Λ
𝑘
(𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

)]
𝑇

}

= E {Δ𝐻
𝑘
𝑥⃗
𝑘
𝑥⃗
𝑇

𝑘
Δ𝐻
𝑇

𝑘
}

+ E {𝐻
𝑘

̃⃗𝑥
𝑘|𝑘−1

̃⃗𝑥
𝑇

𝑘|𝑘−1
𝐻
𝑇

𝑘
} + E {Λ⃗

𝑘
]⃗
𝑘
]⃗𝑇
𝑘
Λ⃗
𝑇

𝑘
}

+ E {Λ
𝑘
[𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

]

⋅ [𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

]
𝑇

Λ
𝑇

𝑘
} +D

𝑘
+D
𝑇

𝑘

= Δ
𝐻⃗𝑘𝐻⃗𝑘

(Ξ
𝑘
) + 𝐻

𝑘
𝑃
𝑘|𝑘−1

𝐻
𝑇

𝑘

+

2

∑

𝑖=0

𝛼
𝑖
Λ
𝑖
𝑄
𝑘
Λ
𝑇

𝑖
+ Λ
𝑘
𝐺
𝑘−2

𝑄
𝜀𝑘−2

𝐺
𝑇

𝑘−2
Λ
𝑇

k

+ Λ
𝑘
𝐹
𝑘−1

𝑄
𝜀𝑘−1

𝐹
𝑇

𝑘−1
Λ
𝑇

𝑘
+B
𝑘
+B
𝑇

𝑘
,

(53)

where

D
𝑘
= E {Δ𝐻

𝑘
𝑥⃗
𝑘

̃⃗𝑥
𝑇

𝑘|𝑘−1
𝐻
𝑇

𝑘
+ Δ𝐻
𝑘
𝑥⃗
𝑘
]⃗𝑇
𝑘−1

Λ⃗
𝑇

𝑘

− Δ𝐻
𝑘
𝑥⃗
𝑘
[𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

]
𝑇

Λ
𝑇

𝑘

+ 𝐻
𝑘

̃⃗𝑥
𝑘|𝑘−1

]⃗𝑇
𝑘
Λ⃗
𝑇

𝑘

− 𝐻
𝑘

̃⃗𝑥
𝑘|𝑘−1

[𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

]
𝑇

Λ
𝑇

𝑘−1

− Λ⃗
𝑘
]⃗
𝑘−1

[𝐹
𝑘−1

𝜀
𝑘−1

+ 𝐺
𝑘−2

𝜀
𝑘−2

]
𝑇

Λ
𝑇

𝑘
} ,

(54)

𝑄
𝑘
and B

𝑘
are defined in (29). When deriving (53), we

have used the fact that E{Δ𝐻
𝑘
} = 0, E{𝑥⃗

𝑘
]⃗𝑇
𝑘
} = 0, and

Δ𝐻
𝑘
is uncorrelated with 𝑥⃗

𝑘

̂⃗𝑥
𝑇

𝑘|𝑘−1
. Up to now, the proof of

Theorem 6 is complete.

So far, we have derived the Kalman filtering for the
addressed linear stochastic systems withmultiplicative noises
and random two-step sensor delays. In the following, let us
discuss the initial time instant.

Particularly, when 𝑘 = 1, (3) becomes 𝑦
1

= 𝑧
1
. In the

augmented system (7)-(8), letting 𝛾
2

𝑘
= 𝛾
1

𝑘
= 0, we have

Λ⃗
1
= [𝐼 0 0] ,

Δ
𝐻⃗1𝐻⃗1

(Ξ
1
) =

2

∑

𝑗=0

Λ
0
𝐶⃗
𝑠,1

𝑁
𝑗
Ξ
1
𝑁
𝑇

𝑗
𝐶⃗
𝑇

𝑠,1
Λ
𝑇

0
,

𝐹
0
= {S
0
− 𝐺
−1

(𝐾
𝑇

−1
Φ
𝑇

−1
𝐻
𝑇

0
+ 𝐹
𝑇

−1
Λ
𝑇

0
)}𝑄
−1

𝜀0

,

𝐺
−1

= N
−1
𝑄
−1

𝜀−1

,
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𝑄
𝜀1

= Δ
𝐻⃗1𝐻⃗1

(Ξ
1
) + 𝐻

1
𝑃
1|0

𝐻
𝑇

1
+ Λ
0
𝑄
1
Λ
𝑇

0

+ Λ
1
𝐺
−1
𝑄
𝜀−1

𝐺
𝑇

−1
Λ
𝑇

1
+ Λ
1
𝐹
0
𝑄
𝜀0
𝐹
𝑇

0
Λ
𝑇

1
+B
1
+B
𝑇

1
,

(55)

where

S
0
= [0 0 0]

𝑇

, N
−1

= [0 0 0]
𝑇

, (56)

andB
1
is defined in (29).

Similarly, when 𝑘 = 2, (3) becomes 𝑦
2
= 𝛾
0

2
𝑧
2
+ 𝛾
1

2
𝑧
1
. In

the augmented system (7)-(8), letting 𝛾
2

𝑘
= 0, one has

Λ⃗
2
= [𝛾
0

2
𝐼 𝛾
1

2
𝐼 0] ,

Δ
𝐻⃗2𝐻⃗2

(Ξ
2
) =

1

∑

𝑖=0

𝛼
𝑖
(1 − 𝛼

𝑖
) Λ
𝑖
𝐶⃗
2
Ξ
2
𝐶⃗
𝑇

2
Λ
𝑇

𝑖
−A
2
−A
𝑇

2

+

1

∑

𝑖=0

2

∑

𝑗=0

𝛼
𝑖
Λ
𝑖
𝐶⃗
𝑠,2

𝑁
𝑗
Ξ
2
𝑁
𝑇

𝑗
𝐶⃗
𝑇

𝑠,2
Λ
𝑇

𝑖
,

𝐹
1
= {S
1
− 𝐺
0
(𝐾
𝑇

0
Φ
𝑇

0
𝐻
𝑇

1
+ 𝐹
𝑇

0
Λ
𝑇

1
)}𝑄
−1

𝜀1

,

𝐺
0
= N
0
𝑄
−1

𝜀0

,

𝑄
𝜀2

= Δ
𝐻⃗2𝐻⃗2

(Ξ
2
) + 𝐻

2
𝑃
2|1

𝐻
𝑇

2
+ 𝛼
0
Λ
0
𝑄
2
Λ
𝑇

0

+ 𝛼
1
Λ
1
𝑄
2
Λ
𝑇

1
+ Λ
2
𝐺
0
𝑄
𝜀0
𝐺
𝑇

0
Λ
𝑇

2

+ Λ
2
𝐹
1
𝑄
𝜀1
𝐹
𝑇

1
Λ
𝑇

2
+B
2
+B
𝑇

2
,

(57)

where

S
1
= [0 𝑄]1 0]

𝑇

, N
0
= [0 0 0]

𝑇

,

A
2
= 𝛼
0
𝛼
1
Λ
0
𝐶⃗
2
Ξ
2
𝐶⃗
𝑇

2
Λ
𝑇

1
,

(58)

andB
2
is defined in (29).

Remark 7. It is worth mentioning that when 𝛼
0

= 1 and
𝐴
𝑠,𝑘

= 𝐶
𝑠,𝑘

= 0, the developed optimal filtering is reduced
to the traditional Kalman filtering algorithm. On the other
hand, when 𝛼

1
= 1 and 𝐴

𝑠,𝑘
= 𝐶
𝑠,𝑘

= 0, the proposed
filtering algorithm is the optimal Kalman filtering with one-
step sensor delay.

To help understand, the calculation process of the pro-
posed optimal Kalman filtering scheme inTheorem 6 can be
summarized as follows.

Algorithm 8 (Kalman filtering with multiplicative noises and
random two-step sensor delays).

Step 1. Give the initial values 𝜀
−1
, 𝜀
0
, 𝑄
𝜀−2
, 𝑄
𝜀−1
, 𝑄
𝜀0
, 𝐿
−2
, 𝐿
−1
,

𝐾
−1
, 𝐾
0
, 𝐹
−1
, 𝐺
−2
, 𝑃
0|0

, 𝑃
0|−1

, 𝑥⃗
0
, ̂⃗𝑥
0
, and 𝑦

1
.

Step 2. Compute ̂⃗𝑥
1|0

⇒ 𝐺
−1

⇒ 𝐹
0
⇒ 𝜀
1
⇒ Δ
Φ⃗0Φ⃗0

(Ξ
0
) ⇒

Ξ
1
⇒ Δ
𝐻⃗1𝐻⃗1

(Ξ
1
) ⇒ 𝑃

1|0
⇒ 𝑄
𝜀1

⇒ 𝐿
0
⇒ 𝐾
1
⇒ ̂⃗𝑥
1|1

⇒ 𝑃
1|1

in turn.

Step 3. When 𝑦
2
is obtained, compute ̂⃗𝑥

2|1
⇒ 𝐺
0

⇒ 𝐹
1

⇒

𝜀
2

⇒ Δ
Φ⃗1Φ⃗1

(Ξ
1
) ⇒ Ξ

2
⇒ Δ
𝐻⃗2𝐻⃗2

(Ξ
2
) ⇒ 𝑃

2|1
⇒ 𝑄
𝜀2

⇒

𝐿
1
⇒ 𝐾
2
⇒ ̂⃗𝑥
2|2

⇒ 𝑃
2|2

in turn.

Step 4. In general, calculate 𝑥
𝑘|𝑘−1

by (20).

Step 5. Compute 𝐺
𝑘−2

by (23). Substituting (23) into (22), we
obtain 𝐹

𝑘−1
. Then, we can obtain 𝜀

𝑘
by substituting (22) and

(23) into (21).

Step 6. Calculate Δ
Φ⃗𝑘−1Φ⃗𝑘−1

(Ξ
𝑘−1

) by (13) and compute Ξ
𝑘
by

(17). By substituting Ξ
𝑘
into (14), we have Δ

𝐻⃗𝑘𝐻⃗𝑘

(Ξ
𝑘
).

Step 7. Calculate 𝑃
𝑘|𝑘−1

by substituting (13) into (25).

Step 8. Substituting (14), (22), (23), and (25) into (28), we
obtain 𝑄

𝜀𝑘
.

Step 9. Compute 𝐿
𝑘−1

by substituting (22), (23), (25), and (28)
into (27).

Step 10. Substituting (25), (27), and (28) into (26), we obtain
𝐾
𝑘
.

Step 11. By using (19) and (24), we calculate the optimal
estimation ̂⃗𝑥

𝑘|𝑘
and obtain 𝑃

𝑘|𝑘
. Then, letting 𝑘 − 1 = 𝑘, go

back to Step 4.

Remark 9. In this paper, we have used the state augmenta-
tion approach and innovation analysis technique to design
the optimal Kalman filter contaminated with multiplica-
tive noises and randomly occurring two-step sensor delays.
Compared with the existing results, these two phenomena
addressed have constituted the main differences and have
been explicitly reflected in the main results, such as the terms
𝑄
𝜀𝑘
, 𝑄
𝜀𝑘−1

, 𝑄
𝜀𝑘−2

, and 𝑄
𝜀𝑘−3

. During the implementation of
the proposed filtering algorithm, it is worth mentioning that
more efforts should be made to derive the terms 𝐿

𝑘−1
and

𝑄
𝜀𝑘
in (27) and (28) due to the consideration of the randomly

occurring sensor delays. From the above algorithm, it is easy
to see that Steps 5–10 in Algorithm 8 are important especially
those involved terms.

4. An Illustrative Example

In this section, a numerical example is proposed to show the
feasibility and effectiveness of the proposed main results.

Consider the following system:

𝑥
𝑘+1

= ([
0.2 −0.15

0 0.15
] + [

0.01 0

0 0.01
] 𝜉
𝑘
)𝑥
𝑘
+ [

2

2.5
] 𝜔
𝑘

𝑧
𝑘
= ([1.5 1] + [0.01 0.01] 𝜂

𝑘
) 𝑥
𝑘
+ ]
𝑘

𝑦
𝑘
=

min{𝑘−1,2}
∑

𝑖=0

𝛾
𝑖

𝑘
𝑧
𝑘−𝑖

,

(59)

where 𝑥
𝑘
= [𝑥
𝑘,1

𝑥
𝑘,2

]
𝑇 is the system state and 𝜔

𝑘
∈ R and

]
𝑘

∈ R are uncorrelated white noises with zero means and
variances 𝑄

𝜔𝑘
= 0.1 and 𝑄]𝑘 = 0.2, respectively.
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Table 1: Filter gains 𝐾
𝑘
(Case I).

𝑘 1 2 3 4 ⋅ ⋅ ⋅

𝐾
𝑘

[
[
[
[
[
[
[
[
[

[

0.3527

0.4107

0.0903

−0.0226

0

0

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[

[

0.3072

0.3822

0.0042

−0.0021

0.0104

−0.0141

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[

[

0.2391

0.3037

0.0293

0.0360

0.0008

−0.0012

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[

[

0.2202

0.2853

0.0558

0.0712

0.0096

0.0117

]
]
]
]
]
]
]
]
]

]

.

.

.

0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

k/time step

Actual state xk,1
Filtering in this paper

Figure 1: The trajectories of 𝑥
𝑘,1

and 𝑥
𝑘|𝑘,1

(Case I).

Let
𝜀
−1

= 1, 𝜀
0
= 1, 𝑄

𝜀−2
= 1,

𝑄
𝜀−1

= 1, 𝑄
𝜀0

= 1, 𝑃
0|0

= 𝐼
6 × 6

,

𝑃
0|−1

= 𝐼
6 × 6

,

𝐿
−2

= [0 0 0 0 0.1 0.2]
𝑇

,

𝐿
−1

= [0 0 0 0 0.2 0.3]
𝑇

,

𝐹
−1

= [0 0 0.1]
𝑇

, 𝐺
−2

= [0 0 0.4]
𝑇

,

̂⃗𝑥
0
= [−0.1 0.3 0 0 0 0]

𝑇

,

𝑥⃗
0
= [−0.1 0.3 0 0 0 0]

𝑇

,

𝐾
−1

= [0 0 0 0 0.4 0.2] ,

𝐾
0
= [0 0 0 0 0 0.1] .

(60)

According toTheorem 6, the optimal recursive filter 𝑥
𝑘|𝑘

can
be obtained. The values of the filter gains are given as in
Table 1. The trajectories of the actual states 𝑥

𝑘,𝑖
and their

estimates 𝑥
𝑘,𝑖

(𝑖 = 1, 2) are plotted in Figures 1 and 2. Let
MSE𝑖 denote the mean square error for the estimations of
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Figure 2: The trajectories of 𝑥
𝑘,2

and 𝑥
𝑘|𝑘,2

(Case I).
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Figure 3: log(MSE1) (Case I).

𝑥
𝑘,𝑖

and 𝑥
𝑘,2
; that is, MSE𝑖 = (1/𝑀)∑

𝑀

𝑗=1
(𝑥
𝑘,𝑖

− 𝑥
𝑘|𝑘,𝑖

)
2 (𝑖 =

1, 2), where 𝑀 is the number of simulation tests. Then, the
log(MSE𝑖) (𝑖 = 1, 2) of the proposed filtering algorithm are
plotted in Figures 3 and 4.
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Figure 4: log(MSE2) (Case I).
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Figure 5: The trajectories of 𝑥
𝑘,1

and 𝑥
𝑘|𝑘,1

(Case II).

In order to further discuss the effects from the randomly
occurring two-step sensor delays, we make the comparison
where the different probabilities of the sensor delays (i.e.,
Case I: 𝛼

0
= 0.95, 𝛼

1
= 0.9, and 𝛼

2
= 0.8; Case II:

𝛼
0

= 0.65, 𝛼
1

= 0.6, and 𝛼
2

= 0.55) are considered.
The corresponding simulations are given in Figures 5–8.
According to the simulations, we can see that the filtering
performance is indeed influenced by the probabilities of the
sensor delays. From the simulations, we can conclude that
the developed filtering scheme performs well to estimate the
addressed systemwithmultiplicative noises and random two-
step sensor delays.The reason is that we havemade additional
efforts during the algorithm design to attenuate the effects
from the multiplicative noises and randomly occurring two-
step sensor delays.
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Figure 6: The trajectories of 𝑥
𝑘,2

and 𝑥
𝑘|𝑘,2

(Case II).

0 20 40 60 80 100

0

−50

−40

−30

−20

−10

10

20

30

40

50

k/time step

Figure 7: log(MSE1) (Case II).

5. Conclusion

The problem of the optimal Kalman filtering has been inves-
tigated for a class of linear discrete stochastic systems with
multiplicative noises and random two-step sensor delays.
Three Bernoulli distributed random variables with known
conditional probabilities have been introduced to describe
the phenomena of two-step sensor delays. Based on the
innovation analysis approach and the recursive projection
formula, for both the multiplicative noises and the random
two-step sensor delays, a new optimal Kalman filtering
has been proposed for the addressed linear stochastic sys-
tem. Further research topics include the extension of the
developed optimal filtering strategy to the prevalent event-
triggered case [35], more networked induced phenomena as
in [36], and the random delays modeled by theMarkov chain
[37]. Moreover, it would be interesting and important to deal
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Figure 8: log(MSE2) (Case II).

with the stability analysis issue for the proposed filtering
algorithm.
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