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A hardware-efficient adaptive algorithm for frequency offset and phase
noise mitigation in coherent optical quadrature amplitude modulation
systems is presented and analysed. Hardware efficiency for the mitiga-
tion of imperfections is achieved by computing directly the complex
exponential, thus avoiding a CORDIC processor in the phase recovery
loop. The design includes a square-root- and trigonometry-free update.
Simulation results substantiate the theoretical findings.
Problem formulation: Consider an equalised and time-synchronised
coherent optical quadrature amplitude modulation (CO-QAM) system.
This Letter focuses on mitigation of laser phase noise (PN) and fre-
quency offset (FO). Let

yk = xk exp (i(uk + kV))+ wk (1)

denote the baud-rate samples of the output of the matched filter at the
receiver, where i = ����−1

√
, k is the discrete index denoting the time kT,

T is the symbol period, θk denotes the PN, xk is an independent and
identically distributed (i.i.d.) sequence, Ω = 2πTΔf represents normal-
ised FO (where Δf is the frequency difference between the transmitter
laser and the local oscillator (LO)), and wk is a symmetric i.i.d. zero-
mean Gaussian additive noise with independent real and imaginary
parts. The PN, θk, follows a random walk model

uk = uk−1 + qk (2)

where qk is a zero-mean Gaussian distributed i.i.d. sequence with variance
s2
q = 2pTDv, andΔv is the combined linewidthsof the transmitter laser and

the LO [1]. Let ûk be an estimate of θk available at the receiver, then an esti-
mate of the signal xk is given by zk = yk exp (− îuk ). One of the admissible
methods for finding ûk is to minimise the fourth-order statistics of the dero-
tated sequence {zk} with respect to ûk [2, 3]. The fourth-power cost is
J4(zk ) = E[z4k,R + z4k,I], which results in a globally convergent update

ûk+1 = ûk − m(z2k,R − z2k,I)zk,Izk,R (3)

where μ is the loop gain (LG), and zk,R and zk,I are the in-phase and quad-
rature components of zk, respectively. Once ûk is known, the traditional
way is to obtain the complex exponential exp (îuk ) using a CORDIC pro-
cessor [4], which computes the required trigonometric quantities, i.e.
cos (̂uk ) and sin (̂uk ). Note that a single-axis variant of (3) has been recently
used in the vestigial sideband [5] and QAM-based CO-OFDM systems for
adaptive PN mitigation [6].

In this Letter, we suggest minimising the cost function J4(zk) with
respect to rk := exp (îuk ) to obtain a complex-valued update as follows:

rk+1 = rk − m(z3k,R − i z3k,I)yk (4)

where zk = r∗k yk . Since rk := exp (îuk ) is readily available, it avoids trig-
onometric operations. Note that update (4) requires normalisation to unit
amplitude which may lead to needing a CORDIC processor to compute
the required square-root. To avoid this, in this Letter rk+1 is normalised
approximately by projecting it onto a unit polygon:

1rk+1 = proj(rk − m(z3k,R − iz3k,I)yk ) (5a)

proj(g) := g/( p1|<[g]| + p2|ℑ[g]|), if |<[g]| . |ℑ[g]|,
g/( p2|<[g]| + p1|ℑ[g]|), otherwise

{
(5b)

where proj( · ) is performing a low-complexity normalisation, < and ℑ
denote real and imaginary operations, respectively, and the choice of
(p1, p2) = (15/16, 15/32) ensures a good polygonal fit (see Fig. 1).

Performance analysis: Below, we first analyse a generic synchroniser

ûk+1 = ûk + mEk , where Ek = f (zk ) (6)

and then extend the results to the update (5). Let ck = uk + kV− ûk be
the residual, we obtain zk = yk exp (− îuk ) = xk exp (ick )+ ek , where ek
has similar statistical properties as that of additive noise wk.

Theorem 1: Consider any adaptive synchroniser of the form (6) and
assume filter operation in steady state with PN but no FO. Assume
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further that ak = yk exp (− îuk,opt), where ûk,opt (an optimal estimate
of θk) varies according to the random-walk model ûk+1,opt =
ûk,opt + qk , and qk (with the same statistics as defined in (2)) is inde-
pendent of {am} and {ym, û0,opt} for all m < k. Denoting
ck = ûk,opt − ûk , the following variance relation holds:

2EckEk = mEE2
k + m−1s2

q (7)

Proof: See [7] for the energy conservation-based variance relation for an
adaptive filter operating in a non-stationary environment.

Next, we mention the proposition of Moridi and Sari [8] in relation to
the statistics involved in Theorem 1. □
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Fig. 1 Polygon fit to constant modulus [9]. On xy-plain, the unit-radius
polygon is expressed as (15/16) max(|x|, |y|) + (15/32) min(|x|, |y|) = 1

Proposition 1: Consider any adaptive synchroniser of the form (6) and
assume a filter operation in steady state, it is true that EckEk = aEc2

k ,
and EE2

k = bEc2
k + g, with appropriate α, β, and γ. The steady-state

phase jitter variance (PJV) is Ec2
1 = mg/(2a− mb), and the conver-

gence speed is characterised by the time constant −log [1− μ(2α− μβ)].
By combining Theorem 1 and Proposition 1, we have an optimal LG for
the mitigation of PN, as summarised in the following theorem.
Theorem 2: Considering the variance relation (7) and Proposition 1, we
have

Ec2
1 = mg+ m−1s2

q

2a− mb
(8)

The optimal LG that tracks the PN (2) with minimum PJV

(Ec2
1)min ≈

2sqg

2a
��
g

√ − sqb
≈

��
g

√
sq

a
(9)

is given by

m∗ =
�����������������
4ga2s2

q + b2s4
q

√
− bs2

q

2ag
≈ sq��

g
√ (10)

where approximations are based on the assumption that 4ga2 ≫ b2s2
q.
Proof is simple and thus skipped. Note fromTheorem 2 that both PJV and
LG are proportional to the standard deviation of the PN. The larger the
deviation, the larger the LG to track. Next, we state a generic theorem
for the evaluation of optimal LG for the system exhibiting a fixed FO.
Theorem 3: Consider any adaptive synchroniser of the form (6) with
residual ck = �u+ kV− ûk (where �u denotes a possible fixed phase
offset), and assume a filter operation in steady state. The PJV is

Ec2
1 = mg/(2a− mb)+ (Ec1)

2, (Ec1 = V/(ma)) (11)

Eψ∞ is the tracking error and the optimal LG that minimises (11) is

m∗ =
V4b4

9a6g2
��
d3

√ − 4V2b

3a2g
��
d3

√ +
��
d

3
√

+V2b2

3a3g
(12)

where

d =
�������������������������������������������������������
2V2

ag
− 2V4b3

3a5g2
+ V6b6

27a9g3

( )2

− V4b4

9a6g2
− 4V2b

3a2g

( )3
√

+ 2V2

ag
− 2V4b3

3a5g2
+ V6b6

27a9g3
.
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To mitigate both PN and FO, we have the following theorem.
Theorem 4: Consider any adaptive synchroniser of the form (6) with
residual ck = uk + kV− ûk , and assume a filter operation in steady
state. The PJV is

Ec2
1 = mg+ m−1s2

q

2a− mb
+ V2

m2a2
(13)

minimisation of which yields an optimal LG

m∗ =
z2��
d3

√ − h��
d3

√ +
��
d

3
√

+ z (14)

where

d = z3 + 2V2

ag
− 3

2
zh+

�������������������������������������
z3 + 2V2

ag
− 3

2
zh

( )2

− z2 − h
( )3√

,

z = V2b2 − a2bs2
q

3a3g
and h = 4V2ab− a3s2

q

3a3g
.

Finally, for the update (5), we have the following result.
Proposition 2: Considering the proposed synchroniser (5), and assum-
ing |rk|≈ 1, r∗k exp (iuk ) = exp (ick ) ≈ 1+ ick , and a filter operation
in steady state, it is true that a ≈ E[6x2I x

2
R − x4R − x4I ], b ≈ E[2x8R +

70x4I x
4
R − 56x6I x

2
R], and g ≈ E[2x2I x

6
R − 2x4I x

4
R + 18s4

ex
4
R + 12s8

e + 2s2
e

x6R + 48s6
ex

2
R + 6s2

ex
2
I x

4
R + 18s4

ex
2
I x

2
R].

Proof: On the basis of the assumption |rk|≈ 1, we write (below yk = rkzk)

rk+1 = rk − m(z3k,R − i z3k,I)yk = rk (1− m(z3k,R − iz3k,I)zk )

= rk (1− m(z4k,R + z4k,I + i(z2k,R − z2k,I)zk,Rzk,I))

Taking conjugate and multiplying with exp (iθk), we get exp (ick+1) ≈
exp (ick )(1− m(z4k,R + z4k,I − i(z2k,R − z2k,I)zk,Rzk,I)). Assuming exp(iψk)≈
1 + iψk, and comparing the coefficients, we get a real-valued update
ck+1 ≈ ck (1− m(z4k,R + z4k,I))− m(z2k,I − z2k,R) zk,Rzk,I. Further assuming
m(z4k,R + z4k,I) ≪ 1, we obtain ck+1 ≈ ck− m(z2k,I − z2k,R)zk,Rzk,I. With zk,
R = xk,Rcos (ψk)− xk,Isin (ψk) + ek,R, zk,I = xk,Icos(ψk) + xk,Rsin (ψk) + ek,I,
and denoting E2

k := (z2k,I − z2k,R)zk,Rzk,I, an exact expression for E[E2
k |ck ]

is evaluated but the result is too long to be included here. Exploiting
Taylor’s series-based simplifications sin (ψ)≈ψ and cos (ψ)≈ 1− 0.5ψ2,
and statistics Ee2R = s2

e , Ee
4
R = 3s4

e , and Ee6R = 15s6
e for the quadrature

components of additive Gaussian noise ek, however, we obtain
E[E2

k |ck ] ≈ (2Ex8R + 70Ex4I x
4
R − 56Ex6I x

2
R)c

2
k +12s8

e + 2Ex2I x
6
R − 2Ex4I

x4R + 18s4
eEx

4
E + 2s2

eEx
6
R + 48s6

eEx
2
R + 6s2

eEx
2
I x

4
R + 18s4

eEx
2
I x

2
R.

Similarly, we obtain E[Ek |ck ] ≈ ckE [6x2I x
2
R − x4R − x4I ]. □

Owing to our analytical findings, we can evaluate the steady-state per-
formance of the proposed update (5) in the presence of PN or FO or
both for any given LG, QAM size, and SNR values. Since the analysis
assumes an open-eye condition, therefore, we are not considering other
optical interferences like polarisation mode and chromatic dispersions.

Simulation results: We consider a 2.5 Gbit/s, Gray-encoded, 16-QAM
signalling (i.e. two uncorrelated 625 Mbaud quaternary data streams)
under four different simulation scenarios as depicted in the legend of
Fig. 2, compute the simulated PJV (for one of the polarisations), and
compare it with analytical PJV. We also consider differential encoding
to resolve the four-fold phase ambiguity. As the proposed update
attempts to calculate directly the complex exponential, the steady-state
value of PJV (for the given LG, μ) is estimated as

Ec2
1(m) = lim

k�1
E(uk + kV− ûk )

2

≈ 1

c

∑Nruns

j=1

∑Niter

k=1

( sin (uk,j + kV)− ℑ[rk,j])2
NrunsNiter

(15)

where c = 2
p

�p/4
−p/4 cos (t)

2 dt = (2+ p)/(2p) = 0.8183 is obtained by
exploiting the mean-value theorem and Lipschitz continuity of sin(t),
i.e. by realising the fact that E(t1− t2)

2≥ (1/c)E(sin (t1)− sin (t2))
2, for

t1, t2∈ [−π/4, π/4), and c > 0. Moreover, θk,j and rk,j, respectively,
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denote the realisation of PN and the estimated complex-exponential in
the kth iteration of the jth run, where Nruns = 500 and Niter = 5000.
Each simulation point is thus obtained as an average of Nruns runs
each having Niter iterations with independent and random realisation
of PN, additive noise, and signal points. Our analytical findings are in
close agreement with the simulation results, as seen in Fig. 2.
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Fig. 2 Plots of PJV against LG for 16-QAM signalling

Conclusion: A hardware-efficient adaptive synchroniser for CO-QAM
systems is proposed for the first time, is analysed and demonstrated to
mitigate laser PN and FO. Compared with the traditional synchroniser,
the proposed update computes the complex exponential directly without
requiring any trigonometric and square-root operations. Results for the
PJV are obtained for a wide range of LG values under different simu-
lation scenarios, where the analytically obtained optimal LGs are
found to be in close agreement with the simulated ones. Our proposed
technique is proved as a substitute for the traditionally used ones.
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