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Multimodulus algorithms (MMA) based adaptive blind equalizers mitigate inter-symbol interference 
and recover carrier-phase in communication systems by minimizing dispersion in the in-phase and 
quadrature components of the received signal using the respective components of the equalized 
sequence in a decoupled manner. These equalizers are mostly incorporated in bandwidth-efficient digital 
receivers which rely on quadrature amplitude modulation (QAM) signaling. The nonlinearities in the 
update equations of these equalizers tend to lead to difficulties in the study of their steady-state 
performance. This paper presents originally the steady-state excess mean-square-error (EMSE) analysis 
of different members of multimodulus equalizers MMAp–q in a non-stationary environment using 
energy conservation arguments, and thus bypassing the need for working directly with the weight error 
covariance matrix. In doing so, the exact and approximate expressions for the steady-state mean-square-
error of several MMA based blind equalization algorithms are derived, including MMA2–2, MMA2–1, 
MMA1–2, and MMA1–1. The accuracy of the derived analytical results is validated using Monte–Carlo
experiments and found to be in close agreement.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Blind equalizers mitigate different types of interferences such 
as inter-symbol interference (ISI), frequency selective fading, etc., 
caused by non-ideal transformations performed by the dispersive 
channels in a communication system. A blind adaptive equalizer 
attempts to compensate for the distortions of the channel by pro-
cessing the received signals and reconstructing the transmitted sig-
nal up to some indeterminacies by the use of linear or nonlinear 
filters without any knowledge of the channel impulse response and 
without direct access to the transmitted sequence itself. The basic 
idea behind an adaptive blind equalizer is to minimize or maxi-
mize some admissible blind objective or cost function through the 
choice of filter coefficients based on the equalizer output [1–3].
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The performance of an adaptive filter can be evaluated using 
transient and steady-state analyses. The former provides informa-
tion about the stability and the convergence rate of an adaptive 
filter, whereas the latter provides information about the mean-
square-error of the filter once it reaches steady state. In the steady-
state analysis of adaptive filters, one of the properties to be con-
sidered is their ability to track changes/variations in the signal 
statistics of the received signal. This property is of significant im-
portance, particularly in mobile communications systems and ap-
plications like acoustic echo cancellation, etc.

Blind adaptive filters (or equalizers) are based on recursive al-
gorithms that allow the filter to adapt and track (slow) variations 
in input statistics. Such adaptive filters start from certain initial 
conditions without any prior knowledge about the input signal 
statistics, then the filter coefficients are updated based on the cho-
sen adaptive algorithms and the sequence of the sampled data 
values. In stationary environments, adaptive filters converge to op-
timum Wiener solution [4–13]. However, in non-stationary envi-
ronments, the optimum Wiener solution takes time-varying form 
that results in variation of saddle point in error performance sur-
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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face and consequently affecting the performance of filters, thus, 
tracking the variations in underlying signal statistics is consid-
ered to be a useful and important property for adaptive filters. 
These variations in underlying signal statistics and consequently 
saddle point can be tracked by using tracking performance analysis. 
The performance metric to be considered for tracking performance 
of an adaptive filter is the steady-state excess mean-square-error 
(EMSE). The EMSE can be defined as the difference between the 
mean-square-error (MSE) of the filter in steady-state and its mini-
mum value. The smaller the EMSE of an adaptive filter, the better 
it is [14]. If filter parameters (like step-size) are chosen correctly, 
the filter can track variations in underlying signal statistics. How-
ever, tracking fast variations might prove to be a challenging task 
or at times impossible to perform [14].

The widely adopted adaptive blind equalization algorithm is 
the so-called Constant Modulus Algorithm (CMA2–2) [2,15–17]. For 
quadrature amplitude modulation (QAM) signaling, however, a tai-
lored version of CMA2–2, commonly known as Multimodulus Al-
gorithm (MMA2–2) is considered more suitable. The MMA2–2 is 
capable of jointly achieving blind equalization and carrier phase 
recovery, whereas the CMA2–2 requires a separate phase-lock loop 
for achieving carrier phase recovery. The family of MMA, MMAp–q, 
is associated with the minimization of the dispersion-directed 
cost-function with two degrees of freedom. By selecting appro-
priate values of p and q, the generic split cost-function leads to 
the respective cost-functions of several existing blind equalization 
algorithms [18–21]. Interested readers are referred to [22] for de-
tailed discussion on MMAp–q. The update expressions of these 
algorithms are inherently nonlinear in nature due to the presence 
of nonlinear error-functions [20,23–27].

Algorithms like CMA2–2/MMA2–2 have recently been employed 
in optical systems for polarization mode demultiplexing and also 
to mitigate the effects of other types of interferences like chro-
matic and polarization mode dispersions in optical systems. Since 
2008 [28], CMA2–2 and its variants have become the most exper-
imented algorithms for blind polarization demultiplexing [29–36]. 
In [37], authors have compared CMA2–2 with an independent 
component analysis (ICA) based algorithm to demultiplex the 
polarization adaptively. Recently in [38–43], authors have used 
MMA2–2 and its variants as a joint adaptive solution for blind de-
multiplexing and carrier phase recovery in coherent optical system. 
Afterwards, βMMA (which is an optimized version of MMA2–1) 
[44] has been employed in coherent optical receiver to demulti-
plex polarization mode signals adaptively [45].

In this paper, the approach that has been adopted for steady-
state tracking analysis of multimodulus equalizers exploits the 
study of energy propagation through each iteration of an adaptive 
filter using a feedback structure (which consists of a lossless feed-
forward block and a feedback path), and it relies on energy con-
servation arguments [14]. The convenience of this approach is that 
it allows us to avoid working with nonlinear update equations and 
thus bypasses the need for working directly with the weight error 
covariance matrix. In particular, using the fundamental variance 
relation arguments, we derive expressions for steady-state EMSE 
of MMA2–2, MMA2–1, MMA1–2 and MMA1–1 under the assump-
tion that the quadrature components of the successfully equalized 
signal are Gaussian distributed when conditioned on true signal al-
phabets. Our objective is not to study the conditions under which 
an algorithm will tend to converge successfully, rather to evaluate 
its expected steady-state performance once it has converged suc-
cessfully.

1.1. Literature review

The nonlinearity of most of the adaptive equalizers, includ-
ing CMA2–2 and MMA2–2, makes the steady-state analysis and 
tracking performance a difficult task to perform. As a result, only 
a handful of results is available in the literature concerning the 
steady-state performance of adaptive equalizers. A few results are 
available on EMSE analysis of CMA2–2 like Fijalkow et al. [46]
employed ingenious use of Lyapunov stability and averaging anal-
ysis, Shynk et al. [47] used Gaussian regression vector assumption, 
and some exploited the variance relation theorem [48,49] to eval-
uate the same. Steady-state analyses of adaptive filters have gained 
interest due to their ease in analysis. Recently, Abrar et al. [50] per-
formed the EMSE analysis of CMA2–2 and βCMA [51] by assuming 
that the modulus of equalized signals are Rician distributed in 
the steady-state. In a recent work [52], we have performed the 
EMSE analysis of MMA2–2 and βMMA [44] by assuming that the 
real and imaginary parts of equalized signals are Gaussian dis-
tributed in the steady-state. Moreover, the approach of [14] has 
been employed to study the steady-state performance of a num-
ber of adaptive blind equalization algorithms e.g., the so-called 
hybrid algorithm [53], the square contour algorithm [54], the im-
proved square contour algorithm [55], and the varying-modulus 
algorithms [56].

1.2. Notation

Unless otherwise mentioned, scalars are represented by italic 
letters (e.g., K ). Lower-case boldface letters are used to denote 
vectors and upper-case boldface letters are associated with matri-
ces, e.g., w and R , respectively. In addition, the symbol ⊗ and 
operators (·)∗ , (·)T and (·)H respectively represents the convo-
lution operation, complex conjugate operator, transpose operator 
and Hermitian (conjugate transpose) operator. The operator ‖ · ‖
when applied to a vector gives the Euclidean norm of the vec-
tor, whereas, the operator | · | gives the absolute vector. Further, 
E, �[·] and I denotes the expectation operator, the real part of 
the complex entity, and identity matrix of appropriate dimen-
sions, respectively. The operator Tr(·) gives the trace of the ma-
trix.

1.3. Paper organization

The paper is organized as follows: In Section 2, we describe 
the mathematical model for the system. Section 3 provides a brief 
introduction of different members of MMA family that we aim 
to discuss here. Section 4 introduces the non-stationary environ-
ment and the framework for EMSE analyses. Section 5 presents 
the analytical expressions evaluated for steady-state tracking per-
formance analysis for MMA2–2, MMA2–1, MMA1–2 and MMA1–1
equalizers. Section 6 compares the proposed approach with ex-
isting state-of-the-art methods. Section 7 provides a number of 
computer simulations on steady-state tracking performance analy-
sis of the algorithms considering different scenarios: for equalized 
zero-forcing solution, equalizing a time-varying channel, studying 
the effect of filter-length on EMSE on a time-invariant channel, 
and adaptive optical demultiplexing in a coherent optical system. 
In addition, it also compares the theoretical results predicted by 
our expressions with the simulated values. Finally, Section 8 draws 
conclusions.

2. System model

Fig. 1 depicts a typical baseband communication system. 
Consider that the channel response is given by a K -tap vector 
hn = [hn,0, hn,1, · · · , hn,K−1], then the full rank (N + K − 1) × N
channel convolution matrix H is given by following Toeplitz
matrix
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Fig. 1. A typical baseband communication system.
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(1)

The received signal xn is the convolution of transmitted se-
quence {an} = [an, an−1, · · · , an−K+1]T and channel impulse re-
sponse hn as given by xn = hT

n an; the sequence {an} is indepen-
dent and identically distributed (i.i.d.), and takes values of equally 
likely square-QAM symbols. The vector xn is fed to the equalizer 
to combat the interference introduced by the propagation channel 
and estimate delayed version of the transmitted sequence {an−δ}, 
where δ denotes delay parameter.

Let wn = [wn,0, wn,1, · · · , wn,N−1]T be the impulse response of 
equalizer and xn = [xn, xn−1, · · · , xn−N+1]T be the vector of chan-
nel observations (the regressor vector) with input covariance ma-
trix R = ExnxH

n , where N is the number of equalizer taps. The 
output of equalizer is the convolution of regression vector and 
equalizer impulse response is given as yn = w H

n−1xn . Let tn =
hn ⊗ w∗

n−1 be the overall channel-equalizer impulse response. Us-
ing (1), we obtain tn = hn ⊗ w∗

n−1 = Hw∗
n−1. Under successful 

convergence, we have tn = e is ideally single-spike where e =
[0, · · · , 0, 1, 0, · · · , 0]T .

A generic stochastic gradient-based adaptive equalizer for 
which the updating algorithm is given as [14]

wn = wn−1 + μϕ(yn)
∗xn (2)

where μ is a small positive step-size, governing the speed of con-
vergence and the level of steady-state equalizer performance, and 
ϕ(yn) is complex-valued error function. For multimodulus equal-
izers, the error function is non-analytic in nature, i.e., it is a de-
coupled function of the quadrature components of deconvolved 
sequence yn , which is expressed as

ϕ(yn) = ψ(yR,n) + jψ(yI,n), (3)

so that the real and imaginary parts of ϕ(yn) are obtained from 
the real yR,n and imaginary parts yI,n of yn , respectively.

3. The multimodulus equalizers

The Multimodulus Algorithm (MMA) is considered more suitable 
for QAM signaling. A generalized dispersion-directed (split) cost-
function of generic MMAp–q equalizers is given as follows [22]:

J MMAp–q = E
∣∣|yR,n|p − R p

R

∣∣q + E
∣∣|yI,n|p − R p

I

∣∣q (4)

where p and q are positive integers, and R R and R I are disper-
sion constants chosen in accordance with the source statistics in 
order to guarantee that the global minima of J MMAp–q occurs at 
zero-forcing solutions. The cost function defined in (4) can be con-
sidered as a generalization of Wesolowski’s cost-function [23] with 
two degrees of freedom or the split version of Larimore and Treich-
ler (CM) cost-function [57]. The corresponding stochastic gradient-
based adaptive algorithm is [22]

wn = wn−1 + μ
[∣∣|yp

R,n| − R p
R

∣∣q−2|yp−2
R,n |

(
R p

R − |yp
R,n|
)

yR,n

+ j
∣∣|yp

I,n| − R p
I

∣∣q−2|yp−2
I,n |

(
R p

I − |yp
I,n|
)

yI,n

]∗
xn (5)

A multitude of algorithms can be obtained for different choices 
of p and q, providing a possible flexibility in the design of blind 
equalizers. In the sequel, the algorithm defined by recursion (5) is 
referred as MMAp–q and for the sake of simplicity, we will use 
subscript L to denote either R or I . Expression (5) generalizes a 
number of existing blind adaptive equalization algorithms. Among 
them, these are the following:

1. For p = q = 2, (4) reduces to following split cost function 
which was proposed independently by Wesolowski [19], Oh 
and Chin [20] and Yang et al. [24]:

J MMA2–2 = min
w

{
E
(

y2
R,n − R2

R

)2 + E
(

y2
I,n − R2

I

)2
}

(6)

where R2
L = Ea4

L/Ea2
L . The tap weight vector of MMA2–2 is up-

dated according to

wn = wn−1 + μ
[
(R2

R − y2
R,n)yR,n + j(R2

I − y2
I,n)yI,n

]∗
xn

(7)

2. For p = 2 and q = 1, (4) results in MMA2–1 equalization algo-
rithm that employs the following cost function1

J MMA2–1 = min
w

{
E
∣∣∣y2

R,n − R2
R

∣∣∣+ E
∣∣∣y2

I,n − R2
I

∣∣∣} (8)

The tap weight vector of MMA2–1 is updated to minimize (8)
using a gradient-descent adjustment algorithm according to

wn = wn−1 + μ
[
sgn
(

R2
R − y2

R,n

)
yR,n

+ j sgn
(

R2
I − y2

I,n

)
yI,n
]∗

xn (9)

3. For p = 1, q = 2, (4) reduces to an equivalent form of 
Benveniste–Goursat cost–function [18]. We denote the result-
ing algorithm as MMA1–2, and ultimately (4) results in

J MMA1–2 = min
w

{
E
(|yR,n| − R R

)2 + E
(|yI,n| − R I

)2} (10)

where R L = Ea2
L/E|aL |. The tap weight vector of MMA1–2 is 

updated to minimize (10) using a gradient-descent adjustment 
algorithm according to

wn = wn−1 + μ
[(

R R sgn(yR,n) − yR,n
)

+ j
(

R I sgn (yI,n) − yI,n
)]∗

xn (11)

4. For p = q = 1, (4) reduces to an equivalent form of the cost-
function independently proposed by Weerackody et al. in 1991 
[58] and Im et al. in 2001 [21]. We denote the resulting algo-
rithm as MMA1–1 and its cost function is given as follows2:

1 In MMA2–1, the dispersion constant RL is obtained as RL = 2�z� − 1, where 
�z� is the smallest positive integer greater than or equal to z [22]. The parameter 
z is given by z = (z1/12) + (1/z1) where z1 is given as 3

√
108z2 + 12

√
81z2

2 − 12, 
z2 = 0.5

√
M(M − 1) and M denotes the size of constellation. It gives RL = 3, 7, and 

13 for 16-, 64-, and 256-QAM, respectively.
2 The dispersion constant RL for MMA1–1 is given as RL = 2�z� − 1 [22]. For 

M-point constellation we have z = √
M/8 which gives RL = 3, 5, and 11 for 16-, 

64-, and 256-QAM, respectively.
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J MMA1–1 = min
w

{
E
∣∣|yR,n| − R R

∣∣+ E
∣∣|yI,n| − R I

∣∣} (12)

The tap weight vector of MMA1–1 is updated to minimize (12)
using a gradient-descent adjustment algorithm according to

wn = wn−1 + μ
[
sgn
(

R R sgn(yR,n) − yR,n
)

+ j sgn
(

R I sgn(yI,n) − yI,n
)]∗

xn (13)

4. Non-stationary environment and energy conservation relation

We consider a non-stationary system model in which the vari-
ations in the Wiener solution, wo , follow usually a first-order ran-
dom walk model [14]:

wo
n = wo

n−1 + qn (14)

where the random vector qn is an i.i.d. zero-mean random 
vector with positive definite covariance matrix given as Q =
EqnqH

n = σ 2
q I . We assume that qn is independent of both {am} and 

{xm, wo−1} for all m < n [14]. Using the time-dependent Wiener 
solution, the desired data an can be expressed as

an = (wo
n−1)

H xn + ϑn, (15)

where ϑn is the measurement or gradient noise and is uncorre-
lated with xn , i.e., Eϑ∗

n xn = 0 [59]. Defining the weight error vector 
w̃n as w̃n := wo

n − wn , (2), for a non-stationary environment is 
expressed as

w̃n = w̃n−1 − μϕ(yn)∗xn + qn (16)

Defining the so-called a priori and a posteriori estimation errors 
as ea,n := w̃ H

n−1xn and ep,n := (w̃n − qn)H xn , respectively. We can 
rewrite (16) in terms of the error measures {w̃n, w̃n−1, ea,n, ep,n}
alone. For this purpose, we note that if we multiply (16) by xn

from the right, we find that the a priori and a posteriori estimation 
errors {ea,n, ep,n} are related via

ea,n = ep,n + μ‖xn‖2ϕ(yn) (17)

Relation (17) reveals that ea,n depends on channel variation, adap-
tion, and gradient noise. Thus, the steady-state EMSE and the 
tracking performance of an adaptive equalizer can be quantified by 
the energy of ea,n . From (17), we can associate the error-function 
of an equalizer with the a priori and the a posteriori estimation er-
rors as follows:

ϕ(yn) = ea,n − ep,n

μ‖xn‖2
(18)

Substituting (18) in (16) and rearranging the terms, we obtain the 
energy conservation relation

‖w̃n‖2 + |ea,n|2
‖xn‖2

= ‖w̃n−1‖2 + |ep,n|2
‖xn‖2

(19)

It is important to note that (19) holds for any adaptive algorithm. 
Fig. 2 represents the physical interpretation of (19) which links the 
energies of the weight error vector as well as the a priori and the a 
posteriori estimation errors by stating that mapping from the vari-
ables 

{
w̃n−1, ep,n/‖xn‖} to the variables 

{
w̃n, ea,n/‖xn‖} is energy 

preserving. The relation (19) characterizes the energy preserving 
property of the feed-forward path, whereas the relation (17) char-
acterizes the feedback path. The function M denotes the mapping 
between the two variables and z−1 denotes the unit delay opera-
tor. Substituting the expression of ep,n from (17) into (19), we get 
the fundamental variance relation theorem.
Fig. 2. Lossless mapping and feedback loop.

Theorem 1 (Variance relation). (See [14].) Consider any adaptive fil-
ter of the form (2), and assume filter operation in steady-state. Assume 
further that an = (wo

n−1)
H xn + ϑn, where wo

n−1 varies according to 
the random-walk model (14), where qn is a zero-mean i.i.d. sequence 
with covariance matrix Q . Moreover, qn is independent of {am} and 
{xm, wo−1} for all m < n. With yn = an − ea,n, it is true that

2E� [e∗
a,nϕ(yn)

]= μTr(R)E|ϕ(yn)|2 + μ−1Tr( Q ) (T1.1)

Expression (T1.1) can be solved for steady-state EMSE, which is 
defined as

EMSE � lim
n→∞ E|ea,n|2 (20)

The procedure of evaluating EMSE using (T1.1) avoids the need for 
explicit evaluation of E‖w̃n‖2 or its steady-state value E‖w̃∞‖2

which can be a burden especially for adaptive schemes with non-
linear update equations. In the sequel, in addition to the variance 
relation, the following justified assumptions are used:

A1) In steady-state the a priori estimation error ea,n is independent 
of both the transmitted sequence {an} and the regressor vector 
xn [14].

A2) The number of filter taps is large enough so that by virtue of 
the central limit theorem, ea,n is zero-mean complex valued 
Gaussian [59,60].

A3) The optimum filter achieves perfect equalization (zero-forcing 
solution) an ≈ (wo

n−1)
H xn; however, due to channel variation 

and gradient noise, the equalizer weight vector is not equal to 
wo

n even in steady-state [61]. Additionally, no additive noise is 
assumed in the system (see [48,49,62–67]).

Assumption A1 is the orthogonality condition required for a suc-
cessful convergence. Assumption A2, the Gaussianity of a priori
estimation error, has appeared in a number of recent publications. 
For example, Bellini [68] discussed that the convolutional noise 
(which bears similar mathematical definition as that of a priori
estimation error) may be considered as zero-mean Gaussian. More-
over, [69] discussed that the a priori estimation error (for a long 
equalizer) may be modeled as a zero-mean Gaussian random vari-
able. It has been shown that the steady-state a priori estimation 
error is zero-mean Gaussian, even for the case where the measure-
ment noise is taken to be uniformly distributed. The assumption
A3 is based on the understanding that CMA2–2 and similarly its 
multimodulus variants diverge on infinite time horizon when noise 
is unbounded. Interested readers may refer to [70] for a detailed 
discussion on this issue. Note that the (total) mean square error, 
MSE of a non-diverging equalizer in the presence of additive noise, 
however, can always be given as MSE = σ 2

ϑ + EMSE, where σ 2
ϑ is 

the variance of modeling error/measurement noise. The degree of 
non-stationarity (DN) of the data is defined as DN �

√
Tr(R Q )/σ 2

ϑ

[14]. DN > 1 means that the statistical variations in the optimal 
weight vector are too fast for the filter to track them. However, if 
DN � 1, then the filter would generally be able to track the varia-
tions in weight vector [14].
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Here onwards, for the sake of notational simplicity, we use ζ :=
EMSE, ea := ea,n , y := yn , a := an , ϕ := ϕ(yn) and Pa = E|a|2 =
E(a2

R + a2
I ). Also, the acronyms LHS and RHS are used to denote 

the left-hand side and the right-hand side, respectively.

5. Steady-state EMSE analysis

We now apply the fundamental variance relation to differ-
ent MMA adaptive algorithms to obtain analytical expressions for 
steady-state EMSE by evaluating the energy of error-function as 
well as its correlation with a priori estimation error. Due to space 
limitations, we omit some trivial details and only highlight the 
main steps in the arguments.

5.1. The EMSE of MMA2–2 equalizer

Using the fundamental variance relation (T1.1), we have the fol-
lowing theorem for the tracking EMSE of MMA2–2 equalizer:

Theorem 2 (Tracking EMSE of MMA2–2). Consider the MMA2–2 recur-
sion (7) with complex-valued data. Consider the non-stationary model 
(14) with a sufficiently small degree of non-stationarity. Then its EMSE 
can be approximated by the following expression for a sufficiently small 
step-size μ:

ζ MMA2–2(μ) = μc1 + 1
μ Tr( Q )

c2 − μc3
, (T2.1)

μMMA2–2
opt =

√
Tr( Q )c1c2

2 + Tr( Q )2c2
3 − Tr( Q )c3

c1c2

with ζ MMA2–2
min = 2Tr( Q )

μoptc2
(T2.2)

where, c1 := 2Tr(R)
(
Ea6

R − 2R2
R Ea4

R + R4
R Ea2

R

)
, c2 := 2(3Ea2

R − R2
R), 

and c3 := Tr(R)
(
3Ea4

R + R4
R

)
. Substituting the expression for μopt into 

the expression of EMSE we find the corresponding optimal EMSE.

Proof. In [52], we obtained the following polynomial for EMSE of 
MMA2–2:

15
4 ζ 3μTr(R) + ζ 2

(
μTr(R)

(
45
2 Ea2

R − 3R2
R

)
− 3

)

− ζ

(
6Ea2

R − 2R2
R − μTr(R)

(
3Ea4

R + R4
R

))

+ μTr(R)

(
2Ea6

R + 2R4
R Ea2

R − 4R2
R Ea4

R

)
+ μ−1Tr( Q ) = 0 (21)

In order to evaluate some closed-form expressions of ζ MMA2–2, cer-
tain approximations have to be made, e.g., by neglecting the cubic 
and quadratic terms in (21), we obtain

ζ

(
μTr(R)(3Ea4

R + R4
R) − 6Ea2

R + 2R2
R

)

+ μTr(R)

(
2Ea6

R + 2R4
R Ea2

R − 4R2
R Ea4

R

)
+ μ−1Tr( Q ) = 0 (22)

which yields the following closed-form solution:

ζ MMA2–2 = μ2Tr(R)
(
2Ea6

R + 2R4
R Ea2

R − 4R2
R Ea4

R

)+ Tr( Q )

μ(6Ea2
R − 2R2

R) − μ2Tr(R)(3Ea4
R + R4

R)
(23)

�

5.2. The EMSE of MMA2–1 equalizer

Under similar conditions and assumptions, as mentioned in Sec-
tion 4, we have following theorem for MMA2–1:

Theorem 3 (Tracking EMSE of MMA2–1). Consider the MMA2–1 recur-
sion (9) with complex-valued data. Consider the non-stationary model 
(14) with a sufficiently small degree of non-stationarity. Then its EMSE 
can be approximated by the following expression for a sufficiently small 
step-size μ:

ζ MMA2–1(μ) =
⎛
⎜⎝−c3 +

√
c2

3 + 4(c1− c2μ)(Pac2μ + 1
μ Tr( Q ))

2(c1 − c2μ)

⎞
⎟⎠

2

,

(T3.1)

μMMA2–1
opt =

√
Tr( Q )

Tr(R)Pa
with ζ MMA2–1

min = ζ MMA2–1
(
μMMA2–1

opt

)
,

(T3.2)

where c1 := 2( 2√
M

− 1), c2 := Tr(R), c3 := 8R R√
π M

, and M is the size of 
square-QAM. Substituting the expression for μopt into the expression of 
EMSE we find the corresponding optimal EMSE.

Proof. For MMA2–1 equalizer, the error-function is given as ϕ =
f R yR + j f I yI = ϕR + jϕI . For simplicity we can represent the real 
and imaginary parts of the error-function as ϕL , where ϕL is equal 
to yL and −yL for |yL,n| < R L and |yL,n| > R L , respectively. We 
obtain E|ϕ|2 for MMA2–1 as follows:

E|ϕ|2 = E
[

y2
R {|yR |<R R } + y2

R {|yR |>R R } + y2
I {|yI |<R I } + y2

R {|yI |>R I }
]

= E
[

y2
R + y2

I

]
= Ey2

R + Ey2
I (24)

Substituting Ey2
L , it follows immediately that E|ϕ|2 = Pa + ζ . Thus 

the RHS of (T1.1) for MMA2–1 is thus evaluated as follows:

RHS = μTr(R) (Pa + ζ ) + μ−1Tr( Q ) (25)

Next substituting the a priori error in (T1.1), and computing the 
correlation between equalizer error-function and conjugate of a pri-
ori error, the LHS of (T1.1) for MMA2–1 is evaluated as:

LHS = 2E� [e∗
aϕ
]

= 2E
[
aR f R yR − f R y2

R + aI f I yI − f I y2
I

]
= 2E

[(
aR yR − y2

R

)
{|yR |<R R } −

(
aR yR − y2

R

)
{|yR |>R R }

+
(

aI yI − y2
I

)
{|yI |<R I }

−
(

aI yI − y2
I

)
{|yI |>R I }

]
= 2E

(
aR yR − y2

R

)
− 8E

(
aR yR − y2

R

)
{yR>R R }

+ 2E
(

aI yI − y2
I

)
− 8E

(
aI yI − y2

I

)
{yI >R I }

(26)

Exploiting assumption A2, we obtain

LHS = −2ζ + 8E

[
R R

2

√
ζ

π
exp

(
− (aR − R R)2

ζ

)

+ ζ

4

(
1 + erf

(
aR − R R√

ζ

))]

+ 8E

[
R I

2

√
ζ

π
exp

(
− (aI − R I)

2

ζ

)

+ ζ
(

1 + erf

(
aI − R I√

))]
(27)
4 ζ
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where erf(·), the Gauss error function, is defined as erf(x) =
2√
π

∫ x
0 exp

(−t2
)

dt . Owing to four quadrant symmetry of QAM 
constellation, the moments evaluated for in-phase component are 
same as those for quadrature component. Simplifying and combin-
ing (25) and (27), we obtain

−2ζ + A − μTr(R) (Pa + ζ ) − μ−1Tr( Q ) = 0 (28)

where A := 16E
[ R R

2

√
ζ
π exp

( − (aR −R R )2

ζ

) + ζ
4 (1 + erf

( aR −R R√
ζ

)
)
]
. 

Since the argument inside the exponent function, (aR − R R)2, is al-
ways positive, we have exp(·) = 0 for aR 
= R R and ζ � 1. However, 
when aR = R R , we have exp(·) = 1 with probability Pr[aR = R R ]. 
Similarly, under the assumption ζ � 1, erf(·) is equal to −1, and 0, 
respectively, for the cases (aR < R R ), and (aR = R R ). These consid-
erations yield

A ≈
⎧⎨
⎩

0, if aR 
= R R(
8R R

√
ζ
π + 4ζ

)
Pr[aR = R R ], if aR = R R

(29)

Since an M-point constellation is being considered, the probability 
Pr[aR = R R ] is equal to 1/

√
M . Denoting c1 := 2( 2√

M
− 1), c2 :=

Tr(R), c3 := 8R R√
π M

, and c4 := Tr(R)Pa , and by combining (28)–(29), 
we obtain

(c1 − c2μ)ζ + c3
√

ζ − (c4μ + 1
μ Tr( Q )) = 0. (30)

Solving it by quadratic formula we obtain (T3.1). Further, substi-
tuting ζ = v2 and taking derivative with respect to μ, we obtain 
(2vc1 + c3)

dv
dμ − v2c2 − c4 +μ−2Tr( Q ) = 0. For the optimum value 

of μ, we have dv
dμ = 0; this gives

μMMA2–1
opt =

√
Tr( Q )

c4 + c2ζ
MMA2–1
min

(31)

Since c2ζ
MMA2–1
min � c4, thus ignoring it we obtain (T3.2). �

5.3. The EMSE of MMA1–2 equalizer

Under similar conditions and assumptions, as mentioned in Sec-
tion 4, we have following theorem for MMA1–2:

Theorem 4 (Tracking EMSE of MMA1–2). Consider the MMA1–2 recur-
sion (11) with complex-valued data. Consider the non-stationary model 
(14) with a sufficiently small degree of non-stationarity. Then its EMSE 
can be approximated by the following expression for a sufficiently small 
step-size μ:

ζ MMA1–2(μ) = μc1 + 1
μ Tr( Q )

2 − μTr(R)
, (T4.1)

μMMA1–2
opt =

√
Tr( Q )

c1
with ζ MMA1–2

min = ζ MMA1–2
(
μMMA1–2

opt

)
,

(T4.2)

where c1 := 2 Tr(R) E(R R − |aR |)2 . Substituting the expression for μopt
into the expression of EMSE we find the corresponding optimal EMSE.

Proof. For MMA1–2 equalizer, we have ϕ = ϕR + jϕI , where ϕL

is equal to (R L − yL) and (−R L − yL) for yL > 0 and yL < 0, re-
spectively. Now, substituting the error-function in (T1.1) and then 
plugging in the required moments, it follows immediately that
E|ϕ|2 = E
[
(R R sgn(yR) − yR)2 + (R I sgn(yI ) − yI )

2
]

= E
[

R2
R + y2

R − 2R R |yR | + R2
I + y2

I − 2R I |yI |
]

= R2
R + Ey2

R − 2R R E|yR | + R2
I + Ey2

I − 2R I E|yI |

= R2
R + Pa + ζ − 2R R E

[
exp

(
−a2

R

ζ

)√
ζ

π
+ aR erf

(
aR√

ζ

)]

+ R2
I − 2R I E

[
exp

(
−a2

I

ζ

)√
ζ

π
+ aI erf

(
aI√
ζ

)]
(32)

Using (32), the RHS for MMA1–2 equalizer becomes:

RHS = μTr(R)

(
R2

R + Pa + ζ

− 2R R E

[
exp

(
−a2

R

ζ

)√
ζ

π
+ aR erf

(
aR√

ζ

)]

+ R2
I − 2R I E

[
exp

(
−a2

I

ζ

)√
ζ

π
+ aI erf

(
aI√
ζ

)])

+ μ−1Tr( Q ) (33)

The LHS of (T1.1) for MMA1–2 can be evaluated as:

LHS = 2E� [e∗
aϕ
]

= 2R R E (aR sgn(yR)) − 2E (aR yR) − 2R R E|yR | + 2Ey2
R

+ 2R I E (aI sgn(yI )) − 2E (aI yI ) − 2R I E|yI | + 2Ey2
I (34)

Exploiting assumption A2 and after some straightforward mathe-
matical manipulation, it follows that

LHS = 2ζ − 2R R E

[
exp

(
−a2

R

ζ

)√
ζ

2

]

− 2R I E

[
exp

(
−a2

I

ζ

)√
ζ

2

]
(35)

Owing to four quadrant symmetry of QAM constellation, the mo-
ments evaluated for in-phase component are same as those for 
quadrature component. Simplifying the equality LHS = RHS, we 
obtain

2ζ − 4R R A − μTr(R)
(

2R2
R + Pa + ζ − 4R R B

)
−μ−1Tr( Q ) = 0 (36)

where A := E[exp
(− a2

R
ζ

)√
ζ
2

]
and B := E

[
exp

(− a2
R
ζ

)√
ζ
π +aR erf

( aR√
ζ

)]
. 

Since the argument inside the exponent function, a2
R , is always 

positive, and ζ � 1, thus we have exp(·) = 0 for both (aR > 0), 
and (aR < 0). Similarly, under the assumption ζ � 1, erf(·) is equal 
to +1 and −1, respectively, for the cases (aR > 0), and (aR < 0). 
These considerations yield A ≈ 0 and B ≈ E|aR |. So, we can rewrite 
the equality in (36) as

2ζ − 2μTr(R)
(

ζ
2 + E(R R − |aR |)2

)
− μ−1Tr( Q ) = 0 (37)

Solving (37) for ζ , we directly obtain

ζ MMA1–2 = 2μTr(R)E(R R − |aR |)2 + μ−1Tr( Q )

2 − μTr(R)
(38)

Denoting c1 := 2Tr(R)E(R R − |aR |)2, and c2 := Tr(R) we obtain 
(T4.1). Further, substituting ζ = v2 and taking derivative with re-
spect to μ, we obtain 2v dv

dμ − v2c2 − c1 + μ−2Tr( Q ) = 0. For the 
optimum value of μ, we have dv = 0; this gives
dμ
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μMMA1–2
opt =

√
Tr( Q )

c1 + c2ζ
MMA1–2
min

(39)

We can assume that the term c2ζ MMA2–1
min is negligible relative to 

the first term c1, thus ignoring it we obtain (T4.2). �
5.4. The EMSE of MMA1–1 equalizer

Under similar conditions and assumptions, as discussed earlier, 
we have the following theorem for MMA1–1:

Theorem 5 (Tracking EMSE of MMA1–1). Consider the MMA1–1 recur-
sion (13) with complex-valued data. Consider the non-stationary model 
(14) with a sufficiently small degree of non-stationarity. Then its EMSE 
can be approximated by the following expression for a sufficiently small 
step-size μ:

ζ MMA1–1(μ) =
(

2Tr(R)μ + 1
μ Tr( Q )

(8/
√

Mπ)

)2

, (T5.1)

μMMA1–1
opt =

√
Tr( Q )

2Tr(R)
with ζ MMA1–1

min = ζ MMA1–1
(
μMMA1–1

opt

)
.

(T5.2)

Substituting the expression for μopt into the expression of EMSE we find 
the corresponding optimal EMSE.

Proof. For the MMA1–1 equalizer, we have ϕn = ϕR + jϕI , where
ϕL is equal to +1 for |yL | < R L and −1 for |yL | > R L . Now, substi-
tuting the error-function in (T1.1), the energy of the error-function 
E|ϕ|2 as follows:

E|ϕ|2 = E
[
(+1)2{|yR |<R R } + (−1)2{|yR |>R R }

+ (+1)2{|yI |<R I } + (−1)2{|yI |>R I }
]

= E
[
1{−∞<yR<∞} + 1{−∞<yI <∞}

]= 2 (40)

After the evaluation of E|ϕ|2, it immediately follows that

RHS = 2μTr(R) + μ−1Tr( Q ) (41)

Substituting the conjugate a priori estimation error e∗
a,n in (T1.1), 

we can obtain the LHS of (T1.1) for MMA1–1 equalizer as follows:

LHS = 2E� [e∗
aϕ
]

= 2E [aRϕR − yRϕR + aIϕI − yIϕI ]

= 2E (aR − yR){|yR |<R R } − 2E (aR − yR){|yR |>R R }
+ 2E (aI − yI ){|yI |<R I } − 2E (aI − yI ){|yI |>R I }

= 2E (aR − yR) − 8E (aR − yR){yR>R R }
+ 2E (aI − yI ) − 8E (aI − yI ){yI >R I } (42)

Exploiting assumption A2, we obtain

LHS = 8E

[
1√
2π

exp

(
− (aR − R R)2

ζ

)√
ζ

2

]

+ 8E

[
1√
2π

exp

(
− (aI − R I)

2

ζ

)√
ζ

2

]
(43)

Owing to four quadrant symmetry of QAM constellation, the mo-
ments evaluated for in-phase component are same as those for 
quadrature component. Simplifying and combining (41) and (43), 
we obtain
A − 2μTr(R) − μ−1Tr( Q ) = 0 (44)

where A := 16E
[ 1√

2π
exp

(− (aR −R R )2

ζ

)√
ζ
2

]
. Since the argument in-

side the exponent function, (aR − R R)2, is always positive, we have 
exp(·) = 0 for aR 
= R R and ζ � 1. However, when aR = R R , we 
have exp(·) = 1 with probability Pr[aR = R R ]. These considerations 
yield

A ≈
⎧⎨
⎩

0, if aR 
= R R(
8
√

ζ
π

)
Pr[aR = R R ], if aR = R R

(45)

Since an M-point constellation is being considered, the probability 
Pr[aR = R R ] is equal to 1/

√
M . Rewriting the equality (44) as

8

√
ζ

π M
− 2μTr(R) − μ−1Tr( Q ) = 0 (46)

Solving (46) for ζ , it follows directly that

ζ MMA1–1
min =

(√
π M

(
2μTr(R) + μ−1Tr( Q )

)
8

)2

(47)

Denoting c1 := 8√
π M

and c2 := 2Tr(R), we obtain (T5.1). Further, 
substituting ζ = v2 and taking derivative with respect to μ, we 
obtain c1

dv
dμ − c2 + μ−2Tr( Q ) = 0. For the optimum value of μ, 

we have dv
dμ = 0; solving this yields (T5.2). �

6. Comparison with existing methods

Some state of the art methods for EMSE analysis are available 
in literature, see [65,66,69]. In [66], Gouptil and Palicot developed 
a geometrical approach to steady-state analysis for Bussgang algo-
rithms, and derived a closed-form analytical expression for EMSE, 
which when extended to tracking analysis is given as

ζ ≈ μTr(R)E|ϕ|(a,a∗)|2 + μ−1Tr( Q )

2E ∂2

∂ y∂ y∗ �[e∗
aϕ]|(a,a∗)

(48)

It is important to note that this approach could be extended 
to certain algorithms which have continuous error-functions (like 
MMA2–2 and MMA1–2) in a straightforward manner to obtain ap-
proximate expressions which we have mentioned in Theorems 2
and 4. However, it becomes mathematically intractable to apply 
this approach for EMSE analysis of algorithms with discontinuous 
error-functions like MMA2–1 and MMA1–1, due to the fact that 
the required derivatives do not exit.

The EMSE expression by Gouptil and Palicot was based on 
circularity assumption for the a priori estimation error, ea , i.e., 
Ee2

a = 0. Without exploiting the circularity assumption, Lin et al. 
in [65] derived steady-state expressions utilizing Taylor series ex-
pansion. They obtained the following expressions:

ζ ≈ μTr(R)E
∣∣ϕ|(a,a∗)

∣∣2 + μ−1Tr( Q )

A1 − μTr(R)A2
, (49)

where

A1 := −2E�
(

∂ϕ

∂ y

∣∣∣∣
(a,a∗)

)
(50)

and

A2 := E

∣∣∣∣∣∂ϕ∂ y

∣∣∣∣
(a,a∗)

∣∣∣∣∣
2

+ E

∣∣∣∣∣ ∂ϕ

∂ y∗

∣∣∣∣
(a,a∗)

∣∣∣∣∣
2

+ 2E�
(
ϕ∗ ∂2ϕ

∂ y∂ y∗

∣∣∣∣
(a,a∗)

)
.

(51)
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Table 1
EMSE in a non-stationary environment for four members of MMAp–q.

MMA2–2 μTr(R)d1+μ−1Tr( Q )
d2−μTr(R)d3

, where 
d1 = Ea6

R − 2R2
R Ea4

R + R4
R Ea2

R , d2 = 6Ea2
R − 2R2

R , d3 = 3Ea4
R + R4

R

MMA2–1

(
−d1+

√
d2

1+d2
(
μTr(R)+μ−1Tr( Q )

)−2Tr( Q )(μTr(R)+Tr( Q ))

d2+4−μTr(R)

)2

where d1 = 8R R√
π M

, d2 = 8 
(

2√
M

− 1
)

MMA1–2 2μTr(R)E(R R −|aR |)2+μ−1Tr( Q )
2−μTr(R)

MMA1–1
π M

(
2μTr(R)+μ−1Tr( Q )

)2
64

Table 2
Optimum step-size in a non-stationary environment for four members of MMAp–q.

MMA2–2

√
Tr( Q )Tr(R)d1d2

2+Tr( Q )2Tr(R)2d2
3−Tr( Q )Tr(R)d3

Tr(R)d1d2
, where 

d1 = Ea6
R − 2R2

R Ea4
R + R4

R Ea2
R , d2 = 6Ea2

R − 2R2
R , d3 = 3Ea4

R + R4
R

MMA2–1
√

Tr( Q )
Tr(R)Pa

MMA1–2
√

Tr( Q )

2Tr(R)E(R R −|aR |)2

MMA1–1
√

Tr( Q )
2Tr(R)

Similar to (48), the expressions (49)–(51) involve the evalua-
tion of derivatives. In case of continuous error-functions, the EMSE 
analysis can be carried out by this approach, but is not applica-
ble to the case of discontinuous error-functions. It is important to 
note that we have originally provided the accurate and closed-form 
(under certain assumptions) expressions for steady-state EMSE for 
different multimodulus equalizers. However, the approaches pro-
posed by Gouptil and Palicot and Lin et al., only applicable for 
algorithms with continuous error-function, and therefore cannot be 
extended to algorithms with discontinuous error-functions.

In [69], Naffouri and Sayed proposed an ingenious approach for 
the evaluation of EMSE by exploiting fundamental energy conser-
vation relation and Price theorem. The proposed EMSE expression 
is given as

ζ = μTr(R)hU (ζ ) + μ−1Tr( Q )

2hG(ζ )
, (52)

where

hU (ζ ) � E|ϕ|2 (53)

and

hG(ζ ) � E�[e∗
aϕ]

E|ea|2 . (54)

The result (52)–(54) corroborate the expressions that we have 
obtained for different multimodulus equalizers.

7. Simulation results

In this section, we verify the tracking performance analyses 
for MMA2–2, MMA2–1, MMA1–2 and MMA1–1 (as summarized in
Tables 1 and 2). The experiments have been performed considering 
(i) comparison with state of the art methods, (ii) a time-varying 
channel (with a constant mean part and an autoregressive random 
part), (iii) the effect of filter-length on equalization performance, 
and (iv) equalizing an optical channel for adaptive polarization de-
multiplexing.
7.1. Experiment I: Considering zero-forcing solution

In this experiment, the elements of perturbation vector qn are 
modeled as zero mean wide-sense stationary and mutually uncor-
related. The corresponding positive definite autocorrelation matrix 
of qn is obtained as Q = σ 2

q I (where σq = 10−3).3 The simulated 
EMSE have been obtained for equalizer lengths N = 7 and N = 11
for 16-QAM signals. The values of R R = R I are equal to 8.2, 3, 2.5
and 31 for MMA2–2, MMA2–1, MMA1–2 and MMA1–1 for 16-QAM
signals, respectively. Each simulated trace is obtained by perform-
ing 100 independent runs where each run is executed for 5 × 103

iterations. Note that, due to assuming an already equalized sce-
nario, we do not have to worry about the iterations required for 
successful convergence of the equalizer; thus the EMSE is com-
puted for all iterations. The Monte-Carlo simulation requires to 
add the perturbation qn directly in the weight update process. The 
weight update, in this experiment, is thus governed by

wo
n = wo

n−1 + μϕ(yn)∗xn + qn (55)

The terms containing the step-size μ and qn contribute to tracking 
and acquisition errors [14]. The rule (55) has been adopted in [14,
48–50,61].

Since the steady-state EMSE of the MMA algorithms is com-
posed of two (tracking and acquisition) errors. The tracking error 
decreases with μ and increases with the system non-stationarity 
variance Tr( Q ). The acquisition error increases with μ and the 
received signal variance Tr(R), thus, the resulting EMSE is a con-
vex downward (bowl shaped) function of step-size μ. Noticeably, 
for all simulation cases, the analytically obtained minimum EMSE
(ζ MMAp–q

min ) and the optimum step-size (μMMAp–q
opt ), are marked, re-

spectively, with markers � and ♦. Refer to Figs. 3(a) and 4(a) 
for the comparison of analytical and simulated EMSE of MMA2–2
equalizer. The legends ‘Numerical’ and ‘Closed-from’ refer to the 
solutions (21) and (T2.1), respectively. It is evident from this result 
that, for 16-QAM with smaller filter length (i.e., N = 7), the numer-
ical, the closed-form and the simulated traces conform each other 
for all values of step-sizes. However, for larger filter length (i.e., 
N = 11), traces start deviating from each other for higher values of 
EMSE.

Next, refer to Figs. 3(b) and 4(b) in which the analytical and 
simulated EMSE of MMA2–1 equalizer are compared. The legends 
‘Numerical’ and ‘Closed-from’ refer to the solutions (28) and (T3.1), 
respectively. It can be observed from the results that, for 16-QAM, 
the numerical, the closed-form and the simulated traces conform 
each other for all values of step-sizes for both filter length (N = 7
and N = 11). Figs. 3(c) and 4(c) compare the analytical and sim-
ulated EMSE of MMA1–2 equalizer. The legends ‘Numerical’ and 
‘Closed-from’ refer to the solutions (36) and (T4.1), respectively. 
It is evident from the results that both expressions (numerical 
and closed-form) are in good agreement with the simulated traces 
for 16-QAM for both filter length (N = 7 and N = 11). Similarly, 
refer to Figs. 3(d) and 4(d) which compare the analytical and sim-
ulated EMSE of MMA1–1 equalizer. The legends ‘Numerical’ and 
‘Closed-from’ refer to the solutions (44) and (T5.1), respectively. It 
is evident from this result that, for 16-QAM for both filter length 
(N = 7 and N = 11), the numerical, the closed-form and the simu-
lated traces conform each other for all values of step-sizes.

Here we observe that the numerical results deviate from 
Monte-Carlo results when the step-size is far away from the opti-

3 Note that this modeling (i.e., zero off-diagonal elements in Q ) is justified in the 
light of our analytical findings in Theorems 2, 3, 4 and 5 which imply that the EMSE
depends neither on the individual diagonal elements nor the off-diagonal elements 
of matrix Q , but rather depends on Tr( Q ). In other words, given the sum of the 
mean square fluctuations of the elements of qn , the EMSE does not depend on the 
contribution of individual elements.
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Fig. 3. EMSE traces for N = 7 and 16-QAM.

Fig. 4. EMSE traces for N = 11 and 16-QAM.
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Fig. 5. EMSE traces for four members of MMAp–q with 16-QAM signaling on channel-1. For f D T = 0.01 and unit lag, we have α = 0.999.
mum step-size. We emphasize at the fact that the EMSE expres-
sions obtained (in this work) are valid only for sufficiently small 
step-sizes. It is also important to note that there are upper bounds 
on the step-sizes above which an adaptive filter cannot provide 
any useful output. The reason why EMSE analytical trace deviates 
from the simulated ones at very small step-size is not completely 
understood at this stage.

7.2. Experiment II: Equalizing time-varying channel

We evaluate the performance analysis of the addressed equaliz-
ers in the presence of a time-varying (TV) channel. A TV chan-
nel is usually modeled such that its autocorrelation properties 
correspond to wide-sense stationary and uncorrelated scattering 
(WSSUS) (as suggested by Bello [71]). However, as reported in 
[72], a first-order (Gauss–Markov) autoregressive model is suffi-
cient enough to model a slow-varying channel, where the channel 
at index n is given as hn = hconst + cn . The channel is a complex 
Gaussian random process with a constant mean hconst (because 
of shadowing, reflections, and large scale path loss) and a time-
variant part cn , which is a first-order Markov process as given 
by cn = αcn−1 + dn where α is a constant, and the vector dn is 
a zero-mean i.i.d. circular complex Gaussian process with corre-
lation matrix D .4 The channel taps varies from symbol to sym-

4 For an AR(1) system, α = Jo(2π f D T ), which makes the autocorrelation of the 
taps modeled by cn = αcn−1 + dn equal the true autocorrelation at unit lag (where 
Jo is the zero-order Bessel function of the first kind, f D is the Doppler rate and T
is the baud duration). The parameter α determines the rate of the channel variation 
while the variances σ 2

d,i of the ith entry of dn determines the magnitude of the 
variation. So, α and σ 2

d,i determines how “fast” and how “much” the time-varying 
part cn,i of each channel tap hn,i varies with respect to the known mean of that 
tap hconst,i . The value of α can be estimated from the estimate of f D . Similarly, 
given the average energy of the ith part of cn , E|cn,i |2, the value of σd,i is evaluated 
as [72] σd,i = |hconst,i |2

√
1 − α2

/√
E|cn,i |2.
bol and are modeled as mutually uncorrelated circular complex 
Gaussian random processes. The time-varying part of the channel 
can be modeled by a pth-order autoregressive process AR(p). The 
matrix D , due to WSSUS assumption, is diagonal and each of its 
diagonal element is σ 2

d . In the present scenario, we consider σ 2
d =

1 ×10−3, α = 0.999, and hconst = [1 +0.2 j, −0.2 +0.1 j, 0.1 −0.1 j]T

using a 7-tap baud-spaced equalizer with 16-QAM signaling. Refer 
to Fig. 5 for the comparison of theoretical and simulated EMSE 
of MMA2–2, MMA2–1, MMA1–2 and MMA1–1 equalizers. The leg-
end ‘Analysis’ refers to the solutions (T2.1), (T3.1), (T4.1) and (T5.1)
for MMA2–2, MMA2–1, MMA1–2 and MMA1–1 equalizers, respec-
tively. It is evident from the results that the theoretical and simu-
lated EMSE traces conform each other. Note that the factor Tr( Q )

has been replaced with Tr(D) in the evaluation of analytical EMSE. 
In the sequel, we refer to this channel as channel-1.

7.3. Experiment III: Effect of filter-length on EMSE

In the previous experiment, we considered a TV channel where 
the effect of filter-length on equalization capability has not been 
taken into consideration. It is widely known that a reasonable 
filter-length is required to equalize successfully a propagation 
channel. An insufficient filter-length introduces an additional dis-
tortion which we have not considered in Theorems 2, 3, 4, and 5. 
However, as mentioned in [3], the distortive effect of insufficient 
filter-length may easily be incorporated (in the EMSE expressions) 
as an additive term; the total EMSE, which we denote as TEMSE, is 
thus given as follows:

TEMSE = lim
n→∞ E|ea,n|2︸ ︷︷ ︸

=:ζ

+E|an|2‖Hwo∗ − e‖2︸ ︷︷ ︸
=:χ

(56)

where ζ is EMSE as we obtained in Theorems 2, 3, 4 and 5, and 
χ is the additional squared error contributed by the (insufficient) 
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Fig. 6. Transient EMSE traces for MMAp–q with 16-QAM signaling on channel-2.

Fig. 7. EMSE traces considering the effect of filter-length on channel-2. (a) The optimal filter-length for MMA2–2 is found to be 7 and 9 for 9.5 × 10−5 and 4.7 × 10−5

respectively, (b) The optimal filter-length for MMA2–1 is found to be 9 and 11 for 2.8 × 10−3 and 1.3 × 10−4, (c) The optimal filter-length for MMA1–2 is found to be 7 for 
both 6.8 × 10−4 and 3.5 × 10−4, (d) The optimal filter-length for MMA1–1 is found to be 7 and 9 for 9.5 × 10−4 and 4 × 10−4 respectively.
filter-length. The vector wo is zero-forcing solution, H is channel 
matrix, and e is overall idealistic (single-spike) channel-equalizer 
impulse response as defined in Section 2.

Note that the EMSE, ζ , is proportional to filter-length for the 
given step-size. The parameter χ on the other hand decreases 
with filter-length.5 In our simulation, the value of optimal weight 

5 The actual expression of χ (as denoted by D f in [3, Eq. 4.8.24]) contains an 
equalizer solution (as denoted by θ ) that also depends on blind equalization error-
function. However, we have observed that the true value of θ is very close to H+e
for all four addressed members of MMAp–q where (·)+ denotes pseudo-inverse. So, 
in this work, we have replaced the true expression of θ with its simplified form 
wo∗ = H+e and our simulation findings (as depicted in Fig. 7) validate that this 
simplification is reasonable.
vector, wo , is obtained as wo = pinv(H)e where pinv(·) is the 
MATLAB function for the evaluation of pseudo-inverse. The TEMSE, 
as expressed in (56), is a convex downward function of filter-
length. Evaluating TEMSE for different filter lengths can provide 
us with the optimal value of filter-length required to equalize 
the given channel and given step-size. In this simulation, we 
have considered a voice-band telephone channel hn = [−0.005 −
0.004 j, 0.009 + 0.03 j, −0.024 − 0.104 j, 0.854 + 0.52 j, −0.218 +
0.273 j, 0.049 − 0.074 j, −0.016 + 0.02 j] [73] and 16-QAM signal-
ing. The eigenvalue spread of the channel is 5.83 and the ISI intro-
duced by this channel is −8.44 dB. In the sequel, we refer to this 
channel as channel-2.

The two different values of step-size (μ) are chosen such that 
the equalizers converge to steady-state around 1500 iterations and 
3000 iterations, as depicted in Fig. 6. All simulation points were 
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obtained by executing the program 10 times (or runs) with random 
and independent generation of transmitted data. Each run was exe-
cuted for as many iterations as required for the convergence. Once 
convergence is acquired, the equalizer is run for further 5000 iter-
ations for the computation of steady-state value of EMSE. In Fig. 7, 
we depict analytical and simulated TEMSE obtained as a func-
tion of filter-length for the given step-sizes for MMA2–2, MMA2–1, 
MMA1–2 and MMA1–1. Both analytical and simulated TEMSE are 
found to be in close agreement.

7.4. Experiment IV: Adaptive polarization demultiplexing

In this experiment we consider an adaptive optical demultiplex-
ing scenario. A key part of the digital signal processing receiver 
unit is to demultiplex the received signal to recover the two or-
thogonal polarization tributaries sent from the transmitter end. 
This can be done using blind adaptive FIR filters, updated using the 
stochastic gradient algorithm (employing only the demultiplexed 
sequence) as proposed in [28]. The filters are arranged in a butter-
fly structure [74] as shown in Fig. 8 and are continuously updated. 
Note that the multiplexing phenomenon can be modeled as a Jones 
matrix. Given the azimuth rotation angle 2θ and the elevation rota-
tion angle φ, the unitary 2 × 2 (Jones) matrix R, which represents 
the baseband model of two multiplexed optical channels, is given 
by [29]

Fig. 8. Optical butterfly equalizer.
R(θ,φ) =
[

cos(θ) sin(θ)exp(− jφ)

−exp( jφ) sin(θ) cos(θ)

]
. (57)

Note that the two rows represent multiplexed channels which ro-
tate the horizontal and vertical states of polarized transmitted data 
and convert them into a new but arbitrary pair of orthogonal 
states. Suppose xn and yn are the transmitted polarization division 
multiplexed QAM (PDM-QAM) signals, using the channel model, 
the received polarized signals (which become input to the demul-
tiplexer) are[

xin
n

yin
n

]
= R

[
xn

yn

]
(58)

It has to be noted that the two input signals of the block, xin
n and 

yin
n , are a mixture of the two signals emitted along the two or-

thogonal states of polarization of light. Therefore the task of the 
adaptive equalizer is to estimate the inverse of the Jones matrix so 
as to reverse the effects induced by the channel propagation. The 
adaptive equalizer (demultiplexer) wn is an adaptive 2 × 2 matrix 
and is defined as wn = [wxx

n wxy
n ; w yx

n w yy
n
]
. The demultiplexed 

signals, xout
n and yout

n , are given by[
xout

n
yout

n

]
= w∗

n

[
xin

n

yin
n

]
=
[

(wxx
n )∗xin

n + (wxy
n )∗ yin

n

(w yx
n )∗xin

n + (w yy
n )∗ yin

n

]
(59)

Upon successful convergence of wn , xout
n and yout

n are required to 
provide estimates of xn and yn , respectively. Due to permutation 
ambiguity (also known as channel swapping), however, it is pos-
sible that xout

n and yout
n , instead, provide estimates of yn and xn , 

respectively.6

Since the Jones matrix is considered to be stationary, we have 
σq = 0 for the analytical evaluation of EMSE. Refer to Fig. 9(a) for 

6 For some values of θ and φ , we have found that some members of MMAp–q
happen to recover the signals with poor output signal-to-noise ratio. However, dis-
cussing those cases and their remedies are beyond the scope of this work and will 
be discussed else where.
Fig. 9. (a) EMSE traces for four members of MMAp–q with 16-QAM signaling for R(45◦, 60◦). (b) Scatter plots before and after demultiplexing using MMA2–2 equalizer 
with μ = 1 × 10−4 (subplots for other equalizers are not shown due to space limitation).
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the comparison of theoretical and simulated EMSE of MMA2–2, 
MMA2–1, MMA1–2 and MMA1–1 equalizers for R(45◦, 60◦). The 
legend ‘Closed-form’ refers to the solutions (T2.1), (T3.1), (T4.1) and 
(T5.1) and the legend ‘Numerical’ refers to (21), (28), (36) and (44)
for MMA2–2, MMA2–1, MMA1–2 and MMA1–1 equalizers, respec-
tively. As evident from (59), we use N = 2 for the evaluation of 
analytical EMSE. Also refer to Fig. 9(b) for the scatter plots for re-
ceived (multiplexed) and equalized (demultiplexed) signals.

8. Conclusions

This paper reports the steady-state EMSE analysis of adap-
tive filters belonging to MMAp–q family (i.e., MMA2–2, MMA2–1, 
MMA1–2 and MMA1–1) by exploiting the fundamental energy re-
lation in non-stationary environment. This relation is fundamental 
in that it is exact, and it holds without requiring any approxima-
tion. Exploiting this relation, we have obtained analytical (closed-
form) expressions for EMSE for MMA2–2, MMA2–1, MMA1–2 and 
MMA1–1 equalizers are verified by computer simulations. From 
this study, we conclude the following:

1. By using fundamental variance relation, steady-state EMSE 
analysis for different MMAp–q equalizers can be performed 
in a simpler way. In particular, we have obtained exact as 
well as approximate (but closed-form) EMSE expressions for 
MMA2–2, MMA2–1, MMA1–2 and MMA1–1 equalizers using 
the fundamental variance relation in a straightforward manner. 
Our analytical findings have been validated for both station-
ary and non-stationary channel environments. Among the four 
addressed members of MMAp–q, we have also noticed that 
MMA2–1 is providing the least EMSE in multi-path channel 
environment.

2. The so-called total EMSE expression has been found useful 
in determining the optimum lengths of the addressed equal-
izers for underlying channels and given values of step-sizes. 
Our experiments have indicated that the optimum lengths for 
MMA2–2, MMA2–1, MMA1–2 and MMA1–1 equalizers for a 
typical (7-tap) voice-band channel are between 7 and 13 de-
pendent upon the step-size.

3. There has been a growing trend of application of different 
variants of MMA and CMA in optical systems for polarization 
demultiplexing supported with coherent detection. We have 
evaluated the performance of MMAp–q algorithms in terms 
of EMSE for the task of adaptive polarization demultiplexing 
in coherent optical systems.
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