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Abstract. We review the role of dual pairs in mechanics and use them to derive particle-
like solutions to regularized incompressible fluid systems. In our case we have a dual pair
resulting from the action of diffeomorphisms on point particles (essentially by moving the
points). We then augment our dual pair by considering the action of diffeomorphisms on
Taylor series, also known as jets. The augmented weak dual pairs induce a hierarchy of
particle-like solutions and conservation laws with particles carrying a copy of a jet group.
We call these augmented particles jetlets. The jet groups serve as finite-dimensional models
of the diffeomorphism group itself, and so the jetlet particles serve as a finite-dimensional
model of the self-similarity exhibited by ideal incompressible fluids. The conservation law
associated to jetlet solutions is shown to be a shadow of Kelvin’s circulation theorem. Finally,
we study the dynamics of infinite time particle mergers. We prove that two merging particles
at the zeroth level in the hierarchy yield dynamics which asymptotically approach that of
a single particle in the first level in the hierarchy. This merging behavior is then verified
numerically as well as the exchange of angular momentum which must occur during a near
collision of two particles. The resulting particle-like solutions suggest a new class of meshless
methods which work in dimensions n ≥ 2 and which exhibit a shadow of Kelvin’s circulation
theorem. More broadly, this provides one of the first finite-dimensional models of self-
similarity in ideal fluids.

1. Introduction

Arnold’s geometric insight in [Arn66] has forever changed the way mathematicians look
at ideal fluid dynamics. According to [Arn66], ideal incompressible fluid motion on an
orientable Riemannian manifold M is equivalent to geodesic motion on the Lie group of
volume preserving diffeomorphisms SDiff(M) (i.e., the smooth invertible volume preserving
maps of M into itself, with smooth inverses). The Riemannian metric is simply the fluid
kinetic energy, which is the L2-norm of the fluid’s velocity field. This characterization of
ideal fluid flow allowed Poisson geometers and geometric mechanicians to provide a new
perspective on ideal fluids and other PDEs with hydrodynamics background [EM70, MW83,
Zei91, AK98, HMR98, FHT01]. As will be shown, such a perspective is particularly fruitful
for the purpose of reducing the infinite-dimensional fluid system to a finite-dimensional
ordinary differential equation (e.g. point vortex solutions).

The dimension reduction that will be performed in this paper and the method which it
proposes bears much semblance to the point vortex method [Cho73]. In particular, [MW83]
illustrated how the point vortex solutions and the conservation of circulation could be derived
via a pair of Poisson maps known as a dual pair. One of these Poisson maps was the
embedding map from a finite-dimensional manifold into the infinite-dimensional space dual
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2 WEAK DUAL PAIRS AND JETLET METHODS FOR IDEAL FLUIDS

to the divergence free vector fields. In other words, the space of point vortices is merely
an invariant manifold of ideal fluid motion.1 It was later realized that the use of dual pairs
related to fluid applications was problematic and needed to be relaxed. This led to the
notion of weak dual pairs [GBV12]. In this paper we will derive a hierarchy of different weak
dual pairs, in order to obtain a class of finite-dimensionally parametrized solutions, each of
which comes with a conservation law that shadows Kelvin’s circulation theorem. Just as one
can consider the point vortices to be the atoms of the point vortex method, the atoms of
these new solutions are particle-like objects which we call jetlets (or k-jetlets if we wish to
emphasize that we are considering the k-th level of the hierarchy).

It is notable that the zeroth level of the hierarchy is a classical particle-like solution which
appears in many geodesic systems on diffeomorphism groups [CH93, JM00, FH01, MM13b].
It is also notable that, unlike a point vortex, a jetlet is also well-defined in dimensions greater
than two.

1.1. Main contributions. In this article we derive a hierarchy of particle-like solutions for
a regularized model of ideal fluids described in [MM13b] as motion on the group of volume
preserving diffeomorphisms of Rn, denoted SDiff(Rn). Each level in the hierarchy consists
of particles with internal group variables, parametrized by a finite-dimensional model of a
diffeomorphism group known as a jet group [KMS99, Chapter 4]. The jet groups lie at
the foundations of certain representation theories of diffeomorphism groups (see [VGG75,
Appendix 2] or [Kir81]). Hence, it seems natural to invoke these foundations in the context
of fluids, where the configuration manifold is a diffeomorphism group. The particle-like
solutions, which “carry” jet groups, paint an intuitive picture of a large scale diffeomorphism
that advects particles, each of which carries its own partial description of a local deformation
of the fluid in a small region around it. At each higher level in the hierarchy, the description of
the deformation becomes more detailed. Thus the jets of diffeomorphisms possess a natural
sense of the “self-similarity” which is present in the diffeomorphism group itself. Models
such as this are crucial to our understanding of fluids, both from a numerical perspective
and from the perspective of fundamental mathematics.

Specifically, we will accomplish the following:

(1) We provide the first explicit Hamiltonian description of the full jet hierarchy of the
particle-like solutions discovered in [DJR13, CHJM14].

(2) We compute a nested sequence of conserved quantities at each level in the hierarchy.
Each of these conserved quantities will be related to the conservation of circulation.

(3) We numerically compute some particle-like solutions at the zeroth and first levels in
the hierarchy. We will observe a form of cascade in which interactions of solutions at
the k-th level tend asymptotically in time toward solutions at the (k + 1)-th level.

1.2. Outline of the paper. After the introduction, in Section 2, we outline our strategy:
The first goal is to show that jetlet models admit a weak dual pair at each level in the
hierarchy. Once this has been done, Theorem A.9 (proven in the appendix) does the rest.
Namely, the jetlets satisfy canonical Hamiltonian equations, and the right momentum map
is conserved by the flow.

1This is not quite correct, as one must ignore the infinite self-energy terms of point vortices and then
extend the space of admissible solutions to non-smooth velocity fields. However, modulo this physically
motivated caveat the statement holds.
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Section 3 contains a brief discussion of the standard dual pair for the example of the rigid
body.

In Section 4 the main development of the paper starts. We first discuss briefly the Lie-
Poisson approach to ideal fluids and Euler’s equation. This is to set the scene for what
follows. In Section 4.1 we discuss the Mumford-Michor model [MM13b] and mention its
standard dual pair (in parallel with the rigid body, the two legs of the dual pair correspond
to the cotangent lift momentum maps for right and left actions, respectively). We also
recall that the conservation of the right momentum map JR here is equivalent to Kelvin’s
circulation theorem. Again, the dual pair viewpoint is extremely efficient. Once one has
realized that there is a dual pair, one knows (from right-invariance) that the left momentum
map JL maps Hamilton’s equations on T ∗ SDiff to (reduced) Lie-Poisson form, and at the
same time that JR is conserved.

In Section 4.2 we introduce zeroth order jetlets, also called landmarks, and we discuss
their dual pair. This is done in parallel with later sections. The left momentum map is the
usual one, and the right momentum map is in fact trivial. So the ‘dual pair’ is somewhat
unnatural here, but it helps present already the kind of thinking that will be employed in
the later parts of the paper.

In Section 4.3 we consider first order jetlets. Everything here goes in parallel, except that
one has to be more careful when introducing the relevant right and left actions. Once one
has the definitions in place, it is not difficult to recognize that the cotangent lifts for the right
and left actions lead to, now, a weak dual pair of momentum maps. We have to add ‘weak’
here since the transitivity of the left action on level sets of the right momentum map is lost,
but a weak dual pair is retained, essentially because the group actions still commute, see
Definition A.8. Proposition 4.5 collects the results that follow immediately as a consequence
of the weak dual pair.

Throughout the paper we have taken care to explain the intuition behind the more abstract
concepts. The discussion just after Proposition 4.5 is an example of this. There, we discuss
the relationship between the jetlet solutions on the diffeomorphism group and the resulting
trajectory on the space of Taylor jets.

In Section 4.4 we describe jetlets at general levels. Again, once the relevant spaces and
actions have been introduced (which is now quite an intricate endeavor), one recognizes that
the momentum maps are a weak dual pair by the usual arguments. We give the form of
the momentum maps explicitly just after Proposition 4.6. Again, the weak dual pair leads
to analogous conclusions about dynamics. Namely, it is canonically Hamiltonian, with JR
conserved; JL maps the dynamics to the Lie-Poisson dynamics on the one-form densities.

In Section 4.5 we discuss in more detail Kelvin’s circulation theorem. More precisely,
we discuss the relationship between the ‘standard’ circulation theorem for the fluid and the
conserved momentum maps JR at the various levels of jetlets. The main result is represented
schematically and proven in detail (all that is required, in essence, is the standard formula for
cotangent lift momentum maps). Intuitively speaking, what we show is that the conserved
jetlet momentum maps are ‘shadows’ of the ‘full’ right momentum map of the fluid.

In Section 5 we discuss the explicit dynamical behavior of the particle model, in particular
we study ‘collisions’ leading to mergers of jetlets. This makes an explicit connection between
dynamics in the different levels of the jetlet hierarchy. It can potentially be useful when
simulating jetlet systems: when two particles become close, they can be replaced by a merged
state whose momenta do not blow up.
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We redo the analysis of Mumford and Michor to find that two 0-jetlets can either merge
in infinite time, or bounce off each other. Then, we analyze the asymptotic dynamics of this
merged state and show that it coincides with the dynamics of a single 1-jetlet particle. This
improves the claim in [CHJM14] which showed the convergence to a 1-jetlet state without
explicitly considering the dynamics.

Finally, we suggest a more algebraic interpretation of mergers in the jetlet hierarchy by
viewing all levels of the hierarchy as embedded in the larger space Xdiv(Rn)∗, where levels
form (part of) the boundaries of other levels (a bit like in a CW-complex).

In summary, the numerics section 6 shows first of all that it is feasible to implement this
jetlet model numerically, also in dimensions higher than two. Further, we corroborate the
analytical results and confirm the conserved quantities and jetlet particle merging behavior
numerically. Several different experiments show that the merging/scattering behavior per-
sists under various perturbations that cannot be studied analytically anymore. It also shows
how JL (i.e. angular and linear) momentum is exchanged in the jet-particle collisions.

We provide a detailed appendix. In Appendix A, a brief discussion of symplectic and
Poisson manifolds is followed by the definition of weak dual pairs. Then we prove Theo-
rem A.9, which is the core result used in the paper. Appendix B presents an overview over
the spaces used in the paper and relates them to some general results of reduction theory,
see in particular Figures 6 and 7. In Appendix C we describe the index conventions used in
the main text (e.g., when calculating momentum maps for the general jetlet solutions), while
Appendix D briefly discusses the more abstract point of how the dual space of vector fields
can be viewed as tensor product of 1-forms and distributions. Finally, Appendix E provides
information describing the equations of motion for 1-jets, but in reduced coordinates, which
arise after the reduction that eliminates the conserved quantities, JR.

1.3. Previous work. Lagrangian models of ideal fluids such as smooth particle hydrody-
namics [GM77, Luc77] and vortex methods [Cho73], do not exhibit structures which ex-
press the nested character of the diffeomorphism group. One means of obtaining a La-
grangian model with a nested structure was recently presented in [DJR13] where a sequence
of infinite-dimensional reductions by symmetry was executed, to produce a hierarchy of
finite-dimensional systems from a regularized fluid model. The finite-dimensional systems
were particle-like solutions in which each particle carries a model of the diffeomorphism
group, known as jet groups. Thus, [DJR13] derived a Lagrangian analog of “whirls within
whirls”, similar to the Eulerian models proposed in [HT12]. However, the specifics of the
regularized fluid model were not determined, and the analysis of [DJR13] was purely formal.

Later, a regularized version of the ideal fluid equations was presented by [MM13b]. This
new partial differential equation was amenable to the theory presented in [DJR13], and
gave rise to a specific and easily implementable manifestation of the hierarchy of particle
models described there. In [CHJM14] we numerically computed some of these particle-like
solutions and observed cascade phenomena as an emergent behavior at the zeroth level in
the hierarchy.

It is notable that the zeroth level of the hierarchy has been studied in the context of partial
differential equations with hydrodynamic background. In particular, [HR06] provide the first
convergence proof of such a method in the context of the Camassa-Holm equation. This same
idea was implemented for the n-dimensional Camassa-Holm equation in [CDTM12]. In the
context of image registration algorithms, the need to obtain compressible diffeomorphisms
motivated the use of particle methods in a similar framework [JM00]. These methods,
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designed for a wide array of PDEs, are studied analytically in [TY05], which also contains
a proof of well-posedness for a range of PDEs. Finally, in the context of image registration,
[SNDP13] discovered a compressible fluid version of the hierarchy derived in [DJR13], and
numerically integrated solutions in the first level of the hierarchy.

1.4. Notation. We will let X(Rn) denote the space of H∞ vector fields, and we let Xdiv(Rn)
denote the space of divergence free vector fields resulting from the Hodge decomposition.
We let Diff(Rn) denote the space of H∞ diffeomorphisms of Rn (see [MM13a]) and we let
SDiff(Rn) denote the subgroup of volume preserving diffeomorphisms.

Various different types of indices will be used throughout this paper. To distinguish
between the types, we keep the following conventions:

• indices a, b, c, . . . label particles and range from 1 to N ;
• indices i, j, k, . . . label space coordinates and range from 1 to n, the dimension of

space;
• superscript indices (k) denote the order of jets in a coordinate-free representation.

2. Main approach

Let us begin by describing our strategy for obtaining particle-like solutions to regularized
fluid equations. Our main framework is that of Hamiltonian mechanics and symplectic
geometry. In particular, our main hammer is Theorem A.9 (see page 31 in the Appendix),
which we repeat here for convenience.

Theorem A.9 Let P1 and P2 be Poisson manifolds and let S be a symplectic
manifold. Let J1, J2 : S → P1, P2 form a weak dual pair, see Definition A.8.
Let h ∈ C1(P1). If (q, p)(t) ∈ S is a solution to Hamilton’s equations with
respect to the Hamiltonian H = h ◦ J1, then J1 ((q, p)(t)) ∈ P1 is a solution
to Hamilton’s equations on P1 with respect to h, and J2((q, p)(t)) is constant
in time.

We will leverage this theorem in the following way. We will find a (weak) dual pair,
J1, J2 : S → g∗, where

(1) S is the space of particle locations and momenta (and, for the higher orders of the
hierarchy, internal group variables),

(2) g is the space of vector fields,
(3) and h is the Hamiltonian of a regularized model of ideal fluid (i.e. a kinetic energy).

Theorem A.9 applied to the (weak) dual pair J1, J2 then yields particle-like solutions and con-
served quantities to the equations of motion of a regularized model of an ideal incompressible
fluid.

3. Example: the rigid body

In this section we review basic notions from classical mechanics by studying the motion
of a rigid body whose center of mass rests at the origin. We will see a first application of
Theorem A.9 in this context. The configuration of a rigid body is described by a rotation
matrix R ∈ SO(3). The equations of motion are given by Hamilton’s equations on the
cotangent bundle T ∗ SO(3). There are canonical coordinates on T ∗ SO(3) given by (R,P )
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where P is such that RTP is a 3× 3 anti-symmetric matrix2. The angular momentum in the
body frame is the unique vector Π ∈ R3 ∼= so(3)∗ such that

JR(R,P ) := RTP =

 0 −Π3 Π2

Π3 0 −Π1

−Π2 Π1 0

 .
Denoting this map from (R,P ) to Π by JR, the Hamiltonian can be written as a function of
Π. In particular, the reduced Hamiltonian is

h(Π) =
1

2
Π · I−1 · Π,

where I is a non-degenerate 3× 3 symmetric matrix known as the moment of inertia matrix.
The unreduced Hamiltonian is H(R,P ) = h(JR(R,P )).

The group SO(3) acts upon itself by left multiplication. This action can be lifted to an
action on T ∗ SO(3) given by

(R,P ) ∈ T ∗ SO(3)
g∈SO(3)7→ (gR, gP ) ∈ T ∗ SO(3).

It is notable that Π = RTP = RTgTgP = (gR)T (gP ) is unaltered by this transformation.
Therefore the Hamiltonian, h(Π), is invariant under this action of SO(3). By Noether’s
theorem there is a conserved quantity associated to this symmetry. The conserved quantity
is manifested by the momentum map

JL(R,P ) = PRT .

Moreover, due to this symmetry, one can write the evolution equations on a lower-dimensional
space. The very fact that the Hamiltonian is written in terms of Π suggests that the equations
of motion can be written in terms of Π alone. Indeed this is the case,

Π̇ = Π× (I−1Π).(1)

This equation can be seen as a Hamiltonian equation on R3 with respect to the non-canonical
Poisson bracket

{F,G}Nambu(x) = −x · (∇F ×∇G)

known as the Nambu bracket. This is no coincidence. Let us first introduce the isomorphism
of Lie algebras (R3,×) and so(3), given by the so-called hat map

(2) x ∈ R3 7→ x̂ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 ∈ so(3).

Proposition 3.1 (see [Hol11, §2.5]). The Nambu bracket on R3 is identified with the Lie–
Poisson bracket on so(3)∗ through the hat map isomorphism (2) in the sense that {f, g}Nambu(x) =

{f̂ , ĝ}LP(x̂) where f, g ∈ C1(R3) and f̂ , ĝ ∈ C1(so(3)∗) are defined by f̂(x̂) = f(x), ĝ(x̂) =
g(x).

2We use the pairing 〈P, v〉 = tr(PT v) for P ∈ T ∗
RSO(3) and v ∈ TRSO(3). More generally, the pairing

〈·, ·〉 will always refer to the natural pairing between a vector space and its dual in this paper.
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Proof. The Lie–Poisson bracket on so(3)∗ is

{f̂ , ĝ}LP(Π̂) =
〈

Π̂,
[
df̂(Π̂), dĝ(Π̂)

]〉
,

for arbitrary functions f̂ , ĝ ∈ C1(so(3)∗). There exist functions f, g ∈ C1(R3) related to F̂ , Ĝ

through the hat map. One can observe that df̂(Π̂) ∈ so(3) is related to ∇f(Π) through the

relation ∇̂f(Π) = df̂(Π̂). We see that the commutator bracket satisfies

[x̂, ŷ] := x̂ŷ − ŷx̂ = x̂× y.

Therefore the Lie–Poisson bracket can be written as

{f̂ , ĝ}LP(Π̂) = 〈Π̂, ̂∇f ×∇g(Π)〉
= Π · (∇f ×∇g) (Π)

= {f, g}Nambu(Π).

�

Recall that T ∗ SO(3) is a symplectic manifold. The momentum maps JL, JR arise canon-
ically from the left and right action of SO(3) on T ∗ SO(3). The actions commute and it
can also be checked that JL and JR have symplectically orthogonal kernels, hence it follows
from [GBV12, Corollary 2.6] that the diagram

so(3)∗
JL←−T ∗ SO(3)

JR−→ so(3)∗

PRT JL←− [ (R,P )
JR7−→ RTP

is a dual pair (see page 31 for details). The maps JL and JR are called symplectic variables
in [MW83] as they allow one to pull-back calculations on a Poisson manifold to a symplectic
manifold.3

By Theorem A.9, this dual pair expresses rigid body dynamics and conserved quantities.
Specifically, the right leg yields the reduced phase space where the system evolves in time.
The left leg yields the conserved quantities of the rigid body associated with the left action
of SO(3) on itself. The most important aspect of these maps is that they are both Poisson
maps, i.e. they carry the canonical Poisson bracket on T ∗ SO(3) to the Nambu bracket on
so(3)∗ ∼= (R3,×), as the following proposition shows.

Proposition 3.2 (remark 2.5.11 [Hol11]). Let {·, ·}can denote the canonical Poisson bracket
on the cotangent bundle T ∗ SO(3). Let {·, ·}Nambu denote the Nambu bracket on R3. Both JL
and JR are Poisson maps. Explicitly, this means

−{f ◦ JL, g ◦ JL}can = {f, g}Nambu ◦ JL
{f ◦ JR, g ◦ JR}can = {f, g}Nambu ◦ JR

for any f, g ∈ C2(R3).

3 [MW83] also referred to JR and JL as Clebsch variables, however this terminology has changed over the
past few decades.
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Proof. Let (R,P ) ∈ T ∗ SO(3) and set Π = JR(R,P ). We observe that

〈Π,Ω〉 = tr(Π̂T Ω̂) = tr(P TRΩ̂) = 〈P,R · Ω̂〉.

This tells us that JR is the momentum map associated with the cotangent lift of the right
action of SO(3) on itself. Such momentum maps are always equivariant and thus yield
Poisson maps (Theorem 12.4.1 [MR99]). Thus JR carries the canonical Poisson bracket on
T ∗ SO(3), to the Lie–Poisson bracket on so(3)∗. By Proposition 3.1, this is nothing but the
Nambu bracket upon identifying so(3) with R3. The same argument applies to JL using a
left action. �

One can obtain solutions to (1) by solving canonical Hamiltonian equations with respect
to H(R,P ). In particular, if (R,P )(t) is a solution to Hamilton’s equation, then Π(t) =
JR((R,P )(t)) is a solution to Hamilton’s equation with respect to the Nambu bracket. This
is a result of Proposition A.7 paired with the observation that JR is a Poisson map via
Proposition 3.2.

4. Regularized fluids

Euler’s equations of motion for incompressible fluids can be seen as Hamiltonian equations
on the (dual) space of divergence free vector fields [Arn66]. Consider the Lie algebra of vector
fields on Rn, denoted by X(Rn). Formally, the dual space to X(Rn) is a Poisson manifold
when equipped with the Lie-Poisson bracket (see (27) in Appendix A.2). We may consider
the map ψ : T ∗Rn → X(Rn)∗ given implicitly by

〈ψ(q, p), u〉 = p · u(q) ∀u ∈ X(Rn), (q, p) ∈ T ∗Rn.

Explicitly we may write ψ using the Dirac-delta functional as ψ(q, p) = p ⊗ δq. It is shown
in [HM05] that this map is Poisson. Furthermore, as the n-dimensional Camassa–Holm
equation [CH93] is a Hamiltonian equation on X(Rn)∗, Proposition A.7 promises to express
a certain subset of solutions by solving Hamiltonian equations for a finite number of particles.
Specifically, ψ yields the peakon solutions of the n-dimensional Camassa–Holm equation. In
this section we explore analogous constructions for an incompressible and regularized version
of the Camassa–Holm equation, discovered in [MM13b].

In the case where hEuler(m) = 1
2
‖m‖2

L2 is the standard fluid kinetic energy on the dual
vector space to the incompressible vector fields, Xdiv(Rn)∗, Hamilton’s equations are written
as

∂tm+ Lu[m] = 0 , ui = δijmj.(3)

where Lu[m] is the Lie derivative of m. The primary finding of [Arn66] was that (3) is
equivalent to the inviscid fluid equation

∂tu+ u · ∇u = −∇p , ∇ · u = 0.

Since we have not yet clarified the Poisson structures of the system, it may not be obvious
that (3) is a Hamiltonian equation. The following proposition shows this for a general
Hamiltonian on Xdiv(Rn)∗.

Proposition 4.1 ([Arn66]). Let h ∈ C∞(Xdiv(Rn)∗). Recall that Xdiv(Rn)∗ is a Poisson
manifold when equipped with the Lie–Poisson bracket, and given a function h, the Fréchet
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derivative dh(m) is an element of Xdiv(Rn)∗∗. In the event that dh(m) ∈ Xdiv(Rn), Hamilton’s
equations are given by

ṁ+ Lu[m] = 0 , u = dh(m).

Proof. To each v ∈ Xdiv(Rn) we can associate a linear function on Xdiv(Rn)∗ given by m ∈
Xdiv(Rn)∗ 7→ 〈m, v〉 ∈ R. Let us denote this function by fv. Let m(t) satisfy Hamilton’s
equations. By the definition of the Lie–Poisson bracket (see (27) in Appendix A.2) we observe

d

dt
fv(m) = {fv, h}(m) = 〈m, [dfv(m), dh(m)]〉

= 〈m,Ldh(m)[dfv(m)]〉.
However dfv = v and so the last line can be equated with −〈Ldh(m)[m], v〉. Additionally, we

know that d
dt
fv(m) = 〈ṁ, v〉 since v is constant in time. Therefore we find

〈ṁ+ Ldh(m)[m], v〉 = 0.

As v is arbitrary, this uniquely characterizes ṁ.4 The result follows. �

4.1. The Mumford–Michor model. Consider the Hamiltonian

hp,σ(m) =
1

2
〈m,Kp,σ ∗m〉L2 ,

where Kp,σ : Rn → Rn×n is the matrix valued Green’s kernel defined by the property(
1− σ2

p
∆
)p
·
∫
Rn
Kij
p,σ(x− y)mj(y)dy = δijmj(x).

In this case Hamilton’s equations take the form

∂tm+ Lu[m] = 0 , ui = Kij
p,σ ∗mj.(4)

Solutions to (4) exhibit existence and uniqueness for all time. Moreover, as σ → 0, hp,σ →
hEuler and one can speculate that solutions to (4) approach solutions to the ideal fluid equa-
tion (3). In fact, this is the case over short times, and for σ > 0 solutions of (4) differ
from those of (3) by an amount σt in the Hk-norm. Thus Hamilton’s equations with respect
to hp,σ have been proposed as a model for ideal fluids [MM13b, Theorems 2 and 3]. From
now on we shall often suppress the parameters p, σ and shorten K = Kp,σ to prevent index
clutter.

Next, we discuss a dual pair for this system. The group SDiff(Rn) acts on itself from the
left and from the right. These actions can be lifted to T ∗ SDiff(Rn), and yield momentum
maps JL, JR : T ∗ SDiff(Rn)→ Xdiv(Rn)∗. In particular these maps form the dual pair

Xdiv(Rn)∗
JL←− [ T ∗ SDiff(Rn)

JR7−→ Xdiv(Rn)∗.

For a mathematically rigorous treatment of this dual pair we refer to [GBV12].
By Theorem A.9, we can use this dual pair to derive dynamical properties of Hamiltonian

equations defined on Xdiv(Rn)∗. The Hamiltonian for a fluid is written on the left instance of
Xdiv(Rn)∗. One can (in principle) solve Hamilton’s equations on T ∗ SDiff(Rn) with respect to
the Hamiltonian H = h ◦ JL. This yields the material or Lagrangian coordinate perspective
of fluid mechanics one encounters in a first course on continuum mechanics. The right leg

4This is not a “weak” characterization. The entity ṁ is contained in the dual space to Xdiv(Rn) and it is
therefore defined uniquely by how it acts on Xdiv(Rn).
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yields conserved quantities associated with the particle relabeling symmetry of the fluid. It
was found in [Arn66] that these conserved momenta are identical to the law of conservation
of circulation, that is, Kelvin’s circulation theorem.

Unfortunately, this dual pair does not help us in solving (4) since solving Hamilton’s
equations on T ∗ SDiff(Rn) is no less difficult than solving Hamilton’s equations on Xdiv(Rn)∗.
In the next section we will derive a dual pair wherein the symplectic manifold is more
reasonable. This will yield the particle-like solutions described in [MM13b]. In the later
parts of the paper we will generalize the treatment to obtain a weak dual pair for each level
in the hierarchy of particle-like solutions.

4.2. Particle-like solutions. There is a natural left group and algebra action of SDiff(Rn)
and Xdiv(Rn), respectively, on Rn given by

q ∈ Rn ϕ∈SDiff(Rn)7−→ ϕ(q) ∈ Rn

q ∈ Rn u∈Xdiv(Rn)7−→ u(q) ∈ TqRn.

The tangent lift of the former is defined in the obvious way by sending

(q, v) ∈ TRn ∼= Rn × Rn ϕ∈SDiff(Rn)7−→
(
ϕ(q), (∂jϕ

i(q)vj)∂i
)
∈ Tϕ(q)Rn.

The cotangent lift is defined by taking the dual of the tangent lifted action. That is to say,

(q, p) ∈ T ∗Rn ∼= Rn × Rn ϕ∈SDiff(Rn)7−→
(
ϕ−1(q), (∂iϕ

j(q)pj)e
i
)
,

where {ei} forms the dual basis to {∂i} at ϕ−1(q). The momentum map J
(0)
L : T ∗Rn →

Xdiv(Rn)∗ associated to this left action is defined by the condition

〈J (0)
L (q, p), u〉 := 〈p, u(q)〉,

for all u ∈ Xdiv(Rn) and (q, p) ∈ T ∗Rn (see (26) in Appendix A.1); the superscript in J
(0)
L

serves as a reminder that we are considering the zeroth level in the hierarchy of particle-like

solutions. We see that J
(0)
L (q, p) is an evaluation operator, and we can write it more explicitly

as a measure-valued momentum map in terms of the Dirac-delta distribution as

J
(0)
L (q, p) = p⊗ δq,

where δq is the Dirac-delta distribution on Rn centered at q. This identification holds modulo
dC1(Rn) ⊗ dx where dC1(Rn) is the space of C0-exact one-forms and dx is the canonical

volume form on Rn (see Appendix D). Since J
(0)
L is a cotangent lift momentum map, it is

equivariant and therefore Poisson, again by [MR99, Theorem 12.4.9].
We define the manifold for particles,

Q
(0)
N = {(q1, . . . , qN) ∈ Rn × · · · × Rn | qa 6= qb when a 6= b} .

We will index the particles with a, b, c, . . . and Cartesian coordinate directions in Rn with

indices i, j, k, . . . Thus each q ∈ Q
(0)
N can be decomposed into N particles as (q1, . . . , qN),

where each qa ∈ Rn and the i-th coordinate of the a-th particle is denoted by q i
a .

The group SDiff(Rn) acts on Q
(0)
N by the diagonal action. Through the same manipulations

as we applied previously we obtain the momentum map for N particles given by

J
(0)
L (q, p) = pa ⊗ δqa ,

where a sum over repeated indices is implied.
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Figure 1. A 0-jetlet with momentum m = (1, 0)T ⊗δ0 in dimensions 2 and 3.
(left) Quiver plot of the induced 2 dimensional velocity field. (right) Streamline
plot of the induced 3 dimensional velocity field.

By Propositions A.7 and 4.1, we obtain solutions to Hamilton’s equations on Xdiv(Rn)∗,

by solving Hamilton’s equations on T ∗Rn if dh(J
(0)
L (q, p)) is a vector field. If h = hp,σ, then

we calculate that dh evaluated on the J
(0)
L (p, q) is the vector field

dh(pa ⊗ δqa)(x) = Kij(x− qa)pa j
∂

∂xi
.

This is a vector field whose differentiability is determined completely by that of the ker-
nel, K. Once one has found a solution (q(t), p(t)) to Hamilton’s equations on T ∗Rn and
thus also a solution to Hamilton’s equations on Xdiv(Rn)∗, one can proceed to integrate the
corresponding time-dependent vector field to obtain the fluid motion ϕt in SDiff(Rn). It is
natural (but not mandatory) to choose the initial map ϕ0 to be the identity or at least to
be a diffeomorphism that satisfies ϕ0(qa(0)) = qa(0) for all a. If this choice is made, one can

interpret the curve q(t) = (q1(t), . . . , qN(t)) in Q
(0)
N as the locations of particles as they are

swept along by the fluid flow, that is, qa(t) = ϕt(qa(0)) for all a = 1, . . . , N .

We see that J
(0)
L is injective, and thus has a trivial kernel. As a result, the symplectic

orthogonal to the kernel of J
(0)
L is the full tangent bundle T (T ∗Q

(0)
N ). Hence, if we define the

(trivial) map J
(0)
R : T ∗Q

(0)
N → Xdiv(Rn)∗ by J

(0)
R ≡ 0, it follows that the diagram

Xdiv(Rn)∗
J
(0)
L←−T ∗Q(0)

N

J
(0)
R−→ Xdiv(Rn)∗

pa ⊗ δqa
J
(0)
L←− [ (q, p)

J
(0)
R7−→ 0

is a (proper) dual pair. This dual pair allows us to express conservation laws and dynamics
as a result of Theorem A.9. Namely, the left leg represents the space in which particle-like
solutions to (4) evolve, while the right leg represents a (trivial) conserved quantity.

In order to make contact with the later parts of the paper, it is useful to remark that J
(0)
R

can formally be understood as the cotangent lift momentum map associated with a certain

(trivial) group action. To that end, we fix a designated point z = (z1, . . . , zN) ∈ Q(0)
N and

take an arbitrary element q = (q1, . . . , qN) ∈ Q(0)
N to represent the set of all ϕ ∈ SDiff(Rn)

that satisfy ϕ · z = q. That is, ϕ(za) = qa for all a. This means in particular that the
specification of (q1, . . . , qN) fixes the zeroth order Taylor expansion (at the locations za) of
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the corresponding set of diffeomorphisms. With this in mind, let us define the isotropy group

iso(z) = {ψ ∈ SDiff(Rn)|ψ(za) = za for all a}(5)

and a (trivial) right action on Q
(0)
N where ψ ∈ iso(z) maps an element (ϕ(z1), . . . , ϕ(zN))

to (ϕ ◦ ψ(z1), . . . , ϕ ◦ ψ(zN)). Similar constructions will be crucial in later sections, when
constructing the right leg of an — in this case weak — dual pair for the higher levels in the
hierarchy of particle-like solutions.

In summary we find:

Proposition 4.2 (§7 of [MM13b]). Let p ≥ n
2

+ 1 and σ > 0. Let H : T ∗Q
(0)
N → R be the

function

H(q, p) =
1

2
Kij
p,σ(qa − qb) pa i pb j.

If (q, p)(t) is a solution to Hamilton’s equations, then m(t) = pa(t) ⊗ δqa(t) is a solution to
(4).

Proof. Note that H = hp,σ ◦ J (0)
L and apply Theorem A.9. See the remark after Theorem 4.8

for more details on the kernel smoothness condition on p. �

4.3. First order particle-like solutions. In this section we revisit the first order particle-
like solutions of [CHJM14] and discuss their weak dual pair, before extending the treatment
to the higher levels of the hierarchy in the subsequent section. Let SL(n) denote the Lie
group of n×n matrices with unit determinant. Let q = (q(0), q(1)) ∈ Rn×SL(n) and consider
the left SDiff(Rn) action on Rn × SL(n) given by

ϕ · q = (ϕ(q(0)), Dϕ(q(0)) · q(1)).(6)

Where Dϕ(q(0)) · q(1) is the result of multiplying the Jacobian matrix Dϕ(q(0)) with q(1).

Proposition 4.3. The action of SDiff(M) on R× SL(n) in (6) is a group action.

Proof. Since ϕ ∈ SDiff(Rn), it follows that Dϕ|q(0) ∈ SL(n). Therefore Dϕ|q(0) · q(1) ∈ SL(n).
Secondly, if ϕ1, ϕ2 ∈ SDiff(Rn) we observe that

ϕ2 · (ϕ1 · q) = ϕ2 ·
(
ϕ1(q(0)), Dϕ1|q(0) · q(1)

)
=
(
ϕ2(ϕ1(q(0))), Dϕ2|ϕ1(q(0)) ·Dϕ1|q(0) · q(1)

)
=
(
(ϕ2 ◦ ϕ1)(q(0)), D(ϕ2 ◦ ϕ1)|q(0) · q(1)

)
= (ϕ2 ◦ ϕ1) · q,

where the second and third lines are applications of the chain rule. �

As before, this action can be lifted to the cotangent bundle T ∗(Rn × SL(n)). Specifically,
the action of the diffeomorphism ϕ−1 is given by

(7) (Tϕ)∗ · (q(0), q(1), p(0), p(1)) =
(
ϕ−1(q(0)), [Dϕ|q(0) ]−1 · q(1), Dϕ|∗q(0) · p

(0), Dϕ|∗q(0) · p
(1)
)
.

Also as before, we can generalize this construction to the space of N > 1 particles by
considering the space

Q
(1)
N =

{
(q1, . . . , qN)

∣∣∣∣∣ qa = (q
(0)
a , q

(1)
a ) ∈ Rn × SL(n)

q
(0)
a 6= q

(0)
b when a 6= b

}
.
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For convenience it is nice to choose coordinates at this point. If we let qa denote the position
of the a-th particle, q i

a denote the i-th component of this position, and let q i
a j denote the

(i, j) entry of the a-th matrix then the resulting momentum map is defined by the condition

〈J (1)
L (q, p), u〉 = paiu

i(q(0)
a ) + p j

ai ∂ku
i(q(0)

a )q k
a j

for an arbitrary u ∈ Xdiv(Rn). In terms of the Dirac-delta functional, we can write J
(1)
L as

the measure-valued momentum map

J
(1)
L (q, p) = paidx

i ⊗ δ
q
(0)
a
− p j

ai q
k
a jdx

i ⊗ ∂kδq(0)a .

Next, we construct a dual momentum map associated with a right action on Q
(1)
N . Anal-

ogous to the previous section it is useful at this stage to write elements of Q
(1)
N in the

form ϕ · z = (ϕ(z1,1), . . . , ϕ · (zN ,1)), ϕ ∈ SDiff(Rn), for some designated element z =

((z1,1), . . . , (zN ,1)). Clearly, every element of Q
(1)
N can be written in this form for some

ϕ ∈ SDiff(Rn). Indeed, with this convention the specification of an element in Q
(1)
N fixes the

first order Taylor expansion of ϕ at the locations za, a = 1, . . . , N . With this in mind, let us
recall the isotropy group iso(z) defined earlier in (5), which leaves these locations invariant,

and define a right action on Q
(1)
N given by

(ϕ · z) · ψ = (ϕ ◦ ψ) · z.
That is,

(8) (q(0), q(1)) · ψ =
((
q

(0)
1 , q

(1)
1 ·Dψ|z1

)
, . . . ,

(
q

(0)
N , q

(1)
N ·Dψ|zN

))
.

In Proposition 4.6 we will generalize this construction to define a right action for the higher
levels in the hierarchy of particle-like solutions. The action (8) yields the cotangent lift
momentum map defined by the condition

〈J (1)
R (q, p), u〉 = p j

ai q
i
a k∂ju

k(za).

In terms of the Dirac-delta functional we may write this as the measure-valued momentum
map

(9) J
(1)
R (q, p) = −p j

ai q
i
a kdzk ⊗ ∂jδza

Proposition 4.4. The momentum maps J
(1)
L and J

(1)
R form a weak dual pair.

We postpone the proof, as this is a special case of a proposition which comes later in the
paper (Proposition 4.7).

As before, the quantity dh(J
(1)
L (q, p)) is a legitimate vector field if Kp,σ is sufficiently

smooth. Moreover, when the Hamiltonian H(1) = hp,σ ◦ J (1)
L is C1 we may evolve Hamilton’s

equations to obtain solutions.

Proposition 4.5. Let p ≥ n
2

+ 2 and σ > 0. Then H(1) = hp,σ ◦ J (1)
L is C1 and given by the

expression

H(1)(q, p) =
1

2
paiK

ij(qa − qb)pbj
+ p l

ai q
k
a l(∂kK

ij)(qa − qb)pbj

− 1

2
p n
ai q

l
a n(∂l∂kK

ij)(qa − qb)q k
b mp

m
bj .



14 WEAK DUAL PAIRS AND JETLET METHODS FOR IDEAL FLUIDS

Figure 2. (top) Quiver plots of 2D vector fields induced by first order jetlets.
(bottom) Streamline plots of 3D vector fields induced by first order jetlets.

If (q, p)(t) ∈ T ∗Q(1)
N is a solution to Hamilton’s equations with respect to H(1), then J

(1)
L ((q, p)(t)) ∈

Xdiv(Rn)∗ is a solution of (4), and J
(1)
R ((q, p)(t)) ∈ Xdiv(Rn)∗ is constant in time.

The proof of the above proposition is identical to that of Proposition 4.2. See again the
remark following Theorem 4.8 for more details on the kernel smoothness condition on p.

As before, it is useful to interpret the trajectory q(t) of the previous proposition in
terms of the curve ϕt ∈ SDiff(Rn) obtained by integrating the time-dependent vector field

dhp,σJ
(1)
L ((q, p)(t)) = Kp,σ ∗ J (1)

L ((q, p)(t)). If one chooses ϕ0 to be the identity or any other
element of SDiff(Rn) that satisfies ϕ0 · (q(0)) = q(0), then q(t) = ϕt · q(0). This implies in

particular that the q
(0)
a (t) are the trajectories of the particles as they are swept along by the

fluid flow.
Various vector fields for large kernel smoothness p are depicted in Figure 2 for different

initial values of the traceless matrix µ j
i = p li q

j
l .

4.4. Higher order particles. In this section we will introduce a hierarchy of particle-like
solutions whose k-th level includes the solutions at the (k − 1)-th level. The zeroth level in
the hierarchy consists of the standard particle-like solutions, while the first level describes
the particles with internal SL(n) variables discussed in the previous section. The particles
in the k-th level carry the coefficients of k-th order Taylor expansions of diffeomorphisms,
or jets. Therefore, we call these particles k-jetlets.

Let ϕ ∈ SDiff(Rn). The zeroth order Taylor expansion of ϕ about 0 is ϕ(0), and the
collection of such Taylor expansions is all of Rn. The first order Taylor expansion of ϕ about
0 is

ϕi(x) = ϕi(0) + ∂jϕ
i(0)xj + o(‖x‖).
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The tuple of coefficients (ϕ(0), Dϕ(0)) ∈ Rn×SL(n) is called the first order jet of ϕ evaluated
at 0. Going further, the second order Taylor expansion of ϕ about 0 is

ϕi(x) = ϕi(0) + ∂jϕ
i(0)xj +

1

2
∂jkϕ

i(0)xjxk + o(‖x‖2).

We see that D2ϕ(0) is a tensor of rank (1, 2), which is symmetric in the lower indices. We call
the space of such tensors S1

2 , and we see that the space of second order jets is a submanifold

Q
(2)
1 ⊂ Rn × SL(n)× S1

2 . Finally, for k ≥ 2 the space of k-th order jets is a submanifold

Q
(k)
1 ⊂ Rn × SL(n)× S1

2 × S1
3 × · · · × S1

k ,

where S1
j is the vector space of (1, j)-tensors which have been symmetrized in the covariant

indices. The space Q
(k)
1 is equipped with the fiber bundle projection π(k) : Q

(k)
1 → Rn, which

projects onto the Rn component. In fact, Q
(k)
1 is a trivial principle bundle where fibers,

contained within SL(n) × S1
2 × · · · × S1

k form a jet group [DJR13]. The jet group serves
as a finite-dimensional model of the diffeomorphism group (see [KMS99, Chapter 4] for a
description of the group multiplication), and this motivates our interpretation of jetlets as
models of self-similarity. We define the space for an N -tuple of k-jetlets by taking a product

Q
(k)
N = {(q1, . . . , qN) ∈ Q(k)

1 × · · · ×Q
(k)
1 | π(k)(qa) 6= π(k)(qb) when a 6= b}.

We coordinatize Q
(k)
N as follows. We will use Greek indices to represent spatial multi-indices

on Rn (see Appendix C for our multi-index convention). A typical coordinate on Q
(k)
N will

therefore look like q i
a β where a ∈ {1, . . . , N}, i ∈ {1, . . . , n} and β is a multi-index on

Rn. This coordinate is used to model the partial derivative of the i-th coordinate of a
diffeomorphism at some point za ∈ Rn, i.e. ∂βϕ

i(za). For the statement of the next propo-
sition, recall that the definition of iso(z) was given earlier in (5). Note also that we write

Jetkx : SDiff(Rn) → Q
(k)
1 for the function which evaluates the spatial derivatives of a diffeo-

morphism up to order k at the location x ∈ Rn. In the subsequent sections we will also use
the obvious generalization to multiple locations z1, . . . , zN ∈ Rn, which we will denote by

Jetkz : SDiff(Rn)→ Q
(k)
N .

Proposition 4.6. The group SDiff(Rn) acts on Q
(k)
N by a left Lie group action. If z1, . . . , zN ∈

Rn are distinct points, then the isotropy group iso(z) ⊂ SDiff(Rn) acts on Q
(k)
N by a right Lie

group action.

Proof. Let ϕ1, ϕ2 ∈ SDiff(Rn). The partial derivatives of (ϕ1 ◦ ϕ2) are given by the Faà di
Bruno formula

∂α(ϕ1 ◦ ϕ2) =

|α|∑
k=1

 ∑
j1,...,jk∈{1,...,n}
[γ1,...,γk]∈Π(α,k)

∂j1···jkϕ1(ϕ2(x))∂γ1ϕ
j1
2 · · · ∂γkϕ

jk
2

 ,

where we wrote Π(α, k) for the set of k-th order partitions of a multi-index α. We refer
to Appendix C for the details of our index conventions and to [CS96, Jac14] for a precise
description of the multivariate Faà di Bruno formula. One can read off from the expression
that a k-th order derivative only depends on k-th and lower order partial derivatives of ϕ1

and ϕ2. A left SDiff(Rn) action is induced on Q
(k)
1 by setting ϕ · q = Jetkz(ϕ ◦ ψ) for any ψ

such that Jetkz(ψ) = q. That this is independent of the choice of ψ follows from observing
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that the Faà di Bruno formula only uses data in q = Jetkz(ψ) and nothing more. In local
coordinates, this action takes the form

(ϕ · q)iα =

|α|∑
k=1

 ∑
j1,...,jk∈{1,...,n}
[γ1,...,γk]∈Π(α,k)

∂j1···jkϕ
i(q(0))qj1γ1 · · · q

jk
γk

 ,

except for the component where |α| = 0 in which case we observe (ϕ · q)i = ϕi(q(0)). By the

same construction, a right iso(z) action is induced on Q
(k)
1 by setting q · ϕ = Jetkz(ψ ◦ ϕ) for

any ψ such that Jetkz(ψ) = q. We can choose distinct points z1, . . . , zN ∈ Rn and apply the

same process to Q
(k)
N . In this case we observe the action to be

(q · ϕ)aiα =

|α|∑
k=1

 ∑
j1,...,jk∈{1,...,n}
[γ1,...,γk]∈Π(α,k)

qai[j1,...,jk]∂γ1ϕ
j1(za) · · · ∂γkϕjk(za)

 .

�

Just as in the previous sections, the actions of SDiff(Rn) and iso(z), which commute, lift to

actions on T ∗Q
(k)
N . The associated momentum maps are given implicitly by how they act on

the respective Lie algebras. In particular, the left action of SDiff(Rn) yields the momentum
map

〈J (k)
L (q, p), u〉 =

N∑
a=1

pamum(q(0)
a ) +

∑
|α|≤k

1≤`≤|α|

∑
j1,...,j`∈{1,...,n}
[γ1,...,γ`]∈Π(α,`)

p α
am ∂j1···j`u

m(q(0)
a )q j1

a γ1
· · · q j`

a γ`


for arbitrary divergence free vector fields u ∈ Xdiv(Rn). Equivalently, we may define J

(k)
L as

the unique map such that

(10) 〈J (k)
L (q, p), u〉 = 〈(q, p), Jetkz(u ◦ ϕ)〉

for any ϕ ∈ SDiff(Rn) whose k-jet is given by q for any (q, p) ∈ T ∗Q(k)
N .

The right action of iso(z) yields the momentum map J
(k)
R defined implicitly by the relation

〈J (k)
R (q, p), w〉 =

N∑
a=1

∑
|α|≤k

1≤`≤|α|

∑
j1,...,j`∈{1,...,n}
[γ1,...,γ`]∈Π(α,`)

p α
ai q

i
a [j1···j`]

∑̀
m=1

∂γmw
jm(za)

(∏
n6=m

δ[jn]
γn

)
,

where w ∈ Xdiv(Rn) is such that w(z) = 0 (this describes the Lie algebra of iso(z)), and δβα
is the natural generalization of the Kronecker-delta symbol to multi-indices. Equivalently,

we may define J
(k)
R as the unique map such that

〈J (k)
R (q, p), w〉 = 〈(q, p), Jetkz(Tϕ · w)〉,(11)

for any ϕ ∈ SDiff(Rn) whose k-jet is given by q for any (q, p) ∈ T ∗Q
(k)
N . Here, we wrote

Tϕ · w for the function obtained by applying the differential of ϕ to w.
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We can write J
(k)
L and J

(k)
R explicitly, using the Dirac-delta distribution, as

J
(k)
L (q, p) =

N∑
a=1

(
pamdxm ⊗ δ

q
(0)
a

+
∑
|α|≤k

1≤`≤|α|

(−1)`p α
am dxm ⊗

∑
j1,...,j`∈{1,...,n}
[γ1,...,γ`]∈Π(α,`)

q j1
a γ1
· · · q j`

a γ`
∂j1···j`δq(0)a

)

and

(12) J
(k)
R (q, p) =

N∑
a=1

∑
|α|≤k

1≤`≤|α|

∑
j1,...,j`∈{1,...,n}
[γ1,...,γ`]∈Π(α,`)

p α
ai q

i
a [j1···j`]

∑̀
m=1

(−1)|γm|

(∏
n6=m

δ[jn]
γn

)
dzjm⊗∂γmδza .

Proposition 4.7. The maps J
(k)
L and J

(k)
R form a weak dual pair.

Proof. The result is a direct application of [GBV12, Corollary 2.8]. To make the exposition
more self-contained, we provide some details. By [GBV12, Corollary 2.6] we need only
show that JL and JR are equivariant, and that JL is invariant under the right action of
iso(z). Equivariance follows from the fact that JR and JL are derived from cotangent lifted
group actions [AM08, Corollary 4.2.11]. So we need only illustrate that JL is (right) iso(z)
invariant. This can be seen as a consequence of the commutativity of the left and right actions
on Q(k). For notational clarity, let us denote this right action by ρ : Q(k) × iso(z) → Q(k).
Explicitly, any element q ∈ Q(k) is expressible as the k-jet of some diffeomorphism ϕ, and
ρ(q, ψ) = Jetkz(ϕ ◦ ψ).

Similarly, any element of the tangent fiber Tϕ SDiff(Rn) may be written as a composition
u ◦ ϕ for some u ∈ Xdiv(Rn). Elements of TQ(k) are of the form Jetkz(u ◦ ϕ) for u ∈ Xdiv(Rn)
and ϕ ∈ SDiff(Rn). Given this representation, the tangent lift of the action ρ, also denoted
ρ : TQ(k) × iso(z)→ TQ(k), is given by

ρ((q, v), ψ) = Jetkz(u ◦ ϕ ◦ ψ)(13)

for (q, v) ∈ TQ(k) and where u ∈ Xdiv(Rn) and ϕ ∈ SDiff(Rn) are arbitrary up to the
constraint (q, v) = Jetkz(u ◦ ϕ). The cotangent lifted action is a left action, ρ∗ : iso(z) ×
T ∗Q(k) → T ∗Q(k), defined implicitly by the condition

〈ρ∗(ψ, (q, p)), ρ((q, v), ψ−1)〉 = 〈(q, p), (q, v)〉(14)

for all (q, p) ∈ T ∗Q(k) and (q, v) ∈ TQ(k). This action is equivalent to the one defined in the
discussion preceding [AM08, Corollary 4.2.11]. In particular, ρ∗(ψ, (q, p)) is a covector over
the point q̃ = ρ(q, ψ−1). By the definition of JL we observe

〈JL(ρ∗(ψ, (q, p))), u〉 = 〈ρ∗(ψ, (q, p)), Jetkz(u ◦ ϕ̄)〉,
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where ϕ̄ ∈ SDiff(Rn) is any diffeomorphism such that Jetkz(ϕ̄) = ρ(q, ψ−1). If we let ϕ be
such that Jetkz(ϕ) = q then we can simply choose ϕ̄ = ϕ ◦ ψ−1. Thus we get

〈JL(ρ∗(ψ, (q, p))), u〉 = 〈ρ∗(ψ, (q, p)), Jetkz(u ◦ ϕ ◦ ψ−1)〉
= 〈ρ∗(ψ, (q, p)), ρ(Jetkz(u ◦ ϕ), ψ−1)〉
= 〈(q, p), Jetkz(u ◦ ϕ)〉
= 〈JL(q, p), u〉,

using (13) and (14) in the second and third equality. Thus, we see that JL is invariant under
the right action of iso(z) on Q(k) and the result follows. �

In the case of k = 1 we obtain the weak dual pair of the previous section and Proposition
4.4 is a corollary of Proposition 4.7. Proposition 4.7 gives us the final result on jetlet
parametrized solutions.

Theorem 4.8. Let p ≥ n
2

+ k + 1 and σ > 0. Then H(k) = hp,σ ◦ J (k)
L is C1. Let x(t)

be a solution to Hamilton’s equations on T ∗Q
(k)
N , then J

(k)
L (x(t)) is a solution to Hamilton’s

equations on Xdiv(Rn)∗ and J
(k)
R (x(t)) is constant in time.

Remark that Kp,σ has smoothness C2p−n−1 by considering that the Fourier representations
of its derivatives are integrable, while we need Kp,σ ∈ C2k+1 to allow composition with k-th
derivatives of delta distributions on each side and still obtain a C1 Hamiltonian.

As before, an even richer family of velocity fields is generated by a single particle of this
type. At order k = 2 this yields four new varieties of velocity fields per particle. Two
examples of such velocity fields are depicted in Figure 3.

Figure 3. Some velocity fields generated by particles of order k = 2.

4.5. Kelvin’s circulation theorem. In this section we relate the conserved quantities

associated with J
(k)
R to Kelvin’s circulation theorem. Let ϕt ∈ SDiff(Rn) denote the flow-

map produced by a solution to Euler’s equation. Let γ(s, t) = ϕt(γ0(s)) for some loop γ0(s).
Kelvin’s circulation theorem states that the circulation

Γ(t) =

∮
u(γ(s, t)) · ∂sγ(s, t)ds

is constant in time. It was shown in [Arn66] that this conservation law is an instance of
Noether’s theorem. In particular, circulation is one of the conserved momenta associated with
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the particle relabeling symmetry of fluids. More specifically, recall that h0 is the Hamiltonian
for Euler’s equations, and this Hamiltonian is SDiff(Rn) invariant. Moreover, we have a
weak5 dual pair Jspatial : T ∗ SDiff(Rn) → Xdiv(Rn)∗ and Jconv : T ∗ SDiff(Rn) → iso(z)∗ of
spatial and convective momentum maps induced by the left action of SDiff(Rn) and the right
action of iso(z) ⊂ SDiff(Rn) on SDiff(Rn) itself. By applying Theorem A.9 with J1 = Jspatial

and J2 = Jconv we know that Hamiltonian dynamics on T ∗ SDiff(Rn) with respect to a
Hamiltonian of the form h ◦ J1 will exhibit the constant of motion

(15) 〈Jconv(ϕ, pϕ), w〉 = 〈pϕ, Tϕ · w〉 for all w ∈ iso(z).

This instance of Noether’s theorem applies to regularized models as well as to the non-
regularized case of Euler’s fluid equations. In the case of Euler’s fluid equations, the equiva-
lence between the above conservation law and Kelvin’s circulation theorem is demonstrated
by a heuristic argument [AK98, Chapter 1, Theorem 5.5], which goes as follows. Consider a
given closed curve γ0 : S1 → Rn and a family of vector fields wε such that wε(γ0(s)) = γ′0(s)
and such that the (weak in L2) limit w = limε→0wε is the generalized function

w(x) = γ′0(s)⊗ δ(x− γ0(s)).

Assuming ε is small and writing pϕ = 〈ϕ̇, · 〉L2 , we find

〈Jconv(ϕ, pϕ), wε〉 = 〈ϕ̇, Tϕ · wε〉L2

=

∫
Rn
〈ϕ̇(x),Dϕ(x) · wε(x)〉Rn dx

≈
∮
〈ϕ̇(γ0(s)),Dϕ(γ0(s)) · γ′0(s)〉Rn ds

=

∮
〈u(γ(s, t)), ∂sγ(s, t)〉Rn ds,

where u = ϕ̇ ◦ϕ−1 is the usual Euler representation of the fluid flow and γ(s, t) := ϕt(γ0(s)).
Therefore, conservation of Jconv leads to conservation of circulation.

A more rigorous correspondence is developed in [HMR98]. Any m ∈ Xdiv(Rn)∗ can be
written as a one-form density m̃ ⊗ µ where µ is the volume form on Rn. For any smooth
curve γ : S1 → Rn we may consider the current K (γ) ∈ Xdiv(Rn)∗∗ defined by

〈K (γ),m〉 =

∫
γ

m̃.

By Theorem 6.2 of [HMR98], if γt(s) = ϕt(γ0(s)) and m = m̃⊗ µ satisfies the ideal incom-
pressible fluid equation (perhaps regularized), then the circulation

Γ(t) = 〈K (γt),m(t)〉
is constant in time. It is in this sense that Kelvin’s circulation theorem follows from the
particle relabeling symmetry for any SDiff(Rn) invariant Lagrangian.

In light of this discussion, it is natural to consider (15) as the fundamental conservation
law. The main goal in the remainder of this section is to show that the jet-particle solutions
satisfy conservation laws that are ‘shadows’ of this fundamental law in the sense that they
are associated with a partial relabeling symmetry. To see this, it is useful to define the
k-th order isotropy group, iso(k)(z) = {ψ ∈ SDiff(Rn) | Jetkz(ψ) = Jetkz(id)}, where we

5With SDiff(Rn) as right action this would be a proper dual pair, but iso(z) ⊂ SDiff(Rn) does not act
transitively on the level sets of Jspatial, hence the dual pair is weak.
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wrote id for the identity mapping and z is shorthand for z1, . . . , zN ∈ Rn. Then we see that

Q
(k)
N = SDiff(Rn)/ iso(k)(z), and the corresponding quotient map is given by Jetkz . Let us also

introduce the right action R : SDiff(Rn)× iso(z)→ SDiff(Rn) given by right composition of
functions and write Rψ = R(·, ψ), so that Rψϕ = ϕ ◦ ψ. We also introduce the cotangent
lifted right action TR∗ by means of the defining relation

(16) 〈TR∗ψ−1pϕ, vϕ ◦ ψ〉 = 〈pϕ, vϕ〉

for arbitrary pϕ ∈ T ∗ϕ SDiff(Rn) and vϕ ∈ Tϕ SDiff(Rn).

The space T ∗Q
(k)
N naturally embeds into T ∗ SDiff(Rn)/ iso(k)(z), where the quotient is by

the cotangent lifted action. More precisely, for any (q, p) ∈ T ∗Q
(k)
N we can construct the

corresponding element i(q, p) ∈ T ∗ SDiff(Rn)/ iso(k)(z) in the following way: take any ϕ such
that Jetkz(ϕ) = q and find ιϕ(q, p) ∈ T ∗ϕ SDiff(Rn) that satisfies, for all vϕ ∈ Tϕ SDiff(Rn),

(17) 〈ιϕ(q, p), vϕ〉 = 〈(q, p), (vϕ ◦ ϕ−1) · q〉,

cf. [MMO+07, Equation (2.2.4)], where we denote by (vϕ ◦ ϕ−1) · q the infinitesimal action
from the left of vϕ ◦ ϕ−1 ∈ Xdiv(Rn) on q. Then set i(q, p) = [ιϕ(q, p)].

To see that i(q, p) is well defined, note that if ϕ′ = ϕ ◦ ψ for ψ ∈ iso(k)(z), then for any
vϕ′ ∈ Tϕ′ SDiff(Rn) we have

〈TR∗ψ−1ιϕ(q, p), vϕ′〉 = 〈ιϕ(q, p), vϕ′ ◦ ψ−1〉

= 〈(q, p), (vϕ′ ◦ ψ−1 ◦ ϕ−1) · q〉 = 〈(q, p), (vϕ′ ◦ ϕ′−1
) · q〉 = 〈ιϕ′(q, p), vϕ′〉

using (16) and (17) in the first and second equalities. Since [TR∗ψ−1ιϕ(q, p)] = [ιϕ′(q, p)], we

conclude that i(q, p) is well defined.
We claim that

(18) i(q, p) = [TR∗ϕ−1J
(k)
L (q, p)],

where ϕ is such that Jetkz(ϕ) = q. This follows since for any vϕ ∈ Tϕ SDiff(Rn)

〈TR∗ϕ−1J
(k)
L (q, p), vϕ〉 = 〈J (k)

L (q, p), vϕ ◦ ϕ−1〉 = 〈(q, p), (vϕ ◦ ϕ−1) · q〉.

With these preliminary remarks in mind, we can now show the commutativity of the
following diagram:

S ⊂ T ∗ SDiff(Rn)Jspatial

zz

π

��

Jconv|S

##

Xdiv(Rn)∗ i(T ∗Q
(k)
N ) ⊂ T ∗ SDiff(Rn)/ iso(k)(z)

[Jspatial]
oo

[Jconv|S ]
// iso(z)∗

T ∗Q
(k)
N

i

OO

J
(k)
R

;;

J
(k)
L

cc

Here, S = (π−1 ◦ i)
(
T ∗Q

(k)
N

)
and Jspatial and Jconv are defined in the natural manner through

the left and right actions of SDiff(Rn) and iso(z). To verify the left side of the diagram, we
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let (q, p) ∈ T ∗Q
(k)
N and ϕ such that Jetkz(ϕ) = q. Then we obtain from (18) that for any

w ∈ Xdiv(Rn)

〈[Jspatial](i(q, p)), w〉 = 〈Jspatial(TR
∗
ϕ−1J

(k)
L (q, p)), w〉

= 〈TR∗ϕ−1J
(k)
L (q, p), w ◦ ϕ〉 = 〈J (k)

L (q, p), w〉,

as required. This also shows that [Jspatial] is well defined on T ∗ SDiff(Rn)/ iso(k)(z) since the
final expression does not depend on the choice of representative ϕ for q.

For the right leg, note that

〈[Jconv](i(q, p)), w〉 = 〈Jconv(TR∗ϕ−1J
(k)
L (q, p)), w〉

= 〈TR∗ϕ−1J
(k)
L (q, p), Tϕ · w〉 = 〈J (k)

L (q, p), (Tϕ · w) ◦ ϕ−1〉

= 〈(q, p), Jetkz(Tϕ · w)〉 = 〈J (k)
R (q, p), w〉.

Here we used (18), the definition of Jconv, and (16), respectively, in the first three equalities,
and (11) in the final step. Again we see that [Jconv] is well-defined since it does not depend
on ϕ. More explicitly, for another representative ϕ′ = ϕ ◦ ψ with ψ ∈ iso(k)(z) we see that
ψ gets projected out by (the tangent map of) π = Jetkz . That is, the restricted momentum
map Jconv|S is invariant under the right action of iso(k)(z) and therefore descends to a map

[Jconv|S] defined on i
(
T ∗Q

(k)
N

)
.

The right legs of both weak dual pairs yield the conserved quantities. From the diagram

it is clear that the conservation of J
(k)
R exhibited in our particle models is a shadow of the

conservation of Jconv in (15). Since Jconv corresponds by Noether’s theorem to the (large)
subgroup iso(z) of the right symmetry SDiff(Rn) that generates conservation of circulation,

we see that conservation of J
(k)
R in the jetlet solutions is a shadow of the conservation of

circulation. In other words, our particle models contain a model of Kelvin’s circulation
theorem within them (cf. [DJR13, Theorem 5.5]).

This diagram also provides some insight into the relationship between the developments
in this paper and classical Marsden-Weinstein reduction theory [MW74]. For instance,

letting J
(k)
conv : T ∗ SDiff(Rn) → iso(k)(z)∗ be the momentum map associated to the cotan-

gent lift of the right action of iso(k)(z) on SDiff(Rn), one can show that i
(
T ∗Q

(k)
N

)
=

(J
(k)
conv)−1(0)/ iso(k)(z). For more details on the connections between general reduction theory

and the results of the present paper, see Appendix B.

5. Particle mergers

In this section we discuss some explicit dynamical behavior of the particle model, in
particular we study ‘collisions’ of jetlets. For the zeroth order particles case, this was already
analyzed by Mumford and Michor [MM13b], and they found that two particles can merge
in infinite time, or bounce off each other, depending on the ratio of their relative angular
and linear momenta. To find the explicit behavior analytically, we shall restrict to two
dimensional space and two 0-jetlet particles with zero total linear momentum. We identify
the asymptotics of the merged state as the dynamics of a single 1-jetlet particle.
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We start with the Hamiltonian H(0) for two 0-jetlet particles,

H =
1

2

2∑
a,b=1

paiK
ij(qa − qb)pbj

on T ∗R2n with the canonical Poisson brackets. Translation symmetry allows us perform
symplectic reduction. We switch to a center of mass frame by choosing new coordinates

(19) q̄ =
1

2
(q1 + q2), q̃ = q2 − q1

with canonically associated momenta

p̄ = p1 + p2, p̃ =
1

2
(p2 − p1).

The Hamiltonian in these coordinates becomes

H =
1

4
p̄i
(
Kij(0) +Kij(q̃)

)
p̄j + p̃i

(
Kij(0)−Kij(q̃)

)
p̃j.

When n = 2 and the total momentum is zero, i.e. p̄ = 0, we can perform another symplectic
reduction by rotational symmetry. We switch to polar coordinates

(20) q̃ =
(
r cos(φ), r sin(φ)

)
with canonically associated momenta

p̃T =

(
cos(φ) − sin(φ)

r

sin(φ) cos(φ)
r

)
·
(
pr
pφ

)
= Rφ ·

(
pr
pφ
r

)
,

where Rφ is a rotation matrix. In these coordinates the Hamiltonian is given by

H = p̃i
[
Kij(0)−Kij(q̃)

]
p̃j =

(
pr
pφ
r

)T
RT
φ

[
K(0)−K(Rφ · (r, 0))

]
Rφ

(
pr
pφ
r

)
=

(
pr
pφ
r

)T [
K(0)−K(r, 0)

](pr
pφ
r

)
,

where in the last step we used that K as a tensor is invariant under rotations. Since φ is a
cyclic variable, we find that its associated momentum

pφ = −r sin(φ)p̃1 + r cos(φ)p̃2 = q̃ ∧ p̃
is conserved. Remark that this relative angular momentum is not exactly the total angular
momentum when p̄ 6= 0.

Let us now choose the smooth kernel K = K∞,1 given (up to a scaling factor) by

Kij(x) =
(
e−ρ − 1

2ρ

(
1− e−ρ

))
δij +

(1

ρ

(
1− e−ρ

)
− e−ρ

) xixj
‖x‖2

,

where ρ := ‖x‖2
2

. Note that Kij(0) = 1
2
δij and ∂kK

ij(0) = 0. Using rotational symmetry we
set φ = 0, and obtain

(21) H =
p2
r

2

(
1− 1

ρ

(
1− e−ρ

))
+
p2
φ

4ρ

(
1− 2e−ρ +

1

ρ

(
1− e−ρ

))
.

This system is Hamiltonian in (r, pr) with pφ a parameter, so the level sets of H determine
the motion. For pφ = 0 we see that H ∝ p2

r r
2f(r2) where f is an analytic function with
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f(0) > 0. Thus the level sets of H near r = 0 look like hyperbola with pr = 0 and r = 0
as asymptotic axes, see the left image in Figure (4). Hence, two particles approaching each
other head-on will ‘collide’ in infinite time; even though their momentum blows up, their
relative velocity decays exponentially.

If pφ 6= 0 then the first non-constant contributing term has sign opposite to the terms
involving pr, hence we see a new region being created in the right image of Figure (4) where
orbits approach r = 0 and then ‘bounce off’. There are two asymptotic orbits that approach
the r = 0 axis at finite momentum; the limit point can be calculated from the fact that
ṗr/ṙ = 0 must hold there in the limit r → 0. We find that pr = ±

√
5/6 pφ. From Figure 4

it is clear that this is a good approximation for the asymptotic curve.

Figure 4. Contour plots of the reduced Hamiltonian (21) with r horizontal
and pr vertical, left for pφ = 0 and right for pφ = 0.3. The red line shows the
positive asymptotic value for merging or bouncing.

Finally, we can reconstruct the asymptotic 1-jetlet trajectory that these two merging 0-
jetlets converge to and verify that this trajectory is indeed a solution of the Hamiltonian
vector field for a 1-jetlet.

To analyze the asymptotic behavior, we expand H around ρ = 0:

H =
p2
r

4
ρ+

p2
φ

8

(
3− 5

3
ρ
)

+O(ρ2).

Since H and p2
φ are preserved, we can solve for pr in terms of r, and we find

2ρ p2
r = (8H − 3p2

φ)
(
1 +O(ρ)

)
,

⇐⇒ r pr =
√

8H − 3p2
φ +O(r).

We write ζ :=
√

8H − 3p2
φ and thus obtain asymptotically pr = ζ

r
+O(1). Further, we have

dynamics

ṙ =
∂H

∂pr
=

1

4
pr r

2 +O(r4), φ̇ =
∂H

∂pφ
=

3

4
pφ +O(r2)
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and reconstruct

q̄ = 0, q̃ = rRφ ·
(

1
0

)
,

p̄ = 0, p̃T = Rφ ·
(
pr
pφ
r

)
=

1

r
Rφ ·

(
ζ
pφ

)
+O(1).

Now we consider the image under JL of the asymptotic solution curve. By testing against a
vector field in Xdiv(Rn) we find

JL(q1, p1, q2, p2) = p1 ⊗ δq1 + p2 ⊗ δq2
= p̄⊗ δq̄ + p̃⊗

(
−q̃j∂jδq̄

)
+O

((
|p̄|+ |p̃|

)
|q̃|2
)

and inserting our reconstructed solution leads to

= −
[
Rφ ·

(
ζ
pφ

)]
i

[
Rφ ·

(
1
0

)]j
dxi ∂jδq̄ +O(r)(22)

with φ(t) = 3
4
pφ t. Our aim is to show that the factor in front of dxi ∂jδ, which we shall

denote by µ̃ j
i (t), corresponds to µ j

i (t) for a 1-jetlet with position q(0) = 0 and momentum
p(0) = 0. From here on, we use the Frobenius inner product to identify sl(2)∗ ∼= sl(2), which
for explicit matrices corresponds to taking the transpose. For such a setup we have equations
of motion

µ̇ j
i = µ k

i ∂ku
j(0)− ∂iuk(0)µ j

k = −∂kmKjl(0)µ m
l µ

k
i + ∂imK

kl(0)µ m
l µ

j
k ,

or in short, µ̇ = − ad∗ξ(µ) = [µ, ξT ] with ξij = ∂ju
i(0) = −∂jkKil(0)µ k

l . To ease calculations,
let us choose the basis

ω =

(
0 −1
1 0

)
, σ =

(
1 0
0 −1

)
, τ =

(
0 1
1 0

)
and note that these matrices have norm

√
2. We decompose µ = j ω+s σ+t τ and the second

derivative of the kernel as a tensor product. A calculation verified by symbolic computer
algebra software shows that

∂ijK
kl(0) =

1

4


−
(

1 0
0 3

) (
0 1
1 0

)
(

0 1
1 0

)
−
(

3 0
0 1

)
 = −1

2
ωki ω

l
j −

1

4

(
σki σ

l
j + τ ki τ

l
j

)
,

where the indices i, j and k, l label the outer and inner matrix elements respectively. With
these decompositions we find that ξ as a function of µ can be written as

ξ = j ω +
1

2
(s σ + t τ).

Using the commutation relations [ω, σ] = 2τ , [ω, τ ] = −2σ, [σ, τ ] = −2ω, it then follows that

(23) µ̇ = [µ, ξT ] =
[
j ω + s σ + t τ , −j ω +

1

2
(s σ + t τ)

]
= −3j

(
− t σ + s τ

)
= −3

2
j [ω, µ].

That is, the (σ, τ) components of µ as a tensor rotate with angular velocity −3j.
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On the other hand, from (22) we have for the asymptotic dynamics that

µ̃(t) = −
[
Rφ ·

(
ζ
pφ

)]
·
[
Rφ ·

(
1
0

)]T
= −AdRφ

(
ζ 0
pφ 0

)
with only φ̇ = 3

4
pφ depending on time. Note that µ̃ 6∈ sl(2) as a matrix, but since it is

actually a dual element, we can simply ignore its trace part and project it out. Also note
that the ω component of µ̃(0) is j = 1

2
pφ. Differentiating with respect to time yields

˙̃µ = −φ̇ adω(µ̃) = −3

4
pφ[ω, µ̃] = −3

2
j[ω, µ̃],

and comparing to (23) we find that the asymptotic solution of the two merging 0-jetlets
matches that of a 1-jetlet with the same angular (and linear) momentum.

Let us finally suggest a more abstract way to view these particle mergers. Our hierarchy

of reduced spaces T ∗Q
(k)
N embeds into Xdiv(Rn)∗ under the momentum map JL. Consider

a merging pair of 0-jetlets, described by a curve x0(t) ∈ T ∗Q(0)
2 . As the particles approach

each other, x0(t) approaches the boundary of T ∗Q
(0)
2 given by

∂
(
T ∗Q

(0)
2

)
= {(q1, p1, q2, p2) ∈ T ∗Rn × T ∗Rn | q1 = q2}.

On the other hand, the image curve y0(t) = JL(x0(t)) ∈ Xdiv(Rn)∗ consists of two covector-
valued delta distributions at q1, q2, and in the limit as their distance goes to zero, this can be
approximated by a momentum valued distribution of a delta and its derivative (22), that is,

an element y1(t) = JL(x1(t)), where x1(t) ∈ T ∗Q(1)
1 is a curve in the space of single 1-jetlet

particles.

We can view the boundary of T ∗Q
(0)
2 as a subset of T ∗Q

(1)
1 , and consider a topology on

Xdiv(Rn)∗ in which the embedding is continuous, see diagram (24). This picture naturally

generalizes to the whole hierarchy of spaces T ∗Q
(k)
N , suggesting that it might be interpreted

as a CW-complex. In this setting, the question whether the solution curve y0(t) of the
merging 0-jetlets converges to a solution curve y1(t) of a 1-jetlet, basically6 boils down to the
question whether the vector field of the dynamics on Xdiv(Rn)∗ is continuous. We have not
pursued in detail the question of which topology on Xdiv(Rn)∗ to use for this more abstract
characterization.

(24) T ∗Q
(k)
N

JL
// Xdiv(Rn)∗

T ∗Q
(1)
1

99OO

T ∗Q
(0)
2

BB

∂

OO

6One has to be careful, however, since continuity of the vector field will only imply that the asymptotic

curve ỹ0(t) ∈ JL(T ∗Q
(1)
1 ) is a pseudo orbit of the 1-jetlet dynamics. This does not imply existence of

a solution curve y1(t) ∈ JL(T ∗Q
(1)
1 ) that ỹ0(t) is asymptotic to; that would require the ‘limit shadowing

property’, which is closely related to hyperbolic properties of the dynamics [PPT12, Rib14].
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6. Numerical experiments

We have performed a number of numerical simulations7 of jetlet particles. These confirm
that the conserved quantities are indeed preserved and that two 0-jetlet particles merge as
shown by the analysis in Section 5, providing a sanity check for the formulas in the previous
section and the numerical code. Moreover, the merging behavior shows to be stable under
perturbations of initial conditions.

The numerical code works for any spatial dimension n ≥ 2, but for the sake of tractability
and simplicity we have studied n = 2

As basic experiment we take two 0-jetlet particles with initial states

(25)
q1 = (−3, 0), p1 = (1.5,−d),

q2 = (3, 0), p2 = (−1.5, d),

aimed at each other with an offset parameter d. The initial state is given in center of mass
polar coordinates, see (19) and (20), by

r = 6, pr = −1.5,

φ = 0, pφ = 6d.

Furthermore, we use σ = 1 throughout our experiments. The experiments show that for
d = 0.27 the two particles merge while spinning around each other, while for d = 0.288 they
get close, but then emerge from their close spinning state and scatter in opposite directions.
This confirms the analytical value of d =

√
3/40 ≈ 0.2739 within reasonable precision,

noting that this is the asymptotic value for particles starting close to each other.
We performed a number of more complex simulations, all of those being small perturba-

tions of the basic experiment described above. First, we added a small angular momentum
‘spin’ component to both particles, turning both into 1-jetlets, one level higher in the hier-
archy. Then we added a third particle (both a 0-jetlet and 1-jetlet) at such a distance and
momentum that it exhibits medium range interaction with the first two particles. Finally,
we added a small hyperbolic-like ‘stretching’ momentum to the first particle only. We found
an analytic study of these configurations to be infeasible, but the simulations show that the
behavior observed in the basic experiment persists. We can find parameter values of d close
to the original one where the system shows a transition between the two particles merging
or scattering.

These experiments also confirm the preservation of the conserved quantities present in
the system. For all experiments described above we observed that the energy, total linear
and angular momentum, as well as JR (individually for each particle) were preserved with
absolute errors less than 4 · 10−4 over a time of 60 seconds, while the energy was of the
order one. Unlike JR, which is conserved for each particle, linear and angular momentum
can be exchanged between particles (although total momentum is conserved). Figure 5 left
shows the angular momentum of two scattering 1-jetlets and the right plot of two scattering
0-jetlets interacting weakly with a third jetlet particle.

7The simulation was written using Python and NumPy, the source code and generated videos can be
found at: https://github.com/hoj201/incompressible_jet_particles

https://github.com/hoj201/incompressible_jet_particles
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Figure 5. Angular momentum exchange between two scattering 1-jetlets
(left) and with a third particle present (right).

7. Conclusion

In this paper we derived a hierarchy of weak dual pairs which induce a family of particle-like
solutions, called jetlets, and conserved quantities that shadow the conservation of circulation.
The jetlets have internal degrees of freedom given by a jet group. As the jet group is a finite-
dimensional model of the diffeomorphism group, we suggested the use of jetlets as a finite-
dimensional model of self-similarity, wherein a “large” diffeomorphism advects a “small”
diffeomorphism. We also studied the dynamics of mergers and provided a rigorous analysis
showing that merging 0-jetlets asymptotically approach 1-jetlets.

The developments discussed in the present paper give rise to a number of promising
directions for future research. These include:

(1) An investigation of the relationship between jetlets and point vortices or vortex blobs.
(2) Further investigation of the numerical implementation. The use of parallelization

and the fast multipole method would be particularly interesting to consider.
(3) Finding a way to implement boundary conditions. In such scenarios, the kernel is no

longer invariant under rigid transformations and we must consider a general kernel
K : M ×M → Rn×n where M ⊂ Rn is an n-manifold with boundary.

(4) An analysis of convergence to Euler equations when σ → 0 for the case where the
power of the Helmholtz operator, p, goes to infinity. The advantage of the p =∞ case
is that the limiting kernel can be written in terms of elementary functions [MG14].
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Appendix A. Hamiltonian mechanics

The goal of this section is to prove Theorem A.9 (see page 31). Those who understand
and accept these theorems on a first reading should be able to skip this section without any
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consequence. Most of this section will be a crash course in Poisson geometry and Hamiltonian
mechanics as described in [AM08, MR99, Wei83].

A typical introduction to Poisson structures in mechanics begins by considering Hamilton’s
equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

If we consider the two-form dp∧dq, then Hamilton’s equations can be written as (q̇, ṗ) (dp∧
dq) = dH(q, p). This is the starting point for symplectic geometry, which will be discussed in
Section A.1. Alternatively, these equations can be written using the bilinear map {·, ·}can :
C1(T ∗Q)× C1(T ∗Q)→ C0(T ∗Q) given by

{F,G}can =
∂F

∂q

∂G

∂p
− ∂G

∂q

∂F

∂p
.

In particular, we may write q̇ = {q,H}can and ṗ = {p,H}can. The object {·, ·}can is a
special case of more general object known as a Poisson bracket which will be introduced in
Section A.2.

A word of warning: symplectic geometry has developed greatly since its origins in me-
chanics, and has branched into an independent subfield of pure mathematics. Many notions
were revised and optimized in the 1970’s and 1980’s for the purpose of proving theorems.
Occasionally these revisions entailed a sacrifice in clarity, from the perspective of “outsiders”.
This paper is intended to allow “outsiders” (such as ourselves) to reap the benefits of Poisson
geometry. Therefore, we will cut away as much abstraction as possible in this introductory
section. Nonetheless, a minimal amount of abstraction is needed in order to maintain math-
ematical rigor and stand firmly upon the shoulders of giants.

A.1. Symplectic manifolds. We begin with the definition.

Definition A.1. Let S be a manifold and let ω be a closed two-form on S such that the map
“v ∈ TS 7→ ω(v, ·) ∈ T ∗S” is weakly non-degenerate.8 We call ω a symplectic form. We
call the pair (S, ω) a symplectic manifold.

All of the expressions derived in this article are formal, and we refer to [GBV12] for the
functional analytic details of infinite-dimensional symplectic manifolds. As a first example,
consider the manifold R2 with coordinates (q, p). The two-form dq∧dp is a symplectic form.
Given a manifold Q, the cotangent bundle T ∗Q has local fiber bundle coordinates given by
(q1, . . . , qn, p1, . . . , pn) and there is a unique symplectic form which is locally expressed by
dpi ∧ dqi, where a sum on repeated indices is assumed. This local expression corresponds
to a global symplectic form on T ∗Q, known as the canonical symplectic form and denoted
ωcan [AM08, Theorem 3.2.10]. In fact, given any symplectic manifold (S, ω), the dimension

of S is even, and there exist local coordinates (q1, . . . , qn, p1, . . . , pn) such that ω
locally

= dpi ∧
dqi. This is known as Darboux’s theorem and we call this type of coordinates Darboux
coordinates [AM08, Theorem 3.2.2].

Given a function H : S → R, the exterior derivative is the one-form dH : S → T ∗S
expressed in local coordinates by dH(x) = ∂H

∂xi
dxi. The Hamiltonian vector field XH : S →

TS is the unique vector field defined by the condition XH ω = dH. The symbol “ ” is
the operation of contraction between the contravariant indices of XH and the first set of

8 A linear map L : V → V ∗ is weakly non-degenerate if L is injective. If V is finite-dimensional, this
simply means that L is invertible.
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covariant indices of ω. In Darboux coordinates, the Hamiltonian vector field induces the
equations of motion q̇i = ∂H

∂pi
, ṗi = −∂H

∂qi
.

An important aspect of study in Hamiltonian mechanics is that of symmetry. This yields
the following notions.

Definition A.2. Let G be a Lie group and let ρ : G → Diff(S) be a group action on a
symplectic manifold (S, ω). The group G is said to act symplectically if

ω(ρ(g) · v, ρ(g) · w) = ω(v, w)

for any g ∈ G, v, w ∈ TxS and x ∈ S. If g is the Lie algebra of such a group, the momentum
map, J : S → g∗, is defined by the property

d〈J, ξ〉 = ξS ω.

Alternatively, we can characterize a momentum map J : S → g∗, as the unique map such
that X〈J,ξ〉 = ξS for any ξ ∈ g. In the special case where S = T ∗Q, a left/right action of G
on Q can be lifted to a right/left symplectic action on T ∗Q given by

(q, p) ∈ T ∗Q 7→ (g−1 · q, g∗p) ∈ T ∗Q.
where g∗p is the unique covector such that 〈g∗p, v〉 = 〈p, Tg · v〉. In this case the momentum
map is characterized by the condition

(26) 〈J(q, p), ξ〉 = 〈p, ξ · q〉.
This is contained in Theorem 12.1.4 of [MR99].

Finally, given two functions f, h ∈ C∞(S) we can consider the function {f, h} = ω(Xf , Xh).

In Darboux coordinates {f, h} = ∂f
∂qi

∂h
∂pi
− ∂f

∂pi

∂h
∂qi

. Hamilton’s equations can then be written

as q̇i = {qi, h}, ṗi = {pi, h}. We call {·, ·} a Poisson bracket, and it is the subject of the next
subsection.

A.2. Poisson manifolds. We begin with the definition.

Definition A.3. Let P be a manifold, and {·, ·} be a bilinear operation on C∞(P ) such that
(C∞(P ), {·, ·}) is a Lie algebra and {·, h} has the derivation property for any h ∈ C∞(P ).
That is to say

{gf, h} = {f, h} · g + {g, h} · f,
for any f, g, h ∈ C∞(P ). We call {·, ·} a Poisson bracket, and we call the pair (P, {·, ·}) a
Poisson manifold.

The most important example of a Poisson bracket is that of a Poisson bracket on a sym-
plectic manifold (S, ω). Here the Poisson bracket is {f, g} = ω(Xf , Xg). When S is a
cotangent bundle, and ω is the canonical symplectic form, we call this bracket the canonical
Poisson bracket.

The second most important example of a Poisson bracket, after the canonical Poisson
bracket, is the Lie–Poisson bracket. Let g be a Lie algebra and let g∗ denote its dual. The
Lie–Poisson bracket on g∗ is given by

(27) {f, g}g∗(x) = ±
〈
x,

[
∂f

∂x
,
∂g

∂x

]〉
,

where 〈·, ·〉 is the canonical pairing between dual-vectors and vectors, and [·, ·] is the Lie
bracket on g. The “+” Poisson bracket is nothing but the canonical Poisson bracket on T ∗G,
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mapped to the space g∗ via the left trivialization map λ : (g, p) ∈ T ∗G 7→ (Lg)
∗p ∈ g∗. The

“−” bracket is obtained through the right trivialization map ρ : (g, p) ∈ T ∗G 7→ (Rg)
∗p ∈ g∗.

On a Poisson manifold (P, {·, ·}) the derivation property implies that the functional oper-
ator {·, h} is equivalent to the Lie derivative operator of a unique vector field Xh : P → TP .
That is to say, Xh is the unique vector field such that LXh [f ] = {f, h} for any f ∈ C1(P ).
We call Xh the Hamiltonian vector field and the ODE ẋ = Xh(x) is called a Hamiltonian
equation. It is standard to write this ODE as “ẋ = {x,H}”, despite the fact that one typi-
cally intends for “x” to represent a point in P , and not a function. Since one can take “x”
to be a place-holder for a set of local coordinate functions which determine x uniquely, this
sloppiness is usually harmless.

Proposition A.4 (Proposition 10.2.2 [MR99]). Let (P, {·, ·}) be a Poisson manifold. Then
X{h,f} = −[Xh, Xf ].

Corollary A.5. Let (S, ω) be a symplectic manifold and let h, f ∈ C∞(S). Then [Xh, Xf ] =
−Xω(Xh,Xf ).

Proof. Xω(Xh,Xf ) = X{h,f} = −[Xh, Xf ]. �

Definition A.6. Let (P1, {·, ·}1) and (P2, {·, ·}2) be Poisson manifolds. A map ψ : P1 → P2

is called a Poisson map if {f ◦ ψ, g ◦ ψ}1 = {f, g}2 ◦ ψ for any f, g ∈ C∞(P2).

Proposition A.7 (Lemma 1.2 of [Wei83] or Proposition 10.3.2 of [MR99]). Let ψ : P1 → P2

be a Poisson map. Let h2 ∈ C1(P2). If x(t) ∈ P1 is a solution to Hamilton’s equations
with respect to h1 = h2 ◦ ψ ∈ C1(P1), then y(t) = ψ(x(t)) ∈ P2 is a solution to Hamilton’s
equations with respect to h2.

Remark that unlike in [MR99], we only require C1 smoothness since we do not use existence
and uniqueness of solutions.

When the dimension of P2 is larger than that of P1, Proposition A.7 allows one to find
solutions of Hamiltonian equations on P2 by solving lower-dimensional Hamiltonian equations
on P1.

A.3. Weak dual pairs. In this section we review the notion of weak dual pairs [GBV12].
This is a relaxation of the more frequently invoked notion of a dual pair [MW83, Wei83].
Let (S, ω) be a symplectic manifold. Given a distribution V ⊂ TS, denote the fiber over
x ∈ S by Vx ⊂ TxS. The symplectic orthogonal to V is the distribution

V ω = {w ∈ TS | ω(w, v) = 0,∀v ∈ V }.

Definition A.8 (Weak dual pair [GBV12]). Let J1 : S → P1 be a Poisson map. The kernel
of J1 is the distribution

kernel(J1) = {v ∈ TS | TJ1 · v = 0}.
If J2 : S → P2 is a Poisson map as well, and

kernel(J2)ω ⊂ kernel(J1) , kernel(J1)ω ⊂ kernel(J2)

we call the diagram

P1
J1←− S

J2−→ P2

a weak dual pair.

We would have a proper dual pair if the kernel inclusions were replaced by equalities.
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Theorem A.9. Let J1, J2 : S → P1, P2 form a weak dual pair. Let h ∈ C1(P1). Let x(t) ∈ S
be a solution to Hamilton’s equations with respect to the Hamiltonian H = h ◦ J1. Then
J1 (x(t)) ∈ P1 is a solution to Hamilton’s equations on P1 with respect to h, and J2(x(t)) is
constant in time.

Proof. Use proposition A.7 to show that µ(t) = J1(x(t)) is a solution to Hamilton’s equations
with respect to h. To verify that J2(x(t)) is constant, let v ∈ kernel(J1) be a vector over
x(0) ∈ S. This means that v is tangent to the level set of J1 at x(0). Moreover, H = h ◦ J1

is constant on such level sets. Thus we observe

0 = 〈dH(x(0)), v〉 = ω (ẋ, v) .

Since v was an arbitrary element of kernel(J1) over x(0) we see that ẋ ∈ kernel(J1)ω. Since
J1 and J2 form a weak dual pair, this implies ẋ ∈ kernel(J2). Thus we have found

d

dt
J2(x(t)) = TJ2 · ẋ(t) = 0.

�

Appendix B. Diagrammatic overview

We present here a diagrammatic representation of some of the spaces used in the present
paper. We begin by recalling a number of general results that hold for finite-dimensional Lie
groups, before we indicate their relevance to the developments in the main text.

φ
ψ

G

g

e

l Gq0

q0 q = Π(q) = φg(q0)

Π

Q

K

Figure 6. The G action on Q induces a projection Π. The group K also
acts on G, and we assume that the two actions commute.

• Let a Lie group G act on a manifold Q by the action φ : G × Q → Q, which we
also write as φg(·) = φ(g, ·). If we fix a particular value q0 ∈ Q, we can construct
a mapping Π : G → Q given by Π(g) = φg(q0). Let us assume that the action is
transitive, so that Π is surjective. We denote by Gq0 the isotropy subgroup leaving
q0 invariant, that is,

Gq0 := {g ∈ G|φg(q0) = q0}.
Note that Π−1(q) = gGq0 for any g ∈ G such that Π(g) = q, and hence we can
identify Q with G/Gq0 . Suppose a further Lie group, K, also acts on Q with group
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action ψ : Q×K → Q, which commutes with φ. This situation arises naturally, for
instance, when K is a subgroup of G and, in turn, Gq0 is a normal subgroup of K.
In that case, one can define the action ψ as

(28) ψk(q) := Π(gk) = φgk(q0),

and check that φ and ψ indeed commute:

φs(ψk(q)) = φs(φgk(q0)) = φsgk(q0) = ψk(φs(q)).

We refer to Figure 6 for a representation of the relevant spaces and maps.
• The actions φ and ψ on Q can be lifted to actions Φ and Ψ on the cotangent bundle
T ∗Q in the usual manner (see Figure 7). These cotangent lifted actions induce
equivariant momentum maps J1 : T ∗Q → g∗ and J2 : T ∗Q → k∗, where g∗ and k∗

are the duals of the Lie algebras of G and K. Due to their equivariance, J1 and J2

are Poisson maps (where the duals of the Lie algebras are equipped with appropriate
Lie–Poisson brackets). Since the actions φ and ψ commute, the action Ψ leaves level
sets of J1 invariant, and vice versa. This implies that J1 and J2 are a weak dual pair,
and if moreover Ψ is transitive on the level sets of J1 and vice versa, then J1 and J2

are a proper dual pair, see [GBV12, Corollary 2.6].
• Let H : T ∗G→ R be a right-invariant Hamiltonian. This means that H is invariant

with respect to the cotangent lift TR∗ of the multiplication from the right of G
by itself. In particular, the reduced Hamiltonian h : g∗ → R satisfies H(αg) =
h◦TR∗g(αg) for any αg ∈ T ∗G, and the reduced dynamics in g∗ are of Lie–Poisson type.
The momentum map J1 can be used to induce the so-called collective Hamiltonian
H = h◦J1 on T ∗Q. Note that T ∗Q is a symplectic manifold, and that the symplectic
(canonical) dynamics with respect to the collective Hamiltonian are mapped by (the
Poisson map) J1 to the reduced dynamics on g∗. Moreover, J2 is conserved under
the dynamics on T ∗Q. The conservation law follows from Noether’s theorem because
J1, and hence H, are left invariant by Ψ (see Theorem A.9). Note that the elements
of T ∗Q play the role of symplectic variables (or Clebsch variables in the sense of
[MW83]).
• The appeal of Clebsch variables is their symplectic nature. The symmetry of H

with respect to Ψ implies that reduced dynamics on T ∗G/H can be constructed
by symplectic reduction. Note however that the resulting quotient manifold is not
symplectic in general.
• Note also that there is a symplectic diffeomorphism between T ∗Q and J−1(0)/Gq0 ,

where J here is the momentum map associated with the cotangent lift of the action
(from the right) of Gq0 on G, see [MMO+07, Theorem 2.2.2].

In translating the above facts to the case of interest in the present paper, one encounters
technical subtleties to do with the infinite-dimensionality of SDiff(Rn). Nevertheless, bullet-
by-bullet parallels can be recognized between the developments in the main text of the
paper and the general results above, as we will discuss now. For simplicity, we restrict
ourselves in what follows to the case of a single particle, the extension to N particles being
straightforward.

• Let G = SDiff(Rn), and let Q = Q
(k)
1 be the space of single-particle k-jetlets. We

fix the point q0 = (z,1, 0, . . . , 0) ∈ Q(k)
1 corresponding to the Taylor expansion of the

identity in SDiff(Rn) evaluated at z ∈ Rn (cf. Section 4.4). We let the projection Π
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Φ Ψ

G

e

l Gq0

T ∗Q

KT ∗G

H H = h ◦ J1

h

R g∗ k∗

J1 J2

TR∗

Figure 7. The cotangent lifted actions induce momentum maps J1 and J2.
The Hamiltonian H, assumed to be right-invariant, is also shown, along with
the reduced Hamiltonian H and the collective Hamiltonian H = h ◦ J1.

be given by Jet(k)
z , and hence the left action of an element ϕ ∈ SDiff(Rn) on q ∈ Q

is φϕ(q) = Jet(k)
z (ϕ ◦ ρ), for any ρ such that Jet(k)

z (ρ) = q. The role of the isotropy

subgroup Gq0 is played by iso(k)
z . Let K = iso(z), and note that iso(k)(z) is a normal

subgroup of iso(z) ([DJR13, Proposition 4.1]). Hence, we can define a right action of

iso(z) on Q
(k)
1 given by (28), namely

ψρ(q) = Jet(k)
z (ϕ ◦ ρ),

for any ϕ such that Jet(k)
z (ϕ) = q.

• The cotangent lift of the left and right actions on Q lead to the momentum maps

J
(k)
L and J

(k)
R , explicitly computed in Section 4.4 and shown to be a weak dual pair

in Proposition 4.7.
• In Theorem 4.8 we showed that the canonical Hamiltonian equations on T ∗Q1

(k)

associated with the collective Hamiltonian H(k) = hp,σ ◦ J (k)
L lead to trajectories that

are mapped, by J
(k)
L , to solutions of Hamilton’s equations on Xdiv(Rn)∗. Moreover,

we showed that J
(k)
R is a constant of motion.

• We briefly visit further symplectic reduction in Appendix E. For more on this topic
we refer to [DJR13, CHJM14].

• In Section 4.5 we constructed the mapping i : T ∗Q
(k)
1 → T ∗ SDiff(Rn)/iso(k)

z given by
(18), namely,

i(q, p) = [TR∗ϕ−1J
(k)
L (q, p)].

As we briefly mentioned towards the end of that section, if we denote by J
(k)
conv :

T ∗ SDiff(Rn) → iso(k)(z)∗ the momentum map associated to the cotangent lift of

the right action of iso(k)(z) on SDiff(Rn), then one can show that i
(
T ∗Q

(k)
1

)
=

(J
(k)
conv)−1(0)/ iso(k)(z), as suggested by [MMO+07, Theorem 2.2.2].
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Appendix C. Multi-indices

A multiset is a set with some notion of multiplicity [Bli89]. In this paper, a multi-index
on Rn is a multiset of elements derived from the generating set {1, . . . , n}. Heuristically, a
multi-index is just a “bag of marbles” each of which comes in n “colors”. Given two multi-
indices α ∈ bagi(n) and β ∈ bagj(n) one can create the multiset union α ∪ β ∈ bagi+j(n)
by collecting the marbles of α and β into a single bag. Given integers b1, . . . , bj ∈ Rn, we
can define the unique multi-index β = [b1, . . . , bj] ∈ bagj(n) obtained by collecting b1, . . . , bj
into a bag. Given these conventions, we can denote the partial differential operator ∂b1···bn
by ∂β. Moreover, the notion of equivalence of mixed partials is expressed by the equivalence
∂α∂β = ∂α∪β = ∂β∂α. The cardinality of the multi-index β is denoted |β| and is given by
the number of marbles in the bag. Thus the order of the partial differential operator ∂β is
|β|. We denote the space of k-th order partitions of a multi-index by Π(α, k). Rather than
defining all this formally, we will compute an example and refer to [Jac14] for the formal
definitions.

We can consider the integers 1 2 and 1, and the partial differential operator ∂121. The
associated multi-index is just [1, 2, 1]. This multi-index is equivalent to the multi-index
[1, 1, 2] and [2, 1, 1]. We say that it contains the elements 1 and 2. Because it contains
‘1’ two times, we say that the multiplicity of 1 is 2. The multiset of 2-fold partitions is
Π([1, 2, 1], 2), and consists of three multiset-partitions

[[1], [2, 1]], [[1, 1], [2]], [[1, 2], [1]].

Note that the first and the third partition correspond to the same multiset. The cardinality
of Π([1, 2, 1], 2) is 3, although it only has two distinct elements (one with a multiplicity of 1,
and another with a multiplicity of 2).

Appendix D. The dual space to divergence free vector fields

In this section we will provide a terse and incomplete characterization of the dual space
of divergence free vector fields. First let us characterize the dual space of the space of all
vector fields (with “proper” decay). Let X(Rn) be the space of vector fields which decay
at infinity in such a way that X(Rn) is Fréchet. Viewing X(Rn) as a subspace of functions
from Rn to Rn we can view its dual as a space of distributions. That is to say, given any
m ∈ X(Rn)∗ we may write m as a tensor product p⊗ µ where µ is a distribution (perhaps a
measure) on Rn and p is a covector field (i.e. a one-form). Conversely, given any p ∈ Ω1(Rn)
and distribution µ ∈ D(Rn) we may form the tensor product p ⊗ µ. The object p ⊗ µ is
identified as an element of X(Rn)∗ through the pairing

〈p⊗ µ, u〉 :=

∫
Rn
〈p(x), u(x)〉µ.

where 〈p(x), u(x)〉 is the function on Rn obtained by pairing the covector p(x) ∈ T ∗xRn with
the vector u(x) ∈ TxRn. If we restrict ourselves to the case of divergence free vector fields,
we need to quotient the dual space appropriately. In particular, we see that the annihilator
of Xdiv(Rn) as a subspace of X(Rn)∗ is

(Xdiv(Rn))◦ := {m ∈ X(Rn)∗ | 〈m,u〉 = 0,∀u ∈ Xdiv(Rn)}
:= closure{p⊗ dx ∈ X(Rn)∗ | p is a closed one-form}.
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where dx is the canonical volume form on Rn and we have used the fact that the gradient
fields and the harmonic vector fields are L2-orthogonal to the divergence free vector fields.
The dual space Xdiv(Rn)∗ is identical to the quotient space X(Rn)∗/(Xdiv(Rn))◦. In other
words, we may view a m ∈ Xdiv(Rn)∗ as an object of the form p ⊗ µ modulo Xdiv(Rn)◦.
In the text we will typically not mention Xdiv(Rn)◦ explicitly, and simply identify m with
p ⊗ µ. This is a harmless identification as long as we do not pair it with a non-divergence
free vector field.

Appendix E. Equations of motion for 1-jetlets

The equations of motion are expressible as Hamiltonian equations on T ∗Q
(1)
N in canonical

variable (q(0), p(0), q(1), p(1)). However, it is more efficient to express the equations of motion

in the non-canonical variables (q, p, µ) where qa = q
(0)
a , pa = p

(0)
a and µa = [q

(1)
a ]`i[p

(1)
a ] j` for

a = 1, . . . , N . The Hamiltonian in these coordinates is

H(q, p, µ) =
1

2
paipbjK

ij(qa − qb)− pai[µb] kj ∂kKij(qa − qb)

− 1

2
[µ(1)
a ] li [µ

(1)
b ] kj ∂lkK

ij(qa − qb),

where Kij(x) = δije−‖x‖
2/2σ2

. Hamilton’s equations are then given in short by

q̇ =
∂H

∂p
(29)

ṗ = −∂H
∂q

(30)

ξ =
∂H

∂µ
(31)

µ̇ = − ad∗ξ(µ)(32)

where ad∗ refers to the coadjoint operator on SL(n). More explicitly, equation (29) is given
by

q̇ia = pbjK
ij(qa − qb)− [µ

(1)
b ] kj ∂kK

ij(qa − qb)
equation (30) is given by the sum

ṗai = T 00
ai + T 01

ai + T 11
ai ,

where we define the three terms in this sum as

T 00
ai = −pakpbj∂iKkj(qa − qb)

T 01
ai = (pal[µ

(1)
b ] kj − pbl[µ(1)

a ] kj )∂kiK
lj(qa − qb)

T 11
ai = [µ(1)

a ] l
m [µ

(1)
b ] kj ∂lkiK

mj(qa − qb).

Next, we calculate the quantities ξ = ∂H/∂µ for k = 1, 2 of equation (31) to be

[ξa]
i
j = pbk∂jK

ik(qa − qb)− [µb]
k
l ∂jkK

il(qa − qb),
which allows us to compute µ̇ in equation (32) as

[µ̇a]
j
i = [µa]

k
i [ξ(1)

a ]jk − [µa]
j
k [ξ(1)

a ]ki.
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The dynamics in terms of the original variables (q(0), q(1)) with q(1) ∈ SL(n) are obtained
by integrating the reconstruction equations [q̇(1)]ij = [ξ]ik[q

(1)]kj.
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